
Reprinted from: 1994 IEEE Dual-Use Technologies and Applications Conference Page 1 of 9

A Trusted, Scalable, Real-Time Operating System Environment

Douglas M. Wells
Open Software Foundation Research Institute
1 Cambridge Center, Cambridge, MA 02142

Telephone: +1 617 621 7366
Internet: dmw@osf.org

Abstract1

The Open Software Foundation (OSF)
Research Institute (RI) is developing a
series of operating systems prototypes
with the purpose of extending the
capabilities of commercial operating
systems. The initial goal is to develop a
trusted, scalable, real-time operating
system environment. Some projects are
complete and have been incorporated into
commercial operating systems. Current
projects focus on performance, scalability,
trust, and real-time.

Introduction
The OSF Research Institute (RI) is currently focused

on accelerating open systems by meeting the operating
system needs of High Performance Computing (HPC).
Its overall goal is to develop a new generation of sys-
tems technology that permits the flexible addition of
system level services, thereby producing operating sys-
tems that are far more extensible and customizable than
today’s standard technology. Its immediate goal is to
demonstrate the scalability of OSF’s Mach-based oper-
ating system (OSF/1) to high end machines, thus estab-
lishing the viability of the microkernel approach
towards meeting the requirements for real-time, secu-
rity, extensibility, reliability and distribution in commer-
cial products.

By working in an open fashion with researchers,
industrial, and government partners, the Research Insti-
tute synthesizes the work of others with developments at
OSF into full-function prototypes. These prototypes
provide a technology base for industrial products and a
foundation for further research. The Research Institute
succeeds when the advanced technology developed at
OSF and other sites are collectively brought to bear in

1. This work was supported in part by the Advanced Research
Projects Agency and the Rome Laboratory of the Air Force
Materiel Command.

state of the art commercial products. For several years,
the RI has been focused on the decomposition of OSF/1
into a modular form to realize the benefits noted above.

This paper summarized the history and current status
of our overall operating system program, including brief
descriptions of the major projects currently underway
within the RI. It then describes the real-time program in
more detail, including some of the collaborations under-
way with industrial and government partners.

Operating System Program
The RI methodology emphasizes the development of

full-function prototypes. By synthesizing the ideas and
code contributed by universities and leading edge com-
panies with our own research into complete systems, the
RI is able to reveal the effects of various architectural
changes. Often multiple concurrent development efforts
are underway, each project focusing on one aspect of the
overall system objectives. Once complete, successful
projects are integrated into a common system source
base so that each successive release brings us closer to
the targeted system environment.

Individual development projects may be structured
differently. Some efforts include only microkernel mod-
ifications. A few involve only server enhancements.
Many require coordinated changes to both server and
microkernel components.

Objectives

In addition to general objectives of portability, scal-
ability, and interoperability, the particular objectives of
the current OSF RI Operating System Program are to
develop:

• a more maintainable, more extensible systems
technology foundation that enables rapid innova-
tion

• a high trust configuration that provides much
higher assurance

Reprinted from: 1994 IEEE Dual-Use Technologies and Applications Conference Page 2 of 9

• local and distributed real-time capabilities that
enable both desktop and mission-critical applica-
tions

• a modular framework that enables support for mul-
tiple personalities, such as POSIX, OS/2, and spe-
cialized network servers

• a scalable foundation that provides support for uni-
processors, SMP, MPP, and clusters

Eventually, all of these objectives are to be met in
one comprehensive system. Currently, each of the
projects under way target only a subset of the objectives,
though every objective is targeted by at least one ongo-
ing project.

Evolution of the AD System-
AD is an “Advanced Development” version of OSF/

1 for massively parallel supercomputers. It is the culmi-
nation of a series of developments that result in a bal-
anced approach to enhancing high-end and distributed
systems. Maintaining full compatibility with OSF/1 to
preserve portability and interoperability, the system
brings to bear innovative developments in OSF Mach
and OSF/1 services to meet the need for a scalable, sin-
gle system image operating system spanning thousands
of nodes.

