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Abstract
Policy is a crucial component of today’s Internet, allow-
ing ISPs to tune the default behavior of routing proto-
cols to match economic and administrative needs. How-
ever, providing powerful and expressive policy controls
in router software is not easy and only a few router im-
plementations do this well.

In this paper we describe the implementation of an
extensible policy framework that can serve both current
and future routing protocols. Designing for extensibil-
ity makes this hard because policy is both tightly cou-
pled with the details of each specific routing protocol
and can also describe subtle interactions between differ-
ent protocols. Such a policy engine must have no in-built
protocol-specific knowledge. However, it must also be
capable of satisfying the needs of each specific protocol
and cope with filters that span more than one protocol.

We present the design of a single generic solution to
this problem. Our highly extensible policy framework
can support most, if not all, routing protocols with very
little work needed on the part of the protocol implemen-
tor. We will demonstrate that all this flexibility and gen-
erality can be achieved with sufficient performance for
even large complex backbone routers.

1 Introduction
Routing policy is of critical importance for anyone run-
ning a non-trivial sized network. Policy is the means by
which ISPs determine the large-scale flow of traffic and
ensure that the traffic roughly follows the flow of money.
Without effective policy mechanisms, the Internet is nei-
ther technically nor financially viable. However, whereas
routing protocols are described in detail in the literature
and there is some work on policy specification [1, 3],
very little is written on how to implement policy.

The context for this paper is the implementation of
an extensible Internet router. The goal of the eXtensi-

ble Open Router Platform (XORP [4]) is to build a com-
plete IP routing suite and management framework, with
particular emphasis on design for future extension. For
example, it should be simple to write a new routing pro-
tocol, and seamlessly integrate it into the existing router
framework without modifying any of the existing router
code. This is needed so extensions from multiple vendors
can co-exist gracefully on the same box.

For extensible routers in general, and for XORP in par-
ticular, policy is somewhat problematic. There are three
main reasons for this:

• A single policy rule can span multiple routing pro-
tocols, even though those protocols have no inbuilt
knowledge of each other.

• Within a routing protocol, policy filters are complex
and hard to debug, and need to integrate closely
with the router’s management framework. The
learning curve for developers is steep.

• Any policy configuration framework will need to
evolve over the years. This is made much harder
if it necessitates updating every supported or experi-
mental protocol from every vendor and research lab.

Our goal then is to design and implement a policy rout-
ing framework that avoids these problems. It must be
generic enough to satisfy all, isolate functionality suffi-
ciently that each protocol can be implemented with no
knowledge of others, be easy for developers to under-
stand and use, and be fast enough to work with complex
policies in large backbone routers. We believe we have
succeeded in building just such a framework. While the
details are specific to XORP, we believe the architecture
and ideas also have wider applicability.

1.1 What is Policy?
To provide some background, we start with some exam-
ples of very simple policies:
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• Do not advertise routes heard from upstream
provider X to upstream provider Y . Do not pay
someone money to carry their transit traffic.

• From customer C, only accept route prefix
1.2.3.0/24. This prevents a customer’s misconfig-
uration diverting traffic bound for elsewhere.

• Prepend our AS number 3 times to BGP routes re-
ceived over customer C’s backup connection. This
makes the route less preferred.

A full routing policy is of course more complex than
this, but the general idea should be clear. Although the
richest policies tend to involve BGP [11] other protocols
also need policy. For example, route redistribution be-
tween routing protocols is a form of routing policy.

The details of any policy are closely coupled to rout-
ing protocols such as BGP, and need to be implemented
within those protocols. However, a complete routing
policy is broader than this and must be globally coor-
dinated, perhaps spanning multiple different protocols1.
To understand why this is the case, consider the follow-
ing (somewhat contrived) policy:

Take all routes from OSPF area 10.0.0.1 and
redistribute them to BGP, setting a MED of 3
and an Origin of “IGP” on these routes.

The router operator wants to be able to express such a
policy in a single expression—he should be unaware of
the internal architecture of the software.

To implement this policy requires knowledge of
OSPF [8] (the area attribute is OSPF-specific), it requires
the ability to re-distribute routes from one protocol to an-
other, and it requires knowledge of BGP (the MED and
Origin attributes are BGP-specific). However, we want
BGP and OSPF to know nothing of each other. Further-
more, we want none of the router’s core components such
as the Routing Information Base (RIB) or Command Line
Interface (CLI) to have inbuilt knowledge of either pro-
tocol or any new protocol anyone devises in future.

Thus, routing policy is one place where the goal of
extensibility might come directly into conflict with the
expressiveness of functionality we wish to support.

2 The Framework
Routing protocols are quite varied in design, so it is a
challenge to design a single framework that can support
all policies in all protocols without becoming excessively

1In XORP, each protocol is in a separate process.

complex. In this section, we will illustrate what a policy
does at the most abstract level in an attempt to discover
common policy requirements. We will then look at how
we can implement these requirements in an extensible
manner, while also making it as simple as possible for
new routing protocols to use this framework.

2.1 Abstract Policy Primitives
Routing policy is actually quite tightly constrained by the
routing protocols themselves, so we will consider policy
primarily from a mechanistic point of view.
Broadly speaking, the primitives of routing policies are:

• Match certain properties of a route.

• Drop matching routes.

• Modify certain properties of matching routes.

• Redistribute matching routes from one protocol to
another.

These primitives can be applied in multiple places in the
route processing pipeline, especially when route redistri-
bution is concerned, and so the policies that can be built
up are quite complex. There are, however, some limita-
tions:

• Policies are only applied to individual routes. No
commercial router performs actions on one route
based on the properties of another route.

• Policies are not Turing-complete. No commercial
router supports full iterative or recursive filters.

