
An Introduction to Writing a XORP Process

Version 1.4

XORP Project
http://www.xorp.org/
feedback@xorp.org

March 20, 2007

Contents

1 Introduction 2

2 Overview 2

3 The XRL Interface of static routes 3

4 Using thestatic routes XRL Interface 5
4.1 Generating stub code for the caller 5
4.2 Generating stub code for the target 8

5 The Main Loop 16

6 Calling XRLs on the RIB 20
6.1 Returning values in XRLs 26

7 The XLOG Logging Facility 27

8 The rtrmgr Template Files 31

A Modification History 32

1

1 Introduction

This document is intented for a developer who wishes to writea XORP process, but doesn’t know where to
start. We’ll walk through a simple XORP process, discussinghow to define and use XRL interfaces, and
how the bits fit together.

This is a first pass at such a document. We’re bound to have missed things that are not obvious when
you’re starting out. Please provide us feedback as to how much help this document is; what really helped,
what’s missing, and what isn’t explained properly.

We’ll assume that you have copies of four other XORP design documents:

• XORP Design Overview[1]

• XORP Libxorp Library Overview[3]

• XORP Inter-Process Communication Library Overview[2]

• XRL Interfaces: Specifications and Tools[4]

These are available from the XORP web server. You should probably have read these through quickly
so you’re aware what additional information is available before reading this document further. It’s recom-
mended to read them in the order above.

We will assume you are familiar with what an XRL request is, the overall structure of the processes on
a XORP router, and with C++.

2 Overview

In this document we’ll work through by example the structureof a simple XORP process. We’ve chosen the
static routesprocess as an example. At the time of writing, this document is in sync with the source code
for static routes, but this is not guaranteed to always be the case.

static routesis a very simple XORP process. To a first approximation, it receives XRL configuration
requests from thexorp rtrmgr to set up static routing entries, stores the entries, and communicates them to
the RIB using XRLs.

This makes it a good example, because it exports an XRL interface to other processes (typically the
xorp rtrmgr) and calls XRLs on the XRL interface of another XORP process (the RIB). But it doesn’t do all
that much else, so there are few files and the code is quite readable.

The source code for thestatic routesprocess is found in thexorp/static routes subdirectory of the
XORP source tree.

We’ll walk through the main pieces of staticroutes in the following order:

• The XRL interface of staticroutes.

• Implementing the XRL interface of staticroutes.

• The main loop of static routes.

• Calling XRLs on the RIB.

2

3 The XRL Interface of static routes

XRL interfaces are defined by a.xif file (pronounceddot-ziff). xif stands for XRL InterFace. All.xif

files reside inxorp/xrl/interfaces .
The relevant file for us isxorp/xrl/interfaces/static routes.xif . The first part of this file is

shown in Listing 1.

Listing 1: The start ofxorp/xrl/interfaces/static routes.xif

/*
* Static Routes XRL interface.
*/

interface static_routes/0.1 {

/**
* Enable/disable/start/stop StaticRoutes.
*
* @param enable if true, then enable StaticRoutes, otherwis e
* disable it.
*/

enable_static_routes ? enable: bool
start_static_routes
stop_static_routes

/**
* Add/replace/delete a static route.
*
* @param unicast if true, then the route would be used for unic ast
* routing.
* @param multicast if true, then the route would be used in the
* MRIB (Multicast Routing Information Base) for multicast p urpose
* (e.g., computing the Reverse-Path Forwarding informatio n).
* @param network the network address prefix this route appli es to.
* @param nexthop the address of the next-hop router for this r oute.
* @param metric the metric distance for this route.
*/

add_route4 ? unicast: bool & multicast: bool & network:ipv4net \
& nexthop:ipv4 & metric:u32

add_route6 ? unicast: bool & multicast: bool & network:ipv6net \
& nexthop:ipv6 & metric:u32

...
}

The filestatic routes.xif defines all the XRLs that are part of thestatic routes XRL interface.
These are XRLs that other processes can call on thestatic routesprocess.

The format of the file is basically the keywordinterface followed by the name and version of this
particular interface, followed by a list of XRLs. In this case the name of the interface isstatic routes ,
but this does not have to be the same as the name of the process.The version number is0.1 . Version

3

numbers are generally increased when a change is made that isnot backwards compatible, but the precise
value has no important meaning.

The list of XRLs is demarked by braces{ ... }, and one XRL is given per line. Blank lines and
comments are allowed, and a backslash before the newline canbe used to split a long XRL over multiple
lines to aid readability.

Thus the first XRL in this file is:
static routes/0.1/enable static routes?enable:bool

When this XRL is actually called, it would look like:
finder://static routes/static routes/0.1/enable static routes?enable:bool=true

Thefinder part indicates that the XRL is an abstract one - we don’t yet know what the transport param-
eters are. The firststatic routes indicates the name of the target process, and the secondstatic routes

is the name of the interface, taken from the XIF file. A processcan support more than one interface, and an
interface definition can be used by more than one process, hence the duplication in a process as simple as
static routes.

4

4 Using thestatic routes XRL Interface

Now we have seen how the XRLs comprising the staticroutes interface are defined, we shall examine how
processes actually use them. For any particular interface,there are two types of user:

• The process that calls the XRLs and gets back responses. Thisis called the XRLcaller.

• The process on which the XRL is called, and which generates responses. This is called the XRL
target.

XORP provides scripts which can generate C++ code to make life much easier for both these parties.

4.1 Generating stub code for the caller

If we examine the fileMakefile.am (the automake Makefile) inxorp/xrl/interfaces , we find the
fragment in Listing 2.

