Internet Engineering Task Force (IETF) S. Winter
Request for Comments: 6614 RESTENA
Category: Experimental M. McCauley
ISSN: 2070-1721 OSC
S. Venaas
K. Wierenga
Cisco
May 2012
Transport Layer Security (TLS) Encryption for RADIUS
Abstract
This document specifies a transport profile for RADIUS using
Transport Layer Security (TLS) over TCP as the transport protocol.
This enables dynamic trust relationships between RADIUS servers.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This document is a product of the Internet Engineering
Task Force (IETF). It represents the consensus of the IETF
community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not
all documents approved by the IESG are a candidate for any level of
Internet Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/rfc6614.
Winter, et al. Experimental [Page 1]
RFC 6614 RADIUS over TLS May 2012
Copyright Notice
Copyright (c) 2012 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction ....................................................3
1.1. Requirements Language ......................................3
1.2. Terminology ................................................4
1.3. Document Status ............................................4
2. Normative: Transport Layer Security for RADIUS/TCP ..............5
2.1. TCP port and Packet Types ..................................5
2.2. TLS Negotiation ............................................5
2.3. Connection Setup ...........................................5
2.4. Connecting Client Identity .................................7
2.5. RADIUS Datagrams ...........................................8
3. Informative: Design Decisions ..................................10
3.1. Implications of Dynamic Peer Discovery ....................10
3.2. X.509 Certificate Considerations ..........................10
3.3. Ciphersuites and Compression Negotiation Considerations ...11
3.4. RADIUS Datagram Considerations ............................11
4. Compatibility with Other RADIUS Transports .....................12
5. Diameter Compatibility .........................................13
6. Security Considerations ........................................13
7. IANA Considerations ............................................14
8. Acknowledgements ...............................................15
9. References .....................................................15
9.1. Normative References ......................................15
9.2. Informative References ....................................16
Appendix A. Implementation Overview: Radiator .....................18
Appendix B. Implementation Overview: radsecproxy ..................19
Appendix C. Assessment of Crypto-Agility Requirements .............20
Winter, et al. Experimental [Page 2]
RFC 6614 RADIUS over TLS May 2012
1. Introduction
The RADIUS protocol [RFC2865] is a widely deployed authentication and
authorization protocol. The supplementary RADIUS Accounting
specification [RFC2866] provides accounting mechanisms, thus
delivering a full Authentication, Authorization, and Accounting (AAA)
solution. However, RADIUS is experiencing several shortcomings, such
as its dependency on the unreliable transport protocol UDP and the
lack of security for large parts of its packet payload. RADIUS
security is based on the MD5 algorithm, which has been proven to be
insecure.
The main focus of RADIUS over TLS is to provide a means to secure the
communication between RADIUS/TCP peers using TLS. The most important
use of this specification lies in roaming environments where RADIUS
packets need to be transferred through different administrative
domains and untrusted, potentially hostile networks. An example for
a worldwide roaming environment that uses RADIUS over TLS to secure
communication is "eduroam", see [eduroam].
There are multiple known attacks on the MD5 algorithm that is used in
RADIUS to provide integrity protection and a limited confidentiality
protection (see [MD5-attacks]). RADIUS over TLS wraps the entire
RADIUS packet payload into a TLS stream and thus mitigates the risk
of attacks on MD5.
Because of the static trust establishment between RADIUS peers (IP
address and shared secret), the only scalable way of creating a
massive deployment of RADIUS servers under the control of different
administrative entities is to introduce some form of a proxy chain to
route the access requests to their home server. This creates a lot
of overhead in terms of possible points of failure, longer
transmission times, as well as middleboxes through which
authentication traffic flows. These middleboxes may learn privacy-
relevant data while forwarding requests. The new features in RADIUS
over TLS obsolete the use of IP addresses and shared MD5 secrets to
identify other peers and thus allow the use of more contemporary
trust models, e.g., checking a certificate by inspecting the issuer
and other certificate properties.
1.1. Requirements Language
In this document, several words are used to signify the requirements
of the specification. The key words "MUST", "MUST NOT", "REQUIRED",
"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [RFC2119].
Winter, et al. Experimental [Page 3]
RFC 6614 RADIUS over TLS May 2012
1.2. Terminology
RADIUS/TLS node: a RADIUS-over-TLS client or server
RADIUS/TLS Client: a RADIUS-over-TLS instance that initiates a new
connection.
