
Proposal Page 3 SBIR N01-079

Open Tool Kit for Mission-Critical Systems
A Phase II Submission to Navy SBIR N01-791

by The Open Group

A. Abstract
This project will define, prototype and evaluate a framework and tool kit for building
distributed real-time, fault-tolerant, mission-critical systems in heterogeneous
environments. The primary elements are: CORDS/GIPC, a group communications
system that provides fault tolerance in scalable, distributed real-time system; and a Real-
Time Java environment for hard real-time applications. Other elements of the tool kit
include: benchmarking and test control. The targeted commercial product would address
both the initial development and the continuing development and life-cycle maintenance
of evolving mission-critical applications, which would be written primarily, but not
exclusively, in Java. This project will also initiate a standardization effort based upon the
interfaces defined for the framework.

B. Summary of Phase I Results
As part of the Phase I work, we explored the development of a product to enable fault-
tolerance within distributed, real-time systems using the Java language. This effort
investigated the use of recent technology to address the needs of distributed real-time,
fault-tolerant, mission-critical systems in heterogeneous environments (referred to as
mission-critical systems herein). Our emphasis was oriented towards the interaction of
two particular components: The Open Group's CORDS/GIPC2 group communication
protocol framework and tool kit; and Real-Time Java Virtual Machines (JVMs) based on
the recently developed Real-Time Specification for Java (RTSJ)3.

Our analysis and some demonstration experiments indicate that CORDS/GIPC and Real-
Time Java JVMs together can effectively address the three problem areas that were
emphasized in the original SBIR solicitation (N01-079) and subsequent discussions:
operation in heterogeneous environments, meeting hard real-time deadlines, and
supporting fault-tolerant operation. Both components are portable and real-time-capable.
The real-time JVMs support the "write-once, run anywhere  carefully" motto espoused
by the RTSJ expert group. CORDS/GIPC provides an easily understood model for
implementation of fault tolerant, real-time applications. Furthermore, each component is
at an early stage in its development cycle and can be expected to improve significantly as
the technology matures.

1 The original document was submitted in February, 2002. This version has been minimally updated to
eliminate proposed tasks that were not accepted and to eliminate boilerplate.
2 http://www.opengroup.org/RI/technologies/gipc/
3 http://www.rtj.org/

Proposal Page 4 SBIR N01-079

Concurrently, we discussed the use of such technology with a number of defense
contractors and found a common theme: They have an interest in the Java and group
communication capabilities  and in other evolving technologies  and are aware of the
benefits that they would provide. But, these new technologies are unfamiliar and have not
been proven by extensive use in real-time, fault-tolerant, mission-critical systems. One
recent surprise was that the estimated cost for the initial “COTS refresh cycle” for the
Aegis Weapons System turned out to approach the original deployment cost of the
system. Thus, they approach these new technologies warily and are very desirous of tools
to assist them in understanding the use of such new technologies in their mission-critical
systems.

We determined that there was a larger issue, which we also discussed with these users.
Their interest in these products, and other commercial products, derives from a goal to
develop more comprehensive, network-centric weapons systems. They want to build
systems that are more flexible, more adaptable, and more maintainable. They are being
encouraged to build components that can be reused in other systems, which would then
support other, diverse missions. In short, they want to abandon stove-piped systems.

There is no corresponding reduction in system requirements, however. The systems must
still satisfy stringent performance goals, including handling increased numbers of targets
with higher availability in hard real-time environments. In addition, these flexible,
adaptable, highly configurable systems must continue to be certified to perform properly
in field conditions.

We believe, and have confirmed with potential users, that this larger need can best be met
by extending the goals of the project to provide a common development environment
based on a flexible framework. This framework would be populated with a tool kit that
includes the Real-Time Java and CORDS/GIPC components from Phase I, as well as
other, commercially available or privately developed tools that aided development of
these mission-critical systems.

We also determined that there is a similar need in the commercial world. Although
businesses do not normally encounter the same certification requirements, the difference
is one of formality rather than necessity. Failure of mission-critical systems in the
business world can cause huge monetary losses, so the commercial world shares an
interest in ensuring that its systems will behave properly, maintaining stable, predictable
services even in previously untested configurations. Potential customers include
telecommunications, factory automation, refinery operations, etc.

C. Phase II Technical Objective
The overall goal of the Phase II effort is to define, prototype and evaluate a framework
and tool kit for building distributed real-time, fault-tolerant, mission-critical systems in
heterogeneous environments. This tool kit will provide commercially available
alternatives for many functions that are often purpose-built for each systems, including a
real-time group communication protocol to support distributed fault tolerance, a Real-

Proposal Page 5 SBIR N01-079

Time Java environment, synchronized clocks, and a coherent interface for system control
and instrumentation.

This effort will produce prototypes of several related products:

• A specification of the extensible open tool kit framework

• A framework implementation to support tool kit components

• GIPC, a real-time group communication protocol implementation

• CORDS, a real-time-capable communication framework and protocol tool kit

• A Real-Time Java JVM adapted for use in the framework

• A set of Java objects for supporting real-time applications within the framework
environment

• A test controller and harness for managing system tests and benchmarks

• “Wrappers" for several COTS and/or open source components so that those
components operate as tool kit components

• A set of template "wrapper" functions to assist application developers in adding
additional COTS and/or reusable components into the tool kit environment.

In addition to the overall goal of creating prototypes of an eventual commercial product,
the Phase II effort will produce a functional tool kit that is suitable for use during
development of prototypes of mission critical systems. This capability will be
demonstrated via ongoing collaboration with developers of such system.

C.1. Frameworks and Tool Kits
Given the turmoil in word usage within the computer industry, it is useful for us to define
our usage of these terms. For the purposes of this proposal, a framework is "a skeletal or
structural frame," and a frame is "the constructional system that gives shape or strength"
and "such a skeleton not filled in." Thus, we view a framework as a set of common
interfaces and the structure for connecting components using those interfaces. Then a tool
kit comprises that framework, a set of components that adhere to those interfaces and can
populate the framework, and a set of auxiliary components that support the development
and use of the framework.