Listing 2: Fragment fromxorp/xrl/interfaces/Makefile.am

###########################
Client Interface related
###########################

BGP MIB traps
noinst_LTLIBRARIES = libbgpmibtrapsxif.la
libbgpmibtrapsxif_la_SOURCES = bgp_mib_traps_xif.hh bg p_mib_traps_xif.cc

...

StaticRoutes Interface
noinst_LTLIBRARIES += libstaticroutesxif.la
libstaticroutesxif_la_SOURCES = static_routes_xif.hh s tatic_routes_xif.cc

...

###########################
Static Pattern Rules
###########################

SCRIPT_DIR=$(top_srcdir)/xrl/scripts
CLNTGEN_PY=$(SCRIPT_DIR)/clnt-gen

@PYTHON_BUILD@%_xif.cc %_xif.hh $(srcdir)/%_xif.hh $(s rcdir)/%_xif.cc: \
$(srcdir)/%.xif $(CLNTGEN_PY)

@PYTHON_BUILD@ $(PYTHON) $(CLNTGEN_PY) $<

This addslibstaticroutesxif.la to the list of libraries that should be built, and indicates that the
source files for this library arestatic routes xif.hh andstatic routes xif.cc

The last part is pretty cryptic, but basically is a generic rule that says that files ending withxif.cc and
xif.hh will be generated from files ending with.xif using the python script calledclnt-gen .

5

So what actually happens here is that the filestatic routes.xif is processed byclnt-gen to pro-
ducestatic routes xif.hh andstatic routes xif.cc , which are then compiled and linked into the
library libstaticroutesxif.la . Any process that wants to call thestatic routesinterface can link with
this library.

So what functionality does this library provide? Listing 3 shows a fragment from the machine-generated
file static routes xif.hh . Between them,static routes xif.hh and static routes xif.cc

define the machine-generated classXrlStaticRoutesV0p1Client and its complete implementation.

Listing 3: Fragment fromxorp/xrl/interfaces/static routes xif.hh

class XrlStaticRoutesV0p1Client {
public:

XrlStaticRoutesV0p1Client(XrlSender* s) : _sender(s) {}
virtual ˜XrlStaticRoutesV0p1Client() {}

...

typedef XorpCallback1< void, const XrlError&>::RefPtr AddRoute4CB;
/**

* Send Xrl intended to:
*
* Add/replace/delete a static route.
*
* @param dst_xrl_target_name the Xrl target name of the dest ination.
*
* @param unicast if true, then the route would be used for unic ast
* routing.
*
* @param multicast if true, then the route would be used in the MRIB
* (Multicast Routing Information Base) for multicast purpo se (e.g.,
* computing the Reverse-Path Forwarding information).
*
* @param network the network address prefix this route appli es to.
*
* @param nexthop the address of the next-hop router for this r oute.
*
* @param metric the metric distance for this route.
*/

bool send_add_route4(
const char* dst_xrl_target_name,
const bool& unicast,
const bool& multicast,
const IPv4Net& network,
const IPv4& nexthop,
const uint32_t& metric,
const AddRoute4CB& cb

);

...

}

6

The constructor forXrlStaticRoutesV0p1Client takes a pointer to anXrlSender as its parameter.
Typically this is actually anXrlRouter - we’ll come to this in more detail later.

Then for every XRL defined instatic routes.xif there is a method to be called on an instance of
XrlStaticRoutesV0p1Client . The example we’ll look at here issend add route4() , although there
are many more methods defined instatic routes.xif .

If you compare the methodsend add route4() in Listing 3 with the XRLadd route4 in Listing 1,
it should be pretty clear where this comes from. Basically, when you call
XrlStaticRoutesV0p1Client::send add route4 with all the parameters (unicast , nexthop , etc).
set appropriately, the XRLadd route4 will be called. You don’t need to concern yourself with how the
parameters are marshalled into the right syntax for the XRL,or how the XRL is actually transmitted, or even
how the target process is discovered. But you do need to set the target name parameter to the same thing
that thestatic routes process sets it to, otherwise the XRLfinderwon’t be able to route your XRL to its
destination. Often the target name will be the same as the name of the process - in this casestatic routes-
but if there are multiple instances of the interface then you’ll need to figure out which target name to use.

You’ll also notice that some of the parameters for XRL functions are not native C++ types. In this case,
network is of typeIPv4Net andnexthop is of typeIPv4 . Classes instantiating the these additional types
are found inlibxorp and are used throughout XORP.

The final parameter isconst AddRoute4CB& cb .
Earlier in the Listing we can see that this is defined as:
typedef XorpCallback1<void, const XrlError&>::RefPtr Ad dRoute4CB;

This definesAddRoute4CB to be acallbackwhich returns typevoid with one parameter of typeconst

XrlError& .
But what exactly is acallback ?
Well, what we want is to call thesend add route4() method to send an XRL request to thestatic routes

process, and then to go off and do other things while we’re waiting for the response to come back. In
a multi-threaded architecture, this might be achieved by having send add route4() block until the re-
sponse is ready, but XORP is deliberatelynot a multi-threaded architecture. Thus what happens is that
send add route4() will return immediately. It will return false if a local error occurs, but will normally
return true before the XRL has actually been sent. Some time later the response will come back from the
static routesprocess, and we need a way to direct the response to the right class instance that is expecting
it. This is achieved in XORP through the use ofcallbacks.