RADIUS/TLS Server: a RADIUS-over-TLS instance that listens on a
RADIUS-over-TLS port and accepts new connections
RADIUS/UDP: a classic RADIUS transport over UDP as defined in
[RFC2865]
1.3. Document Status
This document is an Experimental RFC.
It is one out of several approaches to address known cryptographic
weaknesses of the RADIUS protocol (see also Section 4). The
specification does not fulfill all recommendations on a AAA transport
profile as per [RFC3539]; in particular, by being based on TCP as a
transport layer, it does not prevent head-of-line blocking issues.
If this specification is indeed selected for advancement to Standards
Track, certificate verification options (Section 2.3, point 2) need
to be refined.
Another experimental characteristic of this specification is the
question of key management between RADIUS/TLS peers. RADIUS/UDP only
allowed for manual key management, i.e., distribution of a shared
secret between a client and a server. RADIUS/TLS allows manual
distribution of long-term proofs of peer identity as well (by using
TLS-PSK ciphersuites, or identifying clients by a certificate
fingerprint), but as a new feature enables use of X.509 certificates
in a PKIX infrastructure. It remains to be seen if one of these
methods will prevail or if both will find their place in real-life
deployments. The authors can imagine pre-shared keys (PSK) to be
popular in small-scale deployments (Small Office, Home Office (SOHO)
or isolated enterprise deployments) where scalability is not an issue
and the deployment of a Certification Authority (CA) is considered
too much of a hassle; however, the authors can also imagine large
roaming consortia to make use of PKIX. Readers of this specification
are encouraged to read the discussion of key management issues within
[RFC6421] as well as [RFC4107].
Winter, et al. Experimental [Page 4]
RFC 6614 RADIUS over TLS May 2012
It has yet to be decided whether this approach is to be chosen for
Standards Track. One key aspect to judge whether the approach is
usable on a large scale is by observing the uptake, usability, and
operational behavior of the protocol in large-scale, real-life
deployments.
An example for a worldwide roaming environment that uses RADIUS over
TLS to secure communication is "eduroam", see [eduroam].
2. Normative: Transport Layer Security for RADIUS/TCP
2.1. TCP port and Packet Types
The default destination port number for RADIUS over TLS is TCP/2083.
There are no separate ports for authentication, accounting, and
dynamic authorization changes. The source port is arbitrary. See
Section 3.4 for considerations regarding the separation of
authentication, accounting, and dynamic authorization traffic.
2.2. TLS Negotiation
RADIUS/TLS has no notion of negotiating TLS in an established
connection. Servers and clients need to be preconfigured to use
RADIUS/TLS for a given endpoint.
2.3. Connection Setup
RADIUS/TLS nodes
1. establish TCP connections as per [RFC6613]. Failure to connect
leads to continuous retries, with exponentially growing intervals
between every try. If multiple servers are defined, the node MAY
attempt to establish a connection to these other servers in
parallel, in order to implement quick failover.
2. after completing the TCP handshake, immediately negotiate TLS
sessions according to [RFC5246] or its predecessor TLS 1.1. The
following restrictions apply:
* Support for TLS v1.1 [RFC4346] or later (e.g., TLS 1.2
[RFC5246]) is REQUIRED. To prevent known attacks on TLS
versions prior to 1.1, implementations MUST NOT negotiate TLS
versions prior to 1.1.
* Support for certificate-based mutual authentication is
REQUIRED.
* Negotiation of mutual authentication is REQUIRED.
Winter, et al. Experimental [Page 5]
RFC 6614 RADIUS over TLS May 2012
* Negotiation of a ciphersuite providing for confidentiality as
well as integrity protection is REQUIRED. Failure to comply
with this requirement can lead to severe security problems,
like user passwords being recoverable by third parties. See
Section 6 for details.
* Support for and negotiation of compression is OPTIONAL.
* Support for TLS-PSK mutual authentication [RFC4279] is
OPTIONAL.
* RADIUS/TLS implementations MUST, at a minimum, support
negotiation of the TLS_RSA_WITH_3DES_EDE_CBC_SHA, and SHOULD
support TLS_RSA_WITH_RC4_128_SHA and
TLS_RSA_WITH_AES_128_CBC_SHA as well (see Section 3.3.
* In addition, RADIUS/TLS implementations MUST support
negotiation of the mandatory-to-implement ciphersuites
required by the versions of TLS that they support.
3. Peer authentication can be performed in any of the following
three operation models:
* TLS with X.509 certificates using PKIX trust models (this
model is mandatory to implement):
+ Implementations MUST allow the configuration of a list of
trusted Certification Authorities for incoming connections.
