
 -1 -Presented at: International Conference on
Dependable Systems & Networks,
Washington, D.C., June 23-26, 2002.

Testability of Complex, Middleware-Based Systems

Douglas M. Wells Robert E. Bernstein Amarendranath Vadlamudi
The Open Group Lockheed Martin System/Technology

Corporation Development Corporation
d.wells@opengroup.org robert.e.bernstein@lmco.com amar.vadlamudi@stdc.com

Abstract

The use of object-oriented middleware technologies in
mission critical systems has enabled the creation of
complex, adaptive distributed applications that
incorporate fault-tolerance strategies. A redesign of the
Aegis Weapon System will operate on hardware
distributed throughout a ship both for scalability and
fault tolerance. Critical applications will need to
maintain backups in separate damage compartments
while communicating over a shared infrastructure.
However, any resulting unpredictability might cause the
system to miss hard real-time deadlines. Certification of
current weapons systems is based on design analysis,
simulation, and extensive testing. Extrapolation of this
method would require testing of huge numbers of
individual configurations, an intractable problem. One
promising alternative involves the use of an intelligent
resource manager that can compare the performance of
an application to a system model, and effect
configuration changes to improve system performance.
This paper discusses the results of that investigation and
explores the use of this capability in the context of
systems, such as the Aegis Weapon System.

1. Introduction

The use of middleware technologies, based on
distributed objects, has enabled the creation of complex,
distributed systems. Multiple component objects,
acquired from many sources, can be combined to form
useful applications. In turn, multiple separate
applications operating on a shared infrastructure can then
be combined to form complex systems. In addition, the
use of object-oriented design techniques provides an
opaqueness over the internal operations of individual
objects such that individual objects can often be replaced
by enhanced object components with additional

properties, such as fault tolerance, without requiring
system redesign. The result is that complex, adaptive,
distributed systems using multiple, independent fault
tolerance strategies are now being developed for mission
critical applications.

The Aegis Open Architecture provides an interesting,
but not unique, example of the issues facing these
systems. The Aegis Weapon System is a shipboard
(cruisers and destroyers) system that both protects the
ship and controls offensive weapons. Lockheed Martin is
reimplementing this system using distributed object
middleware. The goals of this effort parallel those of
analogous commercial projects: reduced software life-
cycle costs, enhanced system extensibility, simplified
design, improved performance, and potential reuse in
other systems. Yet this redesign represents a major
change in development strategy: a switch to the use of an
open architecture, based on COTS (Commercial Off The
Shelf) hardware and software, using commercial best
practice techniques. This conversion is exposing
weaknesses in current system design and development
methodologies that limit the potential payoffs of the
above goals. This paper explores several issues related to
system certification in this context.

2. Existing System

The current Aegis Weapon System is an excellent
example of a purpose-built system. There is a single,
coherent architecture that was created specifically for
Aegis. Operating on computer hardware unique to the
military (the AN-UYK 43), the cyclic executive
scheduling in the operating system, also unique to Aegis,
supports hard real-time applications by providing
deterministic behavior via allocation of specific CPU
scheduling slots to specific element applications. The
system provides fault tolerance via dual processors
operating in a warm backup configuration. Like many
other systems, it has been extended and enhanced over

 -2 -Presented at: International Conference on
Dependable Systems & Networks,
Washington, D.C., June 23-26, 2002.

many years such that the architecture has been stressed in
ways not contemplated by the original designers. Still,
the Aegis system is recognized as a system that
effectively performs its system mission.

By definition, weapons systems are dangerous. There
are numerous ways in which a system failure could result
in loss of life on the Aegis ship. One obvious case is
failure to close the missile control loop, resulting in the
self-destruction of an outgoing missile whose target is
endangering the ship. Thus, these systems must be
certified both for safety and mission effectiveness.
Certification is based largely on design analysis, mission
simulation, and functional testing driven by established
disciplines in the industry, such as reliability modeling,
safety cases, and fault injection testing. Each application
is analyzed to verify that it conforms to the resource
allocation envelope assigned to it within the overall
system architecture. Resource usage patterns of the
applications are subsequently confirmed in simulation
runs. Finally, the complete system undergoes an
extensive testing regime whereby the system performs
numerous mission scenarios while being subjected to
various input loads and simulated faults. One estimate is
that testing currently comprises 40% of overall system
development costs, and each major testing cycle take 6
months to a year.

