
Proceedings of the
GCC Developers’ Summit

June 28th–30th, 2006
Ottawa, Ontario

Canada

Contents
An interblock VLIW-targeted instruction scheduler for GCC 1

A. Belevantsev, M. Kuvyrkov, V. Makarov, D. Melnik, and D. Zhurikhin

Replacement special loop form by a call of built-in function 13
Tomáš Bílý

Call path profiling for unmodified, optimized binaries 21
N. Froyd, N. Tallent, J. Mellor-Crummey, and R. Fowler

Recent Developments in GDB 37
Paul J. Gilliam

Profile driven loop transformations 49
Richard Günther

Multi-Language Programming 59
C. Comar, M. Gingell, O. Hainque, and J. Miranda

Interprocedural optimization on function local SSA form in GCC 75
Jan Hubička

Improved Superblock Optimization in GCC 85
Robert Kidd & Wen-mei Hwu

Matrix flattening and transposing in GCC 97
Razya Ladelsky

A report on the progress of GNU Modula-2 and its potential integration into GCC 109
Gaius Mulley

Devirtualization in GCC 125
Mircea Namolaru

OpenMP and automatic parallelization in GCC 135
Diego Novillo

Autovectorization in GCC—two years later 145
Dorit Nuzman & Ayal Zaks

Speeding Up Thread-Local Storage Access in Dynamic Libraries 159
Alexandre Oliva & Guido Araújo

GRAPHITE: Polyhedral Analyses and Optimizations for GCC 179
S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.A. Silber, & N. Vasilache

Treegion Instruction Scheduling in GCC 199
Michael C. Rosier & Thomas M. Conte

Improving Software Floating Point Support 211
Nathan Sidwell & Joseph Myers

Low-Level Performance Analysis 219
Peter Steinmetz

Switch Statement Case Reordering FDO 235
Edmar Wienskoski

Changes to RTL Dataflow Analysis 243
Danny Berlin & Kenneth Zadeck

Conference Organizers

Andrew J. Hutton, Steamballoon Incorporated
C. Craig Ross, Linux Symposium

Review Committee

Ben Elliston, IBM
Janis Johnson, IBM
Mark Mitchell, CodeSourcery
Toshi Morita
Diego Novillo, Red Hat
Gerald Pfeifer, Novell
Ian Lance Taylor, Google
C. Craig Ross, Linux Symposium
Andrew J. Hutton, Steamballoon Incorporated

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

An interblock VLIW-targeted instruction scheduler for
GCC

Andrey Belevantsev
ISP RAS

abel@ispras.ru

Maxim Kuvyrkov
ISP RAS

mkuvyrkov@ispras.ru

Vladimir Makarov
Red Hat

vmakarov@redhat.com

Dmitry Melnik
ISP RAS

dm@ispras.ru

Dmitry Zhurikhin
ISP RAS

zhur@ispras.ru

Abstract

Modern VLIW architectures (e.g. IA-64) re-
quire instruction level parallelism (ILP) to be
explicitly exposed by a compiler. An instruc-
tion scheduler is a key compiler component for
utilizing ILP. The current GCC scheduler has a
number of pitfalls in approaching this goal, in-
cluding the oldest interblock scheduling algo-
rithm (whose weakness is in prevention of in-
struction cloning), non-optimal region forma-
tion, a traditional two-pass execution scheme
(before and after register allocation), and lack
of transformations for eliminating false depen-
dencies (e.g. register renaming and forward
substitution).

In this paper, we present an approach for im-
plementing new aggressive instruction sched-
uler for GCC. The scheduling algorithm is in-
spired with selective scheduling and resource-
constrained software pipelining approaches. It
is mainly targeted for VLIW-like platforms, but
the framework being implemented is general
enough and it can be used for other targets in
the future. The key features of the approach are
as follows: works with DAG regions, supports
code motion with adding bookkeeping insns,

supports register renaming and forward substi-
tution, and integrates with software pipelining.
We discuss the algorithm and its adaptation to
GCC, implementation issues, and the current
state of the project.

1 Introduction

Current GCC instruction scheduler has a long
history. Integration of the Haifa scheduler has
started in August 1997, when the first version
of haifa-sched.c appeared in CVS repos-
itory. Since then, the scheduler’s source code
was significantly cleaned up1, and new fea-
tures (such as scheduling of extended basic
blocks and DFA scheduling) were added. Nev-
ertheless, the scheduler doesn’t work well for
the modern architectures, which require expos-
ing instruction-level parallelism during compi-
lation. These are the EPIC architecture [EPIC]
and various VLIW embedded systems. The

1Still, some bits of the scheduler were integrated in
GCC only recently. For example, using GCC edge prob-
abilities instead of scheduler’s own evaluation is sup-
ported only since February 2006.

2 • An interblock VLIW-targeted instruction scheduler for GCC

major pitfalls of the current scheduler are as
follows:

• The oldest interblock scheduling ap-
proach. The Haifa scheduler is a variant of
dominator-path based scheduling, which
appeared first in 1992. It tends to improve
performance on the critical path sacrific-
ing other paths in a region. Conceptually
better approach should try to improve per-
formance on all paths through the region.
The second problem with the approach is
that it doesn’t support instruction cloning,
i.e. code motion is allowed only when cre-
ating bookkeeping copies to preserve pro-
gram correctness is not necessary. Moving
up branches is also impossible without in-
struction cloning.

• Interblock scheduling is placed before reg-
ister allocator and reload passes. This
leads to the following disadvantages:
firstly, scheduled insns could be later sig-
nificantly changed (especially by reload);
second, a single instruction before reload
could be later splitted into several tar-
get insns, so before reload the scheduler
works with inaccurate model of pipeline
hazards.

• Lack of instruction transformations that
eliminate nontrue dependencies. The most
important such transformations are par-
tial register renaming and forward substi-
tution. Other examples are predication
(which turns control dependencies into
data dependencies) and instruction muta-
tion (which turns e.g. shift insn into multi-
ply insn when this allows to execute more
insns on the current cycle). It should be
noted that register renaming and forward
substitution are essential to achieve good
results when a scheduler is placed after
register allocation.

Since the Haifa scheduler implements code mo-
tion without copies, it doesn’t support creation
of basic blocks or instructions during schedul-
ing. On the contrary, adding support for in-
struction cloning and other transformations re-
quires the infrastructure for manipulation of in-
structions and basic blocks. During our project
on implementing speculation support in the
scheduler we have found that creating such an
infrastructure inside the Haifa scheduler is hard
and requires a lot of hacking. Besides this, it is
desirable to have a framework for evaluating in-
struction transformations, which should allow
adding/removing and enabling/disabling trans-
formations. This is also not easy to achieve
with the current implementation.

Based on the above considerations, the project
on implementing new aggressive interblock
instruction scheduler for GCC was started.
The ultimate goal of the project is to create
an infrastructure capable of scheduling arbi-
trary DAGs and supporting various instruction
transformations, among which are instruction
cloning, partial register renaming, forward sub-
stitution, code motion of branches, and unifica-
tion. The scheduler infrastructure should sup-
port fine-grained control over transformations
to allow e.g. enabling speculation support on
ia64 and disabling instruction cloning on em-
bedded targets. The other goal is to create an
infrastructure for manipulating instructions and
control flow graph during scheduling. Some of
required functionality could be borrowed from
the previous project on speculation support.

We have chosen selective scheduling
[Moon97] as a basis, also using thoughts
from resource-constrained software pipelining
(RCSP) [Aiken95] and percolation scheduling
[Nicolau85]. Selective scheduling provides a
thorough summary of scheduling ideas also
mentioned in RCSP and percolation schedul-
ing approaches, so it serves as a great starting
point. Its basic algorithms are significantly

GCC Developers’ Summit 2006 • 3

reworked by us for the GCC implementation.

We are trying to follow evolutional approach
in the implementation process. Basic pieces
of the infrastructure that provide the simplest
code motion features are implemented first,
and then more instruction transformations are
added. Our goal is to get the working scheduler
as early as possible, and then keep it working
after addition of every single transformation.

The project is an ongoing work started in
September 2005. At the moment of this writ-
ing we are in the middle of the way. This paper
describes the current status of the project focus-
ing on the improvements we made to the basic
algorithms. The rest of the paper is organized
as follows. Section 2 provides an overview of
the basic scheduling algorithms of the selective
scheduling approach focusing on the key ideas
we use for the GCC scheduler. Section 3 covers
the most important implementation challenges
and solutions that we designed for them. Our
current progress is sketched in Section 4, while
Section 5 concludes.

2 The basic algorithm

Selective scheduling approach contains the fol-
lowing key ideas of the interblock scheduler de-
sign: separation of the available insn computa-
tion and the actual code motion stages, formu-
lation of the computation stage through sim-
ple propagation routines, incremental recom-
putation of the available insns, partial register
renaming through scheduling right-hand sides
(RHSes) instead of whole insns, representa-
tion of a VLIW insn as a tree for moving up
branches. We use all these concepts in our
implementation and explain them in the below
subsections.

2.1 The main scheduling routines

The scheduler takes as an input an arbitrary part
of the control flow graph that forms a DAG.
The driver routine breaks the CFG onto several
DAGs and schedules each of them separately
via schedule_region routine, which con-
tains the main scheduling loop. Each iteration
of this loop tries to gather a parallel group of
instructions at the currently scheduling point,
and then to advance the point. A parallel group
corresponds to a single VLIW instruction when
targeting to a VLIW architecture, or to a regular
instruction in other cases. The loop terminates
when no more instructions are left for schedul-
ing.

Filling a parallel group is handled by the
fill_group routine. Its driver loop adds
new instructions to the current parallel group
until target resources and data dependencies
permit. First, the set of available operations, or
av set, is computed for the current scheduling
point. Then the best operation is chosen and
scheduled. Finally, the best operation is moved
up to the scheduling point from its original lo-
cation, possibly creating bookkeeping copies
and updating av sets along its moving path (see
Fig. 1).

The basic routines do not change when more
transformations are added to the scheduler. In-
stead, the new functionality is incorporated into
the computation, choosing, and code motion
stages. For example, partial register renaming
is done through scheduling RHSes instead of
whole instructions. An instruction is eligible
for register renaming when it is a store to a reg-
ister, i.e. of the form (set (reg) (rhs)).
For such an instruction, only its RHS partici-
pates in the scheduling process. The RHS is
added to the av set, the choosing routine be-
sides the best operation also finds a target regis-
ter for the RHS, and the operation is scheduled

4 • An interblock VLIW-targeted instruction scheduler for GCC

fill_group(insn) {
group = create_empty_group ();

while (1)
{

av_set = compute_av_set (insn);

best_op = choose_best_op (av_set);
if (best_op == NULL)

break;

schedule_op (best_op);
move_op (insn, best_op);
advance_scheduling_point (&insn);

}

return group;
}

Figure 1: The fill_group routine

as best_reg = best_rhs. Correspond-
ing bookkeeping copies for this instruction are
created during code motion in move_op. We
will consider that some insns are scheduled as
RHSes in the below subsections and will use a
term operation to denote either an insn or an
RHS.