+ Certificate validation MUST include the verification rules
as per [RFC5280].
+ Implementations SHOULD indicate their trusted Certification
Authorities (CAs). For TLS 1.2, this is done using
[RFC5246], Section 7.4.4, "certificate_authorities" (server
side) and [RFC6066], Section 6 "Trusted CA Indication"
(client side). See also Section 3.2.
+ Peer validation always includes a check on whether the
locally configured expected DNS name or IP address of the
server that is contacted matches its presented certificate.
DNS names and IP addresses can be contained in the Common
Name (CN) or subjectAltName entries. For verification,
only one of these entries is to be considered. The
following precedence applies: for DNS name validation,
subjectAltName:DNS has precedence over CN; for IP address
validation, subjectAltName:iPAddr has precedence over CN.
Winter, et al. Experimental [Page 6]
RFC 6614 RADIUS over TLS May 2012
Implementors of this specification are advised to read
[RFC6125], Section 6, for more details on DNS name
validation.
+ Implementations MAY allow the configuration of a set of
additional properties of the certificate to check for a
peer's authorization to communicate (e.g., a set of allowed
values in subjectAltName:URI or a set of allowed X509v3
Certificate Policies).
+ When the configured trust base changes (e.g., removal of a
CA from the list of trusted CAs; issuance of a new CRL for
a given CA), implementations MAY renegotiate the TLS
session to reassess the connecting peer's continued
authorization.
* TLS with X.509 certificates using certificate fingerprints
(this model is optional to implement): Implementations SHOULD
allow the configuration of a list of trusted certificates,
identified via fingerprint of the DER encoded certificate
octets. Implementations MUST support SHA-1 as the hash
algorithm for the fingerprint. To prevent attacks based on
hash collisions, support for a more contemporary hash function
such as SHA-256 is RECOMMENDED.
* TLS using TLS-PSK (this model is optional to implement).
4. start exchanging RADIUS datagrams (note Section 3.4 (1)). The
shared secret to compute the (obsolete) MD5 integrity checks and
attribute encryption MUST be "radsec" (see Section 3.4 (2)).
2.4. Connecting Client Identity
In RADIUS/UDP, clients are uniquely identified by their IP address.
Since the shared secret is associated with the origin IP address, if
more than one RADIUS client is associated with the same IP address,
then those clients also must utilize the same shared secret, a
practice that is inherently insecure, as noted in [RFC5247].
RADIUS/TLS supports multiple operation modes.
In TLS-PSK operation, a client is uniquely identified by its TLS
identifier.
In TLS-X.509 mode using fingerprints, a client is uniquely identified
by the fingerprint of the presented client certificate.
Winter, et al. Experimental [Page 7]
RFC 6614 RADIUS over TLS May 2012
In TLS-X.509 mode using PKIX trust models, a client is uniquely
identified by the tuple (serial number of presented client
certificate;Issuer).
Note well: having identified a connecting entity does not mean the
server necessarily wants to communicate with that client. For
example, if the Issuer is not in a trusted set of Issuers, the server
may decline to perform RADIUS transactions with this client.
There are numerous trust models in PKIX environments, and it is
beyond the scope of this document to define how a particular
deployment determines whether a client is trustworthy.
Implementations that want to support a wide variety of trust models
should expose as many details of the presented certificate to the
administrator as possible so that the trust model can be implemented
by the administrator. As a suggestion, at least the following
parameters of the X.509 client certificate should be exposed:
o Originating IP address
o Certificate Fingerprint
o Issuer
o Subject
o all X509v3 Extended Key Usage
o all X509v3 Subject Alternative Name
o all X509v3 Certificate Policies
In TLS-PSK operation, at least the following parameters of the TLS
connection should be exposed:
o Originating IP address
o TLS Identifier
2.5. RADIUS Datagrams
Authentication, Authorization, and Accounting packets are sent
according to the following rules:
RADIUS/TLS clients transmit the same packet types on the connection
they initiated as a RADIUS/UDP client would (see Section 3.4 (3) and
(4)). For example, they send
Winter, et al. Experimental [Page 8]
RFC 6614 RADIUS over TLS May 2012
o Access-Request
o Accounting-Request
o Status-Server
o Disconnect-ACK
o Disconnect-NAK
o ...
and they receive
o Access-Accept
o Accounting-Response
o Disconnect-Request
o ...
RADIUS/TLS servers transmit the same packet types on connections they
have accepted as a RADIUS/UDP server would. For example, they send
o Access-Challenge
o Access-Accept
o Access-Reject
o Accounting-Response
o Disconnect-Request
o ...
and they receive
o Access-Request
o Accounting-Request
o Status-Server
o Disconnect-ACK
o ...