Advances in system capabilities have occurred by
one project building on the successful results of another.
The MK system grew out of the standard OSF/1; AD
evolved from an earlier version of MK. Figure 1 shows
a simplified version of the past and near term releases of
RI operating system components.

RT 3/MK 7
4Q94

FIGURE 1. Evolution of RI OS Releases.

MK 6
2Q94

MK 5

OSF/1 1.3
2Q94

OSF/1 1.2

AD 2
4Q94

AD 1

RT 2
3Q94

OSF/1

OSF/1 is a commercial-quality, Mach-based version
of UNIX providing compliance with SVID, POSIX,
XPG3, and numerous other standards. Release 1.0 of
OSF/1 forms the basis of operating system offerings
from several large computer vendors. In addition, OSF/1
provides a base system upon which other OSF technolo-
gies, such as the Distributed Computing Environment
(DCE) and the Distributed Management Environment
(DME) are being integrated. Thus, OSF/1 provides a
fertile environment in which to explore microkernel-
based systems.

MK

MK[2] is a rearchitected version of OSF/1 in which
the internal implementation has been decomposed into a
user space server and an OSF Mach kernel[11]. This
decomposition is based on the Mach 3.0 architecture, as
developed at Carnegie Mellon University[1]. MK has
shown that it is possible to provide a separate server that
is 100% binary compatible with the standard OSF/1
integrated kernel, with only a small performance pen-
alty.

MK inherits the virtues of compatibility and porta-
bility from OSF/1. The server code is taken directly
from the integrated kernel code base with over 95%
code reuse. This result is critical to retaining the compli-
ance and quality of the OSF/1 operating system in the
server-based version.

In addition, MK provides full source and binary
compatibility for OSF/1 programs. UNIX system calls
are typically implemented using a machine-specific trap
instruction. (See Figure 2.) The microkernel considers

Application OSF/1 Single Server

OSF Mach Microkernel

Unmodified
Binary

Unchanged
OSF/1 Code

Glue Code

memory map +
copyin/copyout

trap

exception Microkernel
Services

FIGURE 2. MK Single Server Architecture.

Reprinted from: 1994 IEEE Dual-Use Technologies and Applications Conference Page 3 of 9

execution of these trap instructions to be exception con-
ditions, in the same manner as a page fault, or an float-
ing point overflow would cause an exception. The
microkernel packages the machine state, including the
processor registers, and sends the package as an excep-
tion message to the appropriate fault handler. The OSF/1
server, which previously established itself as the excep-
tion handler for the task, receives the message. The
“Microkernel Glue Code” massages the data to look like
a normal hardware trap frame and then calls the stan-
dard trap handler in the unchanged portion of the OSF/1
server. Implementation of the standard UNIX functions
copyin andcopyoutis also performed by the glue code,
which uses either memory mapping techniques or Mach
VM read/write functions to access the data in the user
process. When the system call function completes and
the system call returns, the glue code regains control,
packages up the result registers to return to the Mach
microkernel, which then returns control to the UNIX
user process after updating the processor register set.

MK 5.0 was released in April, 1993, and is available
to OSF/1 licensees.

AD 1

OSF/1 employs UNIX technology, which was origi-
nally designed to operate on uniprocessor minicomput-
ers. Although extended to include multiprocessing
capabilities, the structures and algorithms have been
selected to be efficient on system architectures with
small numbers of processors sharing a common physical
memory with coherency supplied by hardware.

Tomorrow’s (and a growing number of today’s)
supercomputers, however, will be massively parallel,
consisting of hundreds of thousands of independent
nodes, interconnected via high-speed, sparsely-con-
nected message passing networks. The allocation and
management of resources will be a much bigger task for
tomorrow’s operating systems. They will be responsible
for efficiently controlling the entire system, providing
the illusion of one single, cohesive resource set. Mem-
ory coherency will also be the responsibility of the oper-
ating system. To achieve the desired performance, the
operating system services themselves must scale as the
resource set grows.

AD, which incorporates the complete OSF/1 API
into a single system image over a loosely coupled multi-
computer, is the latest advance towards providing that
ideal system. Users, programmers, and system adminis-
trators all share a single, coherent view of the use and
control of all resources throughout the system.

Running atop an extended Mach kernel[3], which
provides a base level of inter-node message delivery, the
MK server has been decomposed into multiple services,
each of which can run on separate nodes. Use of multi-
ple I/O servers, each running simultaneously on separate
nodes is necessary to provide the scalability required to
satisfy the I/O throughput needs of hundreds or thou-
sands of application nodes.

In AD the nodes of the multicomputer are divided
into two classes: compute nodes on which applications
are executed, and service nodes. (Note that some nodes
can serve both functions.) Each server provides operat-
ing system services to all other nodes in a coordinated
fashion in order to supported the single system image
model. (See Figure 3.)

Process Management provides the most serious tech-
nical challenge to providing a distributed operating sys-
tem free of bottlenecks as the size of the system
increases. UNIX semantics require coordinated manipu-
lation of control based on a process hierarchy that is
continually changing: process identifiers much be
unique throughout the entire system; process termina-
tions and reliable signal delivery depend on subtleties of
parent-child interactions. In addition, process migration
and dynamic load levelling are useful to avoid “hot-
spots” within the system.

AD currently takes a practical but limited approach
to the problem. One node is designated as the process
manager server. This server maintains the global process
ID space and carries out the process management func-
tions, such asfork, exec, andsignal delivery. The most
compute intensive requests,fork andexec, have been
optimized in the following way: the process database
entries are updated on the process manager server, but

Compute
Node

Compute
Node

Network
Server

File
Server

FIGURE 3. AD: Multinode Architecture.

Reprinted from: 1994 IEEE Dual-Use Technologies and Applications Conference Page 4 of 9

the actual manipulation of the target node’s address
space, the loading of a new image, etc., are delegated to
a processor manager assistant running on each node.

A parallel application starts byfork-ing andexec-ing
many instances of itself on a partition of nodes. The pro-
cess manager assistant on each node allows the loading
of the image and address manipulation to occur in paral-
lel. As the utilization of the process manager server
increases, the process manager becomes a bottleneck. If
the supercomputer application consists of a few long
running applications (as is typical today), the current
implementation should scale to a large number of pro-
cessors. If the workload consists of many short applica-
tions, as is typical during program development, the
bottleneck will be reached sooner.2

AD 1.0 was released in September, 1992, and is
available to OSF/1 licensees. Recent enhancements
have focused on performance and robustness.

Commercial Development

OSF Engineering has adopted MK as the basis for its
next major release of OSF/1. OSF/1 1.3, which will be
available in summer 1994, incorporates the microker-
nel-based architecture of MK into the standard OSF
operating system technology offering. MK is also the
basis of the POSIX component of IBM’s recently
announced Workplace OS.

Intel Supercomputer Systems Division (SSD) has
selected AD as the basis for the operating system for its
new Paragon supercomputer. This innovative multicom-
puter can contain up to a few thousands of i860-based
nodes interconnected via a high speed message routing
network. Paragon OSF/1, the commercial operating sys-
tem offered by Intel, includes added value in the form of
scalable process management, process migration, and
dynamic run-time load leveling.

Convex has selected AD for its Exemplar series of
supercomputers. Other supercomputer vendors have
also selected AD for as yet unannounced products. In
addition, a number of other selection evaluations are on-
going.

2. Transparent Network Computing (TNC) is an alternate
approach that distributes all the process management func-
tions. TNC is a product of Locus Computing and replaces the
AD process management facility in Intel’s Paragon OSF/1 ver-
sion of the system[15].

Current Activities
Current operating system projects at the RI target

enhancement of the current microkernel and server base,
both for function and applicability to commercial use.

Performance

Successive versions of MK provided increasing
degrees of compatibility and compliance with standards,
culminating in MK 5, the most recent release, which
provides 100% binary compatibility with the OSF/1
integrated kernel at the API. Compatibility requires
compliance with SVID, POSIX, and XPG4 standards,
however, and providing this correctness exacted a toll
on performance. Although some benchmarks actually
executed faster on the microkernel-based version, AIM
III, a commonly used benchmark to measure throughput
on UNIX systems, identified a significant performance
degradation from the OSF/1 integrated kernel.

Although there are myriad reasons why a microker-
nel-based system offers benefits in the areas of mainte-
nance and innovation, this level of performance
degradation would not be acceptable to commercial
vendors of UNIX-based desktop workstations and serv-
ers. A special project was formed to address the issue of
performance. Performance tuning work resulting from
this project has reduced the performance gap between
MK and the integrated kernel from approximately 30%
loss[12] to less than 5%3

The major effort in this area has been the develop-
ment of server collocation[4]. (See Figure 4.) Investiga-
tions into the sources of performance loss have shown
that the primary cause is associated with the context
switch from one task to another one. Fabrication of mes-
sages, the invalidation of protection caches, and the
establishment of an execution environment in the oper-
ating system server all add overhead that is not present
in traditional kernel architectures. In addition, many
processor architectures include special privileged
instructions for accessing data in user space, as in
required by the UNIX system function copyin, which is
used to implement the system callsread andwrite, for
instance. These instructions are unusable by the server
component of a microkernel-based operating system
when executing in a separate task.

3. These performance measurements have been taken using
the AIMIII benchmark with 8 users. AIMIII is widely used as
a benchmark for UNIX systems. In addition, of all of the com-
monly used benchmarks, AIMIII indicated the largest perfor-
mance loss between the OSF/1 integrated kernel and the MK
microkernel-based system.

Reprinted from: 1994 IEEE Dual-Use Technologies and Applications Conference Page 5 of 9

The collocation mechanism allows one server to be
dynamically loaded into, or collocated with, another
server or the OSF Mach microkernel. Ancillary tools
allow use of (machine-dependent) hardware optimiza-
tion operations and the reduction of much of the cross-
domain overhead function. Concurrent enhancements to
the server support tools, such as the Mach cthreads mul-
titasking package, allow the identical server image to
execute either collocated or as a traditional separate
server task.

Using server collocation, optimization of common
paths, and other of various techniques, the performance
group has reduced the performance difference to less
than 4%. MK 6 will include the performance enhance-
ments developed by this project. It is scheduled to be
released in early summer, 1994.

AD 2

The initial release of AD has been highly successful.
Several companies have adopted it as the basis of the
operating system for their supercomputer offerings.
Originally developed on a test-bed with 16 nodes,
interim development efforts allow scalability to a few
thousands of nodes. Lessons learned from this effort
have identified significant bottlenecks that appear with
larger systems. In addition, AD 1 was adapted from an
earlier version of MK, one that was not totally compli-
ant with all of the UNIX standards4.

Collocated
 Server

OSF/1
user process

OSF Mach Microkernel

exception

system trap

Microkernel
Services

Original
Server

FIGURE 4. Server Collocation into Mach Kernel.

The goal of AD 2 is to advance operating system
technology to a new plateau for a wider range of archi-
tectures and computational models. It will address a
more ambition vision of scalability, for both numbers of
nodes and numbers of processors per node. It will be
extensible, allowing a better distribution of services and
an expanded set of attributes. It will be more config-
urable, allowing replacement of various components,
such as the coherency model for distributed shared
memory, in order to better adapt to a wider variety of
architectures. Finally, it will incorporate the results of
other concurrent activities at the RI, such as the MK 5
server, the performance project, and the real-time
project.

AD 2 includes a new distributed file system and
framework, distributed process management, and scal-
able networking services. In addition, the Mach Distrib-
uted IPC mechanism is being rewritten. AD 2 is
scheduled to be available at the end of calendar year
1994.5

Trust

The RI is developing a high assurance configuration
of OSF Mach. This microkernel, which is targeted at the
B3 and F5/E5 levels of trust, is being redesigned as a
strictly layered system. Retaining compatibility at both
the source and binary levels with MK 5, this new imple-
mentation takes advantage of object-oriented develop-
ment techniques in order to create a highly modular,
easily understandable release of OSF Mach.