2.2 Computation stage

The task of the computation stage is to gather
all instructions available for scheduling along
all execution paths. The simple way to do this
is to traverse the DAG starting from current
scheduling point in reverse topological order.
When visiting an instruction (a graph node n),
first a set of the insns available immediately af-
ter n is computed as a union of n’s successors’
av sets. Then this set is propagated through n
by filtering out its elements that could not be
moved up past n. Finally, n’s operation is col-
lected and added to the set:

avset(n) = moveup_set(
⋃

x∈Succ(n) avset(x))⋃
av_op(n)

As the code motion stage invalidates the av set
found, it should be recomputed after schedul-
ing each single insn. The recomputation should
be done incrementally to avoid high overhead.
It can be noticed that after code motion av sets
become invalid only along the moving path and
could be restored using the valid sets from other
basic blocks. Hence the key idea of the compu-
tation stage is to save the intermediate av sets
at the beginning of each basic block to avoid
recomputating the sets from scratch.

moveup_op(insn, op) {

/* Ok to move if no dependence. */
if (!data_dep_between (insn, op))

return op;

/* Try substitution. */
if (true_dep (insn, op) && rhs_p (op)

&& copy_insn_p (insn))
{

dst = SET_DEST (insn);
src = SET_SRC (insn);

if (dst_is_in (op, dst))
return substitute (op,

dst, src);
}

/* Can’t do anything. */
return NULL;

}

Figure 2: The moveup_op propagation helper

The moveup_set routine filters its input set
with the moveup_op helper, which deter-
mines whether the given operation could be
propagated through the current insn. The
moveup_op logic depends on the type of
the code motion we want to support. When
scheduling whole insns, it is enough to check
for the data dependence between the two insns.
However, when forward substitution is sup-
ported through RHS scheduling, we can do bet-
ter. For example, x+yRHS could be moved be-
fore the y=z copy as x+z, i.e. true dependence

GCC Developers’ Summit 2006 • 5

//current scheduling point
//best_op: z = b + c

if (...) {
a = b;

} else {
a = c;

}

z = b + c;

(a) Before the traversal

//current scheduling point
z = b + c;

if (...) {
a = b;

} else {
a = c;
//bookkeeping copy
z = b + c;

}
//found and deleted:
//z = b + c;

(b) After traversing ‘then’ path

//current scheduling point
z = b + c;

if (...) {
a = b;

} else {
a = c;
//found and deleted:
//z = b + c;

}

(c) After traversing ‘then’ and ‘else’ paths

Figure 3: Creating bookkeeping code

between these two operations can be eliminated
with substitution. In this case the propagation
helper will return the modified operation (see
Fig. 2).

2.3 Code motion stage

When the av set is calculated, the scheduler
chooses the best element of the set (either an
instruction or an RHS) for moving into the cur-
rent group. The task of choosing the best op-
eration from the av set is orthogonal to the
rest of the scheduler and usually is driven by
implementation-dependent heuristics, so it is
covered in the next section. Here we assume
that the best operation best_op is chosen and
now the task of the code motion stage is to actu-
ally move it up to the current scheduling point.

The code motion process is driven by the
move_op routine. It traverses the DAG start-
ing at the current scheduling point in search of
the original operations (from which best_op
could be derived). Let’s assume first that we’re
scheduling only instructions, then it’s enough
to search just for best_op. When the oper-
ation is found, it is deleted from its original
place and moved to the parallel group. Then
the routine backtracks and continues the traver-
sal. When backtracking along the already tra-
versed code motion path, bookkeeping copies
of best_op are inserted on edges that join

the current moving path from outside. When
the traversal explores other code motion path
and sees already created bookkeeping copy, it
is recognized as original operation and deleted
in the same way (see Fig. 3). This allows to
create only necessary bookkeeping code.

The process is more complicated when RHSes
are also scheduled. It is not enough to search
for the best_op because it could change
through substitution. Hence when traversing
through a copy instruction, we should “un-
substitute” best_op to reproduce its original
form and add the resulting operation to the set
of operations we’re searching for. Back to our
previous example, when x+z is the best op-
eration and we’re traversing through y=z, we
don’t know whether this operation was moved
up earlier as x+y (through substitution) or as
x+z (unchanged), thus we should search for
both forms below the copy. To reduce the num-
ber of operations we should search for, the set
of these operations is intersected with the av
sets saved in basic blocks. This is possible
because the available operations which can be
found below a DDG node should be in its av
set.

When the original operation is found, it is
either removed or changed to a copy old_
dest=new_dest, when register renaming is
used. Then during backtracking the current
form of the best_op at the node being tra-

6 • An interblock VLIW-targeted instruction scheduler for GCC

versed should always be retained to allow cor-
rect creation of bookkeeping code.

2.4 Tree instruction

The convenient form for representing a paral-
lel group (i.e. instructions that could be emit-
ted at the same cycle) is a tree instruction (in-
troduced in [Ebcioğlu88]). Each node of the
tree instruction corresponds to a branch test,
and leaf nodes correspond to instruction labels
where their parent can branch to. Each edge
of the tree instruction corresponds to sequential
operations. Tree correctness and its execution
semantics is determined by the target. For ex-
ample, when the target is not capable of multi-
way branching, the tree would not contain any
branch test nodes.

The concept of tree instruction is necessary for
doing code motion of branches. In this case the
computation stage takes branches into account
allowing them to be propagated up to the next
branch. The code motion stage analogously
searches also for branches and creates book-
keeping copies of them. The fill_group
routine is changed to emit the insns into the tree
instruction. When a branch is scheduled and
there’s still place in the current parallel group,
an extra scheduling point (or boundary) is cre-
ated. The compute_av and move_op rou-
tines are called for each group boundary, thus
allowing to schedule instructions at both targets
of the branch.

3 The GCC implementation

The basic scheduling algorithms sketched in
the previous section are reworked and some-
what improved for the GCC implementation.
The key improvement that we make in our im-
plementation is the use of data dependencies

to avoid unnecessary computations during the
computation stage. The idea here is that we
don’t want to collect operations that would any-
way be filtered out during later traversal. Re-
moving such operations as early as possible re-
duces the time needed for each update of the av
sets, which happens on each scheduling itera-
tion.

The second major implementation feature is
handling a number of instruction transforma-
tions through annotating dependencies with an
extra data. The data is used to decide whether
the scheduler is able to break the particular de-
pendence using the given transformation. For
example, data speculation is handled by anno-
tating dependencies with a spec flag (what kind
of speculation should be used) and a weakness
(how “probable” is this dependence); forward
substitution is handled by placing substitutable
and non-substitutable dependencies to differ-
ent lists. The advantage of this approach is
that when adding new transformation, it allows
natural extension of the existing framework.
Namely, the basic infrastructure remains un-
touched, and the only changes go to the depen-
dence data structures and the propagation rou-
tines of computation and code motion stages.

Other implementation changes include compu-
tation of register liveness sets needed for regis-
ter renaming and CFG/insn handling infrastruc-
ture for code motion. These changes are neces-
sary to implement the concepts of the previous
chapter in any real compiler. Besides those, we
discuss implementation and target specific por-
tions of the scheduler that are not covered in
the basic approach, namely choosing the best
instruction for scheduling and the best register
for renaming, and region formation.

3.1 Input regions

The scheduling approach we use permits any
kind of DAG regions as an input. The needed

GCC Developers’ Summit 2006 • 7

functionality is to find whether a basic block or
an edge belongs to the current region and the
possibility to extend a region when new basic
blocks are created. The former is used during
region traversal, whereas the latter should be
done during the code motion stage. At the mo-
ment of writing we use the region infrastruc-
ture from the Haifa scheduler extended with
the patches for the ia64 speculation support
[IA64Speculation]. In the future we consider
to use the region finder implemented for GCC
by Kenneth Zadeck [ZadeckRegions].

3.2 Data structures and their computation

There is a number of data structures needed by
the scheduler that can be represented as linked
lists: a path in a DAG, parallel group bound-
aries, fences2, and av sets. These structures
are backed up by a single linked list interface.
Custom list types are implemented through this
interface, and their data is accessed through a
union contained in a list node analogously to
struct rtx_def. This provides a uniform
interface for accessing, manipulating, and iter-
ating over the list-like data structures. All per-
instruction data is stored in the s_i_d array in-
dexed by INSN_UID analogously to the Haifa
scheduler.

The most important role is played by the avail-
ability and liveness sets (av and lv sets). This
is because the contents of av and lv sets should
be valid on each scheduling iteration, and their
initial computation and update is not trivial.
The basic approach for computing av sets sug-
gests to traverse a DAG collecting all opera-
tions on the way and filtering out those that
can’t be propagated through currently visiting
node. This solution is not optimal: an opera-
tion collected from the bottom of the DAG can

2A fence is a point at which the next parallel group
will be created and filled.

be moved up somewhere to the middle before
it would be filtered out, wasting time for un-
necessary propagation between the two nodes.
An ideal solution here would be to traverse a
dependence graph3 instead of a DAG. How-
ever, this is not possible due to: a) control
dependencies should be represented explicitly,
which leads to the quadratic complexity of the
algorithm, and b) a copy of av set should be
left at the beginning of each basic block to al-
low quicker code motion. We are implement-
ing the combined approach, i.e. the algorithm
still traverses a DAG, but uses dependencies to
decrease the number of computations needed
when visiting a node.

3.2.1 Instruction dependencies and av sets

Instruction dependencies are split into two
types—hard and weak ones—and placed to dif-
ferent lists accordingly.4 Weak dependencies
are those that can be broken by the scheduler,
while hard ones are those that can’t. Only true
dependencies can be weak, while hard ones
are {anti,output}-dependencies and all others
(for example, created from ASMs or SCHED_

GROUP_P insns). Weak dependencies that re-
quire different scheduling transformations to be
broken (for example, either with substitution, if
the insn is scheduled as a RHS, or with data
speculation) can further be splitted onto several
lists. The Haifa scheduler will see all depen-
dencies as hard ones.

Maintaining several dependence lists helps to
distinguish weak dependencies (which are of
the most interest to the scheduler) among oth-
ers. We can easily check whether an instruc-
tion has hard dependencies (not traversing the

3Given that it contains both data and control depen-
dencies.

4On the current GCC mainline this separation is im-
plicit: the whole dependence list is maintained sorted,
and weak dependencies are located after hard ones.

8 • An interblock VLIW-targeted instruction scheduler for GCC

whole dependence list), or traverse and sort
only weak ones. However, this comes at the
expense of writing additional code to handle all
dependencies at once.