Winter, et al. Experimental [Page 9]
RFC 6614 RADIUS over TLS May 2012
Due to the use of one single TCP port for all packet types, it is
required that a RADIUS/TLS server signal which types of packets are
supported on a server to a connecting peer. See also Section 3.4 for
a discussion of signaling.
o When an unwanted packet of type 'CoA-Request' or 'Disconnect-
Request' is received, a RADIUS/TLS server needs to respond with a
'CoA-NAK' or 'Disconnect-NAK', respectively. The NAK SHOULD
contain an attribute Error-Cause with the value 406 ("Unsupported
Extension"); see [RFC5176] for details.
o When an unwanted packet of type 'Accounting-Request' is received,
the RADIUS/TLS server SHOULD reply with an Accounting-Response
containing an Error-Cause attribute with value 406 "Unsupported
Extension" as defined in [RFC5176]. A RADIUS/TLS accounting
client receiving such an Accounting-Response SHOULD log the error
and stop sending Accounting-Request packets.
3. Informative: Design Decisions
This section explains the design decisions that led to the rules
defined in the previous section.
3.1. Implications of Dynamic Peer Discovery
One mechanism to discover RADIUS-over-TLS peers dynamically via DNS
is specified in [DYNAMIC]. While this mechanism is still under
development and therefore is not a normative dependency of RADIUS/
TLS, the use of dynamic discovery has potential future implications
that are important to understand.
Readers of this document who are considering the deployment of DNS-
based dynamic discovery are thus encouraged to read [DYNAMIC] and
follow its future development.
3.2. X.509 Certificate Considerations
(1) If a RADIUS/TLS client is in possession of multiple certificates
from different CAs (i.e., is part of multiple roaming consortia)
and dynamic discovery is used, the discovery mechanism possibly
does not yield sufficient information to identify the consortium
uniquely (e.g., DNS discovery). Subsequently, the client may
not know by itself which client certificate to use for the TLS
handshake. Then, it is necessary for the server to signal to
which consortium it belongs and which certificates it expects.
If there is no risk of confusing multiple roaming consortia,
providing this information in the handshake is not crucial.
Winter, et al. Experimental [Page 10]
RFC 6614 RADIUS over TLS May 2012
(2) If a RADIUS/TLS server is in possession of multiple certificates
from different CAs (i.e., is part of multiple roaming
consortia), it will need to select one of its certificates to
present to the RADIUS/TLS client. If the client sends the
Trusted CA Indication, this hint can make the server select the
appropriate certificate and prevent a handshake failure.
Omitting this indication makes it impossible to
deterministically select the right certificate in this case. If
there is no risk of confusing multiple roaming consortia,
providing this indication in the handshake is not crucial.
3.3. Ciphersuites and Compression Negotiation Considerations
Not all TLS ciphersuites in [RFC5246] are supported by available TLS
tool kits, and licenses may be required in some cases. The existing
implementations of RADIUS/TLS use OpenSSL as a cryptographic backend,
which supports all of the ciphersuites listed in the rules in the
normative section.
The TLS ciphersuite TLS_RSA_WITH_3DES_EDE_CBC_SHA is mandatory to
implement according to [RFC4346]; thus, it has to be supported by
RADIUS/TLS nodes.
The two other ciphersuites in the normative section are widely
implemented in TLS tool kits and are considered good practice to
implement.
3.4. RADIUS Datagram Considerations
(1) After the TLS session is established, RADIUS packet payloads are
exchanged over the encrypted TLS tunnel. In RADIUS/UDP, the
packet size can be determined by evaluating the size of the
datagram that arrived. Due to the stream nature of TCP and TLS,
this does not hold true for RADIUS/TLS packet exchange.
Instead, packet boundaries of RADIUS packets that arrive in the
stream are calculated by evaluating the packet's Length field.
Special care needs to be taken on the packet sender side that
the value of the Length field is indeed correct before sending
it over the TLS tunnel, because incorrect packet lengths can no
longer be detected by a differing datagram boundary. See
Section 2.6.4 of [RFC6613] for more details.
(2) Within RADIUS/UDP [RFC2865], a shared secret is used for hiding
attributes such as User-Password, as well as in computation of
the Response Authenticator. In RADIUS accounting [RFC2866], the
shared secret is used in computation of both the Request
Authenticator and the Response Authenticator. Since TLS
provides integrity protection and encryption sufficient to
Winter, et al. Experimental [Page 11]
RFC 6614 RADIUS over TLS May 2012
substitute for RADIUS application-layer security, it is not
necessary to configure a RADIUS shared secret. The use of a
fixed string for the obsolete shared secret eliminates possible
node misconfigurations.