The framework proposed here provides common interfaces for functions commonly used
in the targeted systems. This simplifies the task of developing applications for the system,
resulting in a lower need for continually retraining of developers and a subsequent
reduction in development errors. Many suppliers of highly portable commercial software

Proposal Page 6 SBIR N01-079

incorporate so-called "glue" layers to create a virtual operating environment for their
software. For example, Oracle has a special environment. Many vendors utilize POSIX or
UNIX standards for this purpose. The ACE and TAO environments4 are well known in
the open source community.

As a specific example, consider the device driver framework in UNIX operating systems.
At the most fundamental level, the interface to device drivers consists of only a few basic
interfaces: open, close, read, write. Many, many utility programs operate using only
those interfaces. Examples include, sorting programs, printer drivers, archival formatters.
At a higher level of complexity, programs require specialization. Most applications
require that certain devices provide a storage capability, that is, they require the lseek
function and expect that a byte that is written at a particular offset can later be retrieved
by reading from that same location. On the other hand, many of those same applications
also require that certain devices behave as TTYs, i.e. that there is a visual relationship
between successive bytes. (Consider displaying an "ASCII" document, whereby it is
assumed that successively written bytes are displayed in rightward succession across a
page−  as modified by formatting characters, such as BS and NL, of course.)

The power of frameworks, in general, and the device driver framework, as a particular
instance, comes from the conformity of the constituent components. Many application
developers write large, complex applications without having to worry about what kind of
disks are operating behind the standardized system interface. Whether the disk is SCSI-I,
SCSI-II, or even ATA doesn't matter. In fact, these lower level standards allow even
operating systems to function without having to know whether their disks were
manufactured by Maxtor or Western Digital. Conversely, an embedded system in a harsh
environment might employ a "solid-state disk," which isn't a disk at all, but rather a
RAM-based device that adheres to the interface standards defined for disks. Because this
device appears to be a disk, it will function properly with all of those thousands of
programs whose function complies with the disk interface standards.

It is this power that we intend to bring to real-time, fault-tolerant, mission-critical
systems. Consider the instrumentation aspect of these systems. Most real-time systems
interact at some point with real-world, physical elements and must meet the time
constraints imposed by the laws of physics. Use of "breakpoints" from interactive
debuggers generally is not practical because it interferes with meeting those time
constraints. As a result, debugging in many real-time systems is performed using event
tracing. In this approach, software probes log event information into a common log. The
developer can perform a post mortem analysis of this log to determine the order in which
events occurred. By utilizing information included in the event log entries, the developer
can isolate a problem. Note that it is often the ability to determine that event A occurred
before event B that is important to determining the root cause. Thus, the use of a common
log is crucial because entry of information into this shared resource enforces a total
ordering of events. Use of a common log requires that all participating components

4 http://ace.cs.wustl.edu

Proposal Page 7 SBIR N01-079

adhere to a common interface for logging. The power of a common framework is that if a
newly installed application uses that common logging interface, its interactions with
existing applications can be more easily debugged.

Consider the extension of this tracing mechanism to distributed systems, where it is not
possible to introduce a common log without interfering with system time constraints. One
viable solution here is to introduce the notion of synchronized clocks internal to the
logging facility. This allows events to be accumulated on each computer node
independently. These separate logs can then be merged post mortem based on time
stamps that are generated for each entry. The verity of ordering within the merged logs
then depends only on the precision to which the clocks are synchronized. The power of
the interface here is that it was only the logging facility itself that needed to be upgraded
for use in the distributed environment. All applications that complied with the original,
local-only interface automatically received the benefits of the improved logging facility.

The differential for this framework is that it will address the issues in building distributed
real-time, fault-tolerant, mission-critical systems. Thus, the framework will enable the
functions associated with such systems, including managing timing constraints, detection
and recovery from various failures, and dynamic reconfiguration based upon
environmental changes. At the same time, these systems share much in common with
other systems, so the framework will incorporate commercial standards where possible,
in order to offer the greatest probability that COTS components will adhere to it.

C.2. Interface Definition
The initial definition of the framework will be based on interfaces that have been
identified by The Open Group during many years of working with the target community
through our research programs and through Forums, such as the Real-Time and
Embedded Systems Forum5 and the Quality of Service Task Force6. These interfaces
reflect the needs of both application system developers and product vendors in the field.
Early versions of particular elements have appeared in Open Group products, including
the CORDS communication framework, the GIPC group communication protocol
system, and the MK 7 real-time operating system.

The Phase II work, however, envisions a far more comprehensive framework than
currently exists. As additional components, such as Real-Time CORBA, are brought in,
the interfaces in the framework will very likely require slight modifications to increase
the usability of the overall tool kit. In addition, a number of standards have evolved and
will continue to evolve in this area. Therefore, we will conduct an iterative process:
define, prototype, evaluate, repeat.

5 http://www.opengroup.org/rtforum/
6 http://www.opengroup.org/qos/

Proposal Page 8 SBIR N01-079

C.3. Prototyping
There is a gulf between the expectations of the developers of a product and the users of
that product. The developers are technical experts in the area and well versed in the trade-
offs among various alternatives. In the case of component products as contemplated
here, the users are also technical experts  but usually in a different area. These users
have selected the product in order to simplify their overall development effort. This clash
results in user confusion and misunderstanding  and often in a misapplication, or at
least underutilization of the product. To alleviate this problem, we have identified several
prospective users of this product and will work with them to improve the effectiveness of
the product.

We will create several iterations of various components within the tool kit. Each
successive prototype will provide an increased level of function as well as incorporate
lessons learned from previous versions. This staging of deliveries decreases the amount
of development effort required for initial delivery, thereby increasing the amount of
customer exposure to the product and reducing the amount of rework needed when
product specification changes are required.

C.4. Evaluation
We expect the most productive form of interaction with these users to be as part of their
product evaluation cycle. All of these organizations evaluate new products as an explicit
activity within their development methodology. They create technology evaluation teams
that perform increasingly realistic (and increasingly expensive) tests. Starting with
reviews of research papers and product literature, these groups progress to simple
experiments, and then to benchmarks, and eventually to subsystem tests. The evaluation
teams are also the basis by which the organizations acquire the corporate knowledge
about how to apply the technologies.

C.5. Iteration
We anticipate working with the prospective users via these technology evaluation teams
on an ongoing basis. We will assist them in learning about the technologies included in
the tool kit. In return, we will acquire valuable assistance in adapting our proposed
product to the needs of real users. In addition, we will gain insight into subtle difficulties
that might arise between our product and other components with which the users must
interoperate.

As the users gain confidence in the performance of our prototypes, they will become
more comfortable in including the expected product within their mission-critical systems.
In addition, we will gain more insight into additional opportunities for applying and
extending the tool kit.

Proposal Page 9 SBIR N01-079

C.6. Standardization
In the past, real-time, fault-tolerant, mission-critical systems used defined their own
marketplace. Each system would be specially designed and most components were
purpose-built for use in a particular system. The (intended) result was a system with an
overall, unifying architecture. Individual subcomponents interacted with other
subcomponents via well-tuned interfaces and every subcomponent provided required
performance data via a system-wide instrumentation system. In short, these systems were
homogeneous and effective.

The design of these systems was, however, brittle  stove-piped in the vernacular.
Replacement of components required significant rework, so many component upgrades
were structured to emulate the original component. More importantly, these systems were
not extensible. It was difficult to incorporate new capabilities and to interface to
additional systems. This difficulty was expressed as both high cost and long turn around
times for functional upgrades. One notable example is the use of FDDI in Navy ships.
When commercial manufacturers terminated production of FDDI chips, a significant
amount of software and hardware had to be reworked. The result of these types of
problems has been a push towards reducing the use of purpose-built components. When
possible, commercial, off-the-shelf (COTS) products are utilized. When COTS products
are not available or not suitable, there is a desire to reuse components from other projects.

One effect of the increasing utilization of COTS components in mission-critical systems
is that these systems are no longer able to specify the characteristics of the components.
They have become dependent upon a component supply chain where the requirements are
largely driven by the needs of a much larger marketplace  one that does not have the
special needs of real-time, fault-tolerant, mission-critical systems. Consequently, the
mission-critical market segment is attempting to draw from the capabilities targeted at the
general marketplace. As a result, we now have the real-time additions to the POSIX
specification, the Real-Time CORBA enhancements, and recently the Real-Time
Specification for Java.

Another important aspect of the use of commercial products and of reusing internal
components has been the introduction of significant heterogeneity in both the hardware
and software components. The various components used in the system evolve based on
external changes. It is no longer possible to require all new components to adhere to
historic, system-specific interface requirements. Thus, there is a need for common
interfaces within the system infrastructure. Components can be programmed to match
those interfaces rather than the peculiarities of whatever component happened to be built
at some point in the distant past. Use of such common interfaces also simplifies the
maintenance cycle. Components will change, and the interfaces must evolve, but the cost
and impact of these changes can be limited via explicit management of changes to the
interfaces.

We recognize these effects and will address them as part of Phase II. We will work to
make the proposed framework as standards-compliant as possible while still meeting the
needs of the target customers. We expect to incorporate existing standards, such as

Proposal Page 10 SBIR N01-079

POSIX, Real-Time CORBA, and RTSJ. We will also track and attempt to influence
evolving standards, such as the anticipated reliable multicast specification for CORBA,
and the Common Information Model (CIM). Finally, it should be noted that The Open
Group itself is a standards body, and we will work through our existing forums and task
forces to generate consensus towards the establishment of any additional standards that
might be required.

D. Phase II Work Plan
The development methodology within the research group at The Open Group involves
two distinct phases: a research phase whereby new, advanced concepts are developed,
prototyped and analyzed; and a technology transfer phase in which successful research
projects are transitioned to external groups via collaborative projects where the
technology is iteratively evaluated and improved. Part of the benefit of the proposed
framework and open tool kit is that it is extensible and could address many elements of
the computing infrastructure within mission-critical systems. We view a substantial
portion of the Phase II work as a technology transition effort. The nature of mission-
critical systems is that they must be dependable: they must be highly available, and they
must operate correctly. Our intent is to concentrate on making selected elements of the
proposed Open Tool Kit work well rather than to develop lots of elements.

There are two major themes in creating dependable software: deliberate development and
insightful testing. While we expect to do the implementation work and initial testing, our
potential customers are much better equipped to provide system level testing. They
establish test-beds with realistic load simulation facilities as a normal part of their
development process. To induce them into expending resources to evaluate and test our
prototypes, however, we must maintain their interest by providing tools that address their
actual problems. The result is that the selection of tool kit capabilities will be largely
driven by the interests of our collaborators. If their interests change, presumably due to
evolving requirements, we expect to adapt the tool kit to their altered needs. Nonetheless,
we present here a spectrum of potential development concepts based on our best
understanding of the needs of the target customers. This list is intended to convey the
potential range of the proposed tool kit. Resources to completely implement this list
would far exceed the expected available resources. Actual projects to be prototyped will
be selected after consultation with the Technical Point of Contact and the technology
transfer targets.

D.1. Framework and Tool Kit Architecture and Design
Based on our previous experience with real-time, fault-tolerant, mission-critical systems
and with our discussions with our technology transfer targets, we have identified a
number of areas for inclusion in the tool kit and thereby for specification of framework
interfaces. The selection criteria included requirements to:

• Support distributed, real-time, mission-critical applications

Proposal Page 11 SBIR N01-079

• Interface to other systems, including other languages, hardware platforms, and
distributed system technologies (e.g., Ada, C/C++, single board computers,
Real-Time CORBA)

• Interface to development tools for real-time systems (e.g., scheduling tools,
UML)

• Adhere to standards where possible (e.g., CORBA, POSIX, UNIX, Java)

The development of each capability area includes both tasks specific to that area and
general tasks that must be done for all areas. The general tasks include evaluation of the
underlying component, development of microbenchmarks, and definition of the actual
framework interface specification for the area. Although we expect collaborators to
provide advanced testing during the Phase II prototyping stage, elimination of most bugs
must still occur prior to delivery to those collaborators. Thus, we will create initial test
facilities for each area. Generally, these tests are also provided a part of the product
because they demonstrate ways of using the components and of the framework interfaces.
In addition, all of the internal and external products must be documented.