A callback is created using thecallback() function from libxorp. We’ll discuss this in more detail
when we look at how thestatic routesprocess sends changes to the RIB in Section 6. For now, it suffices to
say that a callback must be created and passed intosend add route4() , and that this is how the response
from theadd route4() XRL is returned to the right place.

7

4.2 Generating stub code for the target

The other side to the XRL story is how the XRL target implements the XRLs. To illustrate this, we will look
at how thestatic routesprocess implements the XRL interface defined instatic routes.xif . A XORP
process can implement more than one interface. In fact most XORP processes implement a special-purpose
interface and also thecommoninterface, which provides XRLs to query basic version and status information
about a target process.

To see what interfaces a particular target process supportswe must look in thexorp/xrl/targets

directory. Listing 4 shows the entire contents ofstatic routes.tgt . This file defines that the XRL
target calledstatic routes implements the two interfacescommon/0.1 andstatic routes/0.1 .

In thestatic routesprocess, we’d prefer not to have to write all the code to unmarshall XRLs into C++,
and marshall the response back into an XRL response, so againwe use machine-generated C++ stubs to free
the programmer from having to do most of the tedious work. Listing 5 shows a number of fragments from
xorp/xrl/targets/Makefile.am related to thestatic routes target.

In Listing 5, the first important point is thatstatic routes.tgt is added to the list oftgt files .
From each.tgt file, a.xrls file will be generated using the python scripttgt-gen according to the magic
at the bottom of the listing.

In the case ofstatic routes.tgt , the filestatic routes.xrls will be generated. This file simply
contains a listing of all the fully expanded XRLs supported by thestatic routes XRL target.

The next important point to note from Listing 5 is that we havespecified that we want to build a library
calledlibstaticroutesbase.la . This is going to be the library that thestatic routesprocess links with
to get access to all the stub code to implement the target partof this interface.

Finally there’s the directive to buildlibstaticroutesbase.la from the machine-generated source
files static routes base.hh and static routes base.cc , and that these files depend on the files
common.xif andstatic routes.xif .

So, what doeslibstaticroutesbase.la actually provide? Listing 6 shows some extracts from
static routes base.hh . Basicallylibstaticroutesbase.la defines a class called
XrlStaticRoutesTargetBase which will be used to receive XRL requests.

The constructor forXrlStaticRoutesTargetBase takes a single parameter which is typically the
XrlRouter for the process. AnXrlRouter is an object that is bound to anEventLoopand which sends and
receives XRL requests. Each process has its ownEventLoop. In Section 5 we’ll look at what the EventLoop
does. In any event, once an instance ofXrlStaticRoutesTargetBase has been created with a pointer to
a workingXrlRouter , then the process is ready to receive XRL requests for thestatic routes interface.
But first we have to actually write some code.

If we look in at Listing 6, we see that the methodstatic routes 0 1 add route4() has been de-
fined. However the method is apure virtual, which means that it is defined here, but there is no implemen-
tation of this inXrlStaticRoutesTargetBase . So how do we actually make use of this?

The general idea is that the stub generation code knows the syntax for this target interface, so it generates
all the code needed to check that incoming requests match thedefined syntax and handle errors if they
don’t. But the stub generation code has no idea what this interface actuallydoes. We need to supply an
implemenation forstatic routes 0 1 add route4() that actually does what we want when this XRL
is called.

8

Listing 4: Contents ofxorp/xrl/targets/static routes.tgt

#include "common.xif"
#include "finder_event_observer.xif"
#include "policy_backend.xif"
#include "static_routes.xif"

target static_routes implements common/0.1, \
finder_event_observer/0.1, \
policy_backend/0.1, \
static_routes/0.1

Listing 5: Extracts fromxorp/xrl/targets/Makefile.am

###########################
Xrl Target related
###########################

Add your target file here
tgt_files = bgp.tgt
...
tgt_files += static_routes.tgt

...

Automatically compute the list of the *.xrls files
xrls_files = $(tgt_files:%.tgt=%.xrls)

...

Add your target’s library here
noinst_LTLIBRARIES = libbgpbase.la
noinst_LIBRARIES = libbgpbase.a
...
noinst_LTLIBRARIES += libstaticroutesbase.la

...

StaticRoutes
libstaticroutesbase_la_SOURCES = static_routes_base.h h static_routes_base.cc
$(srcdir)/static_routes_base.hh $(srcdir)/static_rou tes_base.cc: \

$(INTERFACES_DIR)/common.xif \
$(INTERFACES_DIR)/finder_event_observer.xif \
$(INTERFACES_DIR)/policy_backend.xif \
$(INTERFACES_DIR)/static_routes.xif

...

############################
Implicit Rules and related
############################

9

SCRIPT_DIR=$(top_srcdir)/xrl/scripts
TGTGEN_PY=$(SCRIPT_DIR)/tgt-gen

If this code is commented out, please upgrade to python2.0 o r above.

@PYTHON_BUILD@$(srcdir)/%_base.hh $(srcdir)/%_base.c c %_base.hh %_base.cc \
@PYTHON_BUILD@$(srcdir)/%.xrls: $(srcdir)/%.tgt $(TGT GEN_PY)
@PYTHON_BUILD@ $(PYTHON) $(TGTGEN_PY) -I$(INTERFACES_DIR) $<

10

Listing 6: Extracts fromxorp/xrl/targets/static routes base.hh

class XrlStaticRoutesTargetBase {

...

public:
/**

* Constructor.
*
* @param cmds an XrlCmdMap that the commands associated with the target
* should be added to. This is typically the XrlRouter
* associated with the target.
*/

XrlStaticRoutesTargetBase(XrlCmdMap* cmds = 0);

...

protected:

/**
* Pure-virtual function that needs to be implemented to:
*
* Add/replace/delete a static route.
*
* @param unicast if true, then the route would be used for unic ast
* routing.
*
* @param multicast if true, then the route would be used in the MRIB
* (Multicast Routing Information Base) for multicast purpo se (e.g.,
* computing the Reverse-Path Forwarding information).
*
* @param network the network address prefix this route appli es to.
*
* @param nexthop the address of the next-hop router for this r oute.
*
* @param metric the metric distance for this route.
*/

virtual XrlCmdError static_routes_0_1_add_route4(
// Input values,
const bool& unicast,
const bool& multicast,
const IPv4Net& network,
const IPv4& nexthop,
const uint32_t& metric) = 0;

...