Creation of dependencies and their separation
by types happens in sched-deps.c. During
the computation stage the node visiting algo-
rithm looks as follows:

• When entering a node, first a union of
node’s successors’ av sets is computed the
same way as in the original approach, i.e.
the visiting routine is called recursively.

• Let’s denote node’s operation as op. If op
has any hard dependencies, it is not added
to the av set. If op has only substitutable
weak dependencies, then it’s added to the
set, and all op’s producers are notified that
when they are visited, op should be sub-
stituted. This is achieved by maintaining
additional list of operations that need sub-
stitution for each copy instruction. If op
has no dependencies (or has weak specu-
lative dependencies), it’s also added to the
list.

• When a copy node is being visited, we
should check whether any pending sub-
stitutions should be performed on opera-
tions from the av set. As we maintain a
separate list of such operations, we don’t
need to traverse the whole set searching
for them. Instead, a substitution is per-
formed for each pend_op from node’s
pending list, and all weak dependencies of
node’s op are added to pend_op’s depen-
dencies. These dependencies also need to
be checked the same way as in the pre-
vious step: if op has any hard dependen-
cies, then all pend_ops should be removed
from the av set.

• When the node visited is a basic block
head, a copy of the intermediate av set is

left at the node analogously to the original
approach.

Consider Fig. 4 as an example. Node 4 doesn’t
have any hard dependencies, but has one weak
substitutable dependence, so its operation can
be scheduled as an RHS: y+1 is added to the av
set and to the pending ops of Node 2. Node 2
has no dependencies so it’s safe to add it and
all its pending ops to the av set. Before adding
pending operations they should be substituted,
so y+1 becomes z+1.

(1) if cc0 av(1) = {z, z+1}
/ \
(2) y = z pend_ops(2) = {y+1}

\
(3) if cc1 av(3) = {y+1}

/
(4) u = y+1 weak_dep(4) = {2},

is substitutable

Figure 4: Using dependencies during
compute_av

3.2.2 Liveness sets

Liveness information is stored as regsets and
computed using the scheme similar to the com-
putation of av sets. The compute_lv driver
also traverses a DAG and updates the interme-
diate lv sets. First, the intermediate lv set is
calculated as a union of node’s successors’ lv
sets. Then all registers that are set or clobbered
by the visiting insn are subtracted from the lv
set, and all registers that are used by the insn
are added to the set. A copy of the intermedi-
ate lv set is saved at the beginning of each basic
block to allow faster updating.

The sets of registers that are used, set, or clob-
bered by an instruction are calculated as a
side effect of dependence analysis in sched_
deps.c. The sets are the part of per-
instruction dependence data structure deps_

GCC Developers’ Summit 2006 • 9

insn_data and are stored in d_i_d array in-
dexed by INSN_LUID. Initial lv sets are not
computed from scratch but rather taken from
global_live_at_start sets.

3.3 Choosing the best instruction

When the av set is computed, it’s time to choose
the best available operation from the set. This
task is usually based completely on heuristics.
The basic set of heuristics to use is taken from
the Haifa scheduler, i.e. critical path, register
pressure, control flow probability, etc. Data
speculation adds to those the weakness de-
gree of speculative dependence. The point that
should be made here is that the role and weight
of each heuristic is to be determined during
evaluation and tuning of our implementation,
which are yet in the future. As of now, we’d
like to make several points regarding the diffi-
culties in choosing the best operation that come
from forward substitution and register renam-
ing transformations.

When scheduling an RHS, there’s a number of
problems to be solved. First, a target register
for storing the result of RHS should be cho-
sen. This register should not be live along the
moving path of the RHS from its original lo-
cation(s) to the current scheduling point. This
condition is not easy to check because during
the choosing stage we don’t know this moving
path. The path is implicitly constructed dur-
ing the code motion stage for the chosen oper-
ation, but before this we need to know this path
for all available RHSes. Current implementa-
tion of this step is slow and actually performs
the traversal similar to that of move_op for all
members of the av set. The better way would
be to calculate the sets of available registers for
each RHS during the computation stage.

If original register of an RHS is available, then
it’s always the best choice. If not, then the

best register is chosen in the way analogous
to that of regrename.c. When no registers
are available, the RHS cannot be scheduled. In
the future, the logic for spilling a register in fa-
vor of using it for renaming should be imple-
mented, namely using function saved registers
for renaming.

The second problem is using the DFA pipeline
descriptions for modeling the processor state.
When scheduling an insn, DFA is used anal-
ogously to the Haifa scheduler, i.e. to check
whether target resources permit scheduling of
the insn on the current cycle. The first cycle
multipass scheduling [Makarov03] will also be
adapted from the Haifa scheduler to work di-
rectly on av sets. When scheduling an RHS,
a valid insn should be formed first and then
passed to the DFA interface. The possible opti-
mization would be to extend the DFA interface
to be able to handle RHSes at least for some
cases.

The last problem is scheduling of multilatency
operations. Fortunately, it could be solved with
adding an extra dependence attribute called
tick. A tick holds the simulated cycle number
on which producer’s result will be ready5. An
instruction cannot be considered for scheduling
until the current simulated cycle reaches a max-
imum from ticks of instruction’s dependencies.

3.4 Code motion

The basic thing that is needed for the imple-
mentation of the code motion with support for
instruction cloning is an interface for manipu-
lating instructions and basic blocks. Two typ-
ical problems to be solved are creating book-
keeping insns and creating basic blocks for
bookkeeping code. The code which solves
those tasks and extends global data structures

5In the Haifa scheduler this information is repre-
sented as a per-instruction attribute called INSN_TICK.

10 • An interblock VLIW-targeted instruction scheduler for GCC

of GCC is already in place. The extra code to
be written is the proper extension of the data
structures specific to the scheduler. This task
for creating basic blocks for recovery code was
solved in the ia64 speculation patch and would
be taken from there.

The other point to make here is that one of
the expensive parts of move_op is substitu-
tion/unsubstitution that should be done on the
operations we are searching for. Fortunately, it
is possible to make use of dependencies anal-
ogously to the computation stage. Substitu-
tion should be tried only for those copy insns
that are found in the weak dependencies of the
searched operations. It is also possible to save
the original form of the operation during the
computation stage and use it without perform-
ing actual substitution.

3.5 Target-specific details

A target affects the scheduling process through
a number of hooks. Analogously to the Haifa
scheduler the scheduler hooks can be used to
override the choosing decisions and instruction
costs. The new hooks we add are the hook to
determine dependence type (for example, for-
bid creating of weak dependencies), the hook to
disable scheduling an insn as an RHS, the hook
to affect register choosing decisions, and the
hooks for controlling speculation support simi-
lar to those of the ia64 speculation patch. The
features of cc0 targets (for example, schedul-
ing the cc0 user right after the setter) would
be handled via dependence attributes. Target-
specific reorganization passes such as bundling
on ia64 would remain untouched. For this pur-
pose, we will preserve the feature of marking
the insns that start a new cycle with TImode. In
the future, it is possible to consider integrating
the bundling with the scheduler, but this doesn’t
seem to worth the trouble.

4 Current progress

We planned the implementation process in a
number of stages. As noted above, we’ve tried
to follow the evolutional approach and keep the
working scheduler after each stage. The stages
are as follows:

• Implement the basic infrastructure, i.e. the
driver, computation and code motion rou-
tines. Do not allow any interblock code
motions or any transformations.

• Add interblock motions without copies
and adopt the DFA interface to the new
infrastructure. The resulting scheduler
should be similar to the Haifa’s.

• Allow instruction cloning during schedul-
ing. This step requires support for creating
bookkeeping code and liveness checking
analogous to the Haifa one.

• Allow forward substitution and register re-
naming. After completion of this step and
some cleanup the code can be placed in the
FSF branch.

• Support creation of hard and weak depen-
dencies in sched-deps.c. Use created
dependencies in computation and code
motion stages.

• Implement a tree instruction support,
which would allow implementing code
motion of branches.

The current status of the project is exactly in
the middle of this way. At the moment of writ-
ing (April 2006) support for instruction cloning
is implemented (i.e., checking of liveness infor-
mation and bookkeeping code creation), and all
the pieces are being tested together. The sched-
uler works on x86 in place of the old sched2
pass. However, benchmarks were not yet run
on any platform.

GCC Developers’ Summit 2006 • 11

5 Conclusions

In this paper, we present an effort of imple-
menting new aggressive interblock instruction
scheduler for GCC. The project goal is to de-
sign and implement a scheduling framework
that can be easily extended to support a number
of instruction transformations, such as register
renaming, forward substitution, instruction mu-
tation. Implementing those transformations al-
lows to place the scheduler after register allo-
cation passes. Following newer approach than
the Haifa scheduler would improve scheduling
for modern architectures such as EPIC.

Implementing a new scheduler for GCC has
to be a long project. Taking ideas of selec-
tive scheduling and RCSP as a start, we have
added better use of data dependencies, addi-
tional transformations such as speculation, and
more complicated register renaming in our im-
plementation. Now we are in the middle of
the way, and there’s still a lot of things to be
done. The major features that are yet to be
implemented are tree instruction support, code
motion of branches, better use of dependen-
cies, and using function saved registers for re-
naming. The future work would be to imple-
ment software pipelining on top of the sched-
uler, which is quite natural with our approach.

6 Acknowledgments

We’d like to thank Vladimir Makarov from Red
Hat for extensive consulting on this project.
The insights to instruction scheduling and GCC
world provided by Vlad are invaluable. We
thank Diego Novillo, Daniel Berlin, and James
Wilson for giving helpful comments to this and
other GCC work that we’re doing. And we’d
like to thank HP Company for sponsoring this
project and the Gelato Federation for their at-
tention to Itanium and GCC.

References

[Aiken95] Alexander Aiken, Alexandru Nico-
lau, and Steven Novack. Resource-
Contrained Software Pipelining. IEEE
Transactions on Parallel and Distributed
Systems, 6(12), pp. 1248–1270, Decem-
ber 1995.

[GCCInternals] http://gcc.gnu.org/
onlinedocs/gccint

[Ebcioğlu88] Kemal Ebcioğlu. Some design
ideas for a VLIW architecture for sequen-
tial natured software. In Parallel Process-
ing (Proceedings of IFIP WG 10.3 Work-
ing Conference on Parallel Processing),
North Holland, Amsterdam, 3–21, 1988.

[EPIC] Michael S. Schlansker, B. Ramakr-
ishna Rau. EPIC: An Architecture
for Instruction-Level Parallel Pro-
cessors. HP Laboratories Palo Alto
Technical Report HPL-1999-111,
February 2000. http://www.hpl.
hp.com/techreports/1999/
HPL-1999-111.pdf

[IA64Speculation] http://gcc.gnu.
org/ml/gcc-patches/2005-12/
msg01924.html

[Makarov03] Vladimir Makarov. The finite
state automaton based pipeline hazard
recognizer and instruction scheduler in
GCC. In Proceedings of GCC Develop-
ers’ Summit, Ottawa, Canada, June 2003.