These limitations are probably a good thing, as they pre-
vent the interactions between policies configured on dif-
ferent routers being even more subtle or unpredictable
than they are today. We take these limitations as given,
although our architecture could in fact support iteration
if the benefits turn out to outweigh the dangers in future.

2.2 Import and Export Filters
Using the basic primitives described, a policy defines
which routes to filter and how to filter them. However,
it is also important where filtering is performed. In gen-
eral, there are two main types of route policy:

1. Import Policies. Filtering will occur on the path into
the router from a neighbor.

2. Export Policies. Filtering will occur on the path out
of the router to a neighbor.
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Figure 2: Import/export filters in a link state protocol.

Filtering is used differently with vector protocols (BGP,
RIP) than with link-state protocols (OSPF, IS-IS [9]).

For vector protocols (Figure 1) import filtering occurs
before the decision of best route is made, as a policy typ-
ically forces one route to be preferred over another. For
example, an operator might wish all BGP routes learnt
from a particular peering to be prioritized, irrespective of
the normal BGP cost weighting. Conversely, export fil-
tering occurs after the best route has been decided, as a
router advertises the best version of a route to its peers.

For link-state protocols (Figure 2) filtering is more re-
stricted because of the need for all routers to perform the
same shortest-path calculation based on the same link-
state database. An import filter for a link-state proto-
col occurs after the shortest-path computation has been
performed, but before export to the Routing Information
Base (RIB). Thus, a link-state import filter does not af-
fect what a router tells its neighbors, but it does change
the routes the routing protocol tells the RIB. The main
use of such a filter is to weight a route from one rout-
ing protocol over one from another protocol. For exam-
ple, we may prefer an OSPF route to an EBGP route,
contrary to normal default priorities. An export filter in
a link-state protocol occurs on the output path from the
RIB to the protocol’s neighbors, affecting only routes the
RIB re-distributed to the routing protocol.

Thus, although their purpose may vary, all protocols
which support policy will normally have both an import
filter bank and an export filter bank.

2.3 Route Re-distribution

Route re-distribution occurs when a route learnt by one
protocol is re-advertised via a different protocol. Such
re-distribution is intimately tied to routing policy. Con-
sider the following policy:

Take all routes from RIP with a metric of less
than 3 and redistribute them to EBGP peer
192.168.1.2 setting a MED of 4.

This becomes a BGP export policy. In XORP syntax:

policy redist {
from {

protocol: rip
metric < 3

}
to {

neighbor: 192.168.1.2
}
then {

MED: 4
accept

}
}

bgp export redist

As this is an export policy, matching and filtering must
occur just before BGP advertises the route. Therefore,
the neighbor will be matched just as the route is leaving
BGP and the MED will then be set.

However, the from clause must be matched in the RIP
protocol because the metric attribute in this context is
RIP-specific. Within RIP, the matching must occur post-
decision because only the best RIP routes should be re-
advertised, and it must occur prior to the point where
routes are sent to the RIB. Thus, in addition to the ba-
sic import and export filter banks shown in Figures 1 and
2, an additional filter bank is needed to select routes for
later action.

After a route is matched in its source protocol, it is
sent to the RIB where it is compared against all the other
routes to the same destination subnet that have been re-
ceived by other routing protocols. Only the best route is
sent to the forwarding engine and similarly only the best
route may be re-distributed to other routing protocols.

The RIB does not perform its own matching to de-
cide whether a route should be redistributed, but instead
it relies on the matching performed in the original rout-
ing protocol. To do this though, a final additional filter
bank must exist in the RIB itself which selects these pre-
chosen routes for re-distribution and forwards them to
the correct protocol.
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Figure 3: Logical placement of policy filters.

Figure 3 shows the complete policy filtering frame-
work for two vector-based routing protocols. The split
of a routing protocol into inbound and outbound is only
conceptual—in practice they are in the same process.
The only difference for a link-state protocol is that the
Stage 1 filter occurs later, just before the Stage 2 filter.

Import policies are implemented entirely in the Stage 1
filter bank. Export filters require a combination of Stages
2, 3 and 4. It should be clear that these export filters do
not operate in isolation and that some communication is
needed between the filters. We address this next.

2.3.1 Policy Tags

In XORP and similar modern routing implementations,
protocols within a router do not share memory. Thus,
some other mechanism is needed in order to pass partial-
match information from the source protocol to the RIB
and on to the destination protocol. To do this, we add
meta-data called policy tags to routes.

Each policy that performs route re-distribution is as-
signed a unique policy tag. If a route matches the from
clause in the Stage 2 filter of its source protocol, the tag
allocated for this policy is assigned to the route. A single
route may have multiple tags indicating it matched multi-
ple from clauses in different route re-distribution policies.
These policy tags are propagated together with the route
everywhere within the router.

After a route is chosen in its source protocol as the
best route, it is sent to the RIB. If the RIB also chooses
it as the best route over routes from other protocols, and
if it matches the Stage 3 filter, then it must be forwarded
to the protocol performing the export. A map2 is held
in the RIB which maps policy tags directly to destination
protocols. Therefore, this Stage 3 filter is simple and fast.

2A C++ STL map is a data-structure that does fast key-value lookup.

When matching the to clause in the exporting protocol,
the policy tags also are checked against the tag allocated
for this policy. This ensures that the route did match the
from clause in its source protocol. Finally if all matches
succeed, the appropriate actions take place.

For example, the export policy in Section 2.3 would
be split into two parts. The first policy fragment would
be executed by the RIP protocol’s Stage 2 filter:

from {
metric < 3

}
then {

policytags: 100
}

This will perform the matching of the metric and assign
the policy tag of 100 (a unique number per policy) to
the route. In the RIB, the Stage 3 filter would simply
re-distribute all routes with a policy tag of 100 to BGP.