}

11

Listing 7: Extracts fromxorp/static routes/xrl static routes node.hh

class XrlStaticRoutesNode : public StaticRoutesNode,
public XrlStdRouter,
public XrlStaticRoutesTargetBase {

public:
XrlStaticRoutesNode(EventLoop& eventloop,

const string& class_name,
const string& finder_hostname,
uint16_t finder_port,
const string& finder_target,
const string& fea_target,
const string& rib_target);

...

protected:
//
// XRL target methods
//

...

XrlCmdError static_routes_0_1_add_route4(
// Input values,
const bool& unicast,
const bool& multicast,
const IPv4Net& network,
const IPv4& nexthop,
const uint32_t& metric);

...

private:
...

XrlRibV0p1Client _xrl_rib_client;
...
}

So now we come at last to the implementation of thestatic routesprocess. This is in the
xorp/static routes directory.

We have created a file calledxrl static routes node.hh to define our class that actually imple-
ments the code to receive and process XRLs. An extract from this is shown in Listing 7. We have
defined our own class calledXrlStaticRoutesNode which is a child class ofStaticRoutesNode ,
XrlStdRouter and XrlStaticRoutesTargetBase classes. We’ll ignore theStaticRoutesNode

class in this explanation, because it’s specific to thestatic routesprocess, but the important thing is that
XrlStaticRoutesNode is a child of theXrlStaticRoutesTargetBase base class that was generated
by the stub compiler, and a child of theXrlStdRouter base class.

The constructor for ourXrlStaticRoutesNode class takes a number of parameters which are specific
to this particular implementation, but it also takes a number of parameters that are used in the constructor of
theXrlStdRouter base class.

12

We also see from Listing 7 that ourXrlStaticRoutesNode class is going to implement the
static routes 0 1 add route4() method from the stub compiler which was a pure virtual methodin
the base class.

13

Listing 8: Extracts fromxorp/static routes/xrl static routes node.cc

...
#include "static_routes_node.hh"
#include "xrl_static_routes_node.hh"

...

XrlStaticRoutesNode::XrlStaticRoutesNode(EventLoop& eventloop,
const string& class_name,
const string& finder_hostname,
uint16_t finder_port,
const string& finder_target,
const string& fea_target,
const string& rib_target)

: StaticRoutesNode(eventloop),
XrlStdRouter(eventloop, class_name.c_str(), finder_ho stname.c_str(),

finder_port),
XrlStaticRoutesTargetBase(&xrl_router()),
...

_xrl_rib_client(&xrl_router()),
...

{
...

}

...

XrlCmdError
XrlStaticRoutesNode::static_routes_0_1_add_route4(

// Input values,
const bool& unicast,
const bool& multicast,
const IPv4Net& network,
const IPv4& nexthop,
const uint32_t& metric)

{
string error_msg;

if (StaticRoutesNode::add_route4(unicast, multicast, net work, nexthop,
"", "", metric, error_msg)

!= XORP_OK) {
return XrlCmdError::COMMAND_FAILED(error_msg);

}

return XrlCmdError::OKAY();
}

In Listing 8, we see an extract fromxorp/static routes/xrl static routes node.cc where
we have actually implemented theXrlStaticRoutesNode class.

The constructor forXrlStaticRoutesNode passes a number of arguments to theXrlStdRouter

base class, and then passes to the constructor for theXrlStaticRoutesTargetBase base class a pointer

14

to this XrlStdRouter base class (the return result for methodxrl router()). In addition, it initial-
izes a lot of its own state (not shown). Note that if we were implementing a module that does not re-
ceive any XRLs (i.e., it won’t use the equivalent ofXrlStaticRoutesTargetBase), then we must call
XrlStdRouter::finalize() afterXrlStdRouter has been created.

The complete implementation ofXrlStaticRoutesNode::static routes 0 1 add route4() is
shown. In this case, most of the actual work is done elsewhere, but the general idea is clear. This is where
we actually receive and process the incoming XRL request.

Once we have processed the request, we need to return from this method. If this XRL had actually taken
any return values, there would have been parameters to thestatic routes 0 1 add route4 method
that were notconst references, and we would simply have set the values of these variables before call-
ing return to pass the values back to the XRL caller. In the case ofstatic routeshowever, none of the
XRLs return any values other than success or failure. We return XrlCmdError::OKAY() if all is well,
or XrlCmdError::COMMAND FAILED(error msg) if something went seriously wrong, passing back a
human-readable string for diagnostic purposes.

In general, if an error response needs to return machine-readable error information, it is often better to
returnXrlCmdError::OKAY() together with return parameters to indicate that an error occurred and what
actually happened, because ifCOMMANDFAILED is returned, the return parameter values are not passed up
to the caller application.

15

5 The Main Loop

So far we’ve looked at how to define an XRL interface, how to compile the C++ stubs for that interface, and
how to define the actual code that implements that interface.Now we need to look at the main loop of a
XORP process to see how these pieces all come together.

In Listing 10 the main pieces ofxorp/static routes/xorp static routes.cc are shown. These
comprise the entire initialization part and main loop of ourstatic routesprocess.

First come the #includes. Convention indicates that the first of these (static routes module.h) is
a header file defining the module name and version - this information is used by later includes which will
complain if this information is not available. The content of static routes module.h is very simple. It
must defineXORP_MODULE_NAMEandXORP_MODULE_VERSION:

Listing 9: Listing ofxorp/static routes/static routes module.h

#ifndef XORP_MODULE_NAME
#define XORP_MODULE_NAME "STATIC_ROUTES"
#endif
#ifndef XORP_MODULE_VERSION
#define XORP_MODULE_VERSION "0.1"
#endif

Then we include the functionality fromlibxorp that we’ll need:

• libxorp/xorp.h : generic headers that should always be included.

• libxorp/xlog.h : XORP logging functionality. The convention is to use XLOG macros to log
warnings and error messages, so we can redefine how logging ifimplemented in future without re-
writing the code that uses logging. See Section 7 for more information about the XLOG facility.

• libxorp/debug.h : XORP debugging functionality.

• libxorp/callback.hh : XORP callback templates, needed to pass a handle into eventhandling
code to be called later when an event occurs.

• libxorp/eventloop.hh : the main XORP eventloop.

• libxorp/exceptions.hh : standard exceptions for standard stuff - useful as a debugging aid.

Finally we include the definition of the class that implements thestatic routes XRL interface target
class we just defined.

In the processesmain() function, we intialize thexlog logging functionality. Then (not shown) we
handle command line arguments.

The main part of this process occurs within a singletry/catch statement. Thecatch part then handles
any of the xorp standard exceptions that might be thrown. It is not intended that any unhandled exceptions
actually get this far, but if they do, thenxorp catch standard exceptions() will ensure that appropri-
ate diagnostic information is available when the process expires. This is not required, but it is good coding
practice.

The actual main loop that does all the work is instatic routes main() .
First, theEventLoop is created. Every XORP process should have precisely oneEventLoop . All

processing in a XORP process is event-driven from the eventloop. When the process is idle, it will be blocked

16

in EventLoop::run() . When an XRL request arrives, or an XRL response arrives, or atimer expires, or
activity occurs on a registered file handle, then an event handler will be called from the eventloop.

Next we create anXrlStdRouter . This is the object that will be used to send and receive XRLs from
this process. We pass it theEventLoop object, information about the host and port where the XRL finder
is located, and the XRL target name of this process: in this case"static routes" .

Then we create an instance of theXrlStaticRoutesNode class we defined earlier to receive XRLs on
thestatic routes XRL target interface. Inside this object there will be the correspondingXrlStdRouter

object for sending and receiving XRLs from this process. We pass toXrlStaticRoutesNode the follow-
ing:

• TheEventLoop object.

• The XRL target name of this process: in this case"static routes" .

• Information about the host and port where the XRL finder is located.

• Information about the names of other XRL targets we need to communicate with: the Finder, the FEA,
and the RIB.

Before we proceed any further, we must give the XrlStdRoutertime to register our existence with the
Finder. Thus we callwait until xrl router is ready() .

17

Listing 10: Extracts fromxorp/static routes/xorp static routes.cc

//
// XORP StaticRoutes module implementation.
//

#include "static_routes_module.h"

#include "libxorp/xorp.h"
#include "libxorp/xlog.h"
#include "libxorp/debug.h"
#include "libxorp/callback.hh"
#include "libxorp/eventloop.hh"
#include "libxorp/exceptions.hh"

#include "xrl_static_routes_node.hh"

...

static void
static_routes_main(const string& finder_hostname, uint16_t finder_port)
{

//
// Init stuff
//
EventLoop eventloop;

//
// StaticRoutes node
//
XrlStaticRoutesNode xrl_static_routes_node(

eventloop,
"static_routes",
finder_hostname,
finder_port,
"finder",
"fea",
"rib");

wait_until_xrl_router_is_ready(eventloop,
xrl_static_routes_node.xrl_router());

// Startup
xrl_static_routes_node.startup();

//
// Main loop
//
while (! xrl_static_routes_node.is_done()) {

eventloop.run();
}

}

18

int
main(int argc, char *argv[])
{

int ch;
string::size_type idx;
const char *argv0 = argv[0];
string finder_hostname = FinderConstants::FINDER_DEFAU LT_HOST().str();
uint16_t finder_port = FinderConstants::FINDER_DEFAULT _PORT();

//
// Initialize and start xlog
//
xlog_init(argv[0], NULL);
xlog_set_verbose(XLOG_VERBOSE_LOW); // Least verbose messages
// XXX: verbosity of the error messages temporary increased
xlog_level_set_verbose(XLOG_LEVEL_ERROR, XLOG_VERBOS E_HIGH);
xlog_add_default_output();
xlog_start();

...

//
// Run everything
//
try {

static_routes_main(finder_hostname, finder_port);
} catch(...) {

xorp_catch_standard_exceptions();
}

//
// Gracefully stop and exit xlog
//
xlog_stop();
xlog_exit();

exit (0);
}

Finally we’re ready to go. We set our internal state as ready,and enter a tight loop that we will only exit
when it is time to terminate this process. At the core of this loop, we callEventLoop::run() repeatedly.
run() will block when there are no events to process. When an event is ready to process, the relevant event
handler will be called, either directly via acallback or indirectly through one of the XRL stub handler
methods we defined earlier. Thus if another process calls the
finder://static routes/static routes/0.1/add route4 XRL, the first we’ll know about it is
whenXrlStaticRoutesNode::static routes 0 1 add route4() is executed.