3. Aegis Open Architecture

The goals for the redesign include aggressive
performance goals, emphasizing significant
improvements in both load scalability and reduced
latency in recovering from component failures. Although
the design process is still underway, the expected
hardware architecture includes multiple processor pools
supporting application use of parallel algorithms. Digital
signal processing (DSP) for the phased radar system will
execute on COTS single board computers. Other
processing will be based on COTS server systems, such
as are sold by Sun Microsystems and SGI. The
communication infrastructure will be based on COTS
routers and switches.

The software architecture is equally aggressive. The
operating systems will be COTS real-time OSs, such as
LynxOS and Solaris. COTS middleware includes
CORBA, publish/subscribe messaging, and database
management systems. Software applications are being
designed using the UML-based Rational Unified Process
(RUP) methodology from Rational Software.

4. The Testing Challenge

Although the use of COTS hardware and software
technologies provides significant improvements in
system performance and maintainability, it also
significantly alters several assumptions underlying the
existing testing philosophy by introducing additional
sources of variability. These changes become more
apparent by considering the ability of the Aegis system to
meet its hard real-time deadlines, such as those in the
weapons launch execution path.

4.1 Variability Due to Shared Infrastructure

One major change and a significant advantage
introduced by distributed object systems is the use of a
shared infrastructure. Various applications use resources
differently at various times during their execution. The
radar tracking system will use more resources when there
are more targets visible in the sky. Weapon launch
systems will use more resources when actually launching
weapons. UAV monitoring applications will use more
resources when a UAV is actually in flight. Other
applications will vary based on time of day or will be
triggered by events initiated by off-ship activities.

These changes in resource usage will inevitably result
in changes in the interaction patterns between
applications. Environmental noise will cause hardware
errors, such as disk read errors, or memory ECC errors,
or communication checksum errors. Generally, these
operations will be automatically retried and will often
succeed on the second or subsequent operation.
Eventually someplace in the system, as a result of the
cumulative effects of such retries, message A will be
presented to an event-driven application after message B,
when it had previously always arrived prior to message
B. This will result in a change in the operation of that
application. If this situation never occurred during
system tests, we can't know if it will impact the
successful achievement of a system deadline.

4.2 Variability Due to COTS components

While the individual components of the legacy Aegis
system have been designed to adhere to the resource
usage envelope provided by the overall Aegis
architecture, COTS components have not. They have
been designed and developed independently, and will not
interact with the Aegis applications until well after the
component design and qualification process is complete.
The use of multiple COTS hardware components will
result in slightly different execution rates on different
processors, or on different networks. Different instances
of operating systems will have slightly different memory
allocations patterns, resulting in slightly different

 -3 -Presented at: International Conference on
Dependable Systems & Networks,
Washington, D.C., June 23-26, 2002.

execution times for system call execution. DSP
algorithms will execute using slightly different times
based on the input date. While purpose-built hardware
and software can be specially designed to use constant
execution time algorithms, COTS components typically
will not be, opting instead for the fastest execution time
in each individual instance.

4.3 Variability Due to Configuration Evolution

Variability can also be introduced due to differences in
system configuration. Although a system might start out
in the same configuration each time, it will eventually
evolve in an unpredictable way in response to the stimuli
it encounters. This results in different resource loading
and different interference patterns between even
unrelated applications. It was earlier noted that many
hardware components automatically retry low-level
operations that encounter errors, such as memory ECC
errors or noise encountered during communication. The
fault tolerance capability of the system significantly
amplifies this effect. If a computer node fails, the
applications executing on that node will automatically
switch to another node, resulting in different loading of
that node. Even if the backup node had been operating in
a "hot" backup mirroring mode, the system operating will
be different because the failed node is no longer
transmitting communication packets over the shared
network. In addition, repair operations can introduce
additional loading. An example would be the initial
loading of a newly repair disk drive.