Although the use of external collaborators for advanced testing improves the
effectiveness of the testing process, it also increases the need for early documentation and
for external support. In many cases, we expect to need to conduct design reviews of
customer applications and to develop additional testing software to isolate problems that
customers may have detected.

D.2. Framework
A good framework imposes low system overhead while providing powerful capabilities
through both native tools and third-party plug-ins. In essence, a good framework is
elegant, providing its utility via effective access to the components that comprise the tool
kit that it makes available. Thus, the framework itself comprises little code, leaving the
bulk of its capabilities to the tool kit  the components that easily fit into the framework
or tools that utilize those components.

Nonetheless, the framework must operate coherently and its constituent elements should
not interfere with each other. For example, the time format returned from the distributed
time components should be compatible with the time format used within system control
and instrumentation. To evaluate the integrity of the overall system, we will develop a
prototype application that exercises all areas of the framework and tool kit. Although the
applications algorithms will be minimal, this application must respond properly to control
and status requests, and it must provide accurate instrumentation data based on actual
consumption of resources. We expect much of this work to be performed as part of the
development of the Controller portion of the framework, and in conjunction with
development of TET controller component.

Proposal Page 12 SBIR N01-079

The Open Tool Kit Framework must operate in some operational context. Based on the
interests of our technology transfer partners, we anticipate using Real-Time CORBA for
many of the control functions. We will select a one or more Real-Time CORBA
implementations in conjunction with the partners. TAO7, an open source implementation
is an interesting candidate. We may also need to use a commercial product, such as
ORBExpress from Objective Interface Systems.

D.3. Component Acquisition and Development
We provide here a summary of the tasks that are expected for various components that
we expect to include in the initial tool kit. There are a few elements of the framework that
are crucial to the utility of the overall concept. These include control/status interfaces and
provision of instrumentation data. These aspects must be addressed for every component
that is to be included in the tool kit, and the implementation of the supporting software is
not called out separately below.

D.3.1. GIPC/Group Communications
Group communications is a model of communicating between multiple computers.
Simplistically described, group communications provides the ability to do an atomic
broadcast within a group. Such an atomic broadcast in a distributed environment can be
compared to a transaction for traditional DBMSs. A group is a set of cooperating
processes that want to communicate with each other. An atomically broadcast message is
directed toward a group, and is either delivered to all group members or none.
Applications can then leverage this basic function in order to easily implement
application-specific fault tolerant strategies.

One of the earlier implementations of group communications was the ISIS system, which
was developed at Cornell University. ISIS was spun off into a commercial company and
was widely used on Wall Street for financial transactions systems. The commercial
product appears to have been discontinued. Cornell later developed Ensemble, a research
system similar to ISIS with additional capabilities. Ensemble is available for general use.

The Open Group has developed CORDS and GIPC. CORDS is a general purpose
framework for developing communication protocols. GIPC is a Group IPC system that
supports group communication. A distinguishing feature of CORDS and GIPC is that
they were designed to support group communications in real-time applications. A
prototype demonstration system that uses CORDS and GIPC to manipulate a ball sorting
apparatus can detect and recover from a node failure in less than 400 msecs8. The GIPC
(Group InterProcess Communications) package will be extended to include additional

7 http://www.cs.wustl.edu/~schmidt/TAO.html
8 L.M. Feeney, P. Bernadat, F. Travostino, Characterizing Group Communication Middleware for Real-
time Distributed Systems, Work in Progress Report, 18th IEEE Real-Time Systems Symposium, December,
1997, San Francisco, CA.

Proposal Page 13 SBIR N01-079

protocol support and to create development support tools. Several areas have been
identified as useful enhancements, including an interface to external failure detectors,
such as our Fast Failure Detector component, explicit control over use of redundant
network attachments, and access to QoS-related network parameters. We may also want
to add specialized support for use of GIPC from a Real-Time Java environment.

D.3.2. Real-Time Java
A fundamental part of the strategy is the use of a real-time version of Java. Java provides
an execution environment that is largely independent of both the underlying hardware
platform and of the operating system. A Java class object is machine independent: the
exact same executable object can run on any Java machine. Each object runs in the
context of a virtual machine that provides identical behavior for almost all machine
characteristics, including integer ranges. Java is becoming very popular, and Java
products now exist for many environments, ranging from constrained embedded systems,
such as set-top boxes, to World Wide Web server applications.

The creation of a version of Java capable of supporting real-time applications with
specified time constraints was the first enhancement officially proposed for Sun’s Java.
The result was recently published and several implementations of the real-time
specification are currently under development by members of the specification expert
group. The reference implementation, which was developed by TimeSys, has just been
released in its completed form.

Real-time Java incorporates an innovative method for dealing with the garbage collection
problem. Certain real-time threads can be declared to be higher priority than the garbage
collector and can, therefore, defer the execution of the garbage collector. To prevent
deadlock, these threads must allocate space only from certain reserved heaps, which are
not subject to garbage collection. A method is then provided to allow information from
the non-garbage-collected heaps to normal processing space. Although this method is
highly promising, the ability of real-time application programmers to grasp the concepts
and use it effectively remains to be proven. The recent approval of the Real-Time
Specification for Java (RTSJ) is expected to presage the release of several commercial
Real-Time JVMs. Most providers will be targeting traditional embedded applications.
Thus, the primary extensions that are needed for this tool kit are to address real time and
fault tolerance requirements in distributed systems. These include a package to interface
to the group communication protocol, and a package to interface to a real-time
publish/subscribe protocol. In both cases, we will be tracking efforts within OMG to
develop related, CORBA-based specifications.