[Moon97] Soo-Mook Moon and Kemal
Ebcioğlu. Parallelizing Nonnumerical
Code with Selective Scheduling and
Software Pipelining. ACM TOPLAS, Vol
19, No. 6, pages 853–898, November
1997.

[Nicolau85] Alexandre Nicolau. Percolation
Scheduling: a Parallel Compilation Tech-
nique. Technical Report. UMI Order

12 • An interblock VLIW-targeted instruction scheduler for GCC

Number: TR85-678., Cornell University,
1985.

[ZadeckRegions] http://gcc.gnu.
org/ml/gcc-patches/2005-09/
msg01888.html

Replacement special loop form by a call of built-in
function

Tomáš Bílý
SUSE CR

tbily@suse.cz

Abstract

There are some patterns in computer programs
(especially loops) which could be successfully
replaced by a call of some built-in function and
letting the GCC expanders decide which imple-
mentation is the best. As the built-in functions
are coded specifically for a target platform such
replacement can improve the runtime perfor-
mance.

In this report, we present an implementation
of this problem for some special cases of
loops which can be transformed to memset or
memcpy call. We also present performance re-
sults and a discussion limits of a current imple-
mentation.

1 Introduction

One of frequently used optimization methods
is a loop transformation. There are some loop
constructions with special statement patterns
that could be transformed into a built-in func-
tion call and an expander infrastructure in GCC
chooses the best possible implementation of
this function. This is a way how a compiler
could possibly take the best implementation of
the program constructions for a specific plat-
form and thus a runtime performance can be
improved.

Many of program constructions initialize some
arrays or copy the content of one array into
another array. We were inspired by this phe-
nomenon and we tried to search loops con-
structions and patterns for matching that could
be used for transformation into memset or
memcpy built-in call.

We can see that it is not necessary to transform
the whole loop. This case is a particular in-
stance of loop distribution (see [4]) where one
of the loops is transformed to built-in call.

Finding these patterns is very similar to a vec-
torization approach. Some of the construc-
tions could be optimized by use of current auto-
vectorization infrastructure. But this could be
done only on architectures that can support vec-
tor instructions. It is possible that the cur-
rent auto-vectorization optimization could not
be the best way to use.

Basic approach to handle the searching of
these patterns is based on the theory of data-
dependence analysis (see [1]). It must be ex-
amined that reordering the statements could not
produce incorrect results.

Current GCC contains implementation of data
dependence analyzer, scalar evolution infras-
tructure (see [2]) and auto-vectorization infras-
tructure (see [5]). We have heavily used all
those infrastructures in our implementation of

14 • Replacement special loop form by a call of built-in function

outline problem.

Rest of paper is organized as follows. In Sec-
tion 2 we describe our implementation. In Sec-
tion 3 we present current measurements of run-
time performance. In Section 4 we present
summary and we describe some future plans for
enhancement.

2 Implementation

We will call builtinizer an algorithm implemen-
tation that solves pattern matching and loop
transformation into built-in call.

Our implementation of builtinizer is developed
at the IR level of GIMPLE trees in SSA form
(see [3]). Builtinizer are trying to handle

• array references (see Figure 1a or Fig-
ure 3a)

• indirect (pointer) references (see Figure 1b
or Figure 3b)

• multidimensional arrays

• patterns on every level of nested loops

Patterns that builtinizer currently recognizes
are

• x[]..[] = 0

• *x = 0

• x[]..[i] = y[]..[i] or
r = y[]..[i]; x[]..[i] = r;
(in GIMPLE)

• *p = *q or r = *q; *p = r; (in
GIMPLE)

(a) array ref

for (i = 0; i < N; i++)
{
...
x[i] = 0;
...
}

(b) pointer ref

for (i = 0; i < N; x++, i++)
{
...

*x = 0;
...
}

Figure 1: memset built-in call pattern before
transformation

memset (x, 0, N * sizeof (*x));
for (i = 0; i < N; i++)
{
...
}

Figure 2: memset built-in call pattern after
transformation

Type of items must be one of the types char,
short, int, float, double.

Current implementation handles an multidi-
mensional arrays in inner most component
only.

2.1 builtinizer structure

Builtinizer applies a set of analysis on each
loop, followed by the built-in call transforma-
tion for the loops that had successfully passed
the analysis phase. Examples such transforma-
tions you may see in Figure 1 and Figure 2 or
Figure 3 and Figure 4.

GCC Developers’ Summit 2006 • 15

(a) array refs

for (i = 0; i < N; i++)
{
...
x[i] = y [i];
...
}

(b) pointer refs

for (i = 0; i < N; x++, y++, i++)
{
...

*x = *y;
...
}

Figure 3: memcpy built-in call pattern before
transformation

memcpy (x, y, N * sizeof (*x));
for (i = 0; i < N; i++)
{
...
}

Figure 4: memcpy built-in call pattern after
transformation

for (i = 0; x [i] == -1; i++)
{
x [i] = 0;
}

Figure 5: uncountable loop

2.2 builtinizer analysis

The first analysis phase probes the loop exit
condition and number of iterations. Than ex-
amine some control-flow attributes (for exam-
ple nesting level). One major restriction is re-
quired for a loop that can be builtinized. This is
that loop is countable (an expression that calcu-
lates the loop bound could be constructed and
evaluated at compile time or at runtime). For
example the loop in Figure 5 is not countable
loop. The loop bound analysis is done by scalar
evolution analyzer.

Next step finds all memory references in the
loop and checks if an access function that de-
scribes their modification in the loop can be
constructed. This informations are required
for the memory dependence tester and the ac-
cess pattern analysis. Dependences that do not
cover up memory operations are analyzed di-
rectly from SSA representation.

The final analysis phase scans all the statements
in the loop and determines if they match pattern
rules for transformation to built-in call.

2.3 builtinizer transformation

The analysis phases gather useful information
about the loop, the statements and the data ref-
erences. These informations are used during
transformation phase. Data structures that store
this informations are used from the vectorizer
and the data dependence analyzer. They are

16 • Replacement special loop form by a call of built-in function

• loop_vect_info – holds information
at the loop level

• stmt_vect_info – holds information
at the statement level

• data_reference – holds information
at the memory reference level

The loop transformation phase scans all ac-
cepted statements from the analysis phase and
these statements grouped to patterns. The state-
ment groups remove from the loop and insert
relevant built-in call statement before the loop.
The memory reference statements are implic-
itly removed by builtinizer but remaining scalar
statements (that have some relevance to the re-
moved statements) are expected to be removed
by dead code elimination.

Figure 6 illustrates the transformation process.
First, statements are grouped (by a pattern
recognition) to G1 = {S1} and G2 = {S3,S4}.
Then group G1 is transformed to memset
built-in call (see Figure 6b) and group G2 is
transformed to memcpy built-in call (see Fig-
ure 6c).

3 Experimental results

We have gathered current experimental results.
Testing systems were Pentium-M 1.6 GHz and
AMD Athlon 64 X2 Dual Core Processor 2200.
List of Pentium runtime performance results is
in Table 1. List of Athlon runtime performance
results is in Table 2. Numbers of memset and
memcpy patterns recognized are in Table 3.

4 Conclusion and future plans

As could be seen in experimental results the
current implementation improve runtime per-
formance slightly in some cases. Almost all

(a) before builtinization

for (i = 0; i < N; i++)
{
S1: x[i] = 0;
S2: y[2*i] = 0;
S3: a = z[i];
S4: w[i] = a;

...
}

(b) after builtinization of S1

memset (x, 0, N * sizeof (*x));
for (i = 0; i < N; i++)
{
S2: y[2*i] = 0;
S3: x = z[i];
S4: w [i] = x;

...
}

(c) after builtinization of S3 and S4

memset (x, 0, N * sizeof (*x))
memcpy (w, z, N * sizeof (*z))
for (i = 0; i < N; i++)
{
S2: y[2*i] = 0;

....
}

Figure 6: The transformation process

GCC Developers’ Summit 2006 • 17

loops in test-cases have small number of itera-
tions then they are handled well by current loop
optimizations.

In the future we will improve handling of mul-
tidimensional arrays, we will expand variety of
memset filling constant and we will try to ex-
tend number of patterns for matching.

5 Acknowledgments

We would like to thank Andrew Pinski because
this work is based on his patch (see [6]) and to
Honza Hubička for his helpful advice.

References

[1] Randy Allen and Ken Kennedy.
Optimizing Compiler for Modern
Architectures: A dependence based
approach. Morgan Kaufmann, 2001.

[2] Sebastian Pop Daniel Berlin,
David Edelsohn. High-level loop
optimization for gcc. In Proceedings of
the 2004 GCC Developer’s Summit, 2004.

[3] Free Software Foundation. Gcc internals
manual. http://gcc.gnu.org/
onlinedocs/gccint/.

[4] Steven S. Muchnick. Advanced Compiler
Design and Implementation. Morgan
Kaufmann, 1997.

[5] Dorit Naishlos. Autovectorization in gcc.
In Proceedings of the 2004 GCC
Developer’s Summit, 2004.

[6] Andrew Pinski. [patch] [improvements
branch?] loops to memset. http://
gcc.gnu.org/ml/gcc-patches/
2004-09/msg00873.html.