19

6 Calling XRLs on the RIB

So far we have seen how we define an XRL interface, how we implement the target side of such an interface,
and how the main loop of a XORP process is structured. In the case ofstatic routes, we can now receive
XRLs informing us of routes. Thestatic routesprocess will do some checks and internal processing on
these routes (such as checking that they go out over a networkinterface that is currently up). Finally it
will communicate the remaining routes to the RIB process foruse by the forwarding plane. We will now
examine how we send these routes to the RIB.

If we look in xorp/xrl/interfaces we find the filerib.xif which defines the XRLs available on
the rib interface. Listing 11 shows some extracts from this file. As we’ve been following through the
add route4 XRL, we’ll again look at that here. We’ll also look at thelookup route by dest4 XRL
because this is an example of an XRL that returns some data, although this particular XRL is not actually
used by thestatic routesprocess. It is also worth noting in passing that the RIB requires a routing protocol
(such asstatic routes) to call add igp table4 before sending routes to the RIB, or the RIB will not know
what to do with the routes.

As we saw with thestatic routes.xif file, the rib.xif file is processed by a python script to
produce the filesrib xif.hh andrib xif.cc in thexorp/xrl/interfaces directory which are then
compiled and linked to produce thelibribxif.la library. This library provides a class definition which
does all the work of marshalling C++ arguments into XRLs, sending the XRL to the RIB process, receiving
the response, and calling the relevant callback in the caller process with the response data.

Listing 12 shows some extracts fromrib xif.hh so we can see what the C++ interface to this library
looks like. The library implements a class calledXrlRibV0p1Client . To use this code, we must first
create an instance of this class, calling the constructor and supplying a pointer to anXrlSender . Typically
such an XrlSender is an instance of anXrlRouter object.

In Listing 7 we can see that our implementation of classXrlStaticRoutesNode actually defined an
instance ofXrlRibV0p1Client called xrl rib client as a member variable, so this object is created
automatically when our main loop createsxrl static routes node in Listing 10. In Listing 8 we can
see that we passedxrl router into the constructor forxrl rib client .

So, once everything else has been initialized, we’ll have access to xrl rib client from within
xrl static routes node . Now, how do we make use of this generated code? The answer is simple:
to send a route to the RIB we simply callxrl rib client.send add route4() with the appropriate
parameters, and the generated library code will do the rest.We can see this in Listing 13, where this code is
actually used.

The only real complication here is related to how we get the response back from the XRL. Recall
that xrl rib client.send add route4() will return immediately with a local success or failure re-
sponse, before the XRL has actually been transmitted to the RIB. Thus we need to pass acallback in to
send add route4() . This callback will wrap up enough state so that when the response finally returns to
the XrlRouter in thestatic routesprocess, it will know which method to call on which object with which
parameters so as to send the response to the right place.

We can see inXrlRibV0p1Client (Listing 7) that the type of the callback is:
XorpCallback1<void, const XrlError&>::RefPtr

This defines a callback function that returnsvoid and which takes one argument of typeconst XrlError& .
If we look in Listing 13 we seen that the methodXrlStaticRoutesNode::send rib route change cb()

fits exactly these criteria. This is the method we are going touse to receive the response from our XRL re-
quest.

20

Listing 11: Extracts fromxorp/xrl/interfaces/rib.xif

interface rib/0.1 {
...

/**
* Add/delete an IGP or EGP table.
*
* @param protocol the name of the protocol.
* @param target_class the target class of the protocol.
* @param target_instance the target instance of the protoco l.
* @param unicast true if the table is for the unicast RIB.
* @param multicast true if the table is for the multicast RIB.
*/

add_igp_table4 ? protocol:txt \
& target_class:txt & target_instance:txt\
& unicast: bool & multicast: bool

...
/**

* Add/replace/delete a route.
*
* @param protocol the name of the protocol this route comes fr om.
* @param unicast true if the route is for the unicast RIB.
* @param multicast true if the route is for the multicast RIB.
* @param network the network address prefix of the route.
* @param nexthop the address of the next-hop router toward th e
* destination.
* @param metric the routing metric.
* @param policytags a set of policy tags used for redistribut ion.
*/

add_route4 ? protocol:txt & unicast: bool & multicast: bool \
& network:ipv4net & nexthop:ipv4 & metric:u32 \
& policytags:list

replace_route4 ? protocol:txt & unicast: bool & multicast: bool \
& network:ipv4net & nexthop:ipv4 & metric:u32 \
& policytags:list

delete_route4 ? protocol:txt & unicast: bool & multicast: bool \
& network:ipv4net

...
/**

* Lookup nexthop.
*
* @param addr address to lookup.
* @param unicast look in unicast RIB.
* @param multicast look in multicast RIB.
* @param nexthop contains the resolved nexthop if successfu l,
* IPv4::ZERO otherwise. It is an error for the unicast and mul ticast
* fields to both be true or both false.
*/

lookup_route_by_dest4 ? addr:ipv4 & unicast: bool & multicast: bool \
-> nexthop:ipv4

}

21

Listing 12: Extracts fromxorp/xrl/interfaces/rib xif.hh

class XrlRibV0p1Client {
public:

XrlRibV0p1Client(XrlSender* s) : _sender(s) {}
...

typedef XorpCallback1< void, const XrlError&>::RefPtr AddRoute4CB;
/**

* Send Xrl intended to:
*
* Add/replace/delete a route.
*
* @param dst_xrl_target_name the Xrl target name of the dest ination.
* @param protocol the name of the protocol this route comes fr om.
* @param unicast true if the route is for the unicast RIB.
* @param multicast true if the route is for the multicast RIB.
* @param network the network address prefix of the route.
* @param nexthop the address of the next-hop router toward th e
* destination.
* @param metric the routing metric.
* @param policytags a set of policy tags used for redistribut ion.
*/

bool send_add_route4(
const char* dst_xrl_target_name,
const string& protocol,
const bool& unicast,
const bool& multicast,
const IPv4Net& network,
const IPv4& nexthop,
const uint32_t& metric,
const XrlAtomList& policytags,
const AddRoute4CB& cb

);
...

typedef XorpCallback2< void, const XrlError&, const IPv4*>::RefPtr LookupRo
uteByDest4CB;

/**
* Send Xrl intended to:
*
* Lookup nexthop.
*
* @param dst_xrl_target_name the Xrl target name of the dest ination.
* @param addr address to lookup.
* @param unicast look in unicast RIB.
* @param multicast look in multicast RIB.
*/

bool send_lookup_route_by_dest4(
const char* dst_xrl_target_name,
const IPv4& addr,
const bool& unicast,
const bool& multicast,
const LookupRouteByDest4CB& cb

22

);
}

23

Listing 13: Extracts fromxorp/static routes/xrl static routes node.cc

void
XrlStaticRoutesNode::send_rib_route_change()
{

bool success = true;
...

StaticRoute& static_route = _inform_rib_queue.front();
...

//
// Send the appropriate XRL
//
if (static_route.is_add_route()) {

if (static_route.is_ipv4()) {
if (static_route.is_interface_route()) {

...
} else {

success = _xrl_rib_client.send_add_route4(
_rib_target.c_str(),
StaticRoutesNode::protocol_name(),
static_route.unicast(),
static_route.multicast(),
static_route.network().get_ipv4net(),
static_route.nexthop().get_ipv4(),
static_route.metric(),
static_route.policytags().xrl_atomlist(),
callback(this, &XrlStaticRoutesNode::send_rib_route_change_cb));

if (success)
return;

}
}

...
}

void
XrlStaticRoutesNode::send_rib_route_change_cb(const XrlError& xrl_error)
{

switch (xrl_error.error_code()) {
case OKAY:

//
// If success, then send the next route change
//
_inform_rib_queue.pop_front();
send_rib_route_change();
break;

case COMMAND_FAILED:
//
// If a command failed because the other side rejected it,
// then print an error and send the next one.
//
...

24

break;

case NO_FINDER:
case RESOLVE_FAILED:
case SEND_FAILED:

...
break;

case BAD_ARGS:
case NO_SUCH_METHOD:
case INTERNAL_ERROR:

...
break;

case REPLY_TIMED_OUT:
case SEND_FAILED_TRANSIENT:

...
break;

}
}

25

We actually create the callback using the call:
callback(this, &XrlStaticRoutesNode::send rib route change cb)

In the context of Listing 13,this refers to a pointer to the current instance ofXrlStaticRoutesNode . So,
what this callback does is to wrap a pointer to the methodsend rib route change cb() on the current
instance ofXrlStaticRoutesNode . Later on, when the response returns, the XrlRouter will call the
send rib route change cb() method on this specific instance ofXrlStaticRoutesNode and supply
it with a parameter of typeconst XrlError& .

In the implementation ofsend rib route change cb() we can see that we check the value of the
xrl error parameter to see whether the XRL call was actually successful or not. If the return error code
is OKAYwe send the next route change. Otherwise, we take different actions based on the error type.

6.1 Returning values in XRLs

Because thestatic routesprocess is so simple, none of the XRLs it calls actually return any information in
the response. However, it’s rather common that we want to make a request of a target and get back some
information. This is quite easy to do, but just requires a different callback that can receive the relevant
parameters.

In Listing 11 we saw that the XRLlookup route by dest4 returns one value of typeipv4 called
nexthop . XRLs can actually return multiple parameters - this is merely a simple example.

In Listing 12 we can see that the callback we need to suuply tosend lookup route by dest4() is
of type:
XorpCallback2<void, const XrlError&, const IPv4*>::RefP tr

This is just like the callback we have already seen, except that the method the callback will call must take
two arguments. The first must be of typeconst XrlError& and the second must be of typeconst

IPv4* . Although static routes has no such callback method, if it did it might look like the function
lookup route by dest4 cb in Listing 14. The callback itself to be passed intosend lookup route by dest4()

is created in exactly the same way as the one we passed intosend add route4() .

Listing 14: Hypothetical callback forsend lookup route by dest4()

void
XrlStaticRoutesNode::lookup_route_by_dest4_cb(const XrlError& xrl_error,

const IPv4* nexthop)
{

if (xrl_error == XrlError::OKAY()) {
printf("the nexthop is %s\n", nexthop->str().c_str());

}
...
}

26

7 The XLOG Logging Facility

The XORP XLOG facility is used for log messages generation, similar to syslog. The log messages may be
output to multiple output streams simultaneously. Below isa description of how to use the log utility.

• The xlog utility assumes thatXORP_MODULE_NAMEis defined (per module). To do so, you must
have in your directory a file like “foomodule.h”, and inside it should contain something like:

#define XORP_MODULE_NAME "BGP"

This file then has to be included by each *.c and *.cc file, and MUST be the first of the included local
files.