(3) RADIUS/UDP [RFC2865] uses different UDP ports for
authentication, accounting, and dynamic authorization changes.
RADIUS/TLS allocates a single port for all RADIUS packet types.
Nevertheless, in RADIUS/TLS, the notion of a client that sends
authentication requests and processes replies associated with
its users' sessions and the notion of a server that receives
requests, processes them, and sends the appropriate replies is
to be preserved. The normative rules about acceptable packet
types for clients and servers mirror the packet flow behavior
from RADIUS/UDP.
(4) RADIUS/UDP [RFC2865] uses negative ICMP responses to a newly
allocated UDP port to signal that a peer RADIUS server does not
support the reception and processing of the packet types in
[RFC5176]. These packet types are listed as to be received in
RADIUS/TLS implementations. Note well: it is not required for
an implementation to actually process these packet types; it is
only required that the NAK be sent as defined above.
(5) RADIUS/UDP [RFC2865] uses negative ICMP responses to a newly
allocated UDP port to signal that a peer RADIUS server does not
support the reception and processing of RADIUS Accounting
packets. There is no RADIUS datagram to signal an Accounting
NAK. Clients may be misconfigured for sending Accounting
packets to a RADIUS/TLS server that does not wish to process
their Accounting packet. To prevent a regression of
detectability of this situation, the Accounting-Response +
Error-Cause signaling was introduced.
4. Compatibility with Other RADIUS Transports
The IETF defines multiple alternative transports to the classic UDP
transport model as defined in [RFC2865], namely RADIUS over TCP
[RFC6613] and the present document on RADIUS over TLS. The IETF also
proposed RADIUS over Datagram Transport Layer Security (DTLS)
[RADEXT-DTLS].
RADIUS/TLS does not specify any inherent backward compatibility to
RADIUS/UDP or cross compatibility to the other transports, i.e., an
implementation that utilizes RADIUS/TLS only will not be able to
receive or send RADIUS packet payloads over other transports. An
implementation wishing to be backward or cross compatible (i.e.,
wishes to serve clients using other transports than RADIUS/TLS) will
Winter, et al. Experimental [Page 12]
RFC 6614 RADIUS over TLS May 2012
need to implement these other transports along with the RADIUS/TLS
transport and be prepared to send and receive on all implemented
transports, which is called a "multi-stack implementation".
If a given IP device is able to receive RADIUS payloads on multiple
transports, this may or may not be the same instance of software, and
it may or may not serve the same purposes. It is not safe to assume
that both ports are interchangeable. In particular, it cannot be
assumed that state is maintained for the packet payloads between the
transports. Two such instances MUST be considered separate RADIUS
server entities.
5. Diameter Compatibility
Since RADIUS/TLS is only a new transport profile for RADIUS, the
compatibility of RADIUS/TLS - Diameter [RFC3588] and RADIUS/UDP
[RFC2865] - Diameter [RFC3588] is identical. The considerations
regarding payload size in [RFC6613] apply.
6. Security Considerations
The computational resources to establish a TLS tunnel are
significantly higher than simply sending mostly unencrypted UDP
datagrams. Therefore, clients connecting to a RADIUS/TLS node will
more easily create high load conditions and a malicious client might
create a Denial-of-Service attack more easily.
Some TLS ciphersuites only provide integrity validation of their
payload, and provide no encryption. This specification forbids the
use of such ciphersuites. Since the RADIUS payload's shared secret
is fixed to the well-known term "radsec" (see Section 2.3 (4)),
failure to comply with this requirement will expose the entire
datagram payload in plaintext, including User-Password, to
intermediate IP nodes.