This version of the OSF Mach microkernel is being
developed in cooperation with Trusted Information Sys-
tems (TIS), which is developing TMach. TMach is a
highly secure and trusted version of the Mach operating
system. In addition to using the high assurance OSF
Mach microkernel as the security kernel, TMach
includes a number of other servers within the Trusted
Computing Base (TCB), including simple file system,
device, authentication, and administration services. The
MK server is included to provide binary compatibility
with other OSF/1 systems, but executes outside the TCB
as untrusted code in order to reduce the size of the TCB.

4. Most of the compliance anomalies are exposed only in the
presence of application errors, such as passing inaccessible
system call parameters, and in the area of UNIX signal pro-
cessing.

5. Several technical papers on AD 2 are available from the
OSF Research Institute. These papers cover the file system
architecture, process management architecture, Distributed
IPC, and Scalable Networking. Contact OSF RI Publications
for details.

Reprinted from: 1994 IEEE Dual-Use Technologies and Applications Conference Page 6 of 9

TMach is in evaluation by both U.S. and European
agencies. Both TMach and the RI high assurance ver-
sion of OSF Mach are expected to be available in mid-
1995.

Real-Time Project
The goal of the real-time project at the RI is to

advance system technology by incorporating advanced
real-time capabilities into the standards-compliant oper-
ating system components being developed at the RI.
Some of these system technologies are derived from the
research results of collaborators. Some are developed
within the RI. All of the development includes the syn-
thesis and enhancements into a coherent system consis-
tent with the overall RI philosophy.

The current development projects are targeted
toward microkernel mechanisms. There are several rea-
sons for this orientation. First, a real-time server is use-
less when used with a non-real-time microkernel.
Second, the Mach microkernel is significantly smaller
and less complex than the OSF/1 server, allowing us to
develop a complete, full-function real-time microkernel
utilizing only our limited resources. Also, many real-
time applications are already designed to operate using a
very limited set of system primitives, such as the System
Programming Interface (SPI) provided by the OSF
Mach microkernel.

RT 1

The results of the real-time project are being
released in a set of releases with ever increasing real-
time capabilities. The first real-time release was targeted
at desktop multimedia systems, which are characteristi-
cally soft-deadline system with moderate latency
requirements (e.g., unbounded and less than 5 msec. on
an i486 system). This set of changes consisted of
enhancements to the Mach clocks and timers facility,
and improvements to the existing scheduling mecha-
nism. Each modification was designed to be compatible
with the POSIX real-time standard (1003.4), which was
under development at that time. These changes were
originally released as RT 1 in November, 1992. Subse-
quently, these enhancements were incorporated into the
standard release of MK 5 in April, 1993.

RT 2

The set of enhancements currently under develop-
ment are designed to enhance real-time capabilities
within a single node by addressing low latency applica-
tions as might be found in simulation and factory auto-
mation environments. Utilizing a fully-preemptible OSF

Mach microkernel[14], interrupt latencies will be
bounded and typically less than 1 msec. In addition, a
set of inter-task synchronizers will be included.

The Mach Remote Procedure Call (RPC) mecha-
nism is also being improved. The original Mach IPC
facility implemented RPC in the traditional manner: two
separate messages were used, one from the caller to the
callee with the input parameters, the other from the
caller back to the caller with the result values. The IPC
redesign included in Mach 3.0 incorporated several opti-
mizations, including a special system call that sends the
original message and waits for the reply, and a special
“hot path,” which causes the processor to be directly
passed from the caller to the callee in certain common
paths.

By adopting and enhancing a mechanism developed
earlier by the University of Utah[5], we are promoting
the RPC concept to first-class status and completely
redesigning the RPC facility. Using a technique origi-
nally pioneered in the distributed threads of the Alpha
Operating System[8], a single computation can encom-
pass concurrent invocations in each of several Mach
tasks. Originating in a root thread, a computation can
invoke a client server task via an RPC. (See Figure 5.)

That client server can then invoke yet another client
server via another RPC. When a thread in one task
invokes a server, the original thread is suspended until
the RPC returns. In this manner, a chain of RPCs in
Mach becomes analogous to a chain of ordinary proce-
dure calls in UNIX or other standard operating systems.

The new RPC concept is implemented using a thread
shuttle within the OSF Mach kernel, and thread activa-

Thread Shuttle

Invoking
Task/Thread

Invoked
Task/Thread

Empty
Thread

Upcall

Active
Thread

System Call

FIGURE 5. Inter-task RPC Invocation.

OSF Mach Microkernel

Reprinted from: 1994 IEEE Dual-Use Technologies and Applications Conference Page 7 of 9

tions in each task. Beginning in an active thread, a com-
putation executing an RPC traps into the kernel, where
the associated thread shuttle gains control. The thread
shuttle includes all scheduling information, such as pri-
ority, for the computation. In addition, there is a kernel
stack associated with the thread shuttle. Executing on
this kernel stack, the system copies parameters from the
invoking task into the kernel. The kernel locates the tar-
get thread using the RPC port send right input parame-
ter. The thread shuttle is then detached from the
invoking task/thread (leaving it in a suspended condi-
tion) and attached to the target thread/task. The kernel
then copies the input parameters into the invoked task
and performs an upcall into the target thread. The target
thread must be an “empty” thread, which is essentially
an unused stack and a potential for executing. Upon
returning from the RPC, the scenario is reversed: results
are copied from the callee into the kernel, the thread
shuttle is released from the thread (leaving it in the
“empty” state, however) and reattached to the invoking
thread, into which the results are copied.

There are several benefits to this design. Perhaps the
most important is the elimination of queuing delays for
real-time computations. Because an empty thread uses
so few resources (essentially just stack space), a real-
time computation can create as many empty threads as
might be needed. In this case, the RPC never needs to
enqueue messages and no scheduling events are encoun-
tered during a normal RPC. In addition, the new RPC
should be 4 to 5 times faster than the standard Mach 3.0
version. This performance improvement is due prima-
rily to the elimination of the need to create (and destroy)
the send-once right that used to be needed in order to
effect the return from the RPC.

RT 2 is currently under development and is sched-
uled to be available in summer, 1994.

RT 3

The next release following RT 2 will support real-
time applications in a distributed, multi-node environ-
ment. Building on the base of RT 2, the new RPC mech-
anism will be extended to operate across nodes.
Frameworks for networking and scheduling will be
incorporated. In addition, the normal execution paths for
IPC and RPC will be reworked to provide fast, predict-
able execution paths.

The OSF Mach Scheduling Framework is derived
from one originally developed by the Center for High
Performance Computing (CHPC) at Worcester Poly-
technic Institute[13]. This framework allows two or
more scheduling policies to coexist on the same node.

Typically, one scheduling policy might be an advanced
real-time scheduler, such as rate-monotonic[9] or best-
effort[10], and the other would be the standard Mach
time-sharing scheduler.

The xKernel[7], developed at the University of Ari-
zona, is an object-oriented framework for the implemen-
tation of communication protocols. Primitive building
blocks known asmicro-protocols andvirtual protocols
are configured into structures referred to asprotocol
graphs. (See Figure 6).

 The RI has adopted the xKernel as the core architec-
ture for our Distributed IPC, distributed real-time, and
high availability protocols. There are a few major weak-
nesses in the current version of the xKernel, however,
First, the xKernel does not attempt to control resource
allocation. Second, the xKernel does not support con-
current execution; only one thread at a time is allowed
to shepard a message through the protocol graph. These
deficiencies are being addressed by the University of
Arizona and OSF RI in a joint development project.

RT 3 is scheduled to be available at the end of calen-
dar year 1994. In addition, this system will form the
basis for the subsequent major single-server release of
OSF/1, MK 7, which is scheduled for the same time
period6.