This variability is increased in the case of the Aegis
Open Architecture due to the particular requirements of
the system. Shipboard weapons systems are expected to
continue operation even in the presence of battle damage.
An incoming missile would be expected to flood at least
one watertight hull compartment, resulting in the failure
of all components in that compartment. To protect
against this situation, the system must be designed to
maintain application fault tolerance configurations with
primaries and backups in separate hull compartments.
Since there is a physical design requirement to limit the
number of physical components that penetrate the
bulkheads between compartments, the communication
between the application primary and backup will occur
via a shared communication link, resulting in increased
interference between unrelated applications.

4.4 Variability Due to Application Evolution

Another major change in the Aegis Open Architecture
is the goal of allowing more dynamic application
evolution. The introduction of a new application or a

major change to an existing application would obviously
alter the resource usage patterns within the system. This
situation is even more complicated, however: while it
might be possible to use constant execution time
algorithms and/or hot backup techniques to reduce the
impact of the changes described above, it will is
impossible to have predicted the resource usage patterns
of a completely new application.

If each application upgrade required a complete
system recertification, the introduction of a new
application would be delayed by at least six months just
due to the time required for executing the test cycle. The
cost of this additional testing would rapidly overcome the
cost benefits anticipated in the switch to the use of an
open architecture.

The switch to COTS hardware and software
components also affects system performance. The
lifetime of a particular computer model produced by a
computer vendor is typically a year or less. Even that
period is deceptively long in that even a particular
computer model will usually ship with different internal
components at the end of its lifetime than at the
beginning. Consider that the lifetime of a particular disk
model is only 3 to 6 months. The result is that the
performance characteristics of a computer that is
deployed in an actual system is likely to be different from
the one that underwent certification testing. (Note that
the life cycle of a system hardware component is
comparable to the length of the system test cycle.)

COTS vendors generally assume that their customers
don't care about the specific performance characteristics
of the components as long as those components are faster
than their predecessors. Unfortunately, this is not always
true for systems operating with specific physical time
constraints. One telling example, which has been
independently rediscovered in numerous environments,
involves an upgrade to network interface cards (NICs).
Consider the situation where one NIC is sending a large
data frame to another system via TCP, resulting in
multiple back-to-back messages addressed to the NIC on
the other system. When the two NICs are identical, as is
likely to be the situation in a newly deployed system,
everything is likely to work as expected. If, however, the
transmitting NIC is replaced by a faster version, it can be
the case that the two packets arrive at the destination
NIC with a lower inter-packet latency, perhaps before the
slower NIC can handle the first arrival. The result is that
the second packet will not be received. Because
communication protocols are fault tolerant, the second
packet will be retransmitted, either by the NIC or by the
TCP protocol software. This transmission will typically
occur automatically, without intervention by or even
notification to the application. Everything works

 -4 -Presented at: International Conference on
Dependable Systems & Networks,
Washington, D.C., June 23-26, 2002.

fine except that the application now encounters an
additional, unexpected delay of one tenth of a second to a
few precious seconds. The cumulative effects of one or
more such delays is likely to result in the eventual failure
of the application to meet its deadline.

5. Testing Methods for Distributed Object
Systems

Even ignoring the complications that derive from the
evolution of the hardware and software components over
time, we encounter difficulties with the sheer magnitude
of the testing task if we simply extrapolate from the
current strategy. A system based on distributed object
technology can be expected to include many more
components than the legacy Aegis system. The inclusion
of these additional components increases the magnitude
of the number of different configuration combinations
that must be separately tested by one to two orders of
magnitude. It is obviously impractical to test that many
distinct configurations.

Consequently, we must alter our approach to system
certification. The primary goal behind the conversion to
an open architecture is to improve system effectiveness,
so we'll ignore any changes that result in a lower level of
certification.

One strategy would be to limit system reconfigurations
to only those particular combinations that had been
evaluated as part of the certification testing. This strategy
is relatively simple to achieve. One way that it could be
implemented would be by abstracting the entire
configuration of a node to be the logical configurable
unit. Each node would then be paired with an equivalent
node in a different hull compartment. Then, if any
hardware component or any application component on a
node failed, the entire node would have to be taken out of
service. This strategy would not allow the dynamic
reestablishment of a fault tolerant capability by selection
of a new backup node at run-time. A system could be
designed for 2 or 3 or even n replicas, but that number
would have to be fixed and would have to have been
qualified as part of system certification testing. The use
of this strategy would rapidly negate the earlier cost
benefit goals and also severely limit the applicability of
parallel execution of applications for scalability. In the
long term, this strategy severely limits the utility of the
open architecture approach, but it appears to be realistic
and readily achievable. So it might be a reasonable and
safe choice for initial deployment of the new system
architecture.