By virtue of being based on TCP, there are several generic attack
vectors to slow down or prevent the TCP connection from being
established; see [RFC4953] for details. If a TCP connection is not
up when a packet is to be processed, it gets re-established, so such
attacks in general lead only to a minor performance degradation (the
time it takes to re-establish the connection). There is one notable
exception where an attacker might create a bidding-down attack
though. If peer communication between two devices is configured for
both RADIUS/TLS (i.e., TLS security over TCP as a transport, shared
secret fixed to "radsec") and RADIUS/UDP (i.e., shared secret
security with a secret manually configured by the administrator), and
the RADIUS/UDP transport is the failover option if the TLS session
cannot be established, a bidding-down attack can occur if an
Winter, et al. Experimental [Page 13]
RFC 6614 RADIUS over TLS May 2012
adversary can maliciously close the TCP connection or prevent it from
being established. Situations where clients are configured in such a
way are likely to occur during a migration phase from RADIUS/UDP to
RADIUS/TLS. By preventing the TLS session setup, the attacker can
reduce the security of the packet payload from the selected TLS
ciphersuite packet encryption to the classic MD5 per-attribute
encryption. The situation should be avoided by disabling the weaker
RADIUS/UDP transport as soon as the new RADIUS/TLS connection is
established and tested. Disabling can happen at either the RADIUS
client or server side:
o Client side: de-configure the failover setup, leaving RADIUS/TLS
as the only communication option
o Server side: de-configure the RADIUS/UDP client from the list of
valid RADIUS clients
RADIUS/TLS provides authentication and encryption between RADIUS
peers. In the presence of proxies, the intermediate proxies can
still inspect the individual RADIUS packets, i.e., "end-to-end"
encryption is not provided. Where intermediate proxies are
untrusted, it is desirable to use other RADIUS mechanisms to prevent
RADIUS packet payload from inspection by such proxies. One common
method to protect passwords is the use of the Extensible
Authentication Protocol (EAP) and EAP methods that utilize TLS.
When using certificate fingerprints to identify RADIUS/TLS peers, any
two certificates that produce the same hash value (i.e., that have a
hash collision) will be considered the same client. Therefore, it is
important to make sure that the hash function used is
cryptographically uncompromised so that an attacker is very unlikely
to be able to produce a hash collision with a certificate of his
choice. While this specification mandates support for SHA-1, a later
revision will likely demand support for more contemporary hash
functions because as of issuance of this document, there are already
attacks on SHA-1.
7. IANA Considerations
No new RADIUS attributes or packet codes are defined. IANA has
updated the already assigned TCP port number 2083 to reflect the
following:
o Reference: [RFC6614]
Winter, et al. Experimental [Page 14]
RFC 6614 RADIUS over TLS May 2012
o Assignment Notes: The TCP port 2083 was already previously
assigned by IANA for "RadSec", an early implementation of RADIUS/
TLS, prior to issuance of this RFC. This early implementation can
be configured to be compatible to RADIUS/TLS as specified by the
IETF. See RFC 6614, Appendix A for details.
8. Acknowledgements
RADIUS/TLS was first implemented as "RADSec" by Open Systems
Consultants, Currumbin Waters, Australia, for their "Radiator" RADIUS
server product (see [radsec-whitepaper]).
Funding and input for the development of this document was provided
by the European Commission co-funded project "GEANT2" [geant2] and
further feedback was provided by the TERENA Task Force on Mobility
and Network Middleware [terena].
9. References
9.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
"Remote Authentication Dial In User Service (RADIUS)",
RFC 2865, June 2000.
[RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.
[RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
for Transport Layer Security (TLS)", RFC 4279,
December 2005.
[RFC5176] Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
Aboba, "Dynamic Authorization Extensions to Remote
Authentication Dial In User Service (RADIUS)", RFC 5176,
January 2008.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.
[RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
Authentication Protocol (EAP) Key Management Framework",
RFC 5247, August 2008.
Winter, et al. Experimental [Page 15]
RFC 6614 RADIUS over TLS May 2012
[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R., and W. Polk, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.
[RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
Extension Definitions", RFC 6066, January 2011.
[RFC6613] DeKok, A., "RADIUS over TCP", RFC 6613, May 2012.
9.2. Informative References
[DYNAMIC] Winter, S. and M. McCauley, "NAI-based Dynamic Peer
Discovery for RADIUS/TLS and RADIUS/DTLS", Work
in Progress, July 2011.
[MD5-attacks]
Black, J., Cochran, M., and T. Highland, "A Study of the
MD5 Attacks: Insights and Improvements", October 2006,
.
[RADEXT-DTLS]
DeKok, A., "DTLS as a Transport Layer for RADIUS", Work
in Progress, October 2010.
[RFC3539] Aboba, B. and J. Wood, "Authentication, Authorization and
Accounting (AAA) Transport Profile", RFC 3539, June 2003.
[RFC3588] Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
Arkko, "Diameter Base Protocol", RFC 3588, September 2003.
[RFC4107] Bellovin, S. and R. Housley, "Guidelines for Cryptographic
Key Management", BCP 107, RFC 4107, June 2005.
[RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.1", RFC 4346, April 2006.
[RFC4953] Touch, J., "Defending TCP Against Spoofing Attacks",
RFC 4953, July 2007.
[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domain-Based Application Service Identity
within Internet Public Key Infrastructure Using X.509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, March 2011.
Winter, et al. Experimental [Page 16]
RFC 6614 RADIUS over TLS May 2012
[RFC6421] Nelson, D., "Crypto-Agility Requirements for Remote
Authentication Dial-In User Service (RADIUS)", RFC 6421,
November 2011.
[eduroam] Trans-European Research and Education Networking
Association, "eduroam Homepage", 2007,
.
[geant2] Delivery of Advanced Network Technology to Europe,
"European Commission Information Society and Media:
GEANT2", 2008, .
[radsec-whitepaper]
Open System Consultants, "RadSec - a secure, reliable
RADIUS Protocol", May 2005,
.
[radsecproxy-impl]
Venaas, S., "radsecproxy Project Homepage", 2007,
.
[terena] Trans-European Research and Education Networking
Association (TERENA), "Task Force on Mobility and Network
Middleware", 2008,
.
Winter, et al. Experimental [Page 17]
RFC 6614 RADIUS over TLS May 2012
Appendix A. Implementation Overview: Radiator
Radiator implements the RadSec protocol for proxying requests with
the and clauses in the Radiator
configuration file.
The clause defines a RadSec client, and causes
Radiator to send RADIUS requests to the configured RadSec server
using the RadSec protocol.
The clause defines a RadSec server, and causes
Radiator to listen on the configured port and address(es) for
connections from clients. When an
client connects to a server, the client sends RADIUS
requests through the stream to the server. The server then handles
the request in the same way as if the request had been received from
a conventional UDP RADIUS client.
Radiator is compliant to RADIUS/TLS if the following options are
used:
* Protocol tcp
* UseTLS
* TLS_CertificateFile
* Secret radsec
* Protocol tcp
* UseTLS
* TLS_RequireClientCert
* Secret radsec
As of Radiator 3.15, the default shared secret for RadSec connections
is configurable and defaults to "mysecret" (without quotes). For
compliance with this document, this setting needs to be configured
for the shared secret "radsec". The implementation uses TCP
keepalive socket options, but does not send Status-Server packets.
Once established, TLS connections are kept open throughout the server
instance lifetime.
Winter, et al. Experimental [Page 18]
RFC 6614 RADIUS over TLS May 2012
Appendix B. Implementation Overview: radsecproxy
The RADIUS proxy named radsecproxy was written in order to allow use
of RadSec in current RADIUS deployments. This is a generic proxy
that supports any number and combination of clients and servers,
supporting RADIUS over UDP and RadSec. The main idea is that it can
be used on the same host as a non-RadSec client or server to ensure
RadSec is used on the wire; however, as a generic proxy, it can be
used in other circumstances as well.
The configuration file consists of client and server clauses, where
there is one such clause for each client or server. In such a
clause, one specifies either "type tls" or "type udp" for TLS or UDP
transport. Versions prior to 1.6 used "mysecret" as a default shared
secret for RADIUS/TLS; version 1.6 and onwards uses "radsec". For
backwards compatibility with older versions, the secret can be
changed (which makes the configuration not compliant with this
specification).
In order to use TLS for clients and/or servers, one must also specify
where to locate CA certificates, as well as certificate and key for
the client or server. This is done in a TLS clause. There may be
one or several TLS clauses. A client or server clause may reference
a particular TLS clause, or just use a default one. One use for
multiple TLS clauses may be to present one certificate to clients and
another to servers.
If any RadSec (TLS) clients are configured, the proxy will, at
startup, listen on port 2083, as assigned by IANA for the OSC RadSec
implementation. An alternative port may be specified. When a client
connects, the client certificate will be verified, including checking
that the configured Fully Qualified Domain Name (FQDN) or IP address
matches what is in the certificate. Requests coming from a RadSec
client are treated exactly like requests from UDP clients.
At startup, the proxy will try to establish a TLS connection to each
(if any) of the configured RadSec (TLS) servers. If it fails to
connect to a server, it will retry regularly. There is some back-off
where it will retry quickly at first, and with longer intervals
later. If a connection to a server goes down, it will also start
retrying regularly. When setting up the TLS connection, the server
certificate will be verified, including checking that the configured
FQDN or IP address matches what is in the certificate. Requests are
sent to a RadSec server, just like they would be to a UDP server.
The proxy supports Status-Server messages. They are only sent to a
server if enabled for that particular server. Status-Server requests
are always responded to.