Based on their target marketplace, we expect the Real-Time JVM providers to provide
efficient access to a operating platform's native TCP/IP protocol stack via the java.net
interface. We anticipate the need, however, to develop improved and/or alternate
packages for more structured access, such as is provided by the java.rmi package, which
implements an RPC-like mechanism. (The problem here is that RTSJ supports real-time
applications by providing an alternate memory management scheme to traditional

Proposal Page 14 SBIR N01-079

garbage collection. Java's RMI subsystem was previously developed and the standard
implementation may not comply with the restrictions required by RTSJ.) We also expect
that we will need to provide access to newer, more real-time-capable transport protocols,
such as the SCTP protocol mentioned above under GIPC.

D.3.3. TET (Test Environment Toolkit)
TET9 is an example of the leverage that can be gained by effective use of the open source
world. TET was originally developed by the Open Software Foundation and X/Open
(whose merger formed The Open Group), and by UNIX International as a framework and
tool kit for system testing. As a group, these three organizations  and their constituent
membership  virtually controlled the specification of the UNIX API (application
programming interface). They both defined the interfaces and provided the compliance
test suites for UNIX. Based on its wide applicability and its freely available status, the
membership organizations made broad use of TET as a basis for creating additional test
suites. Today TET is widely used throughout the industry, although the tests are mostly
used for internal development so its visibility is relatively low.

Recognizing the potential market represented by this broad use, the testing and
certification organization within The Open Group has created TETware professional. As
the name suggests TETware professional is a commercial product, providing additional
capabilities, automated installation, and committed support. The Open Group continues,
however, to maintain the freely available version of TET in order to increase the potential
market size.

We expect to use TET as a component for controlling a system in a test environment. We
would like to use the freely available version of TET in a basic version of the framework.
That would allow us to provide a basic operating capability in a freely available version
of the Open Tool Kit (see Commercialization Strategy). We may also need to provide
extensions to the TETware professional product if our technology transfer partners
indicate a need for its use in their test beds. It is also possible that our technology transfer
partners are already using another test environment controller, in which case we would
assist them in hooking that controller into our framework.

D.3.4. CIM (Common Information Model)/Pegasus
The Common Information Model (CIM) is an object-oriented information model that
presents a common representation of data in a "managed environment." The Distributed
Management Task Force (DMTF)10 and The Open Group Enterprise Management
Forum11 are working cooperatively to manage this evolving standard. The DMTF is

9 http://tetworks.opengroup.org/
10 http://dmtf.org/
11 http://www.opengroup.org/management/

Proposal Page 15 SBIR N01-079

continuing to develop and expand the models, schemas and interoperability
characteristics of the CIM model while The Open Group is concentrating on providing an
open source implementation of these concepts and extending the concepts to areas of
manageability such as management of applications, services, and Quality of Service.

CIM comprises three layers: the core model, which is applicable to all areas of system
management; the common model, which addresses particular application areas; and
extension schemata, which are specific to operational environments. Although CIM
originated in the world of mainframe application management, we believe that the
concept can be extended to the realm of mission-critical systems. We would work to
develop a new common model that would specify the information associated with real
time and dependability as well as an extension schema based on our framework. These
schemata would include definitions, such as coherent definitions of message latency and
time base, as well as the object classes, properties, methods and associations that are
needed to manipulate those values.

Although the consistency provided by the underlying schemata provides a useful base to
enable interoperability of tool kit components, there is also the potential to include a run
time CIMOM (CIM Object Manager). There are several implementations currently
underway, some of which are open source. One of particular interest is Pegasus, which is
an open source implementation initiated by The Open Group's Enterprise Management
group. Release 1.012 was recently distributed under the MIT license. HP, IBM, and
Compaq have all indicated that they intend to adopt the Pegasus reference
implementation for use within their product lines.

D.4. Framework Development
As noted earlier, much of the development for the framework will be performed in
conjunction with the development and/or adaptation of components that will populate the
various framework areas. It is useful, however, to associate development goals with
framework areas.

D.4.1. System Management/Controller
The System Manager provides control over the state of the system. During the Phase II
development effort, we anticipate that the primary use of this function will be to control
benchmarks and debugging sessions. In addition, this framework role needs to be
populated in order to exercise the control/status interfaces (see below). We expect to use
TET (see above) for this purpose.

We also expect to identify components useful for benchmarking and testing. Typical
components would include network and CPU load stress generators and fault insertion
tools.

12 http://www.opengroup.org/pegasus/

Proposal Page 16 SBIR N01-079

D.4.2. Control/Status Interface
Every system requires some amount of control function, even if that function is limited to
creation and destruction of the processes that implement the system. As systems become
more complex, it becomes more useful to provide abstractions. Thus, it is useful to
consider an operator initiating the weapons launch function rather than having the
operator understand the that he must start process A on host B, and then 5 seconds later
start process C on host D, but if host D is down, then start process E on host F, ...

Development of new, distributed weapons systems, such as Aegis Open Architecture,
will require the reimplementation or significant rework of many applications. It is a given
that the developers will include some form of control and status interface. Early
definition of standard interfaces for control and status will foster a more cohesive, more
coherent system. We intend to address this area very early in the Phase II effort.

D.4.3. Instrumentation/Visualization
Earlier in this proposal, we described the extensive use of event tracing for debugging
real-time systems. Almost all such systems also include mechanisms for gathering
performance data and displaying the data for analysis by resource managers and/or
humans. The situation with instrumentation and visualization is similar to that for status
and control: the application developers will be doing something, so early definition of
interfaces will foster a more cohesive, more coherent system. Again, we intend to address
this area very early in the Phase II effort.

There is a major difference from status and control, however, in that instrumentation
requires a component to gather, log, and redistribute the instrumentation data. We have
identified several candidates for this function. System/Technology Development
Corporation is developing QMS (QoS Metrics Services)13. QMS is interesting because it
is designed to be compatible with CIM (see above). On the other hand, QMS is based on
use of CORBA event channels, so the per-message overhead may be too high. Another
possibility it to build upon the Linux Event Logging For Enterprise Class Systems14

facility. This component has the dual benefits of attempting to conform to the draft
POSIX SRASS (Services for Reliable, Available and Serviceable Systems) standard and
of being adopted by IBM for use in enterprise systems. One major drawback is that it is
targeted at enterprise applications, so its use in real-time systems may be problematic.