BGP’s Stage 4 export filter would then execute the sec-
ond policy fragment:

from {
policytags: 100

}
to {

neighbor: 192.168.2.1
}
then {

MED: 4
accept

}

This will ensure that the from clause matching occurred
in the source protocol by matching the policy tag of 100,
which is unique to this policy. The filter will then per-
form the rest of the matching and, if a match is found,
the “then” actions will be performed.

4



2.4 Policy Manager
Figure 3 summarizes the conceptual model of all filters
described so far. Import filters (Stage 1) are present in
the protocol’s incoming path and export filters (Stage
4) in the protocol’s outgoing path. To enable route
re-distribution, a filter that performs the source match
(Stage 2) is available post-decision in protocols and a
map is held in the RIB (Stage 3) which relates policy
tags to export protocols.

While all these filter stages are evident to the devel-
oper, the implementation details need to be hidden from
the operator of a router so that the configuration can be
expressed in terms of what is desired, rather than how to
implement it.

An entity called the Policy Manager is responsible for
taking the operator’s configuration and setting up the rel-
evant filters. For an extensible router, the Policy Man-
ager must have no embedded knowledge of the protocols
being controlled. However, it must be able to break the
policy into the correct components for each filter stage,
and it must be able to check both the syntax and seman-
tics of the policy so that no run-time error can occur in
any policy filter stage.

Splitting the policy into components is relatively sim-
ple and there are really three different cases to consider:

• Import policies are mapped directly to Stage 1 filters
so no split is required.

• A simple export policy for a protocol has a from
clause that specifies the same protocol (or does not
specify it, and allows it to default). Such filters are
mapped directly to the Stage 4 filter bank in the rel-
evant protocol. Any attributes specified in the from
clause are matched directly in the protocol’s Stage
2 filter.

• A re-distribution export policy for a protocol speci-
fies a different protocol in the from clause. This re-
quires the policy to be split by the Policy Manager
as mentioned earlier. First, the from clause must be
mapped into a Stage 2 filter in the source protocol
and the Policy Manager allocates a new policy tag to
identify routes that matched this filter. Second, the
to and then parts must be mapped into a Stage 4 fil-
ter in the destination protocol, with a match clause
added for the policy tag. Finally the RIB Stage 3
map is updated to include the newly allocated pol-
icy tag.

Once the split has been done and before actually con-
figuring the filters, the policy manager must check the

filter parameters. To do this, it needs information about
the route attributes supported by each protocol. We will
return to this point after we have discussed the policy fil-
ters themselves.

2.5 Policy Filters
All routing protocols are different. They each have their
own attributes associated with routes and their own inter-
nal representations of routes. We wish to have a single
generic policy framework that can handle all routing pro-
tocols and we wish to make it as simple as possible for a
developer writing a new routing protocol to integrate this
policy framework with their routing protocol. To make
matters more complex, the filters must be fast, especially
for BGP where backbone routers must handle receiving
hundreds of thousands of routes from each of dozens of
peers, within the space of a few minutes.

The first observation is that in each protocol we only
require three filtering stages (stages 1, 2 and 4) which
are programmable to satisfy the needs of all current rout-
ing protocols. The protocol designer can place these fil-
ters in different places depending on the protocol design,
so long as they perform the well-defined import, from-
match and export roles identified earlier.

The second observation is that the API by which all
these filter stages are configured should be uniform in
syntax across all routing protocols. If this were not the
case, then the Policy Manager would need special knowl-
edge of a routing protocol to be able to configure it,
which would conflict with our policy goals.

The final observation is that the internal filtering en-
gine needs to have the same programming model (its pro-
gramming language) across all routing protocols. Again
this minimizes the knowledge the Policy Manager needs
to have.

Based on these observations, the design we derived
uses a single generic policy filter engine for all filters in
all routing protocols. From the point of view of the proto-
col designer, this generic filter is a black-box which will
match a route, modify it if necessary and return whether
or not the route has been accepted.

Internally, the generic policy filter comprises a simple
stack machine, together with its programming API and
instruction set. The stack machine needs to be able to ex-
ecute instructions, obtain attributes from a route, delete
attributes from routes, and write modified or additional
attributes back to the route. When the stack machine pro-
gram terminates, it must also return whether the route is
to be accepted or rejected.

The remaining problem to be solved is how to provide
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access to protocol-specific attributes in a policy filter that
has no knowledge of such attributes. Our solution is to
have the protocol developer write a protocol-specific in-
stantiation of a generic reader and writer for route at-
tributes. This generic reader/writer is known as VarRW.

When a route arrives in the protocol-specific part of a
filter bank, the routing protocol invokes the generic fil-
ter by calling its run filter() method. It passes in
a protocol-specific instance of VarRW which has been
bound to the route to be filtered. The filter program in the
generic filter will then run, using the VarRW interface to
obtain the attributes it needs and to modify the route as
necessary. Finally, run filter() returns true if the
route was accepted, or false if it was rejected and should
be dropped by the protocol. The conceptual architecture
of the generic filter and its interaction with the route via
a VarRW instance is shown in Figure 4.

From the point of view of the protocol designer, inte-
grating the policy framework is extremely simple. All the
programmer needs to do is write a protocol-specific sub-
class of VarRW that, on request, can provide attributes
specific to the new protocol. These attributes are identi-
fied by attribute name and can take one of a limited set
of data types. Similarly, it must be able to write these
attributes back to the route. This is a very small amount
of code: for example, the RIP VarRW implementation
is 120 lines of C++ to support both IPv4 and IPv6. For
this effort, the programmer immediately gains access to
the whole policy framework, its Policy Manager, generic
filters, and the expressiveness of the stack machine.