18 • Replacement special loop form by a call of built-in function

GCC options without builtinizer (average result) with builtinizer (average result)
tramp3d -n 50
-O2 -ffast-math 3m03.58s 3m03.09s
-O3 -ffast-math 2m44.90s 2m44.88s
SPEC2000 164.gzip
-O2 -ffast-math 188 (745) 186 (751)
-O3 -ffast-math 186 (753) 184 (762)
SPEC2000 175.vpr
-O2 -ffast-math 146 (958) 146 (960)
-O3 -ffast-math 142 (986) 141 (993)
SPEC2000 181.mcf
-O2 -ffast-math 209 (862) 209 (862)
-O3 -ffast-math 198 (910) 198 (910)
SPEC2000 253.perlbmk
-O2 -ffast-math 156 (1151) 163 (1104)
-O3 -ffast-math 157 (1148) 163 (1105)
SPEC2000 300.twolf
-O2 -ffast-math 226 (1325) 220 (1358)
-O3 -ffast-math 213 (1406) 218 (1373)
SPEC2000 177.mesa
-O2 -ffast-math 186 (751) 184 (762)
-O3 -ffast-math 175 (802) 173 (814)
SPEC2000 179.art
-O2 -ffast-math 159 (1639) 158 (1645)
-O3 -ffast-math 150 (1737) 149 (1740)
SPEC2000 188.ammp
-O2 -ffast-math 323 (681) 322 (684)
-O3 -ffast-math 323 (681) 321 (686)

Table 1: Pentium-M experimental results

GCC Developers’ Summit 2006 • 19

GCC options without builtinizer (average result) with builtinizer (average result)
tramp3d -n 100
-O2 -ffast-math 1m51.04s 1m50.80s
SPEC2000 164.gzip
-O2 -ffast-math 122 (1146) 121 (1150)
-O3 -ffast-math 123 (1141) 120 (1166)
SPEC2000 175.vpr
-O2 -ffast-math 137 (1020) 135 (1034)
-O3 -ffast-math 134 (1044) 133 (1054)
SPEC2000 181.mcf
-O2 -ffast-math 283 (636) 283 (636)
-O3 -ffast-math 281 (640) 281 (640)
SPEC2000 252.eon
-O2 -ffast-math 74.2 (1752) 70.6 (1842)
-O3 -ffast-math 58.0 (2240) 58.0 (2241)
SPEC2000 253.perlbmk
-O2 -ffast-math 129 (1390) 133 (1358)
-O3 -ffast-math 135 (1114) 136 (1103)
SPEC2000 300.twolf
-O2 -ffast-math 259 (1159) 255 (1175)
-O3 -ffast-math 256 (1172) 255 (1177)
SPEC2000 177.mesa
-O2 -ffast-math 106 (1325) 99.9 (1402)
-O3 -ffast-math 96.7 (1448) 96.6 (1450)
SPEC2000 179.art
-O2 -ffast-math 191 (1360) 188 (1379)
-O3 -ffast-math 191 (1358) 192 (1357)
SPEC2000 188.ammp
-O2 -ffast-math 165 (1333) 164 (1338)
-O3 -ffast-math 166 (1329) 164 (1339)

Table 2: Athlon experimental results

20 • Replacement special loop form by a call of built-in function

program name # memset # memcpy
occurrences occurrences

tramp3d 102 125
SPEC2000 164.gzip 10 3
SPEC2000 175.vrp 4 0
SPEC2000 181.mcf 0 0
SPEC2000 186.crafty 47 3
SPEC2000 252.eon 6 23
SPEC2000 256.bzip 8 2
SPEC2000 300.twolf 5 3
SPEC2000 177.mesa 21 84
SPEC2000 179.art 1 3
SPEC2000 183.equake 15 9
SPEC2000 188.ammp 13 5

Table 3: number of memset and memcpy pattern occurrences

Call path profiling for unmodified, optimized binaries

Nathan Froyd, Nathan Tallent, John Mellor-Crummey, and Rob Fowler
Department of Computer Science

Rice University
{froydnj,tallent,johnmc,rjf}@cs.rice.edu

Abstract

Understanding the performance of today’s large
and complex programs requires a new genera-
tion of profiling tools that attribute costs to the
full calling contexts in which they are incurred.
We describe a new call path profiler for opti-
mized code and the changes needed in GCC
and other parts of the GNU tool chain to sup-
port such tools.

Although gprof has long been the standard
for call graph profiling in the GNU toolchain,
it suffers from several shortcomings. First, in
modern object-oriented programs, costs must
be attributed to full calling contexts because
the cost of each call can be context dependent;
gprof ignores this issue. Second, gprof
relies upon instrumentation in procedure pro-
logues to collect performance data. This im-
poses four costs: (1) recompilation is required;
(2) nested instrumentation distorts the measure-
ments; (3) instrumentation overhead can be sig-
nificant; and (4) the instrumentation interferes
with aggressive compiler optimization. We
have developed a call-path profiler that avoids
all of these shortcomings. To measure the per-
formance of unmodified, fully-optimized bi-
naries, we use stack unwinding and sampling
to attribute costs to calling contexts and to
collect frequency counts for call graph edges.
Unlike gprof, csprof accurately attributes

context-dependent costs. Furthermore, exper-
iments with the SPEC CPU2000 benchmarks
show that our new profiling strategy is signifi-
cantly more efficient than gprof as well.

Profilers and other tools that rely on stack un-
winding must correctly handle events that oc-
cur at any point in the execution. This re-
quires more comprehensive unwinding infor-
mation than what compilers already record to
support C++ exceptions. In this paper, we de-
scribe changes made to GCC to record the ad-
ditional information necessary. We present ex-
perimental results on the x86-64 platform that
show our profiler has low overhead and that the
additional unwinding information it requires is
of modest size. To cope with compilers that
don’t record comprehensive unwind informa-
tion, it is possible to recover this information
using binary analysis of executables. We dis-
cuss modifications to binutils needed to
support this and related analyses.

1 Introduction

The gap between peak and typical performance
on modern microprocessor architectures has
been growing with each new generation of pro-
cessors. Today, only carefully tuned appli-
cations achieve a substantial fraction of peak

22 • Call path profiling for unmodified, optimized binaries

performance. While optimizing compilers im-
prove application performance, compiler opti-
mization often fails to deliver much of the im-
provement possible. As a result, much of the
burden of performance tuning falls to applica-
tion developers. Good performance tools are
essential to help developers determine where
they should invest their tuning effort.

Understanding where an application spends
its time is only the first step toward tuning.
The next steps are determining whether this
is a symptom of inefficiency and understand-
ing how inefficiency arises. Sometimes the an-
swers are local, e.g., a loop iterating over a
large amount of data doesn’t utilize the memory
hierarchy effectively. Often, answers are elu-
sive. Is the time spent in a procedure the result
of inefficiency in the procedure, or the result
of the procedure being invoked frequently? An
understanding of the contexts in which costs are
incurred is vital for analyzing object-oriented
abstractions, component-based software, and
instantiations of templates for data and compu-
tation. Can the costs associated with using a
particular abstraction, e.g., a set, be reduced by
picking a different implementation? Questions
such as this may have multiple answers: dif-
ferent choices may be appropriate for different
instances of an abstraction within a program.
For instance, a bit vector can be a good im-
plementation where a dense set is needed, but
other representations are preferable for sparse
sets. To tune a program effectively, developers
must know the contexts in which costs are in-
curred to choose among the myriad possibilities
for tuning.

For over two decades, the approach pioneered
in gprof [7] has been the standard for acquir-
ing contextual information (in the form of call
graphs) to interpret costs incurred. gprof in-
serts instrumentation in procedure prologues to
log procedure entry and increment a count as-
sociated with (callsite, callee) pairs. A criti-

cal shortcoming of gprof is that it assumes
that the cost of a function call is independent
of its calling context. The cost of a function
or method call can vary widely between object,
component, or template instances and gprof
lacks the ability to help pinpoint such differ-
ences to guide application tuning.

Using gprof has four additional shortcom-
ings. First, gprof relies upon information
collected by instrumentation in procedure pro-
logues. With the GNU toolchain, adding this
instrumentation requires recompilation of the
program and all the non-standard libraries that
it uses.

Second, executing instrumentation code in each
procedure call dilates execution time. This can
preclude the use of gprof on large production
runs. We have observed a 3-14x slowdown on
different systems of an execution of a synthetic
call-intensive “torture test” written to showcase
this problem [6]. Execution time dilation is not
just a theoretical concern. Section 4 describes
experiments with the SPEC CPU2000 integer
benchmarks [12], which show that gprof in-
strumentation increases execution time by 82%
on average. Object-oriented code with small
methods is especially sensitive to dilation.

Third, the instrumentation in nested procedure
calls dilates the measured cost of each proce-
dure, thus introducing a systematic measure-
ment error. This dilation disproportionately in-
flates costs attributed to small procedures. An
analysis of how the fraction of time attributed
to each function by gprof differs from that
attributed by DCPI [2]—a well known, flat
profiler with very low overhead—showed that
for the SPEC CPU2000 integer benchmarks
gprof’s measurements were distorted by 23%
on average [6].

Fourth, gprof’s instrumentation-based ap-
proach precludes some compiler optimization.

GCC Developers’ Summit 2006 • 23

For instance, in the GNU toolchain, gprof in-
strumentation requires frame pointers and thus,
code measured with gprof cannot be fully op-
timized; this contributes to measurement dis-
tortion. Instrumentation-based approaches also
inhibit inlining and/or post-inlining optimiza-
tions.

To avoid the shortcomings of gprof, we built
a new profiler csprof [6]. Rather than
relying on instrumentation in procedure pro-
logues, csprof uses call stack unwinding to
attribute samples to calling contexts and asso-
ciate frequency counts with call graph edges.
This approach has several benefits. First,
csprof can be used to profile unmodified,
fully-optimized programs without recompila-
tion. Second, csprof records information
about the full calling context rather than just
call graph edges. Third, csprof does not in-
cur overhead of instrumentation on every func-
tion call and thus neither incurs high over-
heads nor does it systematically distort mea-
surements.

For csprof (or any other call-path profiler
based on stack unwinding) to work properly on
fully-optimized code, it must be able to unwind
the call stack at any point in a program’s ex-
ecution, even when no frame pointer is used.
Successfully unwinding from an event that oc-
curred during a procedure epilogue requires
precise information about the machine state at
each point in the epilogue. This requires more
information than is needed, e.g., to unwind the
stack in for C++ exception handling. In this pa-
per, we describe the changes we made to GCC
to emit this extra information, the size of this
additional information, and we present results
of experiments with csprof using this infor-
mation on the x86-64 platform. In addition to
changes to GCC, we believe that modernization
of binutils to better support performance
tools is in order.

The rest of this paper is structured as fol-

lows. Section 2 presents the high-level design
of our call-path profiler csprof. Section 3 de-
scribes modifications we made to GCC to en-
able call stack unwinding of unmodified, fully-
optimized code at any point in a program’s ex-
ecution. Section 4 compares the overhead and
accuracy of csprof with that of gprof and
reports how our changes to GCC affect the size
of the unwind information it records. Section 5
briefly describes related work on open-source
tools for call stack profiling. Section 6 de-
scribes shortcomings of the binutils library
for performance tools and offers some sugges-
tions for improving it. Section 7 presents our
conclusions, ongoing work, and plans for the
future.

2 Profiler Design

Our requirement for csprof was that it be
easy to use with large, modern applications.
Hence, it works on dynamically linked, opti-
mized, unmodified binaries.1 To initiate pro-
filing, csprof instructs the dynamic loader
(via the LD_PRELOAD environment variable or
equivalent) to pre-load csprof’s profiling li-
brary. The library’s initialization routine allo-
cates and initializes profiler state and then ini-
tiates profiling. The library’s finalization rou-
tine halts profiling and writes the profiler state
to disk for later analysis.

csprof works with both asynchronous and
synchronous events. Asynchronous events are
not initiated by direct program action. They
arise from interrupts triggered by the UN*X

interval timer and/or hardware performance
counter traps. Asynchronous events are mon-
itored by setting up a signal handler to log each
event and associate it with its call-path context.

1Profiling statically-linked applications is possible,
but outside the scope of this paper.

