
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GDB for OR1k  
 
 

Author: Marko Mlinar 
marko.mlinar@opencores.org 

Damjan Lampret 
Igor Mohor 

 
Rev. 0.2 

May 22, 2001 



OpenCores GDB for OR1k 22.5.01 

www.opencores.org Rev 0.2 i  

 
Revision History 

 
Rev. Date Author Description 
0.1 27/4/01 Marko Mlinar Initial document 
0.2 22/5/01 MM Added more descriptions to software operations 
    
    
 



OpenCores GDB for OR1k 22.5.01 

www.opencores.org Rev 0.2 ii  

 

Contents 
 
 
Contents .............................................................................................................................. ii 
Introduction..........................................................................................................................1 
JP1 Protocol.........................................................................................................................2 
JP3 Protocol.........................................................................................................................3 
Software Operation ..............................................................................................................4 

4.1 SW BreakPoint Set Example .....................................................................................4 
Supported Features...............................................................................................................6 
Parallel Port..........................................................................................................................7 



OpenCores GDB for OR1k 22.5.01 

www.opencores.org Rev 0.2 1 of 7 

1 
Introduction 

 
This document describes communication protocol between GDB (GNU Debugger) and 
JTAG Test-Access-Port and lists supported capabilities in GDB. 
 
 
 

HOST TARGET

GDB OR1k
machine
description

LPx JTAG

Centronics
Cable

OR1k

Dev. I/FTAP



OpenCores GDB for OR1k 22.5.01 

www.opencores.org Rev 0.2 2 of 7 

2 
JP1 Protocol 

 
JP1 protocol is simple JTAG compatible protocol. It does not need any extra hardware.  
 

HOST TARGET

GDB OR1k
machine
description

LPx JTAG

Centronics
Cable

OR1k

Dev. I/FTAP

4

1
 

 
Each JTAG cycle requires 2 parallel port writes and one read (if necessary) from host. 
First one lowers the clock and sets the data (RSTn, TMS and TDI). Second write does not 
modify the data, but raises the clock. See JTAG specification for more info. Then one bit 
is read from CENTRONICS_BUSY signal, using IOCTL. 
 
Port Description  Width Direction 

(relative to host) 
Assigned centronics pin 

TCLK Clock 1 Output D0 
TRSTn Reset 1 Output D1 
TMS Mode Select 1 Output D2 
TDI Data Input 1 Output D3 
TDO Data Output 1 Input BUSY 
 
 



OpenCores GDB for OR1k 22.5.01 

www.opencores.org Rev 0.2 3 of 7 

3  
JP3 Protocol 

Unlike JP1 it requires small amout of extra logic (e.g. PLD) on the board, but is six times 
faster. 
 

HOST TARGET

GDB OR1k
machine
description

LPx JTAG

Centronics
Cable

OR1k

Dev. I/FTAP

8

3 PLD

4
1

 
 
This protocol does not directly change signals of JTAG port, but instead sends three pairs 
(TMS, TDI) and receives three TDO signals. CLK signal has different meaning: both 
clock positive and clock negative edge represents data valid. If bitstream length is not of 
modulo 3, then zeros are appended to TMS, data is x. This way JTAG stays in 
RUN_TEST/IDLE state. 
Shortly, PLD circuit should translate JP3 protocol to JP1 for each data. 
 
Port Description Width Direction 

(relative to host) 
Assigned centronics pin(s) 

TCLK Clock 1 Output D0 
TRSTn Reset 1 Output D1 
TMS Mode 

Select 
3 Output D2, D4, D6 

TDI Data Input 3 Output D3, D5, D7 
TDO Data Output 3 Input BUSY, PAPER_ERR, 

SELECT 
 



OpenCores GDB for OR1k 22.5.01 

www.opencores.org Rev 0.2 4 of 7 

4 
Software Operation 

 
This section deals with the software operation. 
 
Communication example: Setting SW Breakpoint 
 
It all starts when setting breakpoint in gdb prompt: 
(gdb) breakpoint 0x1234 
GDB then internally searches for target specific macros, like (INSERT_BREAKPOINT, 
TARGET_XCHG_MEMORY, BREAKPOINT_FROM_PC, …) to replace instruction at 
address 0x1234 with l.brk. Previous instruction is backed into host buffer. When 
or1k encounters l.brk instruction it halts. GDB meanwhile continuously polls 
processor status. Note that processor can be stopped using access to or1k registers. 
 