We will consult early in the Phase II effort with the Technical Point of Contact and our
technology transfer targets to decide a plan of action for this area.

13 http://www.stdc.com/QMS/
14 http://evlog.sourceforge.net/

Proposal Page 17 SBIR N01-079

D.4.4. Interfacing to Tools
Design tools are becoming more powerful and consequently more useful in real-time
systems. For example, Aegis Open Architecture includes Rational Rose as part of the
development. I-Logix's Rhapsody environment provides similar capabilities.
Consequently, we must plan to develop UML models for (at least) the framework
components that will be utilized directly in their systems.

Use of effective modeling tools for designed mission-critical system would provide real
benefits in reducing complexity and in generating the information needed for effective
management of system resources during dynamic operation. Although the first generation
of "real-time" UML tools failed even to include any capability for actually dealing with
time, the second generation of tools from Rational Software15, Tri-Pacific Software16,
TimeSys17, and other vendors appears to be useful for statically defined systems using
rate monotonic scheduling. Although rate monotonic scheduling is not likely to be
extensively utilized in complex systems such as the Aegis Open Architecture, these tools
represent real progress and offer much promise for future capabilities. We would like to
include the capability for framework components to interact with the tools in providing
information to the resource manager.

D.5. Core Facilities
There are a number of enhancements that may be needed in the core facilities of the
framework. We plan to structure this development into two major phases with
milestones:

• SOC +12 months: Initial delivery of framework using Real-Time CORBA;
benchmarking tools; CORDS/GIPC support tools

• SOC + 20 months: complete framework, including core facilities;
documentation, test suite.

D.5.1. CORDS
There are two tasks related to the basic CORDS framework that would potentially be of
use to GIPC. We will investigate the implementation of the Stream Control Transport
Protocol (SCTP)18, which is a recent addition to the TCP/IP suite that provides better
control to real-time-aware applications. In addition, we will explore the utility of porting
the CORDS communication framework (and thus the GIPC module) so that it executes
within the context of a loadable device driver for a real-time operating system.

15 http://www.rational.com
16 http://www.tripac.com
17 http://www.timesys.com/
18 ftp://ftp.isi.edu/in-notes/rfc2960.txt

Proposal Page 18 SBIR N01-079

D.5.2. Distributed Clock Management
The NTP19 (Network Time Protocol) component is ubiquitous within systems requiring
clock synchronization across multiple network nodes. Although the software is open
source, the internal algorithms are effectively incomprehensible other than to members of
the NTP project. Reflecting improvements, tweaks, and just plain hacks, these algorithms
reflect experience gained over many years of operation within the Internet environment,
and the use of NTP provides many benefits. The policies incorporated within NTP are
oriented toward defense from "false tickers" and denial-of-service attacks and are not
oriented towards the special needs of real-time, mission-critical systems. As an example,
NTP will tolerate a significant difference (more than a tenth of a second) between clocks
on different nodes. Also, NTP time provides its own definition of time (that is, NTP time
does not correspond to TAI, UTC, UT0, or any other established standard).

Nonetheless, it is likely that NTP is the most useful base component available for
providing a synchronized clock capability within a real-time, mission-critical system.
One addition that we expect to include within the Open Tool Kit framework is an
estimate of the error incorporated in the time available on the local system.

D.5.3. Failure Management
We anticipate working with a major defense contractor on fault management strategies
within real-time, fault-tolerant mission-critical systems. We have not yet, however,
selected a particular application for consideration, so we do not yet have a specific plan
of action. We have, however, been discussing the use of The Open Group's Fast Failure
Detector (FFD), which was developed as part of the DARPA-sponsored Quorum
program. The HiPer-D project at NSWC Dahlgren has demonstrated that FFD, in
conjunction with a real-time operating system, is capable of reliably detecting failed
computer nodes in less than 200 milliseconds, even in the presence of a significant CPU
load. We expect to include FFD in the Open Tool Kit framework and provide access to it
via the control and status interface.

D.6. Support of Technology Transfer Targets
There are a number of activities that will directly address collaborative activities with the
technology transfer targets. The most visible is direct support of use of the Open Tool
Kit within weapons systems applications. Other relevant tasks include: early
documentation of individual framework components and the associated interfaces, and
creation of example worked cases to demonstrate the use of the overall system.

We have identified three technology transfer targets with whom we intend to collaborate
during Phase II. All have expressed interest in issues that permeate infrastructure
development, such as managing time constraints across distributed systems, maintaining

19 http://www.ntp.org/

Proposal Page 19 SBIR N01-079

synchronized clocks, instrumentation, etc. We will work with these organizations in
applying the tool kit components to their overall problem. In addition, each group has
identified particular issues:

We have worked for several years with the HiPer-D project at the Naval Surface Warfare
Center (NSWC) in Dahlgren, VA, which investigates advanced technology on behalf of
the Navy and of Navy contractors. This group verified the utility of The Open Group's
Fast Failure Detector (FFD) recently, but it was unable to demonstrate the capability due
to problems with their applications, which were using the Ensemble research group
communication system  a non-real-time-capable system. We have proposed that we
will work with the HiPer-D project in applying CORDS/GIPC to successively "hard"
real-time applications.

The required tasks for support of HiPer-D can be more precisely defined and we have
identified associated milestones. We anticipate two deliveries for HiPer-D:

• June, 2002: Delivery of prototype CORDS/GIPC/RT-JVM suitable for use in
Demo 2002 (September 2002) (“soft” real-time).

• June, 2003: Delivery of prototype framework with CORDS/GIPC/RT-JVM
suitable for use in Demo 2003 (September 2003) (“hard” real-time)

D.7. Standardization
For customers of this technology to derive full benefit from its use as an integration tool,
it must fit in smoothly with both the overall system architecture and the component being
integrated. To achieve success in the COTS marketplace, the technology must align with
emerging standards, such as those for object-oriented design for mission-critical and real-
time systems. We have identified several relevant industry standardization activities that
we would participate in as part of Phase II:

• The Distributed Real-Time Specification for Java (DRTSJ)20 Experts Group,
operating as part of the Java Community Process sponsored by Sun, will
establish standards for key capabilities used in this environment, such as access
to real-time (and "real-fast") networking facilities within real-time Java. The
Principal Investigator for this contract, has been participating in this group as
part of Phase I work, and will continue during Phase II.

• The Object Management Group (OMG)21 is developing an extension to the
CORBA standard for reliable, group-ordered multicast. It is also expected that
this facility will be retrofitted to be used as a foundation for Fault Tolerant

20 http://www.drtsj.org/
21 http://www.omg.org/

Proposal Page 20 SBIR N01-079

CORBA, which provides highly-available CORBA objects in distributed object
systems. The OMG is also shifting the CORBA standard's C++ focus to an
implementation-independent approach as part of a move towards Model-Driven
Architectures. The benefit of the proposed technology in integrating across
COTS components is based on commonality between C++ and Java. We plan to
work with the OMG specification authoring groups to provide as much
commonality as possible between the Java and C++ approaches.

• The Open Group's Real-Time and Embedded Systems Forum22 conjoins system
vendors and end customers to develop standards and certification programs that
speed market uptake of real-time and embedded technologies. Recently, the
group has focused its efforts on establishing standards and certification
programs in support of high reliability and safety critical systems. The high level
of participation by commercial systems vendors makes this an ideal venue for
transferring the proposed technology to the COTS marketplace.

D.8. System Integration, Test and Evaluation (OPTION)
The Phase II plan for system integration, test, and evaluation has three goals:

• Ensure the relevance of the proposed product to both military and civilian
applications.

• Bring the proposed product up to date relative to marketplace shifts and newly
available technologies.

• Apply the lessons learned from the collaboration with systems developers during
the Phase II effort.

The following complementary and parallel activities will address those goals:

• Improvements to the CORDS/GIPC protocol component. The Phase II effort is
intended to identify and define the improvements that are necessary to use
CORDS/GIPC in hard real-time applications, particularly in conjunction with
commercial networking gear. We will either make those improvements or create
a plan for creating the improvements.

• Additional support tools for CORDS/GIPC. Use of CORDS/GIPC by the
technology transfer target developers will suggest a set of support tools that will
add to the usability of CORDS/GIPC and group communications by application
developers. We will prototype those tools.

22 http://www.opengroup.org/rtforum/

Proposal Page 21 SBIR N01-079

• The Distributed Real-Time Specification for Java (DRTSJ) process should have
produced a specification during this period. We will investigate the changes that
are needed to both CORDS/GIPC and the Real-Time Java environment objects
and wrappers to determine if they should be updated and possibly prototype this
capability.

• The anticipated OMG specification for reliable multicast should be relatively
firm during this period. We will examine the possibility of adapting
CORDS/GIPC in support of, or possibly to implement, this OMG specification
and potentially prototype this capability.

• The potential for use of group communication in factory automation systems
should be clearer in this time frame. We will investigate the applicability of
CORDS/GIPC to this marketplace and potentially prototype this capability.

• Based on experience with the Open Tool Kit Framework, we will have
identified desirable modifications to the interfaces and components. Many of
these changes will have been deferred in order to obtain maximum benefit from
the Phase II collaboration with systems developers. We will update the Open
Tool Kit Framework specification based on this experience.

• Based on experience with the Open Tool Kit Framework, we will have
identified additional system interfaces that are candidates for inclusion. We will
investigate these additional interfaces, the incorporation of commercial
components from other vendors in support of those interfaces, and the creation
of new components to supply the functions. We will potentially prototype these
wrappers and/or new components.

• We will continue to support the effort to create a standard based on the Open
Tool Kit Framework interfaces.

E. Related Work
In addition to the previously cited components under consideration for the Open Tool Kit,
The Open Group has been involved with a significant number of external projects whose
focus is closely aligned with the goals of the Open Tool Kit:

The Adaptive Communication Environment (ACE)23 provides an object-oriented (C++)
framework for concurrent communications and an accompanying library of
implementations which provide a common interface to diverse low-level operating
system and network functions. In addition, implementations of common design patterns
related to concurrency and network communications offer programmers higher-level

23 http://www.cs.wustl.edu/~schmidt/ACE.html

Proposal Page 22 SBIR N01-079

abstractions to facilitate the design of concurrent applications. Commercial support for
ACE is available from the Riverace Corporation24. The TAO ORB, which is built upon
these common interfaces, was used extensively by The Open Group and its partners as
part of its integration work for the QUITE project.

Globus25 provides a framework, toolkit and user interfaces for Grid computing services
over a wide-area network. Globus researchers at Argonne Labs and USC-ISI are
currently working with IBM to evolve the Open Grid Services Architecture and to evolve
the Globus toolkit to support this architecture. The Open Group, as part of the QUITE
project, worked with the Globus team to integrate Globus resource management and
directory services components with a local resource manager (based on the
DeSiDeRaTa26 project), and transitioned this integration to the HiPer-D test environment
at the Naval Surface Warfare Center in Dahlgren, VA for inclusion in its Demo 2000.

Linux/RK27 extends the Linux kernel to provide an abstract control interface for reserved
access to operating system resources. The Resource Kernel technology has been
incorporated into a commercial product, TimeSys Linux28, by the TimeSys Corporation.
The Open Group utilizes Linux/RK to provide resource guarantees for its Fast Failure
Detector (see above).

Ensemble29 provides a protocol library and development toolkit for writing virtually
synchronous group communications applications. A predecessor project to Ensemble,
ISIS, was transitioned to the commercial marketplace by ISIS Distributed Systems, which
was acquired by Stratus Computers in 1993, and was commercially available until 1998.
The Open Group utilizes Ensemble to provide group communications services for its Fast
Failure Detector, which was recently transitioned to the HiPer-D test bed at the Naval
Surface Warfare Center in Dahlgren, VA.

RTCAST30 is a real-time group communications protocol which has been implemented
atop The Open Group's CORDS communication framework and the MK 7.2 microkernel.
Ideas developed in this project have been incorporated in commercial products under
development by Arbor Networks31.