24 • Call path profiling for unmodified, optimized binaries

Synchronous events are generated via direct
program action. Examples of interesting events
for synchronous profiling are memory alloca-
tion, I/O, and interprocessor communication.
For such events, one might record bytes allo-
cated, written, or communicated, respectively.
Monitoring synchronous events typically in-
volves having csprof use dynamic loading to
override the relevant library routines and then
to log information as appropriate when a moni-
tored routine is called.

When synchronous or asynchronous events oc-
cur, csprof records the full calling context
for each event. A calling context collected by
csprof is a list of instruction pointers, one
for each procedure frame active at the time the
event occurred. The first instruction pointer in
the list is the program counter location at which
the event occurred. The rest of the list contains
return addresses for each of the active proce-
dure frames. We retain stack pointers as well
to distinguish between recursive invocations.
We have not observed excessive space require-
ments when retaining entire call stacks; if the
storage of samples were to become a concern,
we could collapse calling contexts for recursive
procedure invocations [1] or record only a suf-
fix of full contexts.

We store samples and their calling contexts in
a calling context tree (CCT) [1]. In a CCT, the
path from each node to the root of the tree rep-
resents a distinct calling context. Counts as-
sociated with events (e.g. cache misses, mi-
croseconds, bytes allocated) are attached to
each node in the tree to associate the metrics
with the calling context in which they were
recorded.

Using a sentinel to limit unwinding. To en-
sure good statistical coverage of profiled code,
one must collect a large number of samples, ei-
ther by measuring over a long interval, or by

using a high sampling rate. In either case, it is
desirable for the unwinding and sample record-
ing process be as efficient as possible. Per-
forming a full unwind of the call stack at each
sample event has the potential to be costly. To
avoid this, we use a sentinel to mark the stack
frames in existence when a sample event oc-
curs. When processing the next sample event,
we don’t need to unwind frames below the sen-
tinel since they have already been recorded.

We use dynamic execution state modification
(“stack surgery”) to implement stack sentinels
in a general way for systems on which we con-
trol neither the compilers nor the calling con-
ventions and stack frame layout. We mark a
procedure frame with a sentinel by replacing
its return address with the address of a trampo-
line function. csprof stops unwinding when
it finds the trampoline as the return address of
a stack frame. After the context of each sample
event is recorded, if the frame currently marked
by the sentinel is no longer the top stack frame,
csprof unmarks that frame and marks the top
stack frame instead. When a marked procedure
returns through the trampoline, the trampoline
moves the sentinel to mark the caller’s frame
before transferring control back into the caller.

In addition to using the sentinel to limit the
depth of stack unwinding, csprof also mem-
oizes previously inspected calling context by
keeping a stack of pointers to the correspond-
ing nodes in the CCT. Inserting a new sample
in the CCT thus begins at the node correspond-
ing to the sentinel frame rather than the root of
the CCT. This reduces the number of memory
references needed to record each sample.

Exposing calling patterns. Besides knowing
the full calling context for each sample event,
it is useful to know how many unique calls
are represented by the samples recorded in a
calling context tree. This information enables

GCC Developers’ Summit 2006 • 25

a developer interpreting a profile to determine
whether a procedure in which many samples
were taken was doing a lot of work in a few
calls or a little work in each of many calls.
This knowledge in turn determines where op-
timizations should be sought: in a function it-
self or its call chain. To collect edge frequency
counts, we increment an edge traversal count as
the program returns from each stack frame ac-
tive when a sample event occurred. We do this
by having the trampoline increment a “return
count” for the procedure frame marked by the
sentinel as it returns. A more detailed descrip-
tion of this strategy can be found elsewhere [6].

Handling the complexity of real programs.
The high-level design for csprof that we have
described thus far suffices only for profiling
simple programs with a single stack in mem-
ory that is modified only by procedure calls and
returns. Real programs are often more compli-
cated, featuring dynamic loading and unload-
ing of code, register frame procedures, excep-
tion handling (including longjmp), and multi-
ple threads of control. Many compilers, includ-
ing GCC, generate tail calls for certain classes
of function calls; these need to be handled spe-
cially by csprof. In addition, it is possible to
receive events during execution of the trampo-
line or the sampler. The details of dealing with
these complexities are outside the scope of this
paper and are described elsewhere [6].

3 Adding Support to GCC

Our profiler design requires that the stack can
be unwound from arbitrary PC locations during
a program execution. This is a stricter require-
ment than the previous client for stack unwind-
ing, namely, C++ exception handling. Excep-
tion handling requires only that the stack can
be unwound from within a procedure body and

never requires unwinds from within a proce-
dure’s prologue or epilogue(s). Most modern
implementations of C++ use table-driven ex-
ception handling [5], where a small table de-
scribes the effects of instructions within a range
of PCs. The effects recorded are only those
that are necessary to unwind the stack properly,
such as adjustments to the stack pointer, move-
ment of the return address, in addition to regis-
ter saves and restores. For example, GCC uses
the DWARF2 format [13] for unwind tables. In
practice, providing support for unwinding from
within prologues is no more difficult than pro-
viding support for unwinding from within the
body of a procedure.

Supporting unwinding from within epilogues
is more complicated due to the way DWARF2
unwind information is interpreted. Conceptu-
ally, DWARF2 unwind information forms a ta-
ble. For every instruction in a procedure, this
table encodes rules for obtaining 1) the VMA
of the “canonical frame address” (the stack
pointer upon entrance to the procedure) and 2)
the value on procedure entry of (callee-saved)
registers. The rules are encoded as a byte-
coded instruction stream. If rules for every in-
struction were included, the space consumed
by the unwind information would be consider-
able. However, the matrix is generally sparse:
the rules for many of the table rows are iden-
tical to those for the previous row. Therefore,
only a limited number of instructions must have
their effects encoded and advance_loc byte
codes can be used to skip redundant rows. To
compute the unwind information for any given
instruction, the cumulative effects of all pre-
vious instructions in the enclosing procedure
must be considered. Thus, to unwind the ac-
tivation record from a given instruction, one it-
erates through the sequence of byte codes, ap-
plying effect rules until an address greater than
the current instruction’s VMA is found.

Because of branch and jump instructions, there

26 • Call path profiling for unmodified, optimized binaries

branch Z

epilogue B

epilogue A

prologue

sample
Z:

Figure 1: A routine with two epilogues, one of
which is interior. Before the interior epilogue
(A) there is a conditional branch instruction.
We wish to begin unwinding from the sample
point.

may be an inconsistency between this linear
accumulation of instruction effects and the in-
structions that are actually executed. Con-
sider an interior epilogue as depicted in Fig-
ure 1.2 A linear scan of instruction effects
prior to the sample point “ignores” the con-
ditional branch before epilogue A and leads
to the erroneous conclusion that all callee-
saved registers have been restored and the
current stack frame de-allocated as the scan
progresses through the effects of instructions
in epilogue A! DWARF2 provides two byte
codes — remember_state and restore_
state — that should “parenthesize” interior
epilogues. When a DWARF2 unwinder sees a
remember_state byte code, it conceptually
pushes a copy of the current table onto a stack;
when it sees a restore_state, it restores
the table’s state with the top of the stack and
issues a pop.

2A compiler may generate an interior epilogue to im-
prove instruction cache locality.

Our modifications to properly handle unwind-
ing from within epilogues fall into three cate-
gories:

• Tagging frame-related epilogue instruc-
tions as such in the x86-64 back end;

• Support in the DWARF2 emitter for epi-
logues;

• Handling multiple epilogues with care.

3.1 Tagging instructions

The DWARF2 unwinding process is based
on knowing the effects of “frame-related” in-
structions, namely, instructions that modify
the stack pointer and/or save/restore registers.
GCC’s back end tags individual RTL pieces
with the FRAME_RELATED_P tag to indicate
their frame-relatedness. Adding the necessary
FRAME_RELATED_P bits to the x86-64 back
end was straightforward. As we worked on the
DWARF2 emitter, however, we discovered two
additional things that needed to be done.

When the DWARF2 emitter finds a PARALLEL
RTX that is marked as FRAME_RELATED_P, it
always processes the first of the child RTXs as
if it is a SET and then processes subsequent
RTXs if they are SETs and have the FRAME_

RELATED_P flag set as well. In our initial at-
tempt tagging, we only set FRAME_RELATED_P
on the outer PARALLELRTX, but not on any of
the children of the node. This caused problems
with instructions such as pop, which are natu-
rally represented as PARALLEL RTXs. When
correcting this, we also found that we had to
modify the RTL definition of the leave in-
struction to be amenable to the DWARF2 emit-
ter.

GCC Developers’ Summit 2006 • 27

3.2 DWARF2 support

We implemented DWARF2 support in two
steps. The first step was to fix GCC’s
DWARF2 emitter to handle instruction pat-
terns commonly found in epilogues. The
DWARF2 emitter knew how to handle register-
to-memory moves, for example, but was igno-
rant about how to process memory-to-register
moves. When processing the latter, we not only
recorded effects on the stack pointer, but also
encoded the DWARF2 byte codes indicating
which registers had been restored. Extensions
to the emitter to handle negative adjustments to
the stack pointer and restoring the stack pointer
from the frame pointer were also necessary.

The second step was to provide support
for emitting the remember_state and
restore_state byte codes. At first blush,
this seemed simple enough: when process-
ing a block, if an EPILOGUE_BEG note is
encountered, emit a remember_state byte
code. At the end of the same block, emit a
restore_state byte code. However, we
optimized this process so that when an epi-
logue block is the last block in the function,
no restore_state byte code is necessary.
This approach is similar to the strategy used by
the IA-64 back end.

3.3 Multiple epilogues

In GCC’s internal representation, epilogues
are implicit, beginning with an EPILOGUE_
BEG note and lasting until the end of the basic
block. However, correctly handling epilogues
requires that the relevant notes are actually in-
serted, which was not happening in two cases.
The first was when a tail call, a.k.a. “sibcall,”
epilogue was generated, which was simple to
fix. The second was when an epilogue block
was duplicated; the EPILOGUE_BEG note

was not duplicated as one might expect. Fur-
thermore, when the initial non-sibcall epilogue
is generated for a function, its instructions are
inserted into a special epilogue array for use
by the instruction scheduler. We found it neces-
sary to insert the instructions of duplicated epi-
logues into this array to correctly handle repo-
sitioning of EPILOGUE_BEG notes. Addi-
tionally, when a duplicated epilogue was re-
moved (e.g. by cross-jumping), can_delete_
insn_p failed to indicate that the EPILOGUE_
BEG note should be removed as well, presum-
ably because multiple EPILOGUE_BEG notes
were not a concern prior to our modifications.