A more capable strategy would to be identify
"equivalent" configurations. The system would then
allow system configurations that could be expected to

perform identically to a configuration that had undergone
testing as part of the certification process. In this strategy
certification would need to be enhanced to also evaluate
the assertion of equivalence. Configurations that one
might expect to be equivalent would be fixed
configurations operating on any of the identical computer
nodes in a processor pool. Queuing theory also indicates
that shared resources operated at low capacities (say less
than 40%) might operate in an equivalent manner. The
applicability of this strategy to an actual system requires
significant testing, involving new testing strategies that
articulate clear measures of equivalence. Thus, this
strategy might be a useful target for a first or second
system release with a plan for falling back to a simpler
strategy if necessary.

A further step in the evolution of this strategy would
utilize application performance modeling data to
dynamically evaluate system execution for proper
operation. In some ways, this strategy mimics the one
used in the original, purpose-built design: the system
architect assigns required performance characteristics to
various components, which then adhere to that envelope.
In the original design, each application would conform
because of the overall determinacy of the system
environment. This open architecture version would
require active resource management that continually
monitors system behavior and dynamically controls
adaptive applications that would alter their operating
modes to conform to the expected profile. This type of
strategy offers the most potential over the expected life-
cycle of the Aegis Open Architecture, but it appears to be
somewhat beyond the current state of the art in resource
management.

5. An Experiment Involving Intelligent
Resource Management

As part of the QUITE[1] integration effort for the
DARPA Quorum[2] program, we performed several
simple experiments to investigate the potential use of an
intelligent resource manager with adaptive applications
in a context similar to that contemplated in this paper.
One experiment scenario included an execution path of
multiple processes that had been crafted to use CPU and
communication resources in a way such that some
configurations would not operate successfully. For
example, in one possible configuration the processes
would overload the system by requiring 125% of the
available CPU cycles. Another configuration would
require 150% of the available communication bandwidth
on some, but not all, nodes. There were only a few
configurations that would satisfy all the requirements,
and only one configuration that was optimal.

 -5 -Presented at: International Conference on
Dependable Systems & Networks,
Washington, D.C., June 23-26, 2002.

We setup a test-bed for the experiment. We used the
Remos[3] system to monitor the network behavior and
then modified the DeSiDeRaTa[4] resource manager to
analyze the CPU and communication performance
metrics and then use that data to reconfigure the system
as appropriate. After initializing the experiment in a
stable configuration, we introduced an "unexpected"
extra communication load, which caused the application
to miss its established time constraints. We then expected
the resource manager to identify a new configuration that
would allow the application to meet its deadlines even in
the presence of the reduced bandwidth availability.

Our results were sporadic. When the resource
manager decided to reconfigure the system, it would
select the "proper" new configuration. Unfortunately, the
resource manager did not always decide to reconfigure
the system even when deadlines were being missed. We
were unable to completely analyze the problem in the
limited time that was available. Our preliminary
determination was that the problem was due to the
limited visibility into interprocess communication
bandwidth that was available via Remos's networking
monitoring and our inability to disable a number of
stabilization strategies built into DeSiDeRaTa. Still, we
were encouraged by the partial results and believe that a
strategy based on intelligent resource management can be
made to work with suitable changes to the resource
management components.

6. Conclusion

This paper has explored the use of resource
management strategies in supporting the testing and
certification of real-time, fault-tolerant, mission critical
systems based on distributed object middleware.
Relatively simple strategies can be used for systems
currently under development. There are also promising
longer-term strategies that should be investigated in both
engineering and research contexts.

7. References

[1] http://quite.teknowledge.com
[2] http://www.darpa.mil/ito/research/quorum/
[3] http://www-2.cs.cmu.edu/afs/cs/project/cmcl/
www/remulac
[4] http://desidrta.uta.edu/~project/

 end 