• Before using the xlog utility, a program MUST initialize it first (think of this as the xlog constructor):

int xlog_init(const char *process_name, const char *pream ble_message);

Further, if a program tries to use xlog without initializingit first, the program will exit.

• To add output streams, you MUST use one of the following (or both):

int xlog_add_output(FILE* fp);
int xlog_add_default_output(void);

• To change the verbosity of all xlog messages, use:

xlog_set_verbose(xlog_verbose_t verbose_level);

where “verboselevel” is one of the following (XLOG_VERBOSE_MAXexcluded):

typedef enum {
XLOG_VERBOSE_LOW = 0, /* 0 */
XLOG_VERBOSE_MEDIUM, /* 1 */
XLOG_VERBOSE_HIGH, /* 2 */
XLOG_VERBOSE_MAX

} xlog_verbose_t;

Default value isXLOG_VERBOSE_LOW(least details). Larger value for “verboselevel” adds more
details to the preamble message (e.g., file name, line number, etc, about the place where the log
message was initiated).

Note that the verbosity level of message typeXLOG_LEVEL_FATAL(see below) cannot be changed
and is always set to the most verbose level (XLOG_VERBOSE_HIGH).

• To change the verbosity of a particular message type, use:

27

void xlog_level_set_verbose(xlog_level_t log_level,
xlog_verbose_t verbose_level);

where “log level” is one of the following (XLOG_LEVEL_MINandXLOG_LEVEL_MAXexcluded):

typedef enum {
XLOG_LEVEL_MIN = 0, /* 0 */
XLOG_LEVEL_FATAL = 0, /* 0 */
XLOG_LEVEL_ERROR, /* 1 */
XLOG_LEVEL_WARNING, /* 2 */
XLOG_LEVEL_INFO, /* 3 */
XLOG_LEVEL_TRACE, /* 4 */
XLOG_LEVEL_MAX

} xlog_level_t;

Note that the verbosity level of message typeXLOG_LEVEL_FATALcannot be changed and is always
set to the most verbose level (XLOG_VERBOSE_HIGH).

• To start the xlog utility, you MUST use:

int xlog_start(void);

• To enable or disable a particular message type, use:

int xlog_enable(xlog_level_t log_level);
int xlog_disable(xlog_level_t log_level);

By default, all levels are enabled. Note thatXLOG_LEVEL_FATALcannot be disabled.

• To stop the logging, use:

int xlog_stop(void);

Later you can restart it again byxlog_start()

• To gracefully exit the xlog utility, use

int xlog_exit(void);

(think of this as the xlog destructor).

Listing 15 contains an example of using the XLOG facility.

28

Listing 15: An example of using the XLOG facility

int
main(int argc, char *argv[])
{

//
// Initialize and start xlog
//
xlog_init(argv[0], NULL);
xlog_set_verbose(XLOG_VERBOSE_LOW); // Least verbose messages
// Increase verbosity of the error messages
xlog_level_set_verbose(XLOG_LEVEL_ERROR, XLOG_VERBOS E_HIGH);
xlog_add_default_output();
xlog_start();

// Do something

//
// Gracefully stop and exit xlog
//
xlog_stop();
xlog_exit();

exit (0);
}

Typically, a developer would use the macros described belowto print a message, add an assert statement,
place a marker, etc. If a macro accepts a message to print, theformat of the message is same as printf(3).
The only difference is that the xlog utility automatically adds ’\n’ , (i.e. end-of-line) at the end of each
string specified byformat :

• XLOG_FATAL(const char *format, ...)
Write a FATAL message to the xlog output streams and abort theprogram.

• XLOG_ERROR(const char *format, ...)
Write an ERROR message to the xlog output streams.

• XLOG_WARNING(const char *format, ...)
Write a WARNING message to the xlog output streams.

• XLOG_INFO(const char *format, ...)
Write an INFO message to the xlog output streams.

• XLOG_TRACE(int cond_boolean, const char *format, ...)
Write a TRACE message to the xlog output stream, but only ifcond_boolean is not 0.

• XLOG_ASSERT(assertion)
The XORP replacement for assert(3), except that it cannot beconditionally disabled and logs error
messages through the standard xlog mechanism. It callsXLOG_FATAL() if the assertion fails.

• XLOG_UNREACHABLE()
A marker that can be used to indicate code that should never beexecuted.

29

• XLOG_UNFINISHED()
A marker that can be used to indicate code that is not yet implemented and hence should not be run.

30

8 The rtrmgr Template Files

TODO: add description how to write rtrmgr template files.
For the time being, the developer can check the “XORP Router Manager Process (rtrmgr)” document for

information about the template semantics, and can use filexorp/etc/templates/static routes.tp

as an example.

31

A Modification History

• July 19, 2004: Initial version 1.0 completed.

• April 13, 2005: Updated to match XORP release 1.1. Added the XLOG logging facility section.

• March 8, 2006: Updated the version to 1.2, and the date.

• August 2, 2006: Updated to match XORP release 1.3: the XRL-related sample code is modified to
match the original code.

• March 20, 2007: Updated the version to 1.4, and the date.

References

[1] XORP Design Architecture. XORP technical document. http://www.xorp.org/.

[2] XORP Inter-Process Communication Library. XORP technical document. http://www.xorp.org/.

[3] XORP Libxorp Library Overview. XORP technical document. http://www.xorp.org/.

[4] XRL Interfaces: Specification and Tools. XORP technicaldocument. http://www.xorp.org/.

32