Even when we ensured that EPILOGUE_
BEG notes were consistently generated and
duplicated as necessary, we found that cer-
tain passes of the compiler, particularly the
instruction scheduler, assumed that only a
single EPILOGUE_BEG note existed. To
avoid littering the instruction scheduler with
special cases for notes, any notes other
than basic block boundary markers are re-
moved prior to instruction scheduling and re-
placed afterwards. Since epilogue instruc-
tions may move across basic block boundaries,
the instruction scheduler replaces EPILOGUE_
BEG notes (reposition_prologue_and_
epilogue_notes) by looking for the first in-
struction that is located in the epilogue array
and positioning the note prior to that instruc-
tion. This is a flawed strategy when multiple
epilogues are present.

We re-wrote the repositioning of the epilogue
notes to correctly handle multiple epilogues.
Our revised algorithm works as follows: We
scan forward through all instructions,3 look-
ing for either an EPILOGUE_BEG note or
an instruction that is contained in the “epi-

3Comments in reposition_prologue_
and_epilogue_notes indicated that we cannot
depend on the basic block structures maintained by GCC
at this point.

28 • Call path profiling for unmodified, optimized binaries

logue” array mentioned earlier. When we find
an EPILOGUE_BEG note, we move it to im-
mediately before the next epilogue instruction
that we find and skip to the end of that basic
block. If instead we find an instruction that
was in an epilogue, we search for the matching
EPILOGUE_BEG note and move the note prior
to the instruction. After doing so, we skip to the
end of the basic block in which the note was
located. By doing this, we ensure that all in-
structions that were in epilogues are “covered”
by EPILOGUE_BEG notes and and there-
fore “covered” by the DWARF2 remember_
state and restore_state byte codes de-
scribed above.

3.4 Miscellanea

For our profiler to work properly, the applica-
tion and all the libraries it requires must pro-
vide correct unwind information. It is prefer-
able to have the compiler generate the neces-
sary information, but we also plan to build a bi-
nary analysis tool to recover unwind informa-
tion for legacy compilers that do not provide
the necessary information. However, we have
found that it is not simply sufficient to aug-
ment the compiler. While conducting the ex-
periments described in Section 4, we found that
assembly routines in libc were not properly
annotated with unwind information. These rou-
tines required workarounds in the profiler sim-
ilar to those already in place to detect samples
taken within the trampoline. While these rou-
tines could have had their unwind information
synthesized via binary analysis, it might be nec-
essary for the assembly programmer to provide
unwind information since binary analysis tools
are not always successful at understanding the
structure and semantics of machine code.

4 Experiments

Previous experiments [6] with csprof on
Alpha/OSF1 demonstrated the viability of
csprof’s approach for low-overhead profil-
ing of unmodified, optimized binaries. How-
ever, the structure of the unwind information
on x86-64 is very different from the unwind
information on the Alpha. The Alpha uses a
simpler, more compact unwind descriptor for-
mat that enables the unwinder to unwind using
constant work per stack frame. We found, how-
ever, that the Compaq compilers did not always
follow the published interface necessary for
their unwind process to work correctly. Mak-
ing csprof work correctly on a wide range of
code required adding several work-arounds on
the Alpha—in some cases as drastic as inter-
preting the instruction stream—to avoid prob-
lems caused by deviations from specifications.
The workarounds for handling inaccurate un-
wind information contributed to profiler over-
head, though overhead remained low despite
them. Even though interpreting DWARF2 at
run time would be more expensive than using
Compaq’s unwind information, we were opti-
mistic that profiling overhead would be low on
the x86-64 platform.

This section presents the results of exper-
iments performed on the SPEC CPU2000
benchmarks [12] to gauge the impact of our
changes on the size of compiled code as
well as the effectiveness of csprof on the
x86-64 platform. We ran our experiments
on a 1.6GHz dual-processor Opteron with
8GB RAM using Gentoo Linux with the
2006.0 no-multilib profile.4 We used GCC
4.1.0 with Gentoo’s standard patches with
options -O3 -fomit-frame-pointer

4We used Gentoo because it made it convenient to set
up a chroot environment in which we had full control
over how the system libraries were compiled. That the
entire system was compiled with our modified GCC is a
testament to its robustness.

GCC Developers’ Summit 2006 • 29

-funroll-all-loops

-fno-tree-salias. For unwinding
call stacks within csprof, we used
libunwind [10] version 0.98.5 with
patches for x86-64 and an unwind cache
for DWARF2.5

We encountered difficulties with several of
the SPEC benchmarks. 255.vortex would
compile with both modified and unmodified
versions of GCC 4.1.0, but would not run; we
attribute this to some patch that Gentoo ap-
plies. 186.crafty would not run consis-
tently when compiled for profiling with gprof
and we omitted it from Table 1. csprof was
unable to profile 253.perlbmk due to that
benchmark’s use of longjmp; csprof’s han-
dling of longjmp on x86-64 is incomplete
at present. Finally, 178.galgel would not
compile under the standard Gentoo compiler,
which we again attribute to some patches Gen-
too applies.

4.1 Profiling Overhead

This section reports measurements of
csprof’s profiling overhead and com-
pares it to that of gprof. We compiled each
benchmark twice, with and without -pg.6 To
match gprof, csprof’s sampling frequency
was set at 1000 samples/second. Results from
the three runs are shown in Table 1. The
runtimes in Table 1 are the average of five runs
for each benchmark.

csprof’s overheads, shown in column three,
are consistently lower than gprof’s overheads
displayed in column two. Benchmarks such as
252.eon, 253.perlbmk, 168.wupwise,
and 177.mesa have a high number of calls

5Available through a Mercurial repository at http:
//www.serpentine.com/~arun/

6Using the -pg flag required omitting
-fomit-frame-pointer.

Integer programs
Benchmark Runtime gprof csprof

(seconds) overhead overhead
(percent) (percent)

164.gzip 163 34 1.8
175.vpr 167 26 2.4
176.gcc 107 46 1.9
181.mcf 335 10 1.2
186.crafty 72 N/A 4.2
197.parser 281 50 1.8
252.eon 80 193 5.0
253.perlbmk 177 167 N/A
254.gap 128 174 1.5
255.vortex N/A N/A N/A
256.bzip2 174 76 4.0
300.twolf 320 43 3.4
Average 82 2.7

Floating-point programs
168.wupwise 155 111 7.7
171.swim 260 15 3.1
172.mgrid 203 10 1.0
173.applu 256 25 1.6
177.mesa 124 74 1.6
179.art 210 3.8 1.4
183.equake 137 30 8.8
187.facerec 256 16 1.5
188.ammp 214 12 1.8
189.lucas 176 0 1.7
191.fma3d 264 28 1.1
200.sixtrack 235 1.7 0.9
301.apsi 259 16 3.5
Average 31 3.2

Table 1: Execution time overhead when pro-
filing the SPEC CPU2000 benchmarks with
gprof and csprof. A overhead of 100% in-
dicates the monitored execution took twice as
long.

and a number of short procedures.7 These
sorts of programs demonstrate one of the pri-
mary problems with gprof: the overhead due

7We would expect gprof’s overhead on
255.vortex to be high as well.

30 • Call path profiling for unmodified, optimized binaries

to instrumentation in prologues is unaccept-
ably high in many cases. In contrast, csprof
consistently has low overhead. Furthermore,
csprof’s overhead can be reduced if neces-
sary by lowering its sample frequency. The
lone case where gprof has lower overhead
than csprof is on 189.lucas, which makes
an extremely low number of calls. Even so, in
this case csprof’s overhead is only 1.7%.

4.2 Space Overhead

csprof’s need for extra DWARF2 informa-
tion for epilogues can increase the size of ex-
ecutables. Here we study this effect. For
these tests, we compiled the CPU2000 bench-
marks with Gentoo’s vanilla GCC 4.1.0 pack-
age and our modified version of GCC 4.1.0
that records more complete unwind informa-
tion. After doing so, we examined the size of
the .eh_frame section, which contains the
information for the DWARF2 unwinder. The
results are shown in Table 2.

Table 2 shows that increases in the unwind in-
formation hover around 50%, with a few out-
liers such as 177.mesa and 254.gap. One
might expect that the size of unwind informa-
tion might double since we now record infor-
mation about epilogues in addition to the in-
formation about prologues already recorded.
We see less than a 2x space increase for two
reasons. First, the encoding of epilogue un-
wind information using DW_CFA_restore,
which specifies when a callee-saved register is
restored, takes two bytes (opcode and register).
This requires less space than its counterpart
in prologues, DW_CFA_offset, which uses
three bytes (opcode, offset, and register) to de-
fine a stack position for a register. Second, epi-
logue information occasionally fills space that
would otherwise be filled by DW_CFA_nops
inserted to satisfy alignment restrictions.

Integer programs
Benchmark .eh_frame % increase

section size
(bytes)

164.gzip 2604 51.3
175.vpr 6324 51.4
176.gcc 60812 62.6
181.mcf 956 45.2
186.crafty 4004 45.4
197.parser 12284 55.3
252.eon 34940 28.3
253.perlbmk 31724 56.2
254.gap 30140 78.1
255.vortex 32580 42.3
256.bzip2 2524 41.2
300.twolf 7732 52.9

Floating-point programs
168.wupwise 980 35.9
171.swim 420 38.1
172.mgrid 756 48.7
173.applu 916 50.4
177.mesa 30804 83.1
179.art 1100 53.8
183.equake 1020 36.9
187.facerec 1604 49.4
188.ammp 7268 59.3
189.lucas 364 44.0
191.fma3d 17676 45.7
200.sixtrack 9900 57.9
301.apsi 4804 47.0

Table 2: Sizes in bytes of the .eh_frame
section of applications when compiled with
“vanilla” GCC 4.1.0 and the percentage in-
crease with our modifications.

It is important to note that even though the rela-
tive increase in the size of the unwind informa-
tion is large, this change was a small impact on
the total size of the binary file on disk. Across
all applications in the SPEC benchmark, our
modifications increase the size of the binary
file by less than two percent. We feel that this
is a small cost to pay for the ability to effec-
tively and informatively profile any fully opti-
mized binary with low overhead. Furthermore,

GCC Developers’ Summit 2006 • 31

any application that might possibly need to un-
wind from within procedure epilogues (such as
GDB) requires these modifications for correct-
ness.

5 Related Work

Several call stack profilers are in wide use to-
day. Apple’s Shark [3] is a statistical call
path profiler based on stack sampling. Like
csprof, Shark provides full calling context
for profiled costs. csprof goes one step
further than Shark by recording return counts
along edges, enabling more precise analysis
of performance problems. Two well-known
Linux call stack profilers, OProfile [8] and
Sysprof [11], are system-wide profilers that re-
quire kernel-level support. Both do their call
stack unwinding in the kernel and are limited to
unwinding code compiled with frame pointers.
This restriction almost certainly requires a re-
compile on x86-64, as the ABI for that platform
does not require a frame pointer to be used.
csprof has no such limitation.

