
XORP SNMP Agent

Version 0.5

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
feedback@xorp.org

November 6, 2003

1 Introduction

The SNMP standards [4] define the protocol used to communicate between SNMP managers and agents, as
well as the structure of the management information being accessed (MIB). This document describes how
XORP runtime data is made accessible to the SNMP agent, how itis decomposed in separate MIB modules,
and how those modules are loaded/unloaded at runtime. Also,a MIB development framework is presented,
which provides unified process to those writing new MIB modules for XORP.

2 The SNMP agent

XORP uses the extensible SNMP agent included in the Net-SNMPpackage [1]. Net-SNMP provides tools
and libraries supporting the Simple Network Management Protocol. The package is comprised of an exten-
sible agent (snmpd), an SNMP library and a set of command line tools to communicate with SNMP agents
and managers.

Management information is viewed as a collection of managedobjects, residing in a virtual information
store, termed the Management Information Base (MIB). All managed objects in the MIB are arranged in a
hierarchical or tree structure. Collections of related objects are defined in MIB modules. These modules
are written in the SNMP data definition language, a subset of Abstract Syntax Notation One (ASN.1).
New MIB modules that extend the Internet-standard MIB are continuously being defined by various IETF
working groups.

In the context of this document, we’ll extend the term MIB module to include the part of the code that
instantiates the objects declared in the MIB definition file.Thus a MIB module consists of:

MIB module definition file This file is written in ASN.1 language, and is typically published as an RFC.

MIB module source code One or more source files that implement the data access routines that allow the
SNMP agent to read or modify XORP’s configuration settings.

The oldest version of Net-SNMP that was tested with XORP is 5.0.6. If an older version is detected by
ourconfigure script, XORP MIB modules will not be built.

2.1 Dynamically loadable MIB modules

One of the guiding principles in XORP design is extensibility. Protocols are implemented as independent
Unix processes that may come and go. Each protocol will have one or more associated MIB modules, so
those modules should be made available to the SNMP agent without requiring recompilation. Net-SNMP
supports this strategy by allowing MIBs to be implemented asshared objects. If your system supports shared
libraries, Net-SNMP will be compiled with support for dynamically loadable MIB modules by default. You
can test if your Net-SNMP installation supports that optionby looking fordlmod in the list printed by the
command:

$ net-snmp-config --snmpd-module-list

There are three methods for loading/unloading MIB modules:

1. Using the dlmod directive in snmpd.conf

2. Sending SNMP set requests to the agent

3. Using XORP’s IPC methods (XRLs)

The first option can only be used to load modules at startup. This is what the man page for snmpd.conf
tells you...

DYNAMICALLY LOADABLE MODULES
If the agent is built with support for the UCD-DLMOD-MIB it is capable
of loading agent MIB modules dynamically at startup through the dlmod
directive and during runtime through use of the UCD-DLMOD-MIB. The
following directive loads the shared object module file PATH which uses
the module name prefix NAME.

dlmod NAME PATH

To load MIBs using SNMP requests, a new row must be added to UCD-DLMOD-MIB::dlmodTable.
This involves finding an unused index to the table, setting the values of dlmodName and dlmodPath for that
row, and finally setting the column dlmodStatus to ’load’. These steps are captured in the following lines:

$ snmpwalk localhost UCD-DLMOD-MIB::dlmodTable
UCD-DLMOD-MIB::dlmodName.1 = STRING: xorp_if_mib_module
UCD-DLMOD-MIB::dlmodPath.1 = STRING: /scratch/xorp/mibs/xorp_if_mib_module.so
UCD-DLMOD-MIB::dlmodError.1 = STRING:
UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: loaded(1)

$ snmpset localhost UCD-DLMOD-MIB::dlmodStatus.2 i create
UCD-DLMOD-MIB::dlmodStatus.2 = INTEGER: create(6)

$ snmpset localhost UCD-DLMOD-MIB::dlmodName.2 s "bgp4_mib_1657" \
> UCD-DLMOD-MIB::dlmodPath.2 s "/scratch/xorp/mibs/bgp4_mib_1657.so"
UCD-DLMOD-MIB::dlmodName.2 = STRING: bgp4_mib_1657
UCD-DLMOD-MIB::dlmodPath.2 = STRING: /scratch/xorp/mibs/bgp4_mib_1657.so

2

$ snmpset localhost UCD-DLMOD-MIB::dlmodStatus.2 i load
UCD-DLMOD-MIB::dlmodStatus.2 = INTEGER: load(4)

$ snmpwalk localhost UCD-DLMOD-MIB::dlmodTable
UCD-DLMOD-MIB::dlmodName.1 = STRING: xorp_if_mib_module
UCD-DLMOD-MIB::dlmodName.2 = STRING: bgp4_mib_1657
UCD-DLMOD-MIB::dlmodPath.1 = STRING: /scratch/xorp/mibs/xorp_if_mib_module.so
UCD-DLMOD-MIB::dlmodPath.2 = STRING: /scratch/xorp/mibs/bgp4_mib_1657.so
UCD-DLMOD-MIB::dlmodError.1 = STRING:
UCD-DLMOD-MIB::dlmodError.2 = STRING:
UCD-DLMOD-MIB::dlmodStatus.1 = INTEGER: loaded(1)
UCD-DLMOD-MIB::dlmodStatus.2 = INTEGER: loaded(1)

So far we’ve seen how to load MIBs when the agent is started, and at runtime using SNMP requests.
But XORP processes communicate to each other via XRLs, and itwould be much more convenient for a
process to be able to use the same mechanism to communicate with the SNMP agent. For this reason each
MIB module should implement an Xrl target. The modulexorp if mib module implements an XRL
interface that allows loading and unloading MIBs. These arethe XRLs to use for that:

finder://xorp_if_mib/xorp_if_mib/0.1/load_mib?mod_name:txt&abs_path:txt
finder://xorp_if_mib/xorp_if_mib/0.1/unload_mib?mib_index:u32

Dynamically loadable MIB modules written for the main SNMP agent can also be loaded by an SNMP
sub-agent that communicates with the master agent via the AgentX protocol ([5]). This should be useful
in the event that you configure XORP to run distributed acrossmultiple hosts but with one master SNMP
agent.

3 Connecting Net-SNMP with XORP

We have written a special MIB module (xorp if mib module) that coordinates the communication be-
tweensnmpd and XORP processes. This module provides several classes that allow XORP MIB modules
to be architected as if they were each executed as independent processes (although they all run insnmpd’s
process space). This should make MIB module design much easier to someone already familiar with the
architecture of XORP processes.

The class that does all the synchronization between XORP andNet-SNMP is SnmpEventLoop, a sub-
class of EventLoop. This singleton class is responsible forregistering XORP event’s withsnmpd, so that
the agent can respond to XORP activity. Once this class is instantiated byxorp if mib module, it can
be used by all the other MIB modules as if it was their own EventLoop. Without it, MIB modules could not
respond to XORP events, this is why this module must be loadedbefore any other, and should be the last
XORP MIB module to be unloaded1. Typically you would use thesnmpd.conf file to load it at start up
time.

The XORP interface MIB module also implements the XRL target([2]) that allows the loading and
unloading of other MIB modules.

Figure 1 illustrates the functionality implemented byxorp if mib module.
1There is a second reason for this requirement. Some runtime loaders will unload a dynamically linked library when the module

that first loaded it disappears. In that case, unloadingxorp if mib module will also unloadlibnetsnmpxorp.sowhich is
needed byall XORP modules. As you can imagine, that causes problems...

3

load_mib

XORP finder

SnmpEventLoop

snmpd

XORP libraries

XRL target

xorp_if_mib_module

bgp_mib

ospf_mib

XORP processes

ripbgp

rtrmgr ospf

Figure 1: Functionality of xorpif mib module

3.1 Modifying XORP’s configuration from within a MIB module

MIB modules use XORP’s IPC library [2] to communicate to XORPprocesses. Each MIB module has the
responsibility to pull the relevant management information from the appropriate process (e.g., BGP MIB
data from BGP process). For that effect, the MIB module must use the XRL Interface supported by the XRL
targets it needs to communicate to (see [3] for details on howto subclass XRL Interface Client classes).
MIB modules, though, MUST not modify any configuration settings by accessing the process directly. The
current state of configuration is maintained by the router manager process, so bypassing it would cause the
real and the recorded configurations to be out of sync. Instead, configuration changes should be requested
to the router manager via configuration commands, that is, XRLs such as the ones appearing in the template
files (see xorp/etc/templates/*.tp).

Figure 2 illustrates how the MIB modules should read and change XORP configuration.

4 A reference implementation of a MIB module

So far we’ve talked Net-SNMP configuration. In this section we’ll cover how to write a MIB module. In
this release (0.4) we provide a full implementation of RFC 1657, the MIB for BGP4. You will find the MIB
module files in xorp/mibs/bgp4mib 1657*. What follows is a description the tools and process followed to
implement this module. You should refer to the kdoc documentation as well as the source itself for more
details.

4.1 The textual MIB definition file

The first step to write a MIB module should be writing or getting the ASN.1 MIB definition file. If you
are implementing an existing protocol, chances are that there is already a published RFC with the MIB

4

MIBSNMP agent MIB module router manager

XRL Interface XRL target

XORP configuration

other processes

*1

maintains up to date

11

1*

request cfg changes

read configuration

changes
 configuration

Figure 2: MIB module interactions with the router manager

definition for it. In this section we’ll use BGP4-MIB to illustrate the process of writing a MIB module,
which is published in RFC 1657 and you will find in xorp/mibs/textual/BGP4-MIB.txt.

You will also have to make your textual MIB file accessible to the Net-SNMP tools. See themibs and
mibdirs directives in the man page snmp.conf(5). One way to do this isto copy our MIB onto the default
directory, and then set the MIBS environment variable:

$ cp BGP4-MIB.txt /usr/local/share/snmp/mibs
$ export MIBS=+BGP4-MIB

4.2 Net-SNMP handlers

Net-SNMP 5.x.x uses handlers to process SNMP requests. Whena MIB module is loaded, it registers one or
more handlers (callbacks) on a given OID in the OID tree. Whena request arrives for that OID subtree, the
registered handlers are called in sequence until the request is fully processed. There are multiple pre-written
handlers (helpers, in Net-SNMP nomenclature) that deal with certain parts of the processing.

4.3 Using mib2c

Net-SNMP provides what is usually termed as ”MIB compiler” (mib2c), a tool that will read MIB ASN.1
definition files and generate C code templates to ease the development of handlers.mib2c takes a configu-
ration file as a parameter that will determine which helper handlers to use.

The MIB compiler is not installed by default with Net-SNMP. If you have Net-SNMP installed in your
system and you invokemib2c you’ll probably get this message:

ERROR: You don’t have the SNMP perl module installed. Please obtain
this by getting the latest source release of the net-snmp toolkit from
http://www.net-snmp.org/download/ . Once you download the source and

5

unpack it, the perl module is contained in the perl/SNMP directory.
See the INSTALL file there for instructions.

This is what it took to install it in a FreeBSD system:

$ pwd
/usr/ports/net/net-snmp/work/net-snmp-5.0.8/perl
$ perl Makefile.PL ; gmake ; gmake install
Writing Makefile for NetSNMP::default_store
Writing Makefile for NetSNMP::ASN
Writing Makefile for NetSNMP::OID
...

Now you can invokemib2c. The following command says ”create a template C file for bgpVersion,
which is a scalar, and name it bgp4mib 1657 bgpversion”.

$ mib2c -i -c mib2c.scalar.conf -f bgp4_mib_1657_bgpversion bgpversion
writing to bgp4_mib_1657_bgpversion.h
writing to bgp4_mib_1657_bgpversion.c

In a similar way, if we want to generate C templates for a SNMP table we would use:

$ mib2c -i -c mib2c.iterate.conf -f bgp4_mib_1657_bgppeertable bgpPeerTable
writing to bgp4_mib_1657_bgppeertable.h
writing to bgp4_mib_1657_bgppeertable.c

Note that although there are other conf files, only the two presented in this section can be used with
XORP’s asynchronous architecture. You can find details on those files by omitting the -c option when
invokingmib2c.

4.4 Using delegated requests

The asynchronous nature of XORP communications prevents handlers from processing SNMP requests
synchronously. Handlers initiate XRL requests for other XORP processes, and return control to the SNMP
agent before the reply is received. Net-SNMP allows that by providing thedelegated flag in the SNMP
request structure. The agent will not send a reply to a request for as long as that flag is set. In XORP
MIBs, you would normally set the delegated flag when your handler is called, and clear it whenever the
XRL callback who receives the data from a XORP process is executed. There is an additional example of a
delegated request in

http://www.net-snmp.org/tutorial-5/agent/delayed__instance_8c-example.html2

4.5 Caching tables inside the agent

SNMP is layered on a connectionless protocol (UDP). This means that no state can be maintained between
two different requests. A consequence of this is that a tablemust be searched foreach element on the table,
regardless on whether the table is sorted or not. Now, how efficient is this search?

2This example uses the functionnetsnmp handler check cache()which you will see that it’s not used in our code. The
reason is that it is incompatible with the code generated by mib2c.iterate.conf

6

The code generated withmib2c.iterate.conf is designed to deal with unsorted tables, so a GET-
NEXT request for a single element in the table producesnum rows calls to the user provided handlers, or
O(num cols∗num rows2) to read the entire table. Althought this is acceptable for most of the small tables
typically found in MIB modules, it is prohibitive for large tables, such asBGP4-MIB::bgp4PathAttrTable
(≈ 100, 000 rows).

To address this problem, we have cachedBGP4-MIB::bgp4PathAttrTable inside the SNMP
agent process space in a sorted data structure. This eliminates the need to use XRLs to process an SNMP
request, and reduces the complexity to read the entire tableto O(num cols∗num rows∗log(num rows)).
The configuration file used to generate the code for cached tables ismib2c.array-user.conf.

There are plans to include caching built in inside Net-SNMP.When that happens, this strategy may not
longer be necessary.

5 Launching Net-SNMP via the router manager

You can have the rtrmgr process start the SNMP agent. In orderto do that, you should modify your agent
snmpd.conf (by default in /usr/local/share/snmp) to load xorp if module at start up. After that, you can
modify your config.boot file to load MIB modules when the agentis started, or to do it whenever a particular
protocol comes up.

See${XORP}/etc/templates/snmp.tp for definition of the SNMP configuration tree.

A Modification History

• March 14, 2003: Created.

• May 30, 2003: Version 0.3 released.

• August 28, 2003: Version 0.4 released.

• November 6, 2003: Version 0.5 released.

References

[1] The Net-SNMP Project. http://www.net-snmp.org.

[2] XORP Inter-Process Communication Library. XORP technical document. http://www.xorp.org/.

[3] XRL Interfaces: Specification and Tools. XORP technicaldocument. http://www.xorp.org/.

[4] D. Harrington, R. Presuhn, and B. Wijnen. STD 62: An Architecture for Describing Simple Network
Management Protocol (SNMP) Management Frameworks, December 2002. This standard comprises
RFC3411, RFC3412, RFC3413, RFC3414 RFC3415, RFC3416, RFC3417, RFC3418.

[5] M. Ellison M. Daniele, B. Wijnen and D. Francisco. Agent Extensibility (AgentX) Protocol.Request
for Comments 2741, January 2000.

7