2.6 Route Re-filtering

Production routers operate for long periods of time and
it must be possible to reconfigure them on the fly, with-
out the need to reboot or restart peerings. Such re-
configuration includes policy filters. The desired effect

from the operator’s point of view of changing a policy
is that all routes are re-filtered and the new policy takes
effect. In some circumstances, the policy framework will
need some aid from the developer of a protocol in order
to perform this correctly.

If a routing protocol is stateless and routes are re-
freshed periodically, all routes will be re-filtered auto-
matically upon a refresh. This occurs in RIP [5]. In RIP,
routes are re-advertised approximately every 30 seconds.
If a policy changes, after 30 seconds all RIP routes will
be re-filtered as they re-enter the protocol. No extra ef-
fort is needed by the developer in this case.

If a protocol is stateful, as with BGP, an explicit re-
filtering of all the current routes will be required. This
will cause all the routes stored in a protocol to pass
through the policy filters once more. The protocol de-
veloper will therefore have to implement this mechanism
himself and it will be triggered by the policy framework
when necessary. Depending on the protocol’s implemen-
tation this may be a trivial or demanding task. Care must
be taken to propagate the original route through the filter
and not a instance of the route modified by the previous
version of the filter.

3 Implementation
An implementation of this policy framework has been
developed for XORP [6]. The main component to de-
velop was the generic PolicyFilter which lies at the heart
of the framework. A decision had to be made on what
language this filter would understand and execute.

One choice would be to use the same syntax of the user
configuration as the policy language. The drawback was
that the back-end policy filters (the ones in the protocols
themselves) would have to perform complex parsing.

The solution was to make the Policy Manager “com-
pile” the user policy into a stack-based language. This
language is much more generic than any front-end syn-
tax that users might interact with. Should the user syntax
change in the future, only the Policy Manager will need
to be updated. Also, if the back-end policy language is
powerful enough, it could potentially express any policy
and the filters would never have to be changed—all the
work would be done in the front-end Policy Manager.
The back-end filters are therefore simple stack machines
and their language will be presented next.

3.1 Back-end Policy Language

Consider the following policy:
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from {
metric > 4

}
then {

metric = metric * 2
accept

}

This policy will double the metric on all routes with a
metric greater than four. Such a policy could be used in
either an import or an export filter.

The Policy Manager would compile this policy into
the following filter code:

PUSH u32 4
LOAD metric
>
ON FALSE EXIT
PUSH u32 2
LOAD metric

*
STORE metric
ACCEPT

The first PUSH instruction will place an unsigned integer
with the value of 4 on the stack. The language is typed
and each PUSH operation needs an explicit type identifier
as the type of a literal value is not always obvious from
lexical analysis. For example, 4 could have also been a
signed integer instead of unsigned.

The LOAD instruction will cause the VarRW to read
a route attribute which will be placed on the stack. It
does not require an explicit type (like with PUSH) as the
VarRW implementation will return an object of the cor-
rect concrete type (see Section 3.4.1).

The next line contains the operator ‘>’. In this case, it
will perform a mathematical greater than operation and
return the result on the stack. Each operator is overloaded
based on the concrete type of the arguments it is supplied
with. The problem is that the concrete type of the ele-
ments on the stack is unknown as they are stored accord-
ing to their base type. The solution is implemented with
the use of multi-methods [7]. When an operator is en-
countered, its arity (the number of arguments it requires)
is checked. If n arguments are required, a hash is com-
puted based on the operator type and the concrete type of
the n top-most elements on the stack.3 This hash is used
to find the appropriate method to call for this permuta-
tion of operator and argument types (essentially a func-
tion signature). All of this is encapsulated in a dispatcher
which takes the base type of an operator and its argu-

3It is possible to make the hash reflect the concrete type of an object
by invoking a pure virtual hash function on the base class object (C++).

ments, and performs the magic. The dispatcher is very
fast if the hash functions are implemented efficiently.

After the ‘>’ operator returns its result, the
ON FALSE EXIT instruction will be run. This will ter-
minate the policy execution if a boolean value of false is
on the top of the stack. In this case, if the match condi-
tion was false, the then block would not be run.

If the route did match, the metric is doubled via the
‘*’ operator. The STORE instruction will write the value
on the top of the stack via the VarRW interface into the
route. Finally, the policy filter will accept (not drop) the
route upon executing the ACCEPT instruction.

Even a complicated front-end syntax may be easily
translated into this language. If the language supported
JUMP instructions, it would be possible to compute vir-
tually any imaginable policy—however we have so far
refrained from this to avoid loops in policy programs.

Also, if the concept of what a policy is and how it
should be expressed changes in the future, it is possible
that our original generic back-end filters will still be ap-
propriate. The back-end language may be thought of as
an assembly like language which provides immense flex-
ibility. For example, although software programming has
evolved from imperative to object-oriented, the same as-
sembly language is still able to express the result of both
programming approaches.

3.2 Types and Operators
Our policy engine is limited by the types and operators it
supports. So far, it appears that a small set of operators
and types can handle all the policies supported by com-
mercial router vendors, for all the main routing protocols.
While we do not expect it to be a frequent requirement,
it is possible that some future protocol might need to de-
fine a very sophisticated type or operation which is not
yet supported. It might in principle be possible to devise
a way to extend the operator set at run-time, by using a
low-level “microcode” approach, but we took the view
that there is little to be gained by this and it would likely
hinder performance.

Adding a new type and operator in the base frame-
work is in fact very simple and requires very little code.
The only requirement for an operator is to have a string
representation. This will be used in order to compute
the hash mentioned earlier for dispatching operators. It
will also be used for representing the operator in the code
produced. Thus, all a developer needs to do is to create
a new operator class with a unique string representation
and register it with the dispatcher.