Arnold and Sweeney [4] implemented a call
stack profiler similar to csprof in Java. Since
they controlled the run time environment and
the compiler they implemented their sentinels
by setting the low-order bit of the return ad-
dress in every stack frame that their unwinder
visited to indicate it had been seen. In sub-
sequent unwinds only frames with their low-
order bit cleared needed to be unwound. Their
technique did not require any explicit compiler
support, since the Java environment ignored
the low-order bit of the return address when
returning from a procedure. In Arnold and
Sweeney’s formulation, return counting could
be done concurrently with the unwinding of the
call stack during sampling—a “lazy” approach.
Our technique gives us the freedom to choose
between a lazy approach or an eager approach.

We have chosen the eager approach because we
already maintain a node into the CCT—to sup-
port efficient insertion of collected samples—
and it is a simple matter to increment its return
count in the trampoline.

6 A Call to Modernize binutils

We envision an overhaul of binutils shaped
and informed by the needs of performance
tools. We are not advocating a fundamental
shift in the basic purpose of binutils; it cur-
rently is a collection of binary and performance
tools. Rather we are advocating changes that
would both improve the existing functionality
and improve performance.

As a motivating example, consider the fact that
we are not aware of a compiler that generates
the complete unwind information required by
csprof, even if the information is needed for
correctness in other applications. While we
would not object if other compilers generated
such information—several non-GNU compil-
ers generate gprof instrumentation—making
csprof independent from compiler support
and potential recompilation is an important
goal. Therefore, we are interested in inferring
unwind information using static binary analy-
sis. Enhancing the binutils library in sev-
eral ways would help us do this in a portable
fashion.

6.1 Interface and Functionality

First, to infer what instructions affect the stack
frame and register state, the binutils API
must offer improved support for examining
a binary’s instruction stream and determining
where procedures begin and end. Even though
binutils supports the disassembly of bina-
ries on a wide range of platforms, the interface

32 • Call path profiling for unmodified, optimized binaries

it exposes is specifically designed for printing
disassembled instructions, not for examining
or querying properties about all of the instruc-
tions in a procedure. A more general inter-
face would not negatively affect the operation
of binutils consumers such as objdump or
GDB and could be exploited by a wide range of
binary analysis tools.

Another example that motivates the examina-
tion of binaries is the bloop binary analysis
tool, which is part of our HPCTOOLKIT [9]
performance analysis tools. bloop presently
uses a modified version of binutils that we
locally maintain. Given an executable, bloop
constructs the control flow graph (CFG) for
each procedure, performs interval analysis to
recover loop nests, and consults the exe-
cutable’s line maps to map VMAs to source
line numbers. bloop then correlates the recov-
ered program structure information with profile
data to compute loop-based performance met-
rics in addition to the traditional procedure and
line based metrics.8 To reconstruct the CFG,
bloop must 1) classify instructions (condi-
tional branch, unconditional jump, return, non-
control-flow) and 2) compute the target address
of PC-relative conditional branches. Since we
knew that objdump’s disassembler regurgi-
tated nearly all of this information, we won-
dered if binutils’ opcode library could help
us. However, because binutils does not
make this information accessible to its clients,
we nearly abandoned it after being initially dis-
couraged by its print-biased interface. How-
ever, after a clever suggestion from a former
binutils maintainer, we were able to ex-

8By performing loop analysis within a binary ana-
lyzer instead of a source-level tool, bloop is able to an-
alyze binaries from multi-language code bases (e.g. For-
tran95, C, C++) without multiple front-ends. More in-
terestingly, with careful use of accurate debugging infor-
mation, a binary analyzer provides information about the
actual optimized code, not just the source code, enabling
us to understand the effects due to loop transformations,
software pipelining and loop fusion.

tract the information we needed with a small
amount of precise surgery. The small modi-
fications we made to the interface and to the
relevant decoders made a significant difference
in binutils’ utility. We understand that
binutils was designed to meet a specific
need; our argument is that a careful and modest
redesign would continue to meet the needs of
its current clients while providing the support
needed for sophisticated binary analysis tools.

6.2 Performance Issues

A second major concern with binutils is al-
gorithmic efficiency. Since a typical binary an-
alyzer must examine every instruction in every
procedure of a load module, algorithmic com-
plexity is an important consideration. For ex-
ample, consider our proposed tool for synthe-
sizing unwind information from an executable.
If csprof dynamically invoked such a tool in
response to a runtime call to dlopen, the tool
must run very quickly. While performing a lin-
ear search through the line table to map an in-
struction address back to a source line might
be reasonable for a client like GDB when exe-
cution stops at a breakpoint, such an approach
would be unsuitable for a tool that uses this in-
terface to map each instruction in a large exe-
cutable back to its source line. These are not
theoretical concerns since executables can eas-
ily have hundreds of thousands of instructions.

To reduce the execution time of bloop, we
had to replace binutils’s linear searches
through the DWARF2 and ECOFF line tables
with binary searches. Since bloopmaps every
instruction back to its source line, linear search
of the line table caused execution time to grow
quadratically with procedure size. For a sim-
ilar reason, we added a one-element cache to
the ELF function name lookup since sorting the
symbols was a difficult solution. Attention to

GCC Developers’ Summit 2006 • 33

algorithmic efficiency should also benefit cur-
rent clients of binutils.

6.3 binutils vs. Custom Solutions

Performance analysis tools require access to a
richer set of the symbolic and system infor-
mation contained in typical binaries than cur-
rently exposed by binutils. For exam-
ple, bloop’s analysis is complicated by nested
procedures (e.g. Fortran 90) and by multi-
ply instantiated statement instances (e.g. in-
lining). Since such information can be useful
for debuggers, DWARF9—the nearly univer-
sal standard in the UN*X world—contains con-
structs for representing this information. Since
most of this information was already read by
the binutils’s DWARF reader, we wrote
our own call-back routines to expose it in the
binutils interface. In addition to symbolic
information, binary analysis tools require ac-
cess to the binary’s system information, com-
monly represented as ELF in the UN*X world.
We continue to need an easier way to access
a binary’s list of dependencies (the informa-
tion retrieved by ldd) and to find the begin
addresses of the segments that are mapped to
memory during run time.

The references to DWARF and ELF raise the
issue of portability, one of our initial goals
for csprof. After all, the raison d’etre for
binutils is to provide a common interface
for a multitude of different ABIs. It also re-
visits the question of scope: what is the pur-
pose of binutils? Why not use libelf
and libdwarf to access specific ELF and
DWARF information? Other performance tools
authors have abandoned binutils in favor
of creating their own binary interfaces for rea-
sons related to the issues we have raised. We

9We use ‘DWARF’ to include both DWARF2 and
DWARF3.

think, however, that a judicious redesign of
binutils can reasonably accommodate the
competing demands of, on one hand, gen-
erality and portability and on the other, im-
proved and efficient support for the special-
ized and richer set of information encoded in
ELF and DWARF.10 Moreover, we argue that
this is desirable because ELF and DWARF are
such widely used standards, in fact the stan-
dard on Linux/GNU systems. A modernized
and portable binutils that provides greater
access to the instruction stream, emphasizes ef-
ficiency, and exposes more of the symbolic and
system information (with a particular bias to-
wards DWARF and ELF), would both improve
binutils and provide an excellent platform
for the development of a first-class suite of per-
formance tools.

7 Conclusions and Future Work

We have presented csprof, a low-overhead
call stack profiler and the modifications neces-
sary to make it work on GCC. Experiments on
the x86-64 platform have confirmed our initial
results from experiments on the Alpha platform
and have given us confidence that csprof’s
approach offers a portable method for low-
overhead context-sensitive profiling. Our meth-
ods are easily enabled by modest compiler sup-
port; however, to our knowledge no other com-
piler generates the necessary DWARF2 byte
codes for csprof to unwind fully optimized
code at arbitrary points, which is necessary
with an asynchronous sample source. Binary
analysis can provide the necessary information,
but is not foolproof. Therefore, we would very
much like our modifications to GCC to be inte-
grated into the mainline compiler as both sup-

10Note that we are not addressing the issue of binary
modification. While this is an interesting area, support
for these techniques would genuinely be a new concern
for binutils.

34 • Call path profiling for unmodified, optimized binaries

port for our methods and to motivate other com-
piler groups to provide similar DWARF2 infor-
mation.

Distributed in the binutils package, gprof
has for many years offered portable, context-
sensitive profiling for performance analysis
and naturally complements GCC. To better
support profiling of fully optimized modern
object-oriented applications, we have designed
csprof to deliver low-overhead profiles with
full calling context for costs. Just as gprof re-
quired compiler support to make profiling easy
to use, we have extended GCC to generate the
unwind information required by csprof. We
believe csprof should be a key component of
a modernized binutils.

However, there remains work to be done before
our work could be considered ready for GCC
mainline. As Andrew Haley pointed out on
the gcc-patches list,11 we would need to
ensure that our modifications worked with the
x86 back end as well. We are in the process
of satisfying this requirement, as our changes
cause issues while performing the register-to-
stack conversion pass necessary for the x86.
In addition, our modifications prevent GCC’s
code reordering from working, as generating
the DWARF2 advance_offset byte code
requires taking the difference of two assembly
code labels—an operation that fails when those
labels reside in different sections. We are inves-
tigating options for alternate approaches for the
necessary byte code generation. Finally, Haley
also noted that with our patches, only the x86
and x86-64 back ends are capable of generating
this extra information for unwinding. He felt
that this sort of information should be gener-
ated consistently across all of GCC’s back ends,
as appropriate. While we agree with this point
in principle, we feel that integrating our work
is merely an enhancement to the x86 and x86-

11http://gcc.gnu.org/ml/gcc-patches/
2006-03/msg00426.html

64 back ends and the necessary work for other
back ends can be done as time permits.

References

[1] G. Ammons, T. Ball, and J. R. Larus.
Exploiting hardware performance
counters with flow and context sensitive
profiling. In SIGPLAN Conference on
Programming Language Design and
Implementation, pages 85–96, New York,
NY, USA, 1997. ACM Press.

[2] J. M. Anderson, L. M. Berc, J. Dean,
S. Ghemawat, M. R. Henzinger, S.-T. A.
Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl.
Continuous profiling: where have all the
cycles gone? ACM Trans. Comput. Syst.,
15(4):357–390, 1997.

[3] Apple Computer. Shark.
http://developer.apple.com/
performance/. 14 April 2006.

[4] M. Arnold and P. F. Sweeney.
Approximating the calling context tree
via sampling. Technical Report 21789,
IBM, 1999.

[5] C. de Dinechin. C++ exception handling.
IEEE Concurrency, 8(4):72–79, 2000.

[6] N. Froyd, J. Mellor-Crummey, and
R. Fowler. Low-overhead call path
profiling of unmodified, optimized code.
In ICS ’05: Proceedