stl_rope.h

Go to the documentation of this file.
00001 // SGI's rope implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001, 2002 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 2, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // You should have received a copy of the GNU General Public License along
00017 // with this library; see the file COPYING.  If not, write to the Free
00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
00019 // USA.
00020 
00021 // As a special exception, you may use this file as part of a free software
00022 // library without restriction.  Specifically, if other files instantiate
00023 // templates or use macros or inline functions from this file, or you compile
00024 // this file and link it with other files to produce an executable, this
00025 // file does not by itself cause the resulting executable to be covered by
00026 // the GNU General Public License.  This exception does not however
00027 // invalidate any other reasons why the executable file might be covered by
00028 // the GNU General Public License.
00029 
00030 /*
00031  * Copyright (c) 1997-1998
00032  * Silicon Graphics Computer Systems, Inc.
00033  *
00034  * Permission to use, copy, modify, distribute and sell this software
00035  * and its documentation for any purpose is hereby granted without fee,
00036  * provided that the above copyright notice appear in all copies and
00037  * that both that copyright notice and this permission notice appear
00038  * in supporting documentation.  Silicon Graphics makes no
00039  * representations about the suitability of this software for any
00040  * purpose.  It is provided "as is" without express or implied warranty.
00041  */
00042 
00049 // rope<_CharT,_Alloc> is a sequence of _CharT.
00050 // Ropes appear to be mutable, but update operations
00051 // really copy enough of the data structure to leave the original
00052 // valid.  Thus ropes can be logically copied by just copying
00053 // a pointer value.
00054 
00055 #ifndef __SGI_STL_INTERNAL_ROPE_H
00056 # define __SGI_STL_INTERNAL_ROPE_H
00057 
00058 # ifdef __GC
00059 #   define __GC_CONST const
00060 # else
00061 #   include <bits/stl_threads.h>
00062 #   define __GC_CONST   // constant except for deallocation
00063 # endif
00064 
00065 #include <ext/memory> // For uninitialized_copy_n
00066 
00067 namespace __gnu_cxx
00068 {
00069 using std::size_t;
00070 using std::ptrdiff_t;
00071 using std::allocator;
00072 using std::iterator;
00073 using std::reverse_iterator;
00074 using std::_Alloc_traits;
00075 using std::_Destroy;
00076 using std::_Refcount_Base;
00077 
00078 // The _S_eos function is used for those functions that
00079 // convert to/from C-like strings to detect the end of the string.
00080 
00081 // The end-of-C-string character.
00082 // This is what the draft standard says it should be.
00083 template <class _CharT>
00084 inline _CharT _S_eos(_CharT*) { return _CharT(); }
00085 
00086 // Test for basic character types.
00087 // For basic character types leaves having a trailing eos.
00088 template <class _CharT>
00089 inline bool _S_is_basic_char_type(_CharT*) { return false; }
00090 template <class _CharT>
00091 inline bool _S_is_one_byte_char_type(_CharT*) { return false; }
00092 
00093 inline bool _S_is_basic_char_type(char*) { return true; }
00094 inline bool _S_is_one_byte_char_type(char*) { return true; }
00095 inline bool _S_is_basic_char_type(wchar_t*) { return true; }
00096 
00097 // Store an eos iff _CharT is a basic character type.
00098 // Do not reference _S_eos if it isn't.
00099 template <class _CharT>
00100 inline void _S_cond_store_eos(_CharT&) {}
00101 
00102 inline void _S_cond_store_eos(char& __c) { __c = 0; }
00103 inline void _S_cond_store_eos(wchar_t& __c) { __c = 0; }
00104 
00105 // char_producers are logically functions that generate a section of
00106 // a string.  These can be convereted to ropes.  The resulting rope
00107 // invokes the char_producer on demand.  This allows, for example,
00108 // files to be viewed as ropes without reading the entire file.
00109 template <class _CharT>
00110 class char_producer {
00111     public:
00112         virtual ~char_producer() {};
00113         virtual void operator()(size_t __start_pos, size_t __len, 
00114                                 _CharT* __buffer) = 0;
00115         // Buffer should really be an arbitrary output iterator.
00116         // That way we could flatten directly into an ostream, etc.
00117         // This is thoroughly impossible, since iterator types don't
00118         // have runtime descriptions.
00119 };
00120 
00121 // Sequence buffers:
00122 //
00123 // Sequence must provide an append operation that appends an
00124 // array to the sequence.  Sequence buffers are useful only if
00125 // appending an entire array is cheaper than appending element by element.
00126 // This is true for many string representations.
00127 // This should  perhaps inherit from ostream<sequence::value_type>
00128 // and be implemented correspondingly, so that they can be used
00129 // for formatted.  For the sake of portability, we don't do this yet.
00130 //
00131 // For now, sequence buffers behave as output iterators.  But they also
00132 // behave a little like basic_ostringstream<sequence::value_type> and a
00133 // little like containers.
00134 
00135 template<class _Sequence, size_t _Buf_sz = 100>
00136 class sequence_buffer : public iterator<std::output_iterator_tag,void,void,void,void>
00137 {
00138     public:
00139         typedef typename _Sequence::value_type value_type;
00140     protected:
00141         _Sequence* _M_prefix;
00142         value_type _M_buffer[_Buf_sz];
00143         size_t     _M_buf_count;
00144     public:
00145         void flush() {
00146             _M_prefix->append(_M_buffer, _M_buffer + _M_buf_count);
00147             _M_buf_count = 0;
00148         }
00149         ~sequence_buffer() { flush(); }
00150         sequence_buffer() : _M_prefix(0), _M_buf_count(0) {}
00151         sequence_buffer(const sequence_buffer& __x) {
00152             _M_prefix = __x._M_prefix;
00153             _M_buf_count = __x._M_buf_count;
00154             copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
00155         }
00156         sequence_buffer(sequence_buffer& __x) {
00157             __x.flush();
00158             _M_prefix = __x._M_prefix;
00159             _M_buf_count = 0;
00160         }
00161         sequence_buffer(_Sequence& __s) : _M_prefix(&__s), _M_buf_count(0) {}
00162         sequence_buffer& operator= (sequence_buffer& __x) {
00163             __x.flush();
00164             _M_prefix = __x._M_prefix;
00165             _M_buf_count = 0;
00166             return *this;
00167         }
00168         sequence_buffer& operator= (const sequence_buffer& __x) {
00169             _M_prefix = __x._M_prefix;
00170             _M_buf_count = __x._M_buf_count;
00171             copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
00172             return *this;
00173         }
00174         void push_back(value_type __x)
00175         {
00176             if (_M_buf_count < _Buf_sz) {
00177                 _M_buffer[_M_buf_count] = __x;
00178                 ++_M_buf_count;
00179             } else {
00180                 flush();
00181                 _M_buffer[0] = __x;
00182                 _M_buf_count = 1;
00183             }
00184         }
00185         void append(value_type* __s, size_t __len)
00186         {
00187             if (__len + _M_buf_count <= _Buf_sz) {
00188                 size_t __i = _M_buf_count;
00189                 size_t __j = 0;
00190                 for (; __j < __len; __i++, __j++) {
00191                     _M_buffer[__i] = __s[__j];
00192                 }
00193                 _M_buf_count += __len;
00194             } else if (0 == _M_buf_count) {
00195                 _M_prefix->append(__s, __s + __len);
00196             } else {
00197                 flush();
00198                 append(__s, __len);
00199             }
00200         }
00201         sequence_buffer& write(value_type* __s, size_t __len)
00202         {
00203             append(__s, __len);
00204             return *this;
00205         }
00206         sequence_buffer& put(value_type __x)
00207         {
00208             push_back(__x);
00209             return *this;
00210         }
00211         sequence_buffer& operator=(const value_type& __rhs)
00212         {
00213             push_back(__rhs);
00214             return *this;
00215         }
00216         sequence_buffer& operator*() { return *this; }
00217         sequence_buffer& operator++() { return *this; }
00218         sequence_buffer& operator++(int) { return *this; }
00219 };
00220 
00221 // The following should be treated as private, at least for now.
00222 template<class _CharT>
00223 class _Rope_char_consumer {
00224     public:
00225         // If we had member templates, these should not be virtual.
00226         // For now we need to use run-time parametrization where
00227         // compile-time would do.  Hence this should all be private
00228         // for now.
00229         // The symmetry with char_producer is accidental and temporary.
00230         virtual ~_Rope_char_consumer() {};
00231         virtual bool operator()(const _CharT* __buffer, size_t __len) = 0;
00232 };
00233 
00234 // First a lot of forward declarations.  The standard seems to require
00235 // much stricter "declaration before use" than many of the implementations
00236 // that preceded it.
00237 template<class _CharT, class _Alloc=allocator<_CharT> > class rope;
00238 template<class _CharT, class _Alloc> struct _Rope_RopeConcatenation;
00239 template<class _CharT, class _Alloc> struct _Rope_RopeLeaf;
00240 template<class _CharT, class _Alloc> struct _Rope_RopeFunction;
00241 template<class _CharT, class _Alloc> struct _Rope_RopeSubstring;
00242 template<class _CharT, class _Alloc> class _Rope_iterator;
00243 template<class _CharT, class _Alloc> class _Rope_const_iterator;
00244 template<class _CharT, class _Alloc> class _Rope_char_ref_proxy;
00245 template<class _CharT, class _Alloc> class _Rope_char_ptr_proxy;
00246 
00247 template<class _CharT, class _Alloc>
00248 bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
00249                  const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y);
00250 
00251 template<class _CharT, class _Alloc>
00252 _Rope_const_iterator<_CharT,_Alloc> operator-
00253         (const _Rope_const_iterator<_CharT,_Alloc>& __x,
00254          ptrdiff_t __n);
00255 
00256 template<class _CharT, class _Alloc>
00257 _Rope_const_iterator<_CharT,_Alloc> operator+
00258         (const _Rope_const_iterator<_CharT,_Alloc>& __x,
00259          ptrdiff_t __n);
00260 
00261 template<class _CharT, class _Alloc>
00262 _Rope_const_iterator<_CharT,_Alloc> operator+
00263         (ptrdiff_t __n,
00264          const _Rope_const_iterator<_CharT,_Alloc>& __x);
00265 
00266 template<class _CharT, class _Alloc>
00267 bool operator== 
00268         (const _Rope_const_iterator<_CharT,_Alloc>& __x,
00269          const _Rope_const_iterator<_CharT,_Alloc>& __y);
00270 
00271 template<class _CharT, class _Alloc>
00272 bool operator< 
00273         (const _Rope_const_iterator<_CharT,_Alloc>& __x,
00274          const _Rope_const_iterator<_CharT,_Alloc>& __y);
00275 
00276 template<class _CharT, class _Alloc>
00277 ptrdiff_t operator- 
00278         (const _Rope_const_iterator<_CharT,_Alloc>& __x,
00279          const _Rope_const_iterator<_CharT,_Alloc>& __y);
00280 
00281 template<class _CharT, class _Alloc>
00282 _Rope_iterator<_CharT,_Alloc> operator-
00283         (const _Rope_iterator<_CharT,_Alloc>& __x,
00284          ptrdiff_t __n);
00285 
00286 template<class _CharT, class _Alloc>
00287 _Rope_iterator<_CharT,_Alloc> operator+
00288         (const _Rope_iterator<_CharT,_Alloc>& __x,
00289          ptrdiff_t __n);
00290 
00291 template<class _CharT, class _Alloc>
00292 _Rope_iterator<_CharT,_Alloc> operator+
00293         (ptrdiff_t __n,
00294          const _Rope_iterator<_CharT,_Alloc>& __x);
00295 
00296 template<class _CharT, class _Alloc>
00297 bool operator== 
00298         (const _Rope_iterator<_CharT,_Alloc>& __x,
00299          const _Rope_iterator<_CharT,_Alloc>& __y);
00300 
00301 template<class _CharT, class _Alloc>
00302 bool operator< 
00303         (const _Rope_iterator<_CharT,_Alloc>& __x,
00304          const _Rope_iterator<_CharT,_Alloc>& __y);
00305 
00306 template<class _CharT, class _Alloc>
00307 ptrdiff_t operator- 
00308         (const _Rope_iterator<_CharT,_Alloc>& __x,
00309          const _Rope_iterator<_CharT,_Alloc>& __y);
00310 
00311 template<class _CharT, class _Alloc>
00312 rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
00313                                const rope<_CharT,_Alloc>& __right);
00314         
00315 template<class _CharT, class _Alloc>
00316 rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
00317                                const _CharT* __right);
00318         
00319 template<class _CharT, class _Alloc>
00320 rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
00321                                _CharT __right);
00322         
00323 // Some helpers, so we can use power on ropes.
00324 // See below for why this isn't local to the implementation.
00325 
00326 // This uses a nonstandard refcount convention.
00327 // The result has refcount 0.
00328 template<class _CharT, class _Alloc>
00329 struct _Rope_Concat_fn
00330        : public std::binary_function<rope<_CharT,_Alloc>, rope<_CharT,_Alloc>,
00331                                      rope<_CharT,_Alloc> > {
00332         rope<_CharT,_Alloc> operator() (const rope<_CharT,_Alloc>& __x,
00333                                 const rope<_CharT,_Alloc>& __y) {
00334                     return __x + __y;
00335         }
00336 };
00337 
00338 template <class _CharT, class _Alloc>
00339 inline
00340 rope<_CharT,_Alloc>
00341 identity_element(_Rope_Concat_fn<_CharT, _Alloc>)
00342 {
00343     return rope<_CharT,_Alloc>();
00344 }
00345 
00346 
00347 //
00348 // What follows should really be local to rope.  Unfortunately,
00349 // that doesn't work, since it makes it impossible to define generic
00350 // equality on rope iterators.  According to the draft standard, the
00351 // template parameters for such an equality operator cannot be inferred
00352 // from the occurrence of a member class as a parameter.
00353 // (SGI compilers in fact allow this, but the __result wouldn't be
00354 // portable.)
00355 // Similarly, some of the static member functions are member functions
00356 // only to avoid polluting the global namespace, and to circumvent
00357 // restrictions on type inference for template functions.
00358 //
00359 
00360 //
00361 // The internal data structure for representing a rope.  This is
00362 // private to the implementation.  A rope is really just a pointer
00363 // to one of these.
00364 //
00365 // A few basic functions for manipulating this data structure
00366 // are members of _RopeRep.  Most of the more complex algorithms
00367 // are implemented as rope members.
00368 //
00369 // Some of the static member functions of _RopeRep have identically
00370 // named functions in rope that simply invoke the _RopeRep versions.
00371 //
00372 // A macro to introduce various allocation and deallocation functions
00373 // These need to be defined differently depending on whether or not
00374 // we are using standard conforming allocators, and whether the allocator
00375 // instances have real state.  Thus this macro is invoked repeatedly
00376 // with different definitions of __ROPE_DEFINE_ALLOC.
00377 // __ROPE_DEFINE_ALLOC(type,name) defines 
00378 //   type * name_allocate(size_t) and
00379 //   void name_deallocate(tipe *, size_t)
00380 // Both functions may or may not be static.
00381 
00382 #define __ROPE_DEFINE_ALLOCS(__a) \
00383         __ROPE_DEFINE_ALLOC(_CharT,_Data) /* character data */ \
00384         typedef _Rope_RopeConcatenation<_CharT,__a> __C; \
00385         __ROPE_DEFINE_ALLOC(__C,_C) \
00386         typedef _Rope_RopeLeaf<_CharT,__a> __L; \
00387         __ROPE_DEFINE_ALLOC(__L,_L) \
00388         typedef _Rope_RopeFunction<_CharT,__a> __F; \
00389         __ROPE_DEFINE_ALLOC(__F,_F) \
00390         typedef _Rope_RopeSubstring<_CharT,__a> __S; \
00391         __ROPE_DEFINE_ALLOC(__S,_S)
00392 
00393 //  Internal rope nodes potentially store a copy of the allocator
00394 //  instance used to allocate them.  This is mostly redundant.
00395 //  But the alternative would be to pass allocator instances around
00396 //  in some form to nearly all internal functions, since any pointer
00397 //  assignment may result in a zero reference count and thus require
00398 //  deallocation.
00399 //  The _Rope_rep_base class encapsulates
00400 //  the differences between SGI-style allocators and standard-conforming
00401 //  allocators.
00402 
00403 #define __STATIC_IF_SGI_ALLOC  /* not static */
00404 
00405 // Base class for ordinary allocators.
00406 template <class _CharT, class _Allocator, bool _IsStatic>
00407 class _Rope_rep_alloc_base {
00408 public:
00409   typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
00410           allocator_type;
00411   allocator_type get_allocator() const { return _M_data_allocator; }
00412   _Rope_rep_alloc_base(size_t __size, const allocator_type& __a)
00413         : _M_size(__size), _M_data_allocator(__a) {}
00414   size_t _M_size;       // This is here only to avoid wasting space
00415                 // for an otherwise empty base class.
00416 
00417   
00418 protected:
00419     allocator_type _M_data_allocator;
00420 
00421 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
00422         typedef typename \
00423           _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
00424         /*static*/ _Tp * __name##_allocate(size_t __n) \
00425           { return __name##Allocator(_M_data_allocator).allocate(__n); } \
00426         void __name##_deallocate(_Tp* __p, size_t __n) \
00427           { __name##Allocator(_M_data_allocator).deallocate(__p, __n); }
00428   __ROPE_DEFINE_ALLOCS(_Allocator);
00429 # undef __ROPE_DEFINE_ALLOC
00430 };
00431 
00432 // Specialization for allocators that have the property that we don't
00433 //  actually have to store an allocator object.  
00434 template <class _CharT, class _Allocator>
00435 class _Rope_rep_alloc_base<_CharT,_Allocator,true> {
00436 public:
00437   typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
00438           allocator_type;
00439   allocator_type get_allocator() const { return allocator_type(); }
00440   _Rope_rep_alloc_base(size_t __size, const allocator_type&)
00441                 : _M_size(__size) {}
00442   size_t _M_size;
00443   
00444 protected:
00445 
00446 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
00447         typedef typename \
00448           _Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \
00449         typedef typename \
00450           _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
00451         static _Tp* __name##_allocate(size_t __n) \
00452                 { return __name##Alloc::allocate(__n); } \
00453         void __name##_deallocate(_Tp *__p, size_t __n) \
00454                 { __name##Alloc::deallocate(__p, __n); }
00455   __ROPE_DEFINE_ALLOCS(_Allocator);
00456 # undef __ROPE_DEFINE_ALLOC
00457 };
00458 
00459 template <class _CharT, class _Alloc>
00460 struct _Rope_rep_base
00461   : public _Rope_rep_alloc_base<_CharT,_Alloc,
00462                                 _Alloc_traits<_CharT,_Alloc>::_S_instanceless>
00463 {
00464   typedef _Rope_rep_alloc_base<_CharT,_Alloc,
00465                                _Alloc_traits<_CharT,_Alloc>::_S_instanceless>
00466           _Base;
00467   typedef typename _Base::allocator_type allocator_type;
00468   _Rope_rep_base(size_t __size, const allocator_type& __a)
00469     : _Base(__size, __a) {}
00470 };    
00471 
00472 
00473 template<class _CharT, class _Alloc>
00474 struct _Rope_RopeRep : public _Rope_rep_base<_CharT,_Alloc>
00475 # ifndef __GC
00476     , _Refcount_Base
00477 # endif
00478 {
00479     public:
00480     enum { _S_max_rope_depth = 45 };
00481     enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function};
00482     _Tag _M_tag:8;
00483     bool _M_is_balanced:8;
00484     unsigned char _M_depth;
00485     __GC_CONST _CharT* _M_c_string;
00486                         /* Flattened version of string, if needed.  */
00487                         /* typically 0.                             */
00488                         /* If it's not 0, then the memory is owned  */
00489                         /* by this node.                            */
00490                         /* In the case of a leaf, this may point to */
00491                         /* the same memory as the data field.       */
00492     typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
00493                         allocator_type;
00494     _Rope_RopeRep(_Tag __t, int __d, bool __b, size_t __size,
00495                   allocator_type __a)
00496         : _Rope_rep_base<_CharT,_Alloc>(__size, __a),
00497 #         ifndef __GC
00498           _Refcount_Base(1),
00499 #         endif
00500           _M_tag(__t), _M_is_balanced(__b), _M_depth(__d), _M_c_string(0)
00501     { }
00502 #   ifdef __GC
00503         void _M_incr () {}
00504 #   endif
00505         static void _S_free_string(__GC_CONST _CharT*, size_t __len,
00506                                    allocator_type __a);
00507 #       define __STL_FREE_STRING(__s, __l, __a) _S_free_string(__s, __l, __a);
00508                         // Deallocate data section of a leaf.
00509                         // This shouldn't be a member function.
00510                         // But its hard to do anything else at the
00511                         // moment, because it's templatized w.r.t.
00512                         // an allocator.
00513                         // Does nothing if __GC is defined.
00514 #   ifndef __GC
00515           void _M_free_c_string();
00516           void _M_free_tree();
00517                         // Deallocate t. Assumes t is not 0.
00518           void _M_unref_nonnil()
00519           {
00520               if (0 == _M_decr()) _M_free_tree();
00521           }
00522           void _M_ref_nonnil()
00523           {
00524               _M_incr();
00525           }
00526           static void _S_unref(_Rope_RopeRep* __t)
00527           {
00528               if (0 != __t) {
00529                   __t->_M_unref_nonnil();
00530               }
00531           }
00532           static void _S_ref(_Rope_RopeRep* __t)
00533           {
00534               if (0 != __t) __t->_M_incr();
00535           }
00536           static void _S_free_if_unref(_Rope_RopeRep* __t)
00537           {
00538               if (0 != __t && 0 == __t->_M_ref_count) __t->_M_free_tree();
00539           }
00540 #   else /* __GC */
00541           void _M_unref_nonnil() {}
00542           void _M_ref_nonnil() {}
00543           static void _S_unref(_Rope_RopeRep*) {}
00544           static void _S_ref(_Rope_RopeRep*) {}
00545           static void _S_free_if_unref(_Rope_RopeRep*) {}
00546 #   endif
00547 
00548 };
00549 
00550 template<class _CharT, class _Alloc>
00551 struct _Rope_RopeLeaf : public _Rope_RopeRep<_CharT,_Alloc> {
00552   public:
00553     // Apparently needed by VC++
00554     // The data fields of leaves are allocated with some
00555     // extra space, to accommodate future growth and for basic
00556     // character types, to hold a trailing eos character.
00557     enum { _S_alloc_granularity = 8 };
00558     static size_t _S_rounded_up_size(size_t __n) {
00559         size_t __size_with_eos;
00560              
00561         if (_S_is_basic_char_type((_CharT*)0)) {
00562             __size_with_eos = __n + 1;
00563         } else {
00564             __size_with_eos = __n;
00565         }
00566 #       ifdef __GC
00567            return __size_with_eos;
00568 #       else
00569            // Allow slop for in-place expansion.
00570            return (__size_with_eos + _S_alloc_granularity-1)
00571                         &~ (_S_alloc_granularity-1);
00572 #       endif
00573     }
00574     __GC_CONST _CharT* _M_data; /* Not necessarily 0 terminated. */
00575                                 /* The allocated size is         */
00576                                 /* _S_rounded_up_size(size), except */
00577                                 /* in the GC case, in which it   */
00578                                 /* doesn't matter.               */
00579     typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
00580                         allocator_type;
00581     _Rope_RopeLeaf(__GC_CONST _CharT* __d, size_t __size, allocator_type __a)
00582         : _Rope_RopeRep<_CharT,_Alloc>(_S_leaf, 0, true, __size, __a),
00583           _M_data(__d)
00584         {
00585         if (_S_is_basic_char_type((_CharT *)0)) {
00586             // already eos terminated.
00587             _M_c_string = __d;
00588         }
00589     }
00590         // The constructor assumes that d has been allocated with
00591         // the proper allocator and the properly padded size.
00592         // In contrast, the destructor deallocates the data:
00593 # ifndef __GC
00594     ~_Rope_RopeLeaf() {
00595         if (_M_data != _M_c_string) {
00596             _M_free_c_string();
00597         }
00598         __STL_FREE_STRING(_M_data, _M_size, get_allocator());
00599     }
00600 # endif
00601 };
00602 
00603 template<class _CharT, class _Alloc>
00604 struct _Rope_RopeConcatenation : public _Rope_RopeRep<_CharT,_Alloc> {
00605   public:
00606     _Rope_RopeRep<_CharT,_Alloc>* _M_left;
00607     _Rope_RopeRep<_CharT,_Alloc>* _M_right;
00608     typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
00609                         allocator_type;
00610     _Rope_RopeConcatenation(_Rope_RopeRep<_CharT,_Alloc>* __l,
00611                              _Rope_RopeRep<_CharT,_Alloc>* __r,
00612                              allocator_type __a)
00613 
00614       : _Rope_RopeRep<_CharT,_Alloc>(_S_concat,
00615                                      std::max(__l->_M_depth, __r->_M_depth) + 1,
00616                                      false,
00617                                      __l->_M_size + __r->_M_size, __a),
00618         _M_left(__l), _M_right(__r)
00619       {}
00620 # ifndef __GC
00621     ~_Rope_RopeConcatenation() {
00622         _M_free_c_string();
00623         _M_left->_M_unref_nonnil();
00624         _M_right->_M_unref_nonnil();
00625     }
00626 # endif
00627 };
00628 
00629 template<class _CharT, class _Alloc>
00630 struct _Rope_RopeFunction : public _Rope_RopeRep<_CharT,_Alloc> {
00631   public:
00632     char_producer<_CharT>* _M_fn;
00633 #   ifndef __GC
00634       bool _M_delete_when_done; // Char_producer is owned by the
00635                                 // rope and should be explicitly
00636                                 // deleted when the rope becomes
00637                                 // inaccessible.
00638 #   else
00639       // In the GC case, we either register the rope for
00640       // finalization, or not.  Thus the field is unnecessary;
00641       // the information is stored in the collector data structures.
00642       // We do need a finalization procedure to be invoked by the
00643       // collector.
00644       static void _S_fn_finalization_proc(void * __tree, void *) {
00645         delete ((_Rope_RopeFunction *)__tree) -> _M_fn;
00646       }
00647 #   endif
00648     typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
00649                                         allocator_type;
00650     _Rope_RopeFunction(char_producer<_CharT>* __f, size_t __size,
00651                         bool __d, allocator_type __a)
00652       : _Rope_RopeRep<_CharT,_Alloc>(_S_function, 0, true, __size, __a)
00653       , _M_fn(__f)
00654 #       ifndef __GC
00655       , _M_delete_when_done(__d)
00656 #       endif
00657     {
00658 #       ifdef __GC
00659             if (__d) {
00660                 GC_REGISTER_FINALIZER(
00661                   this, _Rope_RopeFunction::_S_fn_finalization_proc, 0, 0, 0);
00662             }
00663 #       endif
00664     }
00665 # ifndef __GC
00666     ~_Rope_RopeFunction() {
00667           _M_free_c_string();
00668           if (_M_delete_when_done) {
00669               delete _M_fn;
00670           }
00671     }
00672 # endif
00673 };
00674 // Substring results are usually represented using just
00675 // concatenation nodes.  But in the case of very long flat ropes
00676 // or ropes with a functional representation that isn't practical.
00677 // In that case, we represent the __result as a special case of
00678 // RopeFunction, whose char_producer points back to the rope itself.
00679 // In all cases except repeated substring operations and
00680 // deallocation, we treat the __result as a RopeFunction.
00681 template<class _CharT, class _Alloc>
00682 struct _Rope_RopeSubstring : public _Rope_RopeFunction<_CharT,_Alloc>,
00683                              public char_producer<_CharT> {
00684   public:
00685     // XXX this whole class should be rewritten.
00686     _Rope_RopeRep<_CharT,_Alloc>* _M_base;      // not 0
00687     size_t _M_start;
00688     virtual void operator()(size_t __start_pos, size_t __req_len,
00689                             _CharT* __buffer) {
00690         switch(_M_base->_M_tag) {
00691             case _S_function:
00692             case _S_substringfn:
00693               {
00694                 char_producer<_CharT>* __fn =
00695                         ((_Rope_RopeFunction<_CharT,_Alloc>*)_M_base)->_M_fn;
00696                 (*__fn)(__start_pos + _M_start, __req_len, __buffer);
00697               }
00698               break;
00699             case _S_leaf:
00700               {
00701                 __GC_CONST _CharT* __s =
00702                         ((_Rope_RopeLeaf<_CharT,_Alloc>*)_M_base)->_M_data;
00703                 uninitialized_copy_n(__s + __start_pos + _M_start, __req_len,
00704                                      __buffer);
00705               }
00706               break;
00707             default:
00708           break;
00709         }
00710     }
00711     typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
00712         allocator_type;
00713     _Rope_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
00714                           size_t __l, allocator_type __a)
00715       : _Rope_RopeFunction<_CharT,_Alloc>(this, __l, false, __a),
00716         char_producer<_CharT>(),
00717         _M_base(__b),
00718         _M_start(__s)
00719     {
00720 #       ifndef __GC
00721             _M_base->_M_ref_nonnil();
00722 #       endif
00723         _M_tag = _S_substringfn;
00724     }
00725     virtual ~_Rope_RopeSubstring()
00726       { 
00727 #       ifndef __GC
00728           _M_base->_M_unref_nonnil();
00729           // _M_free_c_string();  -- done by parent class
00730 #       endif
00731       }
00732 };
00733 
00734 
00735 // Self-destructing pointers to Rope_rep.
00736 // These are not conventional smart pointers.  Their
00737 // only purpose in life is to ensure that unref is called
00738 // on the pointer either at normal exit or if an exception
00739 // is raised.  It is the caller's responsibility to
00740 // adjust reference counts when these pointers are initialized
00741 // or assigned to.  (This convention significantly reduces
00742 // the number of potentially expensive reference count
00743 // updates.)
00744 #ifndef __GC
00745   template<class _CharT, class _Alloc>
00746   struct _Rope_self_destruct_ptr {
00747     _Rope_RopeRep<_CharT,_Alloc>* _M_ptr;
00748     ~_Rope_self_destruct_ptr() 
00749       { _Rope_RopeRep<_CharT,_Alloc>::_S_unref(_M_ptr); }
00750 #ifdef __EXCEPTIONS
00751         _Rope_self_destruct_ptr() : _M_ptr(0) {};
00752 #else
00753         _Rope_self_destruct_ptr() {};
00754 #endif
00755     _Rope_self_destruct_ptr(_Rope_RopeRep<_CharT,_Alloc>* __p) : _M_ptr(__p) {}
00756     _Rope_RopeRep<_CharT,_Alloc>& operator*() { return *_M_ptr; }
00757     _Rope_RopeRep<_CharT,_Alloc>* operator->() { return _M_ptr; }
00758     operator _Rope_RopeRep<_CharT,_Alloc>*() { return _M_ptr; }
00759     _Rope_self_destruct_ptr& operator= (_Rope_RopeRep<_CharT,_Alloc>* __x)
00760         { _M_ptr = __x; return *this; }
00761   };
00762 #endif
00763 
00764 // Dereferencing a nonconst iterator has to return something
00765 // that behaves almost like a reference.  It's not possible to
00766 // return an actual reference since assignment requires extra
00767 // work.  And we would get into the same problems as with the
00768 // CD2 version of basic_string.
00769 template<class _CharT, class _Alloc>
00770 class _Rope_char_ref_proxy {
00771     friend class rope<_CharT,_Alloc>;
00772     friend class _Rope_iterator<_CharT,_Alloc>;
00773     friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
00774 #   ifdef __GC
00775         typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
00776 #   else
00777         typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
00778 #   endif
00779     typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
00780     typedef rope<_CharT,_Alloc> _My_rope;
00781     size_t _M_pos;
00782     _CharT _M_current;
00783     bool _M_current_valid;
00784     _My_rope* _M_root;     // The whole rope.
00785   public:
00786     _Rope_char_ref_proxy(_My_rope* __r, size_t __p)
00787       :  _M_pos(__p), _M_current_valid(false), _M_root(__r) {}
00788     _Rope_char_ref_proxy(const _Rope_char_ref_proxy& __x)
00789       : _M_pos(__x._M_pos), _M_current_valid(false), _M_root(__x._M_root) {}
00790         // Don't preserve cache if the reference can outlive the
00791         // expression.  We claim that's not possible without calling
00792         // a copy constructor or generating reference to a proxy
00793         // reference.  We declare the latter to have undefined semantics.
00794     _Rope_char_ref_proxy(_My_rope* __r, size_t __p, _CharT __c)
00795       : _M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) {}
00796     inline operator _CharT () const;
00797     _Rope_char_ref_proxy& operator= (_CharT __c);
00798     _Rope_char_ptr_proxy<_CharT,_Alloc> operator& () const;
00799     _Rope_char_ref_proxy& operator= (const _Rope_char_ref_proxy& __c) {
00800         return operator=((_CharT)__c); 
00801     }
00802 };
00803 
00804 template<class _CharT, class __Alloc>
00805 inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a,
00806                  _Rope_char_ref_proxy <_CharT, __Alloc > __b) {
00807     _CharT __tmp = __a;
00808     __a = __b;
00809     __b = __tmp;
00810 }
00811 
00812 template<class _CharT, class _Alloc>
00813 class _Rope_char_ptr_proxy {
00814     // XXX this class should be rewritten.
00815     friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
00816     size_t _M_pos;
00817     rope<_CharT,_Alloc>* _M_root;     // The whole rope.
00818   public:
00819     _Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x) 
00820       : _M_pos(__x._M_pos), _M_root(__x._M_root) {}
00821     _Rope_char_ptr_proxy(const _Rope_char_ptr_proxy& __x)
00822       : _M_pos(__x._M_pos), _M_root(__x._M_root) {}
00823     _Rope_char_ptr_proxy() {}
00824     _Rope_char_ptr_proxy(_CharT* __x) : _M_root(0), _M_pos(0) {
00825     }
00826     _Rope_char_ptr_proxy& 
00827     operator= (const _Rope_char_ptr_proxy& __x) {
00828         _M_pos = __x._M_pos;
00829         _M_root = __x._M_root;
00830         return *this;
00831     }
00832     template<class _CharT2, class _Alloc2>
00833     friend bool operator== (const _Rope_char_ptr_proxy<_CharT2,_Alloc2>& __x,
00834                             const _Rope_char_ptr_proxy<_CharT2,_Alloc2>& __y);
00835     _Rope_char_ref_proxy<_CharT,_Alloc> operator*() const {
00836         return _Rope_char_ref_proxy<_CharT,_Alloc>(_M_root, _M_pos);
00837     }
00838 };
00839 
00840 
00841 // Rope iterators:
00842 // Unlike in the C version, we cache only part of the stack
00843 // for rope iterators, since they must be efficiently copyable.
00844 // When we run out of cache, we have to reconstruct the iterator
00845 // value.
00846 // Pointers from iterators are not included in reference counts.
00847 // Iterators are assumed to be thread private.  Ropes can
00848 // be shared.
00849 
00850 template<class _CharT, class _Alloc>
00851 class _Rope_iterator_base
00852   : public iterator<std::random_access_iterator_tag, _CharT>
00853 {
00854     friend class rope<_CharT,_Alloc>;
00855   public:
00856     typedef _Alloc _allocator_type; // used in _Rope_rotate, VC++ workaround
00857     typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
00858         // Borland doesn't want this to be protected.
00859   protected:
00860     enum { _S_path_cache_len = 4 }; // Must be <= 9.
00861     enum { _S_iterator_buf_len = 15 };
00862     size_t _M_current_pos;
00863     _RopeRep* _M_root;     // The whole rope.
00864     size_t _M_leaf_pos;    // Starting position for current leaf
00865     __GC_CONST _CharT* _M_buf_start;
00866                         // Buffer possibly
00867                         // containing current char.
00868     __GC_CONST _CharT* _M_buf_ptr;
00869                         // Pointer to current char in buffer.
00870                         // != 0 ==> buffer valid.
00871     __GC_CONST _CharT* _M_buf_end;
00872                         // One past __last valid char in buffer.
00873     // What follows is the path cache.  We go out of our
00874     // way to make this compact.
00875     // Path_end contains the bottom section of the path from
00876     // the root to the current leaf.
00877     const _RopeRep* _M_path_end[_S_path_cache_len];
00878     int _M_leaf_index;     // Last valid __pos in path_end;
00879                         // _M_path_end[0] ... _M_path_end[leaf_index-1]
00880                         // point to concatenation nodes.
00881     unsigned char _M_path_directions;
00882                           // (path_directions >> __i) & 1 is 1
00883                           // iff we got from _M_path_end[leaf_index - __i - 1]
00884                           // to _M_path_end[leaf_index - __i] by going to the
00885                           // __right. Assumes path_cache_len <= 9.
00886     _CharT _M_tmp_buf[_S_iterator_buf_len];
00887                         // Short buffer for surrounding chars.
00888                         // This is useful primarily for 
00889                         // RopeFunctions.  We put the buffer
00890                         // here to avoid locking in the
00891                         // multithreaded case.
00892     // The cached path is generally assumed to be valid
00893     // only if the buffer is valid.
00894     static void _S_setbuf(_Rope_iterator_base& __x);
00895                                         // Set buffer contents given
00896                                         // path cache.
00897     static void _S_setcache(_Rope_iterator_base& __x);
00898                                         // Set buffer contents and
00899                                         // path cache.
00900     static void _S_setcache_for_incr(_Rope_iterator_base& __x);
00901                                         // As above, but assumes path
00902                                         // cache is valid for previous posn.
00903     _Rope_iterator_base() {}
00904     _Rope_iterator_base(_RopeRep* __root, size_t __pos)
00905       : _M_current_pos(__pos), _M_root(__root), _M_buf_ptr(0) {}
00906     void _M_incr(size_t __n);
00907     void _M_decr(size_t __n);
00908   public:
00909     size_t index() const { return _M_current_pos; }
00910     _Rope_iterator_base(const _Rope_iterator_base& __x) {
00911         if (0 != __x._M_buf_ptr) {
00912             *this = __x;
00913         } else {
00914             _M_current_pos = __x._M_current_pos;
00915             _M_root = __x._M_root;
00916             _M_buf_ptr = 0;
00917         }
00918     }
00919 };
00920 
00921 template<class _CharT, class _Alloc> class _Rope_iterator;
00922 
00923 template<class _CharT, class _Alloc>
00924 class _Rope_const_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
00925     friend class rope<_CharT,_Alloc>;
00926   protected:
00927       typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
00928       // The one from the base class may not be directly visible.
00929     _Rope_const_iterator(const _RopeRep* __root, size_t __pos):
00930                    _Rope_iterator_base<_CharT,_Alloc>(
00931                      const_cast<_RopeRep*>(__root), __pos)
00932                    // Only nonconst iterators modify root ref count
00933     {}
00934   public:
00935     typedef _CharT reference;   // Really a value.  Returning a reference
00936                                 // Would be a mess, since it would have
00937                                 // to be included in refcount.
00938     typedef const _CharT* pointer;
00939 
00940   public:
00941     _Rope_const_iterator() {};
00942     _Rope_const_iterator(const _Rope_const_iterator& __x) :
00943                                 _Rope_iterator_base<_CharT,_Alloc>(__x) { }
00944     _Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x);
00945     _Rope_const_iterator(const rope<_CharT,_Alloc>& __r, size_t __pos) :
00946         _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos) {}
00947     _Rope_const_iterator& operator= (const _Rope_const_iterator& __x) {
00948         if (0 != __x._M_buf_ptr) {
00949             *(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
00950         } else {
00951             _M_current_pos = __x._M_current_pos;
00952             _M_root = __x._M_root;
00953             _M_buf_ptr = 0;
00954         }
00955         return(*this);
00956     }
00957     reference operator*() {
00958         if (0 == _M_buf_ptr) _S_setcache(*this);
00959         return *_M_buf_ptr;
00960     }
00961     _Rope_const_iterator& operator++() {
00962         __GC_CONST _CharT* __next;
00963         if (0 != _M_buf_ptr && (__next = _M_buf_ptr + 1) < _M_buf_end) {
00964             _M_buf_ptr = __next;
00965             ++_M_current_pos;
00966         } else {
00967             _M_incr(1);
00968         }
00969         return *this;
00970     }
00971     _Rope_const_iterator& operator+=(ptrdiff_t __n) {
00972         if (__n >= 0) {
00973             _M_incr(__n);
00974         } else {
00975             _M_decr(-__n);
00976         }
00977         return *this;
00978     }
00979     _Rope_const_iterator& operator--() {
00980         _M_decr(1);
00981         return *this;
00982     }
00983     _Rope_const_iterator& operator-=(ptrdiff_t __n) {
00984         if (__n >= 0) {
00985             _M_decr(__n);
00986         } else {
00987             _M_incr(-__n);
00988         }
00989         return *this;
00990     }
00991     _Rope_const_iterator operator++(int) {
00992         size_t __old_pos = _M_current_pos;
00993         _M_incr(1);
00994         return _Rope_const_iterator<_CharT,_Alloc>(_M_root, __old_pos);
00995         // This makes a subsequent dereference expensive.
00996         // Perhaps we should instead copy the iterator
00997         // if it has a valid cache?
00998     }
00999     _Rope_const_iterator operator--(int) {
01000         size_t __old_pos = _M_current_pos;
01001         _M_decr(1);
01002         return _Rope_const_iterator<_CharT,_Alloc>(_M_root, __old_pos);
01003     }
01004     template<class _CharT2, class _Alloc2>
01005     friend _Rope_const_iterator<_CharT2,_Alloc2> operator-
01006         (const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
01007          ptrdiff_t __n);
01008     template<class _CharT2, class _Alloc2>
01009     friend _Rope_const_iterator<_CharT2,_Alloc2> operator+
01010         (const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
01011          ptrdiff_t __n);
01012     template<class _CharT2, class _Alloc2>
01013     friend _Rope_const_iterator<_CharT2,_Alloc2> operator+
01014         (ptrdiff_t __n,
01015          const _Rope_const_iterator<_CharT2,_Alloc2>& __x);
01016     reference operator[](size_t __n) {
01017         return rope<_CharT,_Alloc>::_S_fetch(_M_root, _M_current_pos + __n);
01018     }
01019 
01020     template<class _CharT2, class _Alloc2>
01021     friend bool operator==
01022         (const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
01023          const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
01024     template<class _CharT2, class _Alloc2>
01025     friend bool operator< 
01026         (const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
01027          const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
01028     template<class _CharT2, class _Alloc2>
01029     friend ptrdiff_t operator-
01030         (const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
01031          const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
01032 };
01033 
01034 template<class _CharT, class _Alloc>
01035 class _Rope_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
01036     friend class rope<_CharT,_Alloc>;
01037   protected:
01038     typedef typename _Rope_iterator_base<_CharT,_Alloc>::_RopeRep _RopeRep;
01039     rope<_CharT,_Alloc>* _M_root_rope;
01040         // root is treated as a cached version of this,
01041         // and is used to detect changes to the underlying
01042         // rope.
01043         // Root is included in the reference count.
01044         // This is necessary so that we can detect changes reliably.
01045         // Unfortunately, it requires careful bookkeeping for the
01046         // nonGC case.
01047     _Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos)
01048       : _Rope_iterator_base<_CharT,_Alloc>(__r->_M_tree_ptr, __pos),
01049         _M_root_rope(__r) 
01050        { _RopeRep::_S_ref(_M_root); if (!(__r -> empty()))_S_setcache(*this); }
01051 
01052     void _M_check();
01053   public:
01054     typedef _Rope_char_ref_proxy<_CharT,_Alloc>  reference;
01055     typedef _Rope_char_ref_proxy<_CharT,_Alloc>* pointer;
01056 
01057   public:
01058     rope<_CharT,_Alloc>& container() { return *_M_root_rope; }
01059     _Rope_iterator() {
01060         _M_root = 0;  // Needed for reference counting.
01061     };
01062     _Rope_iterator(const _Rope_iterator& __x) :
01063         _Rope_iterator_base<_CharT,_Alloc>(__x) {
01064         _M_root_rope = __x._M_root_rope;
01065         _RopeRep::_S_ref(_M_root);
01066     }
01067     _Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos);
01068     ~_Rope_iterator() {
01069         _RopeRep::_S_unref(_M_root);
01070     }
01071     _Rope_iterator& operator= (const _Rope_iterator& __x) {
01072         _RopeRep* __old = _M_root;
01073 
01074         _RopeRep::_S_ref(__x._M_root);
01075         if (0 != __x._M_buf_ptr) {
01076             _M_root_rope = __x._M_root_rope;
01077             *(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
01078         } else {
01079             _M_current_pos = __x._M_current_pos;
01080             _M_root = __x._M_root;
01081             _M_root_rope = __x._M_root_rope;
01082             _M_buf_ptr = 0;
01083         }
01084         _RopeRep::_S_unref(__old);
01085         return(*this);
01086     }
01087     reference operator*() {
01088         _M_check();
01089         if (0 == _M_buf_ptr) {
01090             return _Rope_char_ref_proxy<_CharT,_Alloc>(
01091                _M_root_rope, _M_current_pos);
01092         } else {
01093             return _Rope_char_ref_proxy<_CharT,_Alloc>(
01094                _M_root_rope, _M_current_pos, *_M_buf_ptr);
01095         }
01096     }
01097     _Rope_iterator& operator++() {
01098         _M_incr(1);
01099         return *this;
01100     }
01101     _Rope_iterator& operator+=(ptrdiff_t __n) {
01102         if (__n >= 0) {
01103             _M_incr(__n);
01104         } else {
01105             _M_decr(-__n);
01106         }
01107         return *this;
01108     }
01109     _Rope_iterator& operator--() {
01110         _M_decr(1);
01111         return *this;
01112     }
01113     _Rope_iterator& operator-=(ptrdiff_t __n) {
01114         if (__n >= 0) {
01115             _M_decr(__n);
01116         } else {
01117             _M_incr(-__n);
01118         }
01119         return *this;
01120     }
01121     _Rope_iterator operator++(int) {
01122         size_t __old_pos = _M_current_pos;
01123         _M_incr(1);
01124         return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
01125     }
01126     _Rope_iterator operator--(int) {
01127         size_t __old_pos = _M_current_pos;
01128         _M_decr(1);
01129         return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
01130     }
01131     reference operator[](ptrdiff_t __n) {
01132         return _Rope_char_ref_proxy<_CharT,_Alloc>(
01133           _M_root_rope, _M_current_pos + __n);
01134     }
01135 
01136     template<class _CharT2, class _Alloc2>
01137     friend bool operator==
01138         (const _Rope_iterator<_CharT2,_Alloc2>& __x,
01139          const _Rope_iterator<_CharT2,_Alloc2>& __y);
01140     template<class _CharT2, class _Alloc2>
01141     friend bool operator<
01142         (const _Rope_iterator<_CharT2,_Alloc2>& __x,
01143          const _Rope_iterator<_CharT2,_Alloc2>& __y);
01144     template<class _CharT2, class _Alloc2>
01145     friend ptrdiff_t operator-
01146         (const _Rope_iterator<_CharT2,_Alloc2>& __x,
01147          const _Rope_iterator<_CharT2,_Alloc2>& __y);
01148     template<class _CharT2, class _Alloc2>
01149     friend _Rope_iterator<_CharT2,_Alloc2> operator-
01150         (const _Rope_iterator<_CharT2,_Alloc2>& __x,
01151          ptrdiff_t __n);
01152     template<class _CharT2, class _Alloc2>
01153     friend _Rope_iterator<_CharT2,_Alloc2> operator+
01154         (const _Rope_iterator<_CharT2,_Alloc2>& __x,
01155          ptrdiff_t __n);
01156     template<class _CharT2, class _Alloc2>
01157     friend _Rope_iterator<_CharT2,_Alloc2> operator+
01158         (ptrdiff_t __n,
01159          const _Rope_iterator<_CharT2,_Alloc2>& __x);
01160 };
01161 
01162 //  The rope base class encapsulates
01163 //  the differences between SGI-style allocators and standard-conforming
01164 //  allocators.
01165 
01166 // Base class for ordinary allocators.
01167 template <class _CharT, class _Allocator, bool _IsStatic>
01168 class _Rope_alloc_base {
01169 public:
01170   typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep;
01171   typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
01172           allocator_type;
01173   allocator_type get_allocator() const { return _M_data_allocator; }
01174   _Rope_alloc_base(_RopeRep *__t, const allocator_type& __a)
01175         : _M_tree_ptr(__t), _M_data_allocator(__a) {}
01176   _Rope_alloc_base(const allocator_type& __a)
01177         : _M_data_allocator(__a) {}
01178   
01179 protected:
01180   // The only data members of a rope:
01181     allocator_type _M_data_allocator;
01182     _RopeRep* _M_tree_ptr;
01183 
01184 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
01185         typedef typename \
01186           _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
01187         _Tp* __name##_allocate(size_t __n) const \
01188           { return __name##Allocator(_M_data_allocator).allocate(__n); } \
01189         void __name##_deallocate(_Tp *__p, size_t __n) const \
01190                 { __name##Allocator(_M_data_allocator).deallocate(__p, __n); }
01191   __ROPE_DEFINE_ALLOCS(_Allocator)
01192 # undef __ROPE_DEFINE_ALLOC
01193 };
01194 
01195 // Specialization for allocators that have the property that we don't
01196 //  actually have to store an allocator object.  
01197 template <class _CharT, class _Allocator>
01198 class _Rope_alloc_base<_CharT,_Allocator,true> {
01199 public:
01200   typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep;
01201   typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
01202           allocator_type;
01203   allocator_type get_allocator() const { return allocator_type(); }
01204   _Rope_alloc_base(_RopeRep *__t, const allocator_type&)
01205                 : _M_tree_ptr(__t) {}
01206   _Rope_alloc_base(const allocator_type&) {}
01207   
01208 protected:
01209   // The only data member of a rope:
01210     _RopeRep *_M_tree_ptr;
01211 
01212 # define __ROPE_DEFINE_ALLOC(_Tp, __name) \
01213         typedef typename \
01214           _Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \
01215         typedef typename \
01216           _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
01217         static _Tp* __name##_allocate(size_t __n) \
01218           { return __name##Alloc::allocate(__n); } \
01219         static void __name##_deallocate(_Tp *__p, size_t __n) \
01220           { __name##Alloc::deallocate(__p, __n); }
01221   __ROPE_DEFINE_ALLOCS(_Allocator)
01222 # undef __ROPE_DEFINE_ALLOC
01223 };
01224 
01225 template <class _CharT, class _Alloc>
01226 struct _Rope_base 
01227   : public _Rope_alloc_base<_CharT,_Alloc,
01228                             _Alloc_traits<_CharT,_Alloc>::_S_instanceless>
01229 {
01230   typedef _Rope_alloc_base<_CharT,_Alloc,
01231                             _Alloc_traits<_CharT,_Alloc>::_S_instanceless>
01232           _Base;
01233   typedef typename _Base::allocator_type allocator_type;
01234   typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
01235         // The one in _Base may not be visible due to template rules.
01236   _Rope_base(_RopeRep* __t, const allocator_type& __a) : _Base(__t, __a) {}
01237   _Rope_base(const allocator_type& __a) : _Base(__a) {}
01238 };    
01239 
01240 
01241 template <class _CharT, class _Alloc>
01242 class rope : public _Rope_base<_CharT,_Alloc> {
01243     public:
01244         typedef _CharT value_type;
01245         typedef ptrdiff_t difference_type;
01246         typedef size_t size_type;
01247         typedef _CharT const_reference;
01248         typedef const _CharT* const_pointer;
01249         typedef _Rope_iterator<_CharT,_Alloc> iterator;
01250         typedef _Rope_const_iterator<_CharT,_Alloc> const_iterator;
01251         typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
01252         typedef _Rope_char_ptr_proxy<_CharT,_Alloc> pointer;
01253 
01254         friend class _Rope_iterator<_CharT,_Alloc>;
01255         friend class _Rope_const_iterator<_CharT,_Alloc>;
01256         friend struct _Rope_RopeRep<_CharT,_Alloc>;
01257         friend class _Rope_iterator_base<_CharT,_Alloc>;
01258         friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
01259         friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
01260         friend struct _Rope_RopeSubstring<_CharT,_Alloc>;
01261 
01262     protected:
01263         typedef _Rope_base<_CharT,_Alloc> _Base;
01264         typedef typename _Base::allocator_type allocator_type;
01265         using _Base::_M_tree_ptr;
01266         typedef __GC_CONST _CharT* _Cstrptr;
01267 
01268         static _CharT _S_empty_c_str[1];
01269 
01270         static bool _S_is0(_CharT __c) { return __c == _S_eos((_CharT*)0); }
01271         enum { _S_copy_max = 23 };
01272                 // For strings shorter than _S_copy_max, we copy to
01273                 // concatenate.
01274 
01275         typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
01276         typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation;
01277         typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf;
01278         typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction;
01279         typedef _Rope_RopeSubstring<_CharT,_Alloc> _RopeSubstring;
01280 
01281         // Retrieve a character at the indicated position.
01282         static _CharT _S_fetch(_RopeRep* __r, size_type __pos);
01283 
01284 #       ifndef __GC
01285             // Obtain a pointer to the character at the indicated position.
01286             // The pointer can be used to change the character.
01287             // If such a pointer cannot be produced, as is frequently the
01288             // case, 0 is returned instead.
01289             // (Returns nonzero only if all nodes in the path have a refcount
01290             // of 1.)
01291             static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos);
01292 #       endif
01293 
01294         static bool _S_apply_to_pieces(
01295                                 // should be template parameter
01296                                 _Rope_char_consumer<_CharT>& __c,
01297                                 const _RopeRep* __r,
01298                                 size_t __begin, size_t __end);
01299                                 // begin and end are assumed to be in range.
01300 
01301 #       ifndef __GC
01302           static void _S_unref(_RopeRep* __t)
01303           {
01304               _RopeRep::_S_unref(__t);
01305           }
01306           static void _S_ref(_RopeRep* __t)
01307           {
01308               _RopeRep::_S_ref(__t);
01309           }
01310 #       else /* __GC */
01311           static void _S_unref(_RopeRep*) {}
01312           static void _S_ref(_RopeRep*) {}
01313 #       endif
01314 
01315 
01316 #       ifdef __GC
01317             typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
01318 #       else
01319             typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
01320 #       endif
01321 
01322         // _Result is counted in refcount.
01323         static _RopeRep* _S_substring(_RopeRep* __base,
01324                                     size_t __start, size_t __endp1);
01325 
01326         static _RopeRep* _S_concat_char_iter(_RopeRep* __r,
01327                                           const _CharT* __iter, size_t __slen);
01328                 // Concatenate rope and char ptr, copying __s.
01329                 // Should really take an arbitrary iterator.
01330                 // Result is counted in refcount.
01331         static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r,
01332                                           const _CharT* __iter, size_t __slen)
01333                 // As above, but one reference to __r is about to be
01334                 // destroyed.  Thus the pieces may be recycled if all
01335                 // relevant reference counts are 1.
01336 #           ifdef __GC
01337                 // We can't really do anything since refcounts are unavailable.
01338                 { return _S_concat_char_iter(__r, __iter, __slen); }
01339 #           else
01340                 ;
01341 #           endif
01342 
01343         static _RopeRep* _S_concat(_RopeRep* __left, _RopeRep* __right);
01344                 // General concatenation on _RopeRep.  _Result
01345                 // has refcount of 1.  Adjusts argument refcounts.
01346 
01347    public:
01348         void apply_to_pieces( size_t __begin, size_t __end,
01349                               _Rope_char_consumer<_CharT>& __c) const {
01350             _S_apply_to_pieces(__c, _M_tree_ptr, __begin, __end);
01351         }
01352 
01353 
01354    protected:
01355 
01356         static size_t _S_rounded_up_size(size_t __n) {
01357             return _RopeLeaf::_S_rounded_up_size(__n);
01358         }
01359 
01360         static size_t _S_allocated_capacity(size_t __n) {
01361             if (_S_is_basic_char_type((_CharT*)0)) {
01362                 return _S_rounded_up_size(__n) - 1;
01363             } else {
01364                 return _S_rounded_up_size(__n);
01365             }
01366         }
01367                 
01368         // Allocate and construct a RopeLeaf using the supplied allocator
01369         // Takes ownership of s instead of copying.
01370         static _RopeLeaf* _S_new_RopeLeaf(__GC_CONST _CharT *__s,
01371                                           size_t __size, allocator_type __a)
01372         {
01373             _RopeLeaf* __space = _LAllocator(__a).allocate(1);
01374             return new(__space) _RopeLeaf(__s, __size, __a);
01375         }
01376 
01377         static _RopeConcatenation* _S_new_RopeConcatenation(
01378                         _RopeRep* __left, _RopeRep* __right,
01379                         allocator_type __a)
01380         {
01381             _RopeConcatenation* __space = _CAllocator(__a).allocate(1);
01382             return new(__space) _RopeConcatenation(__left, __right, __a);
01383         }
01384 
01385         static _RopeFunction* _S_new_RopeFunction(char_producer<_CharT>* __f,
01386                 size_t __size, bool __d, allocator_type __a)
01387         {
01388             _RopeFunction* __space = _FAllocator(__a).allocate(1);
01389             return new(__space) _RopeFunction(__f, __size, __d, __a);
01390         }
01391 
01392         static _RopeSubstring* _S_new_RopeSubstring(
01393                 _Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
01394                 size_t __l, allocator_type __a)
01395         {
01396             _RopeSubstring* __space = _SAllocator(__a).allocate(1);
01397             return new(__space) _RopeSubstring(__b, __s, __l, __a);
01398         }
01399 
01400           static
01401           _RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s,
01402                        size_t __size, allocator_type __a)
01403 #         define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \
01404                 _S_RopeLeaf_from_unowned_char_ptr(__s, __size, __a)     
01405         {
01406             if (0 == __size) return 0;
01407             _CharT* __buf = __a.allocate(_S_rounded_up_size(__size));
01408 
01409             uninitialized_copy_n(__s, __size, __buf);
01410             _S_cond_store_eos(__buf[__size]);
01411             try {
01412               return _S_new_RopeLeaf(__buf, __size, __a);
01413             }
01414             catch(...)
01415           {
01416         _RopeRep::__STL_FREE_STRING(__buf, __size, __a);
01417         __throw_exception_again;
01418           }
01419         }
01420             
01421 
01422         // Concatenation of nonempty strings.
01423         // Always builds a concatenation node.
01424         // Rebalances if the result is too deep.
01425         // Result has refcount 1.
01426         // Does not increment left and right ref counts even though
01427         // they are referenced.
01428         static _RopeRep*
01429         _S_tree_concat(_RopeRep* __left, _RopeRep* __right);
01430 
01431         // Concatenation helper functions
01432         static _RopeLeaf*
01433         _S_leaf_concat_char_iter(_RopeLeaf* __r,
01434                                  const _CharT* __iter, size_t __slen);
01435                 // Concatenate by copying leaf.
01436                 // should take an arbitrary iterator
01437                 // result has refcount 1.
01438 #       ifndef __GC
01439           static _RopeLeaf* _S_destr_leaf_concat_char_iter
01440                         (_RopeLeaf* __r, const _CharT* __iter, size_t __slen);
01441           // A version that potentially clobbers __r if __r->_M_ref_count == 1.
01442 #       endif
01443 
01444         private:
01445 
01446         static size_t _S_char_ptr_len(const _CharT* __s);
01447                         // slightly generalized strlen
01448 
01449         rope(_RopeRep* __t, const allocator_type& __a = allocator_type())
01450           : _Base(__t,__a) { }
01451 
01452 
01453         // Copy __r to the _CharT buffer.
01454         // Returns __buffer + __r->_M_size.
01455         // Assumes that buffer is uninitialized.
01456         static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer);
01457 
01458         // Again, with explicit starting position and length.
01459         // Assumes that buffer is uninitialized.
01460         static _CharT* _S_flatten(_RopeRep* __r,
01461                                   size_t __start, size_t __len,
01462                                   _CharT* __buffer);
01463 
01464         static const unsigned long 
01465           _S_min_len[_RopeRep::_S_max_rope_depth + 1];
01466 
01467         static bool _S_is_balanced(_RopeRep* __r)
01468                 { return (__r->_M_size >= _S_min_len[__r->_M_depth]); }
01469 
01470         static bool _S_is_almost_balanced(_RopeRep* __r)
01471                 { return (__r->_M_depth == 0 ||
01472                           __r->_M_size >= _S_min_len[__r->_M_depth - 1]); }
01473 
01474         static bool _S_is_roughly_balanced(_RopeRep* __r)
01475                 { return (__r->_M_depth <= 1 ||
01476                           __r->_M_size >= _S_min_len[__r->_M_depth - 2]); }
01477 
01478         // Assumes the result is not empty.
01479         static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left,
01480                                                      _RopeRep* __right)
01481         {
01482             _RopeRep* __result = _S_concat(__left, __right);
01483             if (_S_is_balanced(__result)) __result->_M_is_balanced = true;
01484             return __result;
01485         }
01486 
01487         // The basic rebalancing operation.  Logically copies the
01488         // rope.  The result has refcount of 1.  The client will
01489         // usually decrement the reference count of __r.
01490         // The result is within height 2 of balanced by the above
01491         // definition.
01492         static _RopeRep* _S_balance(_RopeRep* __r);
01493 
01494         // Add all unbalanced subtrees to the forest of balanceed trees.
01495         // Used only by balance.
01496         static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest);
01497         
01498         // Add __r to forest, assuming __r is already balanced.
01499         static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest);
01500 
01501         // Print to stdout, exposing structure
01502         static void _S_dump(_RopeRep* __r, int __indent = 0);
01503 
01504         // Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp.
01505         static int _S_compare(const _RopeRep* __x, const _RopeRep* __y);
01506 
01507    public:
01508         bool empty() const { return 0 == _M_tree_ptr; }
01509 
01510         // Comparison member function.  This is public only for those
01511         // clients that need a ternary comparison.  Others
01512         // should use the comparison operators below.
01513         int compare(const rope& __y) const {
01514             return _S_compare(_M_tree_ptr, __y._M_tree_ptr);
01515         }
01516 
01517         rope(const _CharT* __s, const allocator_type& __a = allocator_type())
01518         : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, _S_char_ptr_len(__s),
01519                                                  __a),__a)
01520         { }
01521 
01522         rope(const _CharT* __s, size_t __len,
01523              const allocator_type& __a = allocator_type())
01524         : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __len, __a), __a)
01525         { }
01526 
01527         // Should perhaps be templatized with respect to the iterator type
01528         // and use Sequence_buffer.  (It should perhaps use sequence_buffer
01529         // even now.)
01530         rope(const _CharT *__s, const _CharT *__e,
01531              const allocator_type& __a = allocator_type())
01532         : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __e - __s, __a), __a)
01533         { }
01534 
01535         rope(const const_iterator& __s, const const_iterator& __e,
01536              const allocator_type& __a = allocator_type())
01537         : _Base(_S_substring(__s._M_root, __s._M_current_pos,
01538                              __e._M_current_pos), __a)
01539         { }
01540 
01541         rope(const iterator& __s, const iterator& __e,
01542              const allocator_type& __a = allocator_type())
01543         : _Base(_S_substring(__s._M_root, __s._M_current_pos,
01544                              __e._M_current_pos), __a)
01545         { }
01546 
01547         rope(_CharT __c, const allocator_type& __a = allocator_type())
01548         : _Base(__a)
01549         {
01550             _CharT* __buf = _Data_allocate(_S_rounded_up_size(1));
01551 
01552             std::_Construct(__buf, __c);
01553             try {
01554                 _M_tree_ptr = _S_new_RopeLeaf(__buf, 1, __a);
01555             }
01556             catch(...)
01557           {
01558         _RopeRep::__STL_FREE_STRING(__buf, 1, __a);
01559         __throw_exception_again;
01560           }
01561         }
01562 
01563         rope(size_t __n, _CharT __c,
01564              const allocator_type& __a = allocator_type());
01565 
01566         rope(const allocator_type& __a = allocator_type())
01567         : _Base(0, __a) {}
01568 
01569         // Construct a rope from a function that can compute its members
01570         rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn,
01571              const allocator_type& __a = allocator_type())
01572             : _Base(__a)
01573         {
01574             _M_tree_ptr = (0 == __len) ?
01575                0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a);
01576         }
01577 
01578         rope(const rope& __x, const allocator_type& __a = allocator_type())
01579         : _Base(__x._M_tree_ptr, __a)
01580         {
01581             _S_ref(_M_tree_ptr);
01582         }
01583 
01584         ~rope()
01585         {
01586             _S_unref(_M_tree_ptr);
01587         }
01588 
01589         rope& operator=(const rope& __x)
01590         {
01591             _RopeRep* __old = _M_tree_ptr;
01592             _M_tree_ptr = __x._M_tree_ptr;
01593             _S_ref(_M_tree_ptr);
01594             _S_unref(__old);
01595             return(*this);
01596         }
01597 
01598         void clear()
01599         {
01600             _S_unref(_M_tree_ptr);
01601             _M_tree_ptr = 0;
01602         }
01603 
01604         void push_back(_CharT __x)
01605         {
01606             _RopeRep* __old = _M_tree_ptr;
01607             _M_tree_ptr = _S_destr_concat_char_iter(_M_tree_ptr, &__x, 1);
01608             _S_unref(__old);
01609         }
01610 
01611         void pop_back()
01612         {
01613             _RopeRep* __old = _M_tree_ptr;
01614             _M_tree_ptr = 
01615               _S_substring(_M_tree_ptr, 0, _M_tree_ptr->_M_size - 1);
01616             _S_unref(__old);
01617         }
01618 
01619         _CharT back() const
01620         {
01621             return _S_fetch(_M_tree_ptr, _M_tree_ptr->_M_size - 1);
01622         }
01623 
01624         void push_front(_CharT __x)
01625         {
01626             _RopeRep* __old = _M_tree_ptr;
01627             _RopeRep* __left =
01628               __STL_ROPE_FROM_UNOWNED_CHAR_PTR(&__x, 1, get_allocator());
01629             try {
01630               _M_tree_ptr = _S_concat(__left, _M_tree_ptr);
01631               _S_unref(__old);
01632               _S_unref(__left);
01633             }
01634             catch(...)
01635           {
01636         _S_unref(__left);
01637         __throw_exception_again;
01638           }
01639         }
01640 
01641         void pop_front()
01642         {
01643             _RopeRep* __old = _M_tree_ptr;
01644             _M_tree_ptr = _S_substring(_M_tree_ptr, 1, _M_tree_ptr->_M_size);
01645             _S_unref(__old);
01646         }
01647 
01648         _CharT front() const
01649         {
01650             return _S_fetch(_M_tree_ptr, 0);
01651         }
01652 
01653         void balance()
01654         {
01655             _RopeRep* __old = _M_tree_ptr;
01656             _M_tree_ptr = _S_balance(_M_tree_ptr);
01657             _S_unref(__old);
01658         }
01659 
01660         void copy(_CharT* __buffer) const {
01661             _Destroy(__buffer, __buffer + size());
01662             _S_flatten(_M_tree_ptr, __buffer);
01663         }
01664 
01665         // This is the copy function from the standard, but
01666         // with the arguments reordered to make it consistent with the
01667         // rest of the interface.
01668         // Note that this guaranteed not to compile if the draft standard
01669         // order is assumed.
01670         size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const 
01671         {
01672             size_t __size = size();
01673             size_t __len = (__pos + __n > __size? __size - __pos : __n);
01674 
01675             _Destroy(__buffer, __buffer + __len);
01676             _S_flatten(_M_tree_ptr, __pos, __len, __buffer);
01677             return __len;
01678         }
01679 
01680         // Print to stdout, exposing structure.  May be useful for
01681         // performance debugging.
01682         void dump() {
01683             _S_dump(_M_tree_ptr);
01684         }
01685 
01686         // Convert to 0 terminated string in new allocated memory.
01687         // Embedded 0s in the input do not terminate the copy.
01688         const _CharT* c_str() const;
01689 
01690         // As above, but lso use the flattened representation as the
01691         // the new rope representation.
01692         const _CharT* replace_with_c_str();
01693 
01694         // Reclaim memory for the c_str generated flattened string.
01695         // Intentionally undocumented, since it's hard to say when this
01696         // is safe for multiple threads.
01697         void delete_c_str () {
01698             if (0 == _M_tree_ptr) return;
01699             if (_RopeRep::_S_leaf == _M_tree_ptr->_M_tag && 
01700                 ((_RopeLeaf*)_M_tree_ptr)->_M_data == 
01701                       _M_tree_ptr->_M_c_string) {
01702                 // Representation shared
01703                 return;
01704             }
01705 #           ifndef __GC
01706               _M_tree_ptr->_M_free_c_string();
01707 #           endif
01708             _M_tree_ptr->_M_c_string = 0;
01709         }
01710 
01711         _CharT operator[] (size_type __pos) const {
01712             return _S_fetch(_M_tree_ptr, __pos);
01713         }
01714 
01715         _CharT at(size_type __pos) const {
01716            // if (__pos >= size()) throw out_of_range;  // XXX
01717            return (*this)[__pos];
01718         }
01719 
01720         const_iterator begin() const {
01721             return(const_iterator(_M_tree_ptr, 0));
01722         }
01723 
01724         // An easy way to get a const iterator from a non-const container.
01725         const_iterator const_begin() const {
01726             return(const_iterator(_M_tree_ptr, 0));
01727         }
01728 
01729         const_iterator end() const {
01730             return(const_iterator(_M_tree_ptr, size()));
01731         }
01732 
01733         const_iterator const_end() const {
01734             return(const_iterator(_M_tree_ptr, size()));
01735         }
01736 
01737         size_type size() const { 
01738             return(0 == _M_tree_ptr? 0 : _M_tree_ptr->_M_size);
01739         }
01740 
01741         size_type length() const {
01742             return size();
01743         }
01744 
01745         size_type max_size() const {
01746             return _S_min_len[_RopeRep::_S_max_rope_depth-1] - 1;
01747             //  Guarantees that the result can be sufficirntly
01748             //  balanced.  Longer ropes will probably still work,
01749             //  but it's harder to make guarantees.
01750         }
01751 
01752         typedef reverse_iterator<const_iterator> const_reverse_iterator;
01753 
01754         const_reverse_iterator rbegin() const {
01755             return const_reverse_iterator(end());
01756         }
01757 
01758         const_reverse_iterator const_rbegin() const {
01759             return const_reverse_iterator(end());
01760         }
01761 
01762         const_reverse_iterator rend() const {
01763             return const_reverse_iterator(begin());
01764         }
01765 
01766         const_reverse_iterator const_rend() const {
01767             return const_reverse_iterator(begin());
01768         }
01769 
01770         template<class _CharT2, class _Alloc2>
01771         friend rope<_CharT2,_Alloc2>
01772         operator+ (const rope<_CharT2,_Alloc2>& __left,
01773                    const rope<_CharT2,_Alloc2>& __right);
01774         
01775         template<class _CharT2, class _Alloc2>
01776         friend rope<_CharT2,_Alloc2>
01777         operator+ (const rope<_CharT2,_Alloc2>& __left,
01778                    const _CharT2* __right);
01779         
01780         template<class _CharT2, class _Alloc2>
01781         friend rope<_CharT2,_Alloc2>
01782         operator+ (const rope<_CharT2,_Alloc2>& __left, _CharT2 __right);
01783         // The symmetric cases are intentionally omitted, since they're presumed
01784         // to be less common, and we don't handle them as well.
01785 
01786         // The following should really be templatized.
01787         // The first argument should be an input iterator or
01788         // forward iterator with value_type _CharT.
01789         rope& append(const _CharT* __iter, size_t __n) {
01790             _RopeRep* __result = 
01791               _S_destr_concat_char_iter(_M_tree_ptr, __iter, __n);
01792             _S_unref(_M_tree_ptr);
01793             _M_tree_ptr = __result;
01794             return *this;
01795         }
01796 
01797         rope& append(const _CharT* __c_string) {
01798             size_t __len = _S_char_ptr_len(__c_string);
01799             append(__c_string, __len);
01800             return(*this);
01801         }
01802 
01803         rope& append(const _CharT* __s, const _CharT* __e) {
01804             _RopeRep* __result =
01805                 _S_destr_concat_char_iter(_M_tree_ptr, __s, __e - __s);
01806             _S_unref(_M_tree_ptr);
01807             _M_tree_ptr = __result;
01808             return *this;
01809         }
01810 
01811         rope& append(const_iterator __s, const_iterator __e) {
01812             _Self_destruct_ptr __appendee(_S_substring(
01813               __s._M_root, __s._M_current_pos, __e._M_current_pos));
01814             _RopeRep* __result = 
01815               _S_concat(_M_tree_ptr, (_RopeRep*)__appendee);
01816             _S_unref(_M_tree_ptr);
01817             _M_tree_ptr = __result;
01818             return *this;
01819         }
01820 
01821         rope& append(_CharT __c) {
01822             _RopeRep* __result = 
01823               _S_destr_concat_char_iter(_M_tree_ptr, &__c, 1);
01824             _S_unref(_M_tree_ptr);
01825             _M_tree_ptr = __result;
01826             return *this;
01827         }
01828 
01829         rope& append() { return append(_CharT()); }  // XXX why?
01830 
01831         rope& append(const rope& __y) {
01832             _RopeRep* __result = _S_concat(_M_tree_ptr, __y._M_tree_ptr);
01833             _S_unref(_M_tree_ptr);
01834             _M_tree_ptr = __result;
01835             return *this;
01836         }
01837 
01838         rope& append(size_t __n, _CharT __c) {
01839             rope<_CharT,_Alloc> __last(__n, __c);
01840             return append(__last);
01841         }
01842 
01843         void swap(rope& __b) {
01844             _RopeRep* __tmp = _M_tree_ptr;
01845             _M_tree_ptr = __b._M_tree_ptr;
01846             __b._M_tree_ptr = __tmp;
01847         }
01848 
01849 
01850     protected:
01851         // Result is included in refcount.
01852         static _RopeRep* replace(_RopeRep* __old, size_t __pos1,
01853                                   size_t __pos2, _RopeRep* __r) {
01854             if (0 == __old) { _S_ref(__r); return __r; }
01855             _Self_destruct_ptr __left(
01856               _S_substring(__old, 0, __pos1));
01857             _Self_destruct_ptr __right(
01858               _S_substring(__old, __pos2, __old->_M_size));
01859             _RopeRep* __result;
01860 
01861             if (0 == __r) {
01862                 __result = _S_concat(__left, __right);
01863             } else {
01864                 _Self_destruct_ptr __left_result(_S_concat(__left, __r));
01865                 __result = _S_concat(__left_result, __right);
01866             }
01867             return __result;
01868         }
01869 
01870     public:
01871         void insert(size_t __p, const rope& __r) {
01872             _RopeRep* __result = 
01873               replace(_M_tree_ptr, __p, __p, __r._M_tree_ptr);
01874             _S_unref(_M_tree_ptr);
01875             _M_tree_ptr = __result;
01876         }
01877 
01878         void insert(size_t __p, size_t __n, _CharT __c) {
01879             rope<_CharT,_Alloc> __r(__n,__c);
01880             insert(__p, __r);
01881         }
01882 
01883         void insert(size_t __p, const _CharT* __i, size_t __n) {
01884             _Self_destruct_ptr __left(_S_substring(_M_tree_ptr, 0, __p));
01885             _Self_destruct_ptr __right(_S_substring(_M_tree_ptr, __p, size()));
01886             _Self_destruct_ptr __left_result(
01887               _S_concat_char_iter(__left, __i, __n));
01888                 // _S_ destr_concat_char_iter should be safe here.
01889                 // But as it stands it's probably not a win, since __left
01890                 // is likely to have additional references.
01891             _RopeRep* __result = _S_concat(__left_result, __right);
01892             _S_unref(_M_tree_ptr);
01893             _M_tree_ptr = __result;
01894         }
01895 
01896         void insert(size_t __p, const _CharT* __c_string) {
01897             insert(__p, __c_string, _S_char_ptr_len(__c_string));
01898         }
01899 
01900         void insert(size_t __p, _CharT __c) {
01901             insert(__p, &__c, 1);
01902         }
01903 
01904         void insert(size_t __p) {
01905             _CharT __c = _CharT();
01906             insert(__p, &__c, 1);
01907         }
01908 
01909         void insert(size_t __p, const _CharT* __i, const _CharT* __j) {
01910             rope __r(__i, __j);
01911             insert(__p, __r);
01912         }
01913 
01914         void insert(size_t __p, const const_iterator& __i,
01915                               const const_iterator& __j) {
01916             rope __r(__i, __j);
01917             insert(__p, __r);
01918         }
01919 
01920         void insert(size_t __p, const iterator& __i,
01921                               const iterator& __j) {
01922             rope __r(__i, __j);
01923             insert(__p, __r);
01924         }
01925 
01926         // (position, length) versions of replace operations:
01927 
01928         void replace(size_t __p, size_t __n, const rope& __r) {
01929             _RopeRep* __result = 
01930               replace(_M_tree_ptr, __p, __p + __n, __r._M_tree_ptr);
01931             _S_unref(_M_tree_ptr);
01932             _M_tree_ptr = __result;
01933         }
01934 
01935         void replace(size_t __p, size_t __n, 
01936                      const _CharT* __i, size_t __i_len) {
01937             rope __r(__i, __i_len);
01938             replace(__p, __n, __r);
01939         }
01940 
01941         void replace(size_t __p, size_t __n, _CharT __c) {
01942             rope __r(__c);
01943             replace(__p, __n, __r);
01944         }
01945 
01946         void replace(size_t __p, size_t __n, const _CharT* __c_string) {
01947             rope __r(__c_string);
01948             replace(__p, __n, __r);
01949         }
01950 
01951         void replace(size_t __p, size_t __n, 
01952                      const _CharT* __i, const _CharT* __j) {
01953             rope __r(__i, __j);
01954             replace(__p, __n, __r);
01955         }
01956 
01957         void replace(size_t __p, size_t __n,
01958                      const const_iterator& __i, const const_iterator& __j) {
01959             rope __r(__i, __j);
01960             replace(__p, __n, __r);
01961         }
01962 
01963         void replace(size_t __p, size_t __n,
01964                      const iterator& __i, const iterator& __j) {
01965             rope __r(__i, __j);
01966             replace(__p, __n, __r);
01967         }
01968 
01969         // Single character variants:
01970         void replace(size_t __p, _CharT __c) {
01971             iterator __i(this, __p);
01972             *__i = __c;
01973         }
01974 
01975         void replace(size_t __p, const rope& __r) {
01976             replace(__p, 1, __r);
01977         }
01978 
01979         void replace(size_t __p, const _CharT* __i, size_t __i_len) {
01980             replace(__p, 1, __i, __i_len);
01981         }
01982 
01983         void replace(size_t __p, const _CharT* __c_string) {
01984             replace(__p, 1, __c_string);
01985         }
01986 
01987         void replace(size_t __p, const _CharT* __i, const _CharT* __j) {
01988             replace(__p, 1, __i, __j);
01989         }
01990 
01991         void replace(size_t __p, const const_iterator& __i,
01992                                const const_iterator& __j) {
01993             replace(__p, 1, __i, __j);
01994         }
01995 
01996         void replace(size_t __p, const iterator& __i,
01997                                const iterator& __j) {
01998             replace(__p, 1, __i, __j);
01999         }
02000 
02001         // Erase, (position, size) variant.
02002         void erase(size_t __p, size_t __n) {
02003             _RopeRep* __result = replace(_M_tree_ptr, __p, __p + __n, 0);
02004             _S_unref(_M_tree_ptr);
02005             _M_tree_ptr = __result;
02006         }
02007 
02008         // Erase, single character
02009         void erase(size_t __p) {
02010             erase(__p, __p + 1);
02011         }
02012 
02013         // Insert, iterator variants.  
02014         iterator insert(const iterator& __p, const rope& __r)
02015                 { insert(__p.index(), __r); return __p; }
02016         iterator insert(const iterator& __p, size_t __n, _CharT __c)
02017                 { insert(__p.index(), __n, __c); return __p; }
02018         iterator insert(const iterator& __p, _CharT __c) 
02019                 { insert(__p.index(), __c); return __p; }
02020         iterator insert(const iterator& __p ) 
02021                 { insert(__p.index()); return __p; }
02022         iterator insert(const iterator& __p, const _CharT* c_string) 
02023                 { insert(__p.index(), c_string); return __p; }
02024         iterator insert(const iterator& __p, const _CharT* __i, size_t __n)
02025                 { insert(__p.index(), __i, __n); return __p; }
02026         iterator insert(const iterator& __p, const _CharT* __i, 
02027                         const _CharT* __j)
02028                 { insert(__p.index(), __i, __j);  return __p; }
02029         iterator insert(const iterator& __p,
02030                         const const_iterator& __i, const const_iterator& __j)
02031                 { insert(__p.index(), __i, __j); return __p; }
02032         iterator insert(const iterator& __p,
02033                         const iterator& __i, const iterator& __j)
02034                 { insert(__p.index(), __i, __j); return __p; }
02035 
02036         // Replace, range variants.
02037         void replace(const iterator& __p, const iterator& __q,
02038                      const rope& __r)
02039                 { replace(__p.index(), __q.index() - __p.index(), __r); }
02040         void replace(const iterator& __p, const iterator& __q, _CharT __c)
02041                 { replace(__p.index(), __q.index() - __p.index(), __c); }
02042         void replace(const iterator& __p, const iterator& __q,
02043                      const _CharT* __c_string)
02044                 { replace(__p.index(), __q.index() - __p.index(), __c_string); }
02045         void replace(const iterator& __p, const iterator& __q,
02046                      const _CharT* __i, size_t __n)
02047                 { replace(__p.index(), __q.index() - __p.index(), __i, __n); }
02048         void replace(const iterator& __p, const iterator& __q,
02049                      const _CharT* __i, const _CharT* __j)
02050                 { replace(__p.index(), __q.index() - __p.index(), __i, __j); }
02051         void replace(const iterator& __p, const iterator& __q,
02052                      const const_iterator& __i, const const_iterator& __j)
02053                 { replace(__p.index(), __q.index() - __p.index(), __i, __j); }
02054         void replace(const iterator& __p, const iterator& __q,
02055                      const iterator& __i, const iterator& __j)
02056                 { replace(__p.index(), __q.index() - __p.index(), __i, __j); }
02057 
02058         // Replace, iterator variants.
02059         void replace(const iterator& __p, const rope& __r)
02060                 { replace(__p.index(), __r); }
02061         void replace(const iterator& __p, _CharT __c)
02062                 { replace(__p.index(), __c); }
02063         void replace(const iterator& __p, const _CharT* __c_string)
02064                 { replace(__p.index(), __c_string); }
02065         void replace(const iterator& __p, const _CharT* __i, size_t __n)
02066                 { replace(__p.index(), __i, __n); }
02067         void replace(const iterator& __p, const _CharT* __i, const _CharT* __j)
02068                 { replace(__p.index(), __i, __j); }
02069         void replace(const iterator& __p, const_iterator __i, 
02070                      const_iterator __j)
02071                 { replace(__p.index(), __i, __j); }
02072         void replace(const iterator& __p, iterator __i, iterator __j)
02073                 { replace(__p.index(), __i, __j); }
02074 
02075         // Iterator and range variants of erase
02076         iterator erase(const iterator& __p, const iterator& __q) {
02077             size_t __p_index = __p.index();
02078             erase(__p_index, __q.index() - __p_index);
02079             return iterator(this, __p_index);
02080         }
02081         iterator erase(const iterator& __p) {
02082             size_t __p_index = __p.index();
02083             erase(__p_index, 1);
02084             return iterator(this, __p_index);
02085         }
02086 
02087         rope substr(size_t __start, size_t __len = 1) const {
02088             return rope<_CharT,_Alloc>(
02089                         _S_substring(_M_tree_ptr, __start, __start + __len));
02090         }
02091 
02092         rope substr(iterator __start, iterator __end) const {
02093             return rope<_CharT,_Alloc>(
02094                 _S_substring(_M_tree_ptr, __start.index(), __end.index()));
02095         }
02096         
02097         rope substr(iterator __start) const {
02098             size_t __pos = __start.index();
02099             return rope<_CharT,_Alloc>(
02100                         _S_substring(_M_tree_ptr, __pos, __pos + 1));
02101         }
02102         
02103         rope substr(const_iterator __start, const_iterator __end) const {
02104             // This might eventually take advantage of the cache in the
02105             // iterator.
02106             return rope<_CharT,_Alloc>(
02107               _S_substring(_M_tree_ptr, __start.index(), __end.index()));
02108         }
02109 
02110         rope<_CharT,_Alloc> substr(const_iterator __start) {
02111             size_t __pos = __start.index();
02112             return rope<_CharT,_Alloc>(
02113               _S_substring(_M_tree_ptr, __pos, __pos + 1));
02114         }
02115 
02116         static const size_type npos;
02117 
02118         size_type find(_CharT __c, size_type __pos = 0) const;
02119         size_type find(const _CharT* __s, size_type __pos = 0) const {
02120             size_type __result_pos;
02121             const_iterator __result =
02122           std::search(const_begin() + __pos, const_end(),
02123               __s, __s + _S_char_ptr_len(__s));
02124             __result_pos = __result.index();
02125 #           ifndef __STL_OLD_ROPE_SEMANTICS
02126                 if (__result_pos == size()) __result_pos = npos;
02127 #           endif
02128             return __result_pos;
02129         }
02130 
02131         iterator mutable_begin() {
02132             return(iterator(this, 0));
02133         }
02134 
02135         iterator mutable_end() {
02136             return(iterator(this, size()));
02137         }
02138 
02139         typedef reverse_iterator<iterator> reverse_iterator;
02140 
02141         reverse_iterator mutable_rbegin() {
02142             return reverse_iterator(mutable_end());
02143         }
02144 
02145         reverse_iterator mutable_rend() {
02146             return reverse_iterator(mutable_begin());
02147         }
02148 
02149         reference mutable_reference_at(size_type __pos) {
02150             return reference(this, __pos);
02151         }
02152 
02153 #       ifdef __STD_STUFF
02154             reference operator[] (size_type __pos) {
02155                 return _char_ref_proxy(this, __pos);
02156             }
02157 
02158             reference at(size_type __pos) {
02159                 // if (__pos >= size()) throw out_of_range;  // XXX
02160                 return (*this)[__pos];
02161             }
02162 
02163             void resize(size_type __n, _CharT __c) {}
02164             void resize(size_type __n) {}
02165             void reserve(size_type __res_arg = 0) {}
02166             size_type capacity() const {
02167                 return max_size();
02168             }
02169 
02170           // Stuff below this line is dangerous because it's error prone.