SELECT

CHANNEL

BLAST

ETHERNET

IP

VADDR

VSIZE

FIGURE 6. An xKernel protocol graph. The rectangles
represent micro-protocols, the diamonds
represent virtual protocols.

Reprinted from: 1994 IEEE Dual-Use Technologies and Applications Conference Page 8 of 9

Users of the RI Real-Time Technology
Although the RI real-time technology is still under-

going development, several groups are using or intend
to use these capabilities in interesting, multicomputer
and/or distributed system experiments.

HiPer-D

The real-time enhancements included in RT 1 have
been retrofitted into a special version of Paragon OSF/1,
which is being used by the Navy’s HiPer-D project to
investigate use of new computer architectures, such as
massively parallel computers, for the next generation
Aegis combat system. The three participants, Naval Sur-
face Warfare Center (NSWC), Johns Hopkins Univer-
sity Applied Physics Laboratory (JHU/APL), and
Martin Marietta Advanced Technology Laboratory
(MM/ATL), are using 20 node Paragon OSF/1 systems
to demonstrate use of selected functions within the stan-
dard Aegis system. This investigation is expected to
continue over the next few years.

Honeywell

Honeywell Space and Strategic Systems is currently
developing a ruggedized version of the Intel Paragon
system. In this project, known as Embedded Touch-
stone, Honeywell is creating a high-density, air-cooled
system that includes up to 16 nodes in a one-half cubic
foot package. This hardware will be matched with a
real-time version of Intel’s Paragon OSF/1 system and
offered for use in military applications.

In one prototypical application, the multicomputer
would be configured for sensor processing. (See
Figure 7.) Several nodes would be reserved7 for each
system function, such as fusion, clustering, tracking,
and decision processing. Additionally, several nodes
would be reserved to hold the distributed track file. As
sensor data arrived, they would be fed to the fusion
nodes, which would process the data (in parallel). Once
fusion was complete, the fused data would be passed on
to the cluster detectors, which would process the data (in

6. Several technical papers on RT2 and RT3 are available
from the OSF Research Institute. These papers cover the pre-
emption mechanism, the RPC facility, the Scheduling and Net-
work Frameworks, and the new Synchronizers. Contact OSF
RI Publications for details.

7. The concept of reservation actually includes both space and
time, although this concept is ignored in the main text in order
to simplify the explanation. For example, a node might be
reserved for fusion during the first 20% of each processing
cycle. The same node might also be reserved for decision pro-
cessing during the last 25% of each cycle.

parallel). The results of that phase would be passed onto
the tracker, which would in turn pass its results on to the
decision processing nodes. Both partially processed data
and final results would be stored in the track file and
report file nodes. The OSF Mach scheduling framework
would be used to provide a system-wide gang scheduler,
which would coordinate the scheduling of each individ-
ual node in order to effect efficient processing of data
through the overall system.

Alpha/Mach Integration

The Alpha/Mach Integration project[6] will build on
the basic real-time project to incorporate the capabilities
of the Alpha[8] operating system into Mach, resulting in
a significantly enhanced system that encompasses real-
time, mission-critical, distributed applications as are
found in military command and control, and battle man-
agement systems, and in industrial factory-automation
systems.

Future Development
Although not currently scheduled, it is expected that

the capabilities of AD 2 and MK 7 will be merged in the
first half of 1995. Later, after the high assurance version
of the OSF Mach microkernel is complete, an effort will
begin to incorporate the real-time and scalability charac-
teristics of that system into the high assurance version.
This integration will require a significant amount of

Fusion
Nodes

Cluster
Nodes

Tracker
Nodes

Decision
Processor

Track File
Nodes

Sensor
Data

FIGURE 7. Embedded Touchstone Sensor Application

Reprinted from: 1994 IEEE Dual-Use Technologies and Applications Conference Page 9 of 9

redesign and reimplementation in order not to compro-
mise the high-assurance goals of the trusted kernel.

References
[1] M. Acceta, R. Baron, W. Bolosky, D. Golub, R. Rashid,

A. Tevanian, and M. Young, “Mach: A New Foundation
for UNIX Development,”Proceedings of the 1986 Sum-
mer USENIX Conference, Atlanta, GA, 1986.

[2] F. Barbou des Places, P. Bernadat, M. Condict, S. Em-
pereur, J. Febvre, D. George, J. Loveluck, E. McManus,
S. Patience, J. Rogado, and P. Roudaud, “Architecture
and Benefits of a Multithreaded OSF/1 Server,”OSF Re-
search Institute Symposium, OSF, Cambridge, MA, Feb-
ruary, 1992.

[3] J.S. Barrera III, “A Fast Mach Network IPC Implementa-
tion,” Proceedings of the Second USENIX Mach Work-
shop,Monterey, CA, November, 1991.

[4] M. Condict, “The Server Co-Location Project,” OSF Re-
search Institute Symposium, OSF, Cambridge, MA, Oc-
tober, 1993.

[5] B. Ford, and J. Lepreau, “Evolving Mach 3.0 to a Mi-
grating Thread Model,”Proceedings of the 1994 Winter
USENIX Conference, San Francisco, CA, January, 1994.

[6] I. Goldstein, and D. Wells, “Alpha/Mach Integration
Study,” OSF Research Institute Operating Systems Col-
lected Papers, Vol. 2, OSF, Cambridge, MA, October,
1993.

[7] N.C. Hutchinson, and L.L. Peterson, “The x-kernel: an
Architecture for Implementing Network Protocols”,
IEEE Trans on Software Eng., vol 17, no. 1, January,
1991.

[8] E.D. Jensen, and J.D. Northcutt, “Alpha: An Open Oper-
ating System for Mission-Critical Real-Time Distributed
Systems—An Overview”, Proceedings of the 1989
Workshop on Operating Systems for Mission-Critical
Computing,ACM Press, 1990.

[9] J.P. Lehoczky, L. Sha, and Y. Ding, “The rate-monotonic
scheduling algorithm: Exact characterization and aver-
age case behavior,” Carnegie Mellon University, Pitts-
burgh, PA, 1987.

[10] C.D. Locke, Best-Effort Decision Making for Real-Time
Scheduling, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA, Ph.D. dissertation,
May 1986.

[11] K. Loepere,OSF Mach Final Draft Kernel Interfaces,
Open Software Foundation and Carnegie-Mellon Univer-
sity, Cambridge, MA, 1993.

[12] S. Patience, “Redirecting System Calls in Mach 3.0: An
alternative to the emulator,” Proceedings of the USENIX
Mach III Symposium, Santa Fe, NM, April, 1993.

[13] S. Shipman, M.J. Teller, and N. Paciorek,Mach/RT Ker-
nel Interfaces (Draft), TR92-011, Center for High-Per-
formance Computing, Worcester Polytechnic Institute,
Marlboro, MA, 1992.

[14] D. Swartzendruber, “OSF Real-Time Mach: Making the
Mach Kernel Preemptible,”OSF Research Institute Op-
erating Systems Collected Papers, Vol. 2, OSF, Cam-
bridge, MA, October, 1993.

[15] R. Zajclew, P. Roy, D. Black, C. Peak, P. Guedes, B.
Kemp, J. LoVerso, M. Leibensperger, M. Barnett, F.
Rabii, D. Netterwala, “An OSF/1 UNIX for Massively
Parallel Multicomputers,”Proceedings of the 1993 Win-
ter USENIX Conference, San Diego, CA, January, 1993.

Trademarks
OSF, OSF/1, and Open Software Foundation are

trademarks of Open Software Foundation, Inc.

i486, i860, Paragon, and Paragon OSF/1 are trade-
marks of Intel Corporation.

TMach is a trademark of Trusted Information Sys-
tems, Inc.

UNIX is a registered trademark licensed exclusively
to X/Open.

Workplace, and Workplace OS are trademarks of
International Business Machines, Inc.