Winter, et al. Experimental [Page 19]
RFC 6614 RADIUS over TLS May 2012
This RadSec implementation has been successfully tested together with
Radiator. It is a freely available, open-source implementation. For
source code and documentation, see [radsecproxy-impl].
Appendix C. Assessment of Crypto-Agility Requirements
The RADIUS Crypto-Agility Requirements document [RFC6421] defines
numerous classification criteria for protocols that strive to enhance
the security of RADIUS. It contains mandatory (M) and recommended
(R) criteria that crypto-agile protocols have to fulfill. The
authors believe that the following assessment about the crypto-
agility properties of RADIUS/TLS are true.
By virtue of being a transport profile using TLS over TCP as a
transport protocol, the cryptographically agile properties of TLS are
inherited, and RADIUS/TLS subsequently meets the following points:
(M) negotiation of cryptographic algorithms for integrity and auth
(M) negotiation of cryptographic algorithms for encryption
(M) replay protection
(M) define mandatory-to-implement cryptographic algorithms
(M) generate fresh session keys for use between client and server
(R) support for Perfect Forward Secrecy in session keys
(R) support X.509 certificate-based operation
(R) support Pre-Shared keys
(R) support for confidentiality of the entire packet
(M/R) support Automated Key Management
The remainder of the requirements is discussed individually below in
more detail:
(M) "...avoid security compromise, even in situations where the
existing cryptographic algorithms utilized by RADIUS
implementations are shown to be weak enough to provide little or
no security" [RFC6421]. The existing algorithm, based on MD5, is
not of any significance in RADIUS/TLS; its compromise does not
compromise the outer transport security.
Winter, et al. Experimental [Page 20]
RFC 6614 RADIUS over TLS May 2012
(R) mandatory-to-implement algorithms are to be NIST-Acceptable
with no deprecation date - The mandatory-to-implement algorithm is
TLS_RSA_WITH_3DES_EDE_CBC_SHA. This ciphersuite supports three-
key 3DES operation, which is classified as Acceptable with no
known deprecation date by NIST.
(M) demonstrate backward compatibility with RADIUS - There are
multiple implementations supporting both RADIUS and RADIUS/TLS,
and the translation between them.
(M) After legacy mechanisms have been compromised, secure
algorithms MUST be used, so that backward compatibility is no
longer possible - In RADIUS, communication between client and
server is always a manual configuration; after a compromise, the
legacy client in question can be de-configured by the same manual
configuration.
(M) indicate a willingness to cede change control to the IETF -
Change control of this protocol is with the IETF.
(M) be interoperable between implementations based purely on the
information in the specification - At least one implementation was
created exclusively based on this specification and is
interoperable with other RADIUS/TLS implementations.
(M) apply to all packet types - RADIUS/TLS operates on the
transport layer, and can carry all packet types.
(R) message data exchanged with Diameter SHOULD NOT be affected -
The solution is Diameter-agnostic.
(M) discuss any inherent assumptions - The authors are not aware
of any implicit assumptions that would be yet-unarticulated in the
document.
(R) provide recommendations for transition - The Security
Considerations section contains a transition path.
(R) discuss legacy interoperability and potential for bidding-down
attacks - The Security Considerations section contains a
corresponding discussion.
Summarizing, it is believed that this specification fulfills all the
mandatory and all the recommended requirements for a crypto-agile
solution and should thus be considered UNCONDITIONALLY COMPLIANT.
Winter, et al. Experimental [Page 21]
RFC 6614 RADIUS over TLS May 2012
Authors' Addresses
Stefan Winter
Fondation RESTENA
6, rue Richard Coudenhove-Kalergi
Luxembourg 1359
Luxembourg
Phone: +352 424409 1
Fax: +352 422473
EMail: stefan.winter@restena.lu
URI: http://www.restena.lu.
Mike McCauley
Open Systems Consultants
9 Bulbul Place
Currumbin Waters QLD 4223
Australia
Phone: +61 7 5598 7474
Fax: +61 7 5598 7070
EMail: mikem@open.com.au
URI: http://www.open.com.au.
Stig Venaas
Cisco Systems
Tasman Drive
San Jose, CA 95134
USA
EMail: stig@cisco.com
Klaas Wierenga
Cisco Systems International BV
Haarlerbergweg 13-19
Amsterdam 1101 CH
The Netherlands
Phone: +31 (0)20 3571752
EMail: klaas@cisco.com
URI: http://www.cisco.com
Winter, et al. Experimental [Page 22]