24 http://www.riverace.com
25 http://www.globus.org
26 http://desidrta.uta.edu/
27 http://www-2.cs.cmu.edu/~rajkumar/linux-rk.html
28 http://www.timesys.com/products/realtime/index.html
29 http://www.cs.cornell.edu/Info/Projects/Ensemble
30 http://www.eecs.umich.edu/RTCL/arpa-project/rtcast
31 http://www.arbornetworks.com/

Proposal Page 23 SBIR N01-079

Cactus32 provides a framework and several implementations (one, in C, based on The
Open Group's CORDS communication framework and MK 7.3 microkernel) for
customizable fine-grain QoS for secure, dependable, real-time systems. Research based
on this work is ongoing at AT&T Research Labs33.

Quorum34 is a DARPA research program to investigate the applicability of QoS-based
concepts to complex systems, in general, and to military weapons systems in particular.
Much of The Open Group's interaction with the NSWC HiPer-D project has been
sponsored under this effort.

QUITE35 is a project to integrate many of the Quorum projects and apply the concepts to
particular problems. The Open Group has been a major participant in this effort. One
particular result has been the Fast Failure Detector that will be included in the tool kit.

There are also a number of projects within The Open Group that have provided a basis
for many of the particular concepts in the Open Tool Kit that make it particularly
applicable to real-time, fault-tolerant, mission-critical applications:

Many of the concepts used in real-time distributed systems were explored in the Alpha
Operating System36, which originated at Carnegie Mellon University. The principal
investigator managed the creation of an Alpha prototype system while at Concurrent
Computer. He later brought those concepts to The Open Group and merged them with the
Mach Microkernel37 from Carnegie Mellon University. The result was the MK 738 and
AD operating systems. Many of these concepts were successfully transferred into
commercial products that were produced by industry leaders, including Intel
Supercomputing Systems, Hewlett Packard/Convex, IBM, Hitatchi, Honeywell Space
Systems, and most recently Apple as the Mac OS X operating system.

The Alpha-based concepts are also appearing in non-operating system contexts,
including: the paths concept in CORDS; in research projects, such as the DeSiDeRaTa
resource manager described above; in the recently approved Real-Time CORBA 2
specification; and in the ongoing effort to create a Distributed Real-Time Specification
for Java.

32 http://www.cs.arizona.edu/cactus
33 http://www.research.att.com
34 http://www.darpa.mil/ito/research/quorum
35 http://quite.teknowledge.com/quite
36 http://www.real-time.org/papers/usenix92.pdf
37 http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/mach/public/www/mach.html
38 http://www.opengroup.org/RI/technologies/mk7/

Proposal Page 24 SBIR N01-079

Many of the communication-based framework concepts proposed for the Open Tool Kit
are derived from CORDS39. CORDS, in turn, is derived from the x-kernel40, which was
originally developed by the University of Arizona. Implementations or concepts from
CORDS have been used in many research projects, as noted above, as well as in products
from both DASCOM and Novell.

F. Relationship with Future Research or Research and Development.
This Phase II effort will result in a set of middleware components and tools that will
assist developers of real-time, fault-tolerant, mission-critical systems in building more
effective, more maintainable systems. The most significant component is CORDS/GIPC,
a group communication protocol implementation designed for real-time applications.
With more than ten years of use in the financial community, group communications has
proven to be an effective, usable model for implementing reliable fault tolerance.
CORDS/GIPC will allow that experience base to be used in systems with hard real-time
requirements.

This effort will also produce a set of components and tools for use in the computing
infrastructure of these mission-critical systems. In addition to reducing development costs
by replacing purpose-built components in the deployed system, these commercial
components will also be designed to work together to simplify the overall development
process, including component evaluation, benchmarking, debugging, tuning, and
certification testing.

Finally, all of these components and tools will be unified within a framework that
promotes interoperability between components, including those included in this product,
those purchased from other commercial vendors, and those developed in-house by the
system developer.

Infrastructure components, as are proposed here, typically do not become successful
simply because they solve any single problem. Rather, they are selected for use in
systems because they simplify the overall task of developing an application or a system.
Thus, the ability of application developers to comprehend the components and to make
effective use is critical  and is almost impossible to predict in advance. There is no
substitute for exposure in real systems and feedback by real developers.

This phase II effort is intended to move a promising set of concepts from the research and
non-real-time worlds and make them usable in the creation of real-time, fault-tolerant,
mission-critical systems. By working with leading DoD contractors in applying these
concepts to real weapons systems, we will identify ways in which to improve the utility
of these components. These changes or additions can then be developed, either by The

39 http://www.opengroup.org/RI/technologies/cords/
40 http://www.cs.arizona.edu/xkernel/

Proposal Page 25 SBIR N01-079

Open Group during a Phase III effort or by a large computer vendor after a sale of the
technology.

G. Potential Post Applications
The use of distributed systems for throughput scalability and for fault tolerance is
becoming more and more popular. "Computing clusters" are offered by several computer
vendors, and "web server farms" is a term being heard by ordinary users of the Internet.
As these technologies migrate into mission-critical systems in the commercial world,
there are several identifiable target markets that have similar requirements to the military
weapons systems that we propose to investigate during Phase II. One promising area is
the financial community. For example, the Securities Industries Automation Corporation
(SIAC)41, which operates computer infrastructure for the New York and American Stock
Exchanges, continues to use group communication to provide geographically distributed
fault tolerant operation. Automated factories are inherently distributed and the inclusion
of fault-tolerant components is increasing.

The high costs for developing, maintaining and upgrading military weapons systems has
been widely reported in the popular press. The difficulty of developing a coherent,
reliable computing infrastructure has been echoed by DoD contractors. Both the
CORDS/GIPC group communication protocol and the concept of a coherent tool kit of
components are intended to directly address those problems. The utility of this concept
will be proven during the Phase II effort by direct interaction with the contractors who
are actually building military weapons systems for the Federal Government.

 end 

41 http://www.siac.com/

