
Project Name: OpenRisc 2000

Project’s Mission
We want to build processor core, that allows us greater clock speed and at the
same time more Dhrystone MIPS / MHz. NOTE: Since I’m a software engineer,
I may use inapropriate or wrong terms, so please have patience ;)

History
It looks that computer hardware (silicon) will reach its limits in few years,
and current arhitectures could not be easily improved. Software enginering has
moved and is still moving to higher languages. Languages highly dependend
on arhitecture are less and less used. All that leads us into search for new
arhitecture. Many solutions we tested and since this arhitecture is still under
development, we will present the current one.

Description
Analises showed, that instructions are normally not dependent on all registers
in register file. Since the many hazards which come with simultaneus access to
several registers, we proposed an idea, based on systolical array computers. The
idea is to provide as less register visibility (from functional unit point of view)
as possible.

Functional unit (later FU) can do any logical or arithmetic integer operation
like AND, OR, SHL, MOV, MUL (this can cause some problems if MUL is too
slow, but at first design we can skip it, and simulate MUL). Note, that every
FU does own simple instrucion decoding.

FUs are connected locally with optimized connection topology (so buses can
be short). Registers are distributed, so that each FU includes only one register,
into which it can write. Also the data from his neighbours could be read.
Neighbours of x are all FUs, that is x connected to.

But there is one problem - we normally need more registers than we have
FUs. We solved this problem using local registers as described later. There
are also some great benefits of such local processing - no pipelining and that
also means all those pipelineing hazards are history (note, that we may need
pipelineing just for instruction loading, if we have data and instruction coming
on the same bus).

What matrix size should we choose? Following instruction appearance fre-
quencies, aproximately 10%of memory store, 20%of memory load and 70%of
others, we conclude that, 3 to 4 FUs on the same bus could efficiently access
memory (in average and by appropriate compiler optimization). For example
3× 3 matrix would look like:

Besides local instruction decoding (done by each FU), we have also global
decoding unit, which decodes general instructions, and passes data into FUs.
General instructions include jumps and other control type and some special
instructions.

Since there is a limit in parallelity of current programs, we can estimate,
that larger vertical matrix sizes would not yield more speed.

Local Registers
If we add to each FUi some local registers Lij which can be access only by



Figure 1: Block diagram

Figure 2: Functional unit



Figure 3: Basic Topology

FUi, we do not need to add more connections between FUs. Compiler can be
also easily designed to use full power of these registers, as described in compiler
section. Addressing of such registers for FUi with main register Ri would look
like:

{operator}{destination : Lij ∨Ri}{source : Lik ∨Ri}{source : Lik ∨Rn}

where Rn is register of a neighbour (FUn is neighbour of FUi).

Topology
It is very important, that we chose good topology (to allow FUs maximum
possible communication with smallest possible connections). Also there is one
request - make all FU equivalent (such, that we do not know in which FU we
are just by knowing connection types), which allows us better code optimization
algorithms. Following picture shows two basic topologies where all FUs are
equivalent. First one includes only red connections, and heksagonal both red
and blue.

How Does it Work ?
Generally all FUs execute instruction in each and one cycle. If such instruction
loading would be too hard to do, we can make compromise: we can load whole
matrix rows or columns at a time:

{row}{{instr0}{instr1}{instr2}}

and at same time we save some space (it is very important that we reduce com-
mand flow to minimum, since now even greater memory/processor speed ratio).
Note, that there are no arithmetic flags, however there may be something like
control word register and special flags which allows efficient loop termination.
Why is it smart to use many addressing types? Memory is slow - each extra
access is redundant and significally decreases performance, and besides, it’s only
a minor complication, since we need it just for load/store instructions.



Figure 4: Metal layers

Compiler
Because we designed software on hardware (almost), we can expect more com-
plicated compiler than current ones. We are fortunate (well, we designed it so),
that this arhitecture is pretty similar to ordinary RISC arhitectures, so in first
stages we can program with a bit modified GNU GCC compiler. Tests showed,
that using GCC with properly defined register classes, we can make pretty good
output code. However, for optimum results we can use algorithms developed
for this application. We also think that, after some time, optimized program in
assembly code could be written just as fast as on ordinary pipelineing computer.
Local Registers
When given program data flow graph, we can convert register usage: we can
store register Ri into local one Lij instead in Ri and gain one free register, and
by next access of (previous) Ri, we just use Lij , as shown on Figure .

Cache Line Loading
There is a possibility to include some special instructions that loads whole cache
line into defined registers. Currently we are not working on this idea, since it
will probably complicate compiler. Maybe after some time such improvement
would be nice, bacause it would singificantly increase memory performance, al-
lowing us more FUs on the same bus.

Code Optimization Algorithm
Adapting current compiler optimizing schemes, makes things pretty compli-
cated. So we propose different point of view. Optimize program execution as
we would have enough registers. Optimal height enumeration as shown on figure
takes linear time O(n). Then we shrink the graph. Width is defined by num-



Figure 5: Local Register Usage

Figure 6: Finding dependencies



Figure 7: Allocating resources

ber of FUs. This problem is NP-complete, so we have to use an aproximation
algorithm. Having done that, all we have to do is to allocate registers. Each FU
allocates only one register, so part of register allocation is already done. From
now on we propose following algorithm: we go from bottom up and permutate
current instructions (that have height = i), so every instruction below us can
access its data. If such rearangment is not posible, we use local registers, or
if even that fails, we spill register and enumerate height of upper graph again.
We can expect, that this (greedy) aproximation algorithm (O(nm), where m is
number of FUs) will yield good results, since many natural gaps in graph allows
several free data acceses.

Efficent loop unrolling
Simulations have shown, that basic blocks (sequence of code, with one input
and one output point) in normal desktop computer can rearange instructions to
archive in average 2.09 IPC. With some OpenRisc 2000special improvements,
we can archive up to 3.19 IPC. What about other FU? We can use SMT design
as described later or we can significantly boost performance using efficent loop
unrolling. Suppose we have a statement in high level language:
for(x;y;z1) z2;
Compiler would translate this to something like:
loop: x
cond: y

jump cond,end
body: z1

z2
jump cond

end:

If loop is natural and at loop start we know how

many times will it repeat, efficient loop unrolling would look something like:



opt loop: preloop execute (k-1 instructions)
opt cond: jump count >= 0,opt end
opt body: multiple pass (k passes) loop unrolled instructions

jump opt cond
opt end: postloop execute (k-1 instructions)

Where k is height of z1∪ z2 graph.

Simultaneous Multi Threading (SMT)
If efficiency of FU, will be too low, even after loop unrolling, and we still want to
achieve greater IPC ratio, we can apply SMT idea to OpenRisc 2000. Suppose
that we have m threads and k × l-matrix. In each cycle there exists a priority
numbering pi = (i + c)modm, where c is number of current cycle (lower the pi,
higher priority). Then FU matrix is filled by descending thread priority - and of
course only non-ocupied FUs in matrix can be filled. Note also, that there is no
”FU renaming” for example, if t5 needs FU 4, it waits for that FU to be free, it
cannot use any other (eg. FU 7). If compiler randomly distributes FU usage, we
can get pretty good average (when m→∞: efficiency→ 1). Of course we must
also have in mind that Fu cannot be allocated, if it accesses registers of any
other thread FUs, unless we add some more harware logic in FUs. Each thread
instruction matrix is executed and can execute next one, when all instructions
from the instruction matrix have been executed.

This resource sharing scheme is actually improved Round-Robin, and guar-
anties us, that each thread executes at least one instruction matrix per m clocks.

Sections Coming:
Instruction ordering in global optimization
Flags
Branch Prediction
Hardware Implementation
Exceptions
Memory Organization

Last updated: December 17, 1999