02171           // I would really like to get rid of it.
02172             // copy function with funny arg ordering.
02173               size_type copy(_CharT* __buffer, size_type __n, 
02174                              size_type __pos = 0) const {
02175                 return copy(__pos, __n, __buffer);
02176               }
02177 
02178             iterator end() { return mutable_end(); }
02179 
02180             iterator begin() { return mutable_begin(); }
02181 
02182             reverse_iterator rend() { return mutable_rend(); }
02183 
02184             reverse_iterator rbegin() { return mutable_rbegin(); }
02185 
02186 #       else
02187 
02188             const_iterator end() { return const_end(); }
02189 
02190             const_iterator begin() { return const_begin(); }
02191 
02192             const_reverse_iterator rend() { return const_rend(); }
02193   
02194             const_reverse_iterator rbegin() { return const_rbegin(); }
02195 
02196 #       endif
02197         
02198 };
02199 
02200 template <class _CharT, class _Alloc>
02201 const typename rope<_CharT, _Alloc>::size_type rope<_CharT, _Alloc>::npos =
02202                         (size_type)(-1);
02203 
02204 template <class _CharT, class _Alloc>
02205 inline bool operator== (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02206                         const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02207   return (__x._M_current_pos == __y._M_current_pos && 
02208           __x._M_root == __y._M_root);
02209 }
02210 
02211 template <class _CharT, class _Alloc>
02212 inline bool operator< (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02213                        const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02214   return (__x._M_current_pos < __y._M_current_pos);
02215 }
02216 
02217 template <class _CharT, class _Alloc>
02218 inline bool operator!= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02219                         const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02220   return !(__x == __y);
02221 }
02222 
02223 template <class _CharT, class _Alloc>
02224 inline bool operator> (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02225                        const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02226   return __y < __x;
02227 }
02228 
02229 template <class _CharT, class _Alloc>
02230 inline bool operator<= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02231                         const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02232   return !(__y < __x);
02233 }
02234 
02235 template <class _CharT, class _Alloc>
02236 inline bool operator>= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
02237                         const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02238   return !(__x < __y);
02239 }
02240 
02241 template <class _CharT, class _Alloc>
02242 inline ptrdiff_t operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x,
02243                            const _Rope_const_iterator<_CharT,_Alloc>& __y) {
02244   return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
02245 }
02246 
02247 template <class _CharT, class _Alloc>
02248 inline _Rope_const_iterator<_CharT,_Alloc>
02249 operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
02250   return _Rope_const_iterator<_CharT,_Alloc>(
02251             __x._M_root, __x._M_current_pos - __n);
02252 }
02253 
02254 template <class _CharT, class _Alloc>
02255 inline _Rope_const_iterator<_CharT,_Alloc>
02256 operator+(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
02257   return _Rope_const_iterator<_CharT,_Alloc>(
02258            __x._M_root, __x._M_current_pos + __n);
02259 }
02260 
02261 template <class _CharT, class _Alloc>
02262 inline _Rope_const_iterator<_CharT,_Alloc>
02263 operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT,_Alloc>& __x) {
02264   return _Rope_const_iterator<_CharT,_Alloc>(
02265            __x._M_root, __x._M_current_pos + __n);
02266 }
02267 
02268 template <class _CharT, class _Alloc>
02269 inline bool operator== (const _Rope_iterator<_CharT,_Alloc>& __x,
02270                         const _Rope_iterator<_CharT,_Alloc>& __y) {
02271   return (__x._M_current_pos == __y._M_current_pos && 
02272           __x._M_root_rope == __y._M_root_rope);
02273 }
02274 
02275 template <class _CharT, class _Alloc>
02276 inline bool operator< (const _Rope_iterator<_CharT,_Alloc>& __x,
02277                        const _Rope_iterator<_CharT,_Alloc>& __y) {
02278   return (__x._M_current_pos < __y._M_current_pos);
02279 }
02280 
02281 template <class _CharT, class _Alloc>
02282 inline bool operator!= (const _Rope_iterator<_CharT,_Alloc>& __x,
02283                         const _Rope_iterator<_CharT,_Alloc>& __y) {
02284   return !(__x == __y);
02285 }
02286 
02287 template <class _CharT, class _Alloc>
02288 inline bool operator> (const _Rope_iterator<_CharT,_Alloc>& __x,
02289                        const _Rope_iterator<_CharT,_Alloc>& __y) {
02290   return __y < __x;
02291 }
02292 
02293 template <class _CharT, class _Alloc>
02294 inline bool operator<= (const _Rope_iterator<_CharT,_Alloc>& __x,
02295                         const _Rope_iterator<_CharT,_Alloc>& __y) {
02296   return !(__y < __x);
02297 }
02298 
02299 template <class _CharT, class _Alloc>
02300 inline bool operator>= (const _Rope_iterator<_CharT,_Alloc>& __x,
02301                         const _Rope_iterator<_CharT,_Alloc>& __y) {
02302   return !(__x < __y);
02303 }
02304 
02305 template <class _CharT, class _Alloc>
02306 inline ptrdiff_t operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
02307                            const _Rope_iterator<_CharT,_Alloc>& __y) {
02308   return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
02309 }
02310 
02311 template <class _CharT, class _Alloc>
02312 inline _Rope_iterator<_CharT,_Alloc>
02313 operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
02314           ptrdiff_t __n) {
02315   return _Rope_iterator<_CharT,_Alloc>(
02316     __x._M_root_rope, __x._M_current_pos - __n);
02317 }
02318 
02319 template <class _CharT, class _Alloc>
02320 inline _Rope_iterator<_CharT,_Alloc>
02321 operator+(const _Rope_iterator<_CharT,_Alloc>& __x,
02322           ptrdiff_t __n) {
02323   return _Rope_iterator<_CharT,_Alloc>(
02324     __x._M_root_rope, __x._M_current_pos + __n);
02325 }
02326 
02327 template <class _CharT, class _Alloc>
02328 inline _Rope_iterator<_CharT,_Alloc>
02329 operator+(ptrdiff_t __n, const _Rope_iterator<_CharT,_Alloc>& __x) {
02330   return _Rope_iterator<_CharT,_Alloc>(
02331     __x._M_root_rope, __x._M_current_pos + __n);
02332 }
02333 
02334 template <class _CharT, class _Alloc>
02335 inline
02336 rope<_CharT,_Alloc>
02337 operator+ (const rope<_CharT,_Alloc>& __left,
02338            const rope<_CharT,_Alloc>& __right)
02339 {
02340     return rope<_CharT,_Alloc>(
02341       rope<_CharT,_Alloc>::_S_concat(__left._M_tree_ptr, __right._M_tree_ptr));
02342     // Inlining this should make it possible to keep __left and
02343     // __right in registers.
02344 }
02345 
02346 template <class _CharT, class _Alloc>
02347 inline
02348 rope<_CharT,_Alloc>&
02349 operator+= (rope<_CharT,_Alloc>& __left, 
02350       const rope<_CharT,_Alloc>& __right)
02351 {
02352     __left.append(__right);
02353     return __left;
02354 }
02355 
02356 template <class _CharT, class _Alloc>
02357 inline
02358 rope<_CharT,_Alloc>
02359 operator+ (const rope<_CharT,_Alloc>& __left,
02360            const _CharT* __right) {
02361     size_t __rlen = rope<_CharT,_Alloc>::_S_char_ptr_len(__right);
02362     return rope<_CharT,_Alloc>(
02363       rope<_CharT,_Alloc>::_S_concat_char_iter(
02364         __left._M_tree_ptr, __right, __rlen)); 
02365 }
02366 
02367 template <class _CharT, class _Alloc>
02368 inline
02369 rope<_CharT,_Alloc>&
02370 operator+= (rope<_CharT,_Alloc>& __left,
02371             const _CharT* __right) {
02372     __left.append(__right);
02373     return __left;
02374 }
02375 
02376 template <class _CharT, class _Alloc>
02377 inline
02378 rope<_CharT,_Alloc>
02379 operator+ (const rope<_CharT,_Alloc>& __left, _CharT __right) {
02380     return rope<_CharT,_Alloc>(
02381       rope<_CharT,_Alloc>::_S_concat_char_iter(
02382         __left._M_tree_ptr, &__right, 1));
02383 }
02384 
02385 template <class _CharT, class _Alloc>
02386 inline
02387 rope<_CharT,_Alloc>&
02388 operator+= (rope<_CharT,_Alloc>& __left, _CharT __right) {
02389     __left.append(__right);
02390     return __left;
02391 }
02392 
02393 template <class _CharT, class _Alloc>
02394 bool
02395 operator< (const rope<_CharT,_Alloc>& __left, 
02396            const rope<_CharT,_Alloc>& __right) {
02397     return __left.compare(__right) < 0;
02398 }
02399         
02400 template <class _CharT, class _Alloc>
02401 bool
02402 operator== (const rope<_CharT,_Alloc>& __left, 
02403             const rope<_CharT,_Alloc>& __right) {
02404     return __left.compare(__right) == 0;
02405 }
02406 
02407 template <class _CharT, class _Alloc>
02408 inline bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
02409                         const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
02410         return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root);
02411 }
02412 
02413 template <class _CharT, class _Alloc>
02414 inline bool
02415 operator!= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
02416   return !(__x == __y);
02417 }
02418 
02419 template <class _CharT, class _Alloc>
02420 inline bool
02421 operator> (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
02422   return __y < __x;
02423 }
02424 
02425 template <class _CharT, class _Alloc>
02426 inline bool
02427 operator<= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
02428   return !(__y < __x);
02429 }
02430 
02431 template <class _CharT, class _Alloc>
02432 inline bool
02433 operator>= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
02434   return !(__x < __y);
02435 }
02436 
02437 template <class _CharT, class _Alloc>
02438 inline bool operator!= (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
02439                         const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
02440   return !(__x == __y);
02441 }
02442 
02443 template<class _CharT, class _Traits, class _Alloc>
02444 std::basic_ostream<_CharT, _Traits>& operator<<
02445                                         (std::basic_ostream<_CharT, _Traits>& __o,
02446                                          const rope<_CharT, _Alloc>& __r);
02447 
02448 typedef rope<char> crope;
02449 typedef rope<wchar_t> wrope;
02450 
02451 inline crope::reference __mutable_reference_at(crope& __c, size_t __i)
02452 {
02453     return __c.mutable_reference_at(__i);
02454 }
02455 
02456 inline wrope::reference __mutable_reference_at(wrope& __c, size_t __i)
02457 {
02458     return __c.mutable_reference_at(__i);
02459 }
02460 
02461 template <class _CharT, class _Alloc>
02462 inline void swap(rope<_CharT,_Alloc>& __x, rope<_CharT,_Alloc>& __y) {
02463   __x.swap(__y);
02464 }
02465 
02466 // Hash functions should probably be revisited later:
02467 template<> struct hash<crope>
02468 {
02469   size_t operator()(const crope& __str) const
02470   {
02471     size_t __size = __str.size();
02472 
02473     if (0 == __size) return 0;
02474     return 13*__str[0] + 5*__str[__size - 1] + __size;
02475   }
02476 };
02477 
02478 
02479 template<> struct hash<wrope>
02480 {
02481   size_t operator()(const wrope& __str) const
02482   {
02483     size_t __size = __str.size();
02484 
02485     if (0 == __size) return 0;
02486     return 13*__str[0] + 5*__str[__size - 1] + __size;
02487   }
02488 };
02489 
02490 } // namespace __gnu_cxx
02491 
02492 # include <ext/ropeimpl.h>
02493 
02494 # endif /* __SGI_STL_INTERNAL_ROPE_H */
02495 
02496 // Local Variables:
02497 // mode:C++
02498 // End:

Generated on Wed May 1 19:19:37 2002 for libstdc++-v3 Source by doxygen1.2.15