GDB (remote) target uses JP1/3 protocol via parallel port driver (e.g. /dev/lp0) and JTAG 
I/F to access or1k registers, as specified in Bender Development Interface Document. For 
each 32b memory or register access we have to send 65 bits for data (and address), 8 bit 
CRC and some control bits (for JTAG purposes). See the RISC Development document 
for details. Using JP3 protocol we don't need to send extra dummy bits (one transfer 
requires exactly 24 parallel port writes, and for reading extra 11 reads). 
 

4.1 Reset and Initialization of Remote Target 
In order to debug the target, program has to be transferred to a stable environment. Since 
after the chip reset the processor is surely in stable and well defined state, it is naturally to 
stall processor right after the reset. Implementation specific processor info is then read, 
and program data is transferred. Right after that remote debugging can start. 
More accurately - following steps are taken: 

1. set processor reset 
2. set processor stall 
3. unset processor reset 
4. read implementation specific registers and configure gdb (e.g. UPR) 
5. set debug specific registers to idle state 
6. transfer data (when user executes load command) 
7. unstall processor 

 

4.2 Communication with Target 
It is not smart to do complex operations while processor runs, since we can enter 
unpredicted state. During such complex operation (program loading, setting breakpoints, 



OpenCores GDB for OR1k 22.5.01 

www.opencores.org Rev 0.2 5 of 7 

etc.) processor is stalled. Smaller operations like register or memory read can be made 
during normal processor operation1. 
 

4.3 Hardware Supported Breakpoints and Watchpoints 
Since debug unit has limited number of matchpoint resources, they should be used 
wisely. gdb default operation is first to set HW breakpoints and then SW ones. Hardware 
breakpoint can be set explicitly on e.g. some ROM location, using hbreak command. 
DVRx and DCRx pairs are programmed to set proper matchpoints. Normal breakpoints 
use only one matchpoint, while watchpoints at least two (e.g. data access watchpoint is 
set on memory address range, thus yielding conditional: addr >= 0x1000 && addr <= 
0x1003). For each watchpoint chaining is set in DMR1 register to properly connect 
matchpoint conditionals. We always tend to use lower indexes first and sometimes 
mathcpoints must be reordered to find optimal fit. 
 

4.4 Ending Communication 
It is not necessary for gdb to do anything when ending remote session. However, 
sometimes processor is connected to viable equipment. If continuing program or 
unpredicted state is entered, damage can occur, thus processor stall is attempted2. 
 

                                                 
1 gdb user must be aware that he is using asynchronous operation. 
2 Note that it is not always possible for gdb to properly end communication, e.g. cable to the target is 
disconnected. 



OpenCores GDB for OR1k 22.5.01 

www.opencores.org Rev 0.2 6 of 7 

5 
Supported Features 

 
Warning: breakpoints, watchpoints and catchpoints have different definition in or1k than 
in GDB. 
 
or1k feature Description Function in 

GDB 
Comment 

processor stop immediately 
stops or1k 

^C fully supported 

full register 
and memory 
access 

 set fully supported 

l.brk software 
breakpoint 

breakpoint Fully supported. 
At the same time software conditional 
breakpoints are supported by GDB. First 
HW breakpoints are set. 

matches, 
watchpoints, 
breakpoints 

hardware 
breakpoint 

breakpoint, 
hbreak, 
watch 

A lot of work to determine whether 
expression satisfies break criteria.  
Also HW breakpoints are set to positions 
where SW cannot be placed (e.g. flash). 
Limited conditional watchpoints. 
(like e.g. mips) 

trace trace trace We chose to declare or1k specific trace 
instruction: hw_trace, which matches 
or1k hardware trace. trace would be 
reserved for SW trace. 

catchpoints special events, 
that cause 
breakpoint 

 supported by GDB, but custom names 
has to be defined somehow 

 
 
 



OpenCores GDB for OR1k 22.5.01 

www.opencores.org Rev 0.2 7 of 7 

Appendix A 
Parallel Port 

 
Unavailable yet. Search for "parallel port programming" and "parallel port pins" on the 
Internet. 
 


