
XORP Design Overview

Version 1.0

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
feedback@xorp.org

July 8, 2004

1 Introduction

This document provides a brief overview of the XORP (eXtensible Open Router Platform) architecture. It
is intended both for people who are interested in the architecture itself, and as a starting point for developers
who wish to modify the software. People who are interested inthe XORP multicast routing architecture
should read also [7].

1.1 XORP Motivation

A gap exists between network research and Internet practicedue to the nature of the Internet router software
business. It is really hard for researchers to introduce newprotocols and mechanisms into operational
networks, and to study existing protocols in the wild. The primary goal of XORP is to fill this gap. To
succeed it must be both a research tool and a stable deployment platform that can be used in production
networks. It must also place a strong emphasis on extensibility, while coping with the impact of this on
robustness, security and performance.

For more details about the XORP designphilosophy, see [12].

2 Target

The goal for XORP is to become a suitable software platform that can be used as the core of practically any
router. However, theinitial focus is on an edge router running on commodity PC hardware with relatively
low port density and moderate size routing tables1.

However, given the flexibility of the XORP architecture, in the future we should not be limited to edge-
router scenarios or PC hardware. For example:

• We can easily imagine using multiple PCs as forwarding engines, with a single control element. This
would allow greater port density.

• Another useful target would be a PC with a number of network processors (e.g., Intel IXP1200) doing
the bulk of the forwarding.

1A comparable production router might be a Cisco 7206VXR (or pretty much anything smaller than this).



• Finally, in the long run, the code base might be run the control processor of high-performance ASIC-
based routers.

3 Functionality

XORP is designed to support both IPv4 and IPv6. However, eventhough most of the code is written to
support both, as of Release 1.0 (July 2004) majority of the testing has been limited to IPv4 only.

Below is our initial target list of protocols and features tobe supported by XORP. Those in bold are
already implemented or supported to some degree. Not all of the implemented features have been tested yet.

Unicast Routing Protocols

• BGP4+ (IPv4 andIPv6)

• OSPF (IPv4 and IPv6)

• RIPv2 (IPv4), RIPng (IPv6)

• IS-IS

Multicast Routing Protocols

• PIM-SM , PIM-SSM, Bidir-PIM (IPv4 andIPv6)

• IGMPv1, v2, v3 (IPv4)

• MLDv1 , v2 (IPv6)

Network Management

• Command Line Interface (similar to Juniper)

• SNMP

• WWW

Forwarding Path

• Traditional UNIX forwarding path

• Click forwarding path

• User-level simulation-like environment

4 Architecture

4.1 Design Philosophy

The XORP design philosophy stressesextensibility, performance androbustness.

2



For routing and management modules, the primary goals are extensibility and robustness. These goals
are achieved by carefully separating functionality into independent modules, running in separate Unix pro-
cesses, with well-defined APIs between them. Clearly, thereare performance penalties to pay for such
an architecture, but we believe that so long as careful attention is paid to computational complexity, the
costs associated with inter-process communication will beacceptable given the obvious extensibility and
robustness benefits.

For the forwarding path, the primary goals are extensibility and performance. Robustness here is pri-
marily achieved through simplicity and a modular design that encourages re-use of well-tested components.

4.2 Design Overview

XORP can be divided into two subsystems. The higher-level (“user-space”) subsystem consists of the rout-
ing protocols and management mechanisms. The lower-level (“kernel”) provides the forwarding path, and
provides APIs for the higher-level to access.

User-level XORP uses a multi-process architecture with oneprocess per routing protocol, and a novel
inter-process communication mechanism known as XORP Resource Locators (XRLs) [4]. XRL commu-
nication is not limited to a single host, and so XORP can in principle run in a distributed fashion. For
example, we can have a distributed router, with the forwarding engine running on one machine, and each of
the routing protocols that update that forwarding engine running on a separate control processor system.

The lower-level subsystem can use traditional UNIX kernel forwarding, or the Click modular router [1].
The modularity and minimal dependencies between the lower-level and user-level subsystems allow for
many future possibilities for forwarding engines. As standards such as those being developed in the IETF
ForCES Working Group emerge, we expect to support them to provide true forwarding engine interchange-
ability.

Figure 1 shows the processes in XORP, although it should be noted that some of these modules use
separate processes to handle IPv4 and IPv6. For simplicity,the arrows show only the main communication
flows used for routing information. Control flows are not shown - for example, the FEA may need to inform
the routing processes when an interface goes down. These processes are further described in Section 4.3.

We should note that even though our design philosophy is thateach XORP component in Figure 1 will
run as a separate process, it would also be possible to compile most of them together to run as one single
process. Obviously, the robustness of such a router would suffer because the crash of a single component
would bring down the whole router. However, the XORP architecture is designed to be flexible, and other
developers building on this software can choose to use it in different ways.

4.3 XORP Processes Description

4.3.1 FEA (Forwarding Engine Abstraction)

The FEA provides a platform independent interface to the basic routing and network interface manage-
ment functionality. For example, get or set information about network interfaces, install or modify unicast
forwarding entries, multicast routing support, etc.

If the router is distributed, in the sense that some Forwarding Engines (FEs) are not in the same chassis
as the control software, then the FEA will also handle control communications with the remote FEs. Note
that, strictly speaking, it is not required that all communication with the FE must go through the FEA. For
example, Click modules can communicate directly with a user-space process. However, the FEA abstracts
all the details about the underlying system from the user-level XORP processes; therefore by using the
common API provided by the FEA we can greatly simplify the rest of the XORP components.

3



PIM−SM

RIP

FEA

Forwarding Engine

IGMP/MLD

CLI SNMPIPC
finder

OSPF

IS−IS

router
manager

BGP4+

RIB

Management Processes

Unicast Routing

Multicast Routing

RIB = routing information base
FEA = forwarding engine abstraction

Click Elements

Figure 1: XORP Process Model

4



Note that the multicast-related functionalities are logically separated from the unicast-based functionali-
ties in the MFEA (Multicast Forwarding Engine Abstraction), though the MFEA is part of the FEA process.

For more information about the FEA see [3]. For more information about the MFEA see [6].

4.3.2 RIB (Routing Information Base)

The RIB holds a user-space copy of the entire routing/forwarding table, complete with information about
where each route came from (e.g., which protocol, and when). It communicates with the routingprotocols
such as BGP, RIP and OSPF to instantiate routes, and with the FEA to install the appropriate forwarding
entries in the FEs.

The RIB also holds the routing information for multicast-capable routes (MRIB) to be used for multicast
Reverse-Path Forwarding (RPF) information. For example, PIM-SM uses the MRIB information to route
joins/prunes and to determine the RPF interface for sourcesand for RPs.

The MRIB is populated by whatever “unicast” protocol is usedto provide multicast capable path infor-
mation. Typically this is MBGP for inter-domain paths, where it is possible to tell the difference between
unicast-capable and multicast-capable routers. For intra-domain routing, this usually is the regular unicast
FIB information.

Note that for unicast, routing and forwarding tables are practically the same. In case of multicast, the
RIB provides the RPF information, while the forwarding information (the incoming and outgoing interfaces)
is computed by the particular multicast routing protocol. The multicast forwarding information is kept by
the multicast routing protocol itself, and installed directly through the FEA. In the future, when there is
more than one multicast routing protocols, XORP may have themulticast equivalent of RIB that would be
responsible for coordinating among the different multicast routing protocols running on the same router.

On a router with multiple FEs, the RIB is responsible for splitting up the routing table amongst the FEs
and for figuring out how to forward between FEs.

For more information about the RIB see [10].

4.3.3 BGP4+

This is the BGP routing daemon. It implements IPv4 and IPv6 unicast routing in a single process, as well as
MBGP for both IPv4 and IPv6 multicast RIBs for multicast routing purpose.

For more information about the XORP BGP implementation, see[2].

4.3.4 OSPF

This is the OSPF routing daemon. There will be separate IPv4 and IPv6 daemons, because unlike BGP there
is no real need to tie them together.

Currently, we are using a port of an existing OSPF implementation (http://www.ospf.org/) to the XORP
architecture. However this does not support IPv6. In the future, we may decide to implement a new OSPF
implementation to support both IPv4 and IPv6.

4.3.5 RIP

This is the RIP routing daemon. Similarly to OSPF, the IPv4 and IPv6 daemons are separate.

5



4.3.6 MLD/IGMP

This is Multicast Listener Discovery/Internet Group Management Protocol handler. It implements the
router-side part of MLD and IGMP. Its main purpose is to discover local multicast members and propa-
gate this information to multicast routing daemons such as PIM-SM. Similar to OSPF and RIP, the IGMP
(IPv4) and MLD (IPv6) daemons are separate.

For more information about the XORP MLD/IGMP implementation see [5].

4.3.7 PIM-SM

This is the PIM-SM multicast routing daemon. Similar to OSPFand RIP, the PIM-SM IPv4 and IPv6
daemons are separate. The PIM-SM protocol requires information about local multicast members, and
Reverse-Path Forwarding to operate properly. The former isobtained from the IGMP/MLD process; the
latter is obtained from the RIB.

For more information about the XORP PIM-SM implementation see [8].

4.3.8 RTRMGR: XORP Router Manager

The rtrmgr is the process responsible for starting all components of the router, to configure each of them,
and to monitor and restart any failing process. It also provides the interface for the CLI to change the router
configuration.

For more information about thertrmgr see [9].

4.3.9 CLI: Command Line Interface

The CLI can be used by an user to access the router, view its internal state, or to configure it on-the-fly.
Its functionality is closely related to thertrmgr. However, because the robustness of thertrmgr itself is
extremely important, all functionality that can be run as a separate CLI process are separated from the
rtrmgr. The process implementing this CLI functionality is calledxorpsh.

For more information about the CLI and the xorpsh process see[9].

4.3.10 Inter-Process Communication Finder

The IPC finder is needed by the communication method used among all XORP components,i.e., the XRLs.
Each of the XORP components registers with the IPC finder. Thefinder assists the XRL communications
(more specifically, it knows the location of each XRL target), therefore a XORP process does not need to
know explicitly the location of all other processes, or how to communicate with them. The router manager
process (rtrmgr) incorporates a finder, so a separate finder process is only needed if thertrmgr is not being
used such as during testing.

For more information about the IPC finder and XRLs see [4] and [11].

4.3.11 SNMP

This is the SNMP management process. It is used for SNMP access to the router. For example, it can be
used to translate SNMP requests into XRL requests. Internally, SNMP will communicate with the other
processes using XRLs.

6



A Modification History

• December 11, 2002: Version 0.1 completed.

• March 10, 2003: Updated to match XORP version 0.2 release code; cleanup.

• June 9, 2003: Updated to match XORP version 0.3 release code.

• August 28, 2003: Add SNMP to the set of implemented items. Bump-up the version to 0.4, and the
date.

• November 6, 2003: Updated the BGP status (now it supports IPv6). Bump-up the version to 0.5, and
the date.

• July 8, 2004: Updated the status (now there is support for RIPand RIPng); bump-up the version to
1.0, and the date.

References

[1] The Click Modular Router Project. http://www.pdos.lcs.mit.edu/click/.

[2] XORP BGP Routing Daemon. XORP technical document. http://www.xorp.org/.

[3] XORP Forwarding Engine Abstraction. XORP technical document. http://www.xorp.org/.

[4] XORP Inter-Process Communication Library. XORP technical document. http://www.xorp.org/.

[5] XORP MLD/IGMP Daemon. XORP technical document. http://www.xorp.org/.

[6] XORP Multicast Forwarding Engine Abstraction. XORP technical document. http://www.xorp.org/.

[7] XORP Multicast Routing Design Architecture. XORP technical document. http://www.xorp.org/.

[8] XORP PIM-SM Routing Daemon. XORP technical document. http://www.xorp.org/.

[9] XORP Router Manager Process (rtrmgr). XORP technical document. http://www.xorp.org/.

[10] XORP Routing Information Base (RIB) Process. XORP technical document. http://www.xorp.org/.

[11] XRL Interfaces: Specification and Tools. XORP technical document. http://www.xorp.org/.

[12] Mark Handley, Orion Hodson, and Eddie Kohler. XORP: An Open Platform for Network Research.
In Proceedings of HotNets-I Workshop, Princeton, New Jersey, USA, October 2002.

7