New types are also added quite easily. They require
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a unique hash (used in the dispatcher) and must have a
string representation for their value. This representation
is again required for the code generation as the code is
textual. Furthermore, types need to be constructible via
a string. This is required, for example, by the PUSH in-
struction as the actual value will be passed as a string.
Finally, the type needs to be registered with a factory in
order for it to be created when required. Types are cre-
ated, for example, during semantic checking while poli-
cies are being validated.

After a new type or operator has been added, it is avail-
able for all protocols. It is therefore desirable to create
operators and types which may be re-used and that per-
form simple operations. It is possible to create macros
which use existing operations to perform more complex
ones. We discuss this next.

3.3 Combining Existing Operators
A goal of XORP is that new protocols can be added at
run-time without the need to modify existing code. To
integrate processes into the management framework and
CLI, each new process comes with a configuration tem-
plate file which specifies the valid syntax and parameters
for configuring the process, together with ASCII tem-
plates of the inter-process communication calls that the
Router Manager will use to configure it.4

When the Router Manager configures a process, it per-
forms a textual substitution of the parameters in each
template IPC call and fires off the request. From a policy
point of view, this provides a useful hook. We use this re-
writing to implement front-end macros, so that the router
operator can express one syntax in the configuration files
and CLI, which can then be translated via template sub-
stitution into the more generic language sent to the policy
manager. The goal here is to support a user-friendly con-
figuration syntax, which is often protocol-specific, with-
out burdening the policy manager with needing to under-
stand such protocol-specific syntax.

Figure 5 summarizes XORP’s configuration architec-
ture and the role of template files. The Router Man-
ager first syntax-checks the user configuration against the
template files. Configuration directives are then sent to
the routing protocols, and policy primitives are sent to
the Policy Manager which will ensure that the config-
ured policy is sensible. Next, appropriate code will be
generated for the policy. Finally this code is sent to the
relevant back-end filters.

To illustrate how this isolates the Policy Manager from
protocol-specific configuration syntax, consider the im-

4For more details of XORP’s IPC calls and template files, see [4].

plementation of policy for BGP’s AS-path. Using tem-
plate substitution, we can implement this with only ba-
sic types. In our first implementation, the AS-path was
be treated as a string and AS-path operations were eas-
ily implemented via string manipulation. For example, a
common BGP policy command is AS-path prepending,
where an AS number is added to the front of the path:

as-path-prepend: u32
..."aspath = ($ARG + ’,’) + aspath"...

The AS-path is a string of comma separated integers,
since this is how the user matches regular expressions
against it. The policy engine will simply expand $ARG to
the integer value supplied to the as-path-prepend
directive, concatenate the integer with a comma, and
concatenate the result with the existing AS-path. This
will then be stored as the new value of the AS-path.

In this case, the overloaded definition of ‘+’ with an
integer and a string as arguments to mean concatenation
already existed. However, the policy language also sup-
ports casts to aid writing powerful and complex macros.

We have provided a set of basic types and operators
to the policy framework so that a developer of a future
protocol could easily add complex operations via macros
if required. We do expect this set to increase over time,
but the hope is that extensions will be re-usable by more
than one protocol.

In the end, we implemented a specialist AS-Path type,
as BGP performance is all-critical, and string manipula-
tion is relatively slow. This seems to be the right balance
between flexibility (we could and did implement BGP
without this) and pragmatism (BGP is not just another
routing protocol).

3.4 Policy Manager
Until now, details of the back-end filter have mainly been
presented. The coordinator of these filters, the Policy
Manager, will now be investigated more deeply.

The Policy Manager has more to do than simply com-
piling programs and sending them off to the relevant fil-
ter. The two main problems which the Policy Manager
needs to solve are checking for errors in policies and
keeping track of “code fragments”.

3.4.1 Error Checking

It should be clear now that the actual policy stack pro-
grams perform no run-time error checking. This is a de-
liberate decision as it is essential that the filters perform
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well. This puts the onus on the Policy Manager to per-
form all the error checking in advance, before compiling
the filter programs. Several things need to be checked:

• That the attribute names are those of valid attributes
for the protocol in question.

• That the types of attributes match the types of op-
erators to be used and that they match the possible
types of literals specified by the user.

• That only attributes permitted to be modified by the
protocol are in fact modified by the filter.

The Policy Manager is capable of detecting all run-
time errors during semantic checking. The halting prob-
lem is not an issue since the language does not include
jump statements. Similarly, division by zero cannot oc-
cur because of the absence of a division operator. If divi-
sion were required, options would be to allow only literal
denominators that can be statically checked, or to require
a policy macro to define the value to be returned in the
event of divide-by-zero.

The information needed for policy checking is sup-
plied by the policy VarMap. This is a configuration file—
it is not hard-coded into the policy framework, making it
easy for new protocols to add entries. Each new protocol
supplies its own VarMap file, which is read at run-time
by the Policy Manager. VarMap entries take the form:

bgp network4 r
bgp MED rw

This example states that the BGP protocol supports the
reading of the “network4” and “MED” variables. Fur-
thermore it also supports the writing of the “MED”.

3.4.2 Code Fragments

Policy filters are configured atomically. Code cannot be
added or removed from the back-end filters—the whole
lot must be reconfigured. This design decision was made

in order to keep the back-end filters as simple as possible,
but this pushes complexity into the Policy Manager.

A protocol may have several policies attached to it and
they will all be executed in the order specified. Suppose
that an operator configured one BGP policy and later
adds another. The Policy Manager will need to create
code for both policies and combine them. Each time the
Policy Manager creates code for a policy, it stores it as a
code fragment. When a new policy is attached to BGP, it
is combined with all the fragments needed for this partic-
ular BGP filter (import/export). The same occurs when a
policy is deleted or modified. The particular fragment is
located and is modified or removed. The fragments are
then combined and the filter is reconfigured.

3.5 Route Re-filtering
A final issue which deserves further examination is im-
plementing route re-filtering in protocols. In some cir-
cumstances, its implementation may be somewhat sub-
tle. In this section we will describe a generic mecha-
nism which may be adopted in order to perform route
re-filtering. This mechanism is currently used in BGP’s
route re-filtering implementation.

Depending on the requirements of an implementation,
route re-filtering may be quite difficult to implement cor-
rectly. XORP’s philosophy is to maintain route consis-
tency no matter what the price is [4]. This means that
if route x is added, it is illegal to re-add route x without
first deleting it. For this requirement to be met, care must
be taken when route re-filtering is being performed.

Suppose that route x has been dropped by a filter. If
the policies are now reconfigured, route re-filtering will
occur. If route x is now accepted by the new filter, the
route needs to be added. It must not be replaced (deleted
and added) since, due to the original filter, it was not in-
serted in the first place. Thus we must maintain an ad-
ditional bit of state in each route indicating whether has
been dropped by a policy filter. This allows the appropri-
ate action to be taken upon route re-filtering.
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3.5.1 Version Filters

XORP’s BGP implementation has even more stringent
requirements for re-filtering. When a route is replaced as
a result of a policy change, both the old and new versions
of the route are required to ensure consistency. To allow
re-filtering at all, the original unmodified route must be
kept. If we also stored the modified version of each route,
this would increase memory consumption to an intolera-
ble degree, especially for export filters which can modify
a route in a different way for each peer.

Our solution to this problem involves trading CPU cy-
cles for memory, and re-running the old filter to regen-
erate the old version of the route. We do this by storing
previous filter programs. Each time the policy filter is
configured, it is assigned a unique program version num-
ber. All routes have an indicator of which filter they need
to be run against. A special indicator (0) is used in order
to mark new and unfiltered routes, which will cause them
to be run against the current version of the filter.

Figure 6 depicts the operation of a version filter. When
a route needs to be evaluated, the version filter will first
obtain a pointer to the correct filter program which needs
to be run by requesting this as an attribute from the route
via the normal VarRW mechanism.

Initially, all routes will have their filter identifier set to
0. As they are filtered, their filter identifier will be set to
the current filter version, perhaps 1. Suppose that the fil-
ter is now re-configured and obtains a version of 2. Ver-
sion 1 of the filter is still retained in memory. When route
re-filtering occurs, the version 1 filter (as indicated in the
route) will be run first. Next, the route will be evaluated
against the version 2 filter. This way, both the previous
and current version of the filtered route are obtained. It
is now possible to conclude what action should be taken.
For example if the previous route was accepted and mod-
ified whereas the current one is dropped, a delete of the
previous route is propagated. It is no longer necessary
to store copies of modified routes in memory. All that
is required is that each route has extra space for a filter

version id—a minimal overhead.
Using this technique it is also possible to spot invari-

ants. If the old filter and the current filter yield the same
route, there is no need to delete and re-add the route, re-
ducing routing protocol chatter and churn.

Finally, route filter programs are reference counted.
When no route remains that references an old filter pro-
gram, the program is automatically deleted.

These version filters may be used in any protocol
which have design requirements similar to XORP’s BGP:
route consistency and no copy of previously filtered
routes. The version filter will read and write the filter
version identifier in the route via the VarRW interface.
In order to use them, a developer simply needs to add
the filter identifier to the routes and extend the VarRW to
support the reading and writing of this identifier.

4 Evaluation
In most protocols, policy should not be the bottleneck
of computation. Therefore, policy filters need to have a
low overhead and must be able to process many routes
in a very short period of time. The first metric used in
evaluating our policy filters was indeed routes filtered per
second. All the experiments which follow have been per-
formed on a Pentium IV 2.4GHz laptop with 512MB of
RAM. The results are from a test harness that uses the
normal XORP BGP policy filters, but does not run the
rest of BGP. This allows us to separate the performance
of policy filters from that of BGP’s decision process.

Consider the following BGP import policy:

from {
network4 != 10.0.0.0/24
nexthop4 != 10.0.66.1

}
then {

AS-path-prepend: 6234
MED += 1

}

This policy states the following:

To all incoming BGP routes which do not have
a network prefix of 10.0.0.0/24 and do not have
a next hop of 10.0.66.1, prepend 6234 to the
AS-path and increment the MED by one.

Although this policy is not too useful, it captures many
aspects of common policies. Firstly, it is attribute inten-
sive. It will read and write many route attributes and will
either compare them with user values or assign values to
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Figure 7: Filtering time for different numbers of routes.

them. This will stress the VarRW interface which poten-
tially is the most difficult to optimize—it relies on the
BGP protocol using computationally cheap data struc-
tures for attributes. Secondly, the attributes being consid-
ered are perhaps the most frequently used in BGP. Cer-
tainly, most policies will tend to match network prefixes
or next hops. Similarly, AS-paths and MEDs are the at-
tributes which commonly require tuning. The first results
we will present use a filter configured with this policy.

Figure 7 shows the time spent filtering against the
number of routes processed using the policy above. As
expected, the graph is a straight line, indicating later
routes take the same time to process as earlier routes. The
plot also shows the time taken when no policy is present.
This curve represents the fixed overhead of adding a
route, passing it through an empty filter and detecting
the route as it exits the system. It serves as a baseline
when calculating the effective overhead of filtering (the
difference between the two curves). On average, approx-
imately 51,000 routes per second are filtered.

To put this figure in perspective, consider a backbone
router that reboots and wishes to receive and process a
full routing table from its ten BGP peers in five min-
utes. If the processing time spent for policy is limited
to 25% of the total processing time, then the filters must
take no more than 75 seconds. With 150,000 routes in a
full BGP backbone routing table, the router will receive
1,500,000 routes from its ten peers. The policy filter will
need to process at least 20,000 routes per second—our
implementation will handle this.

In most cases policies are much more complex than
the one used in this example. We examine this next.

4.1 Increasingly Complex Policies
The policy in the previous section expands to 20 to-
tal lines of stack language instructions (including some
“meta” instructions such as POLICY END). We will
now evaluate how our filters deal with more complex

policies—ones with more instructions. The metric used
will be instructions executed per second.

In this experiment, the number of routes is kept con-
stant (10,000) whilst the number policy instructions is
increased. The same policy as before is used although
it is inflated as necessary by padding it with numerical
addition and assignment instructions. Specifically, the
following is performed repeatedly:

PUSH "u32" 1
PUSH "u32" 1
+
STORE MED

Intuitively, these instructions will perform 1 + 1 and
store the value of 2 in the MED attribute. In this case, the
dispatcher (the core of the policy filter) will be stressed.
Note that although these are trivial operations, many
tasks are being performed in the background:

• Two unsigned integer elements with the value of 1
are created. They are both pushed on the stack.

• The arity n of the + operator is checked and n ele-
ments are retrieved from the stack.

• The dispatcher hashes the operator + and the n ele-
ments producing a key.

• The function pointer for the implementation of
this particular operator/argument permutation is re-
trieved by indexing a hash table using the key.

• The implementation is executed and the result will
create a new unsigned integer element with the
value of 2. It is pushed on the stack.

• An element is popped from the stack and is written
to the MED (or cached).

The VarRW will not impact on performance because of
variable caching—the MED will be written only once
upon the termination of the policy. However, the imple-
mentation which performs the caching will be stressed,
although this is under the control of the generic frame-
work and may be optimized by us.

Figure 8 depicts the filtering time as the number of
policy instructions increase. The graph would look dif-
ferent if diverse instructions have been used for inflating
the policy. However, the goal is not to measure the com-
plexity of individual instructions but rather to evaluate
the overhead of the core policy engine—namely the stack
machine and the dispatcher. For example, a lot of mem-
ory management is involved, especially with this partic-
ular policy. Each time the result of the ‘+’ operator is
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Figure 8: Time to filter 10,000 routes for different policy
lengths.

created, it may not be deleted immediately because of
write caching, since the write could be performed at the
end of the policy execution. Nevertheless, the complex-
ity remains linear even in such cases. On average, about
16.5 million instructions per second are executed.

For a better understanding of this figure, consider the
following illustration. In most cases, a single user con-
figuration directive (i.e. the high level policy represen-
tation) will yield ≈ 4 instructions. For example, many
directives (such as AS-path-prepend) require:

1. Reading an attribute.

2. Pushing a user argument.

3. Executing an operator.

4. Storing the attribute.

Other directives normally require only 3 instructions—
one for the attribute, argument and operator. Therefore,
the current implementation will execute about 4 million
user directives per second. If a user policy contains 200
lines, we can filter about 20,000 routes per second.

Note the mismatch with the previous figure where we
claimed ≈ 51, 000 r/s were filtered for a 20 line stack
language policy. According to the results of this ex-
periment ≈ 830, 000 r/s should be filtered with the 20
line policy. The difference is mainly due to the fact that
the policy in this experiment is stack machine intensive
rather than VarRW intensive. The bottleneck of BGP’s
policy is actually BGP’s implementation (how attributes
are stored/modified) rather than a under-performance of
the generic policy framework.

In summary, all these figures should be taken indica-
tively as they highly depend on the specific VarRW im-
plementation of protocols and on the complexity of the
policy operations. They do however give a general idea
of the performance bounds of our implementation.
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4.2 Comparison with Static Filters
Just how well should we expect a policy filter to perform?
The previous experiments give no idea how close we are
to a reasonable lower bound on execution time. Would
any good implementation need to take this much time
to filter, or are we wasting time using fancy dispatching
mechanisms and figuring out how to execute operators
instead of performing them directly? To try and answer
this question we can compare running the same policy
using dynamic filters and hard-coded static filters.

XORP has a set of basic static filters which were
needed for standards compliance and pre-date the policy-
filter implementation. These are implemented directly in
C++. The two static import filters are:

1. Loop detection. If the AS-path in the route contains
the AS of this router, drop the route.

2. Default local-pref. Set the local-pref to 100.

The equivalent policy for the dynamic filters has been
written and requires 13 lines of stack language.

Figure 9 shows the execution time against number of
routes processed, comparing the static version of this fil-
ter against the dynamic policy-filter version. The com-
plexity of the dynamic filter is obviously much greater
than that of the static version, but the time overhead is
only ≈ 40%. Dynamic filters are an essential compo-
nent of any real router, but the important point to note
is that in implementing a generic framework for policy
filters that can be used in all routing protocols, we have
not sacrificed performance in any significant way.

This result also confirms that the stack machine itself
is not the real overhead. The VarRW implementation of
BGP seems to be the most time consuming component.
Both the static and dynamic filters need to write BGP
attributes. However, only the dynamic filters have the
overhead of the stack machine. Since the difference of
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the two plotted curves is low, the overhead of the stack
machine itself is quite minimal when taking into account
its complexity.

4.3 Optimization Considerations

All the previous experiments were performed on an op-
timized version of the policy engine. We are convinced
that there is much room for optimization in this design
and that the architecture does not limit performance in
any way. To justify this we will briefly discuss some op-
timizations we performed and further ones which could
be implemented.

The first component to optimize was the VarRW. In-
stead of requesting reads and writes using a string iden-
tifier, such as STORE metric, a numeric identifier is
assigned to each variable. This can easily be achieved by
adding the numerical ID of the variable to the VarMap.
This way, code generated will resemble STORE 1 in-
stead of STORE metric. The VarRW implementation
may simply use this number to index an array and follow
a function pointer which will read or write the variable—
achievable in constant time. String comparisons are no
longer needed.

The next set of optimizations involved similar changes
to the dispatcher. A numeric 5-bit index is assigned to
each operator and element type. This will allow for a
maximum of 32 types and 32 operators. Since current
operators are at most binary, it is safe to compute a 15-
bit key by appending, in order, the index of the arguments
to the one of the operator. This will produce a 15-bit
key which may be used to directly index an array in or-
der to retrieve the function pointer of the specific imple-
mentation for this particular operator/type permutation.
It will allow dispatching, and thus operator execution,
to occur in constant time. However, the memory over-
head required is holding an array which can accommo-
date 32,768 pointers. On a 32-bit machine, this normally
means a 128KB overhead. It is a good compromise as
the speed improvements are highly notable.

To illustrate the flexibility of this policy architecture
and to convince the reader that high speeds may really be
achieved, the following optimization may be considered.
Instead of “compiling” the high-level user representation
of policies into our stack language, it might be possible
to produce native machine code by run-time compilation
of the stack language. This would run at the speed of
static filters but would provide all the benefits of dynamic
filters. At the present time though, our performance ap-
pears to be adequate and so we do not plan to investigate
this approach further.

5 Related Work

As very little has been written in this area, it is hard to
compare against other systems. We simply do not know
how commercial implementations tackle this problem.
However, we do know that they do not have the same
extensibility requirements, as all their protocol develop-
ment takes place in-house. Any attempt to change this
business model to support third-party routing software
on a common platform will run up against the same sort
of problems we have faced.

However, we have looked at how other open-source
routers and protocol implementations handled the devel-
opment of policy in order to see where our work stands.

Zebra and Quagga: The first router we studied was
GNU Zebra [13]. It is closely related to Quagga [10]
(they share code) so the discussion will apply to both.
Firstly, these routers lack flexibility in the policy speci-
fication. For example, matches virtually always involve
equalities such as metric = 3. Specifying a match condi-
tion like metric < 3 is impossible.

Secondly, route redistribution does not seem very ad-
vanced. There is no way to specify match conditions in
the source protocol of a redistribution. Instead, all routes
from a protocol need to be sent to its destination. For
example, it is impossible to redistribute RIP routes learnt
from only a particular interface into BGP.

Finally, the code complexity is much higher. For ex-
ample, BGP’s filter implementation is over 3,500 lines
whereas in XORP it is under 1,000 lines. The main rea-
son being that the protocol is responsible for parsing and
executing policy. The RIP and OSPF implementations
also deal with this complexity. This does not occur in
our architecture, where instead all parsing and execution
is performed by the generic policy engine, and not by
protocol-specific code.

MRT: Another open-source router is MRT [12]. Its pol-
icy support is very limited and it suffers from the issues
discussed on Zebra and Quagga. Furthermore, both RIP
and OSPF seem to lack dynamic policy.

The policy implementation of MRT’s BGP suggests
that supporting policy in a clean way could be problem-
atic. Upon filtering, about 15 “if” statements are used to
determine which policy directives the user has specified.

Bird: The policy framework of the Bird [2] router re-
flects our work most closely. It uses a single filter which
supports a mini C-style language with conditional state-
ments and function calls. Our policy language would
be equivalent in functionality if we were to implement
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JUMP statements, but to date we have chosen not to.
Bird’s architecture is not distributed. It is a single pro-

cess router and all protocols share memory. It is there-
fore much simpler to write a policy framework which
interacts amongst all protocols, since all the necessary
information is present in one place.

However, Bird’s implementation highlights the diffi-
culty of implementing a rich policy language. The core
of Bird’s filter is implemented in a similar way to MRT’s.
It contains a large “switch” statement (≈ 400 lines)
which determines the operator being executed. A fur-
ther switch is required in each “case” for determining the
types of the arguments. In comparison, the advantage of
using multi-methods and our dispatcher should be clear.

Finally, Bird’s filter is coupled with its protocols. If
new attributes or protocols are added, the filter itself must
be modified. In contrast to our VarMap mechanism, Bird
does not allow run-time extension.

6 Conclusions and Future Work

Implementing policy in routers in an extensible and
generic manner is a surprisingly demanding task. Rout-
ing protocols differ significantly in their attributes, re-
quirements, and architectures. We need one framework
to manage them all to provide a unified management in-
terface for operators. Furthermore, we want to strongly
encourage developers to use the full power of that frame-
work for all protocols because the need for conditional
route redistribution creates an inherent coupling between
them. To do this, the framework needs to be simple to
re-use, no matter what the protocol design is.

In this paper we presented a single solution which will
accommodate routing policy in all of today’s most used
protocols. It is a highly extensible and yet performant
framework which has no in-built knowledge of specific
protocols. Incorporating policy into a new routing proto-
col primarily involves implementing an interface which
allows our generic filter to read and write specific route
attributes.

We have successfully implemented this policy frame-
work in XORP. Policy has been added to BGP and RIP
with relatively little effort, and is currently being added
to OSPF. While the details in this paper are unashamedly
linked to XORP, we believe that the problem breakdown,
ideas, and architecture are more widely applicable.

To date we have concentrated on providing the sort of
router user interfaces supported on commercial routers.
In fact our policy framework consists of three levels:
user interface, policy manager interface, and 4-stage fil-

ter stack-machine interface. Looking into the future we
can see that the biggest benefit would be if we could con-
figure and reason about network-level policy rather than
router-level policy. We do not yet know whether reveal-
ing these internal interfaces to an external policy engine
could permit this, but it certainly seems that this would
provide much more expressiveness than can currently be
configured through any commercial router CLI.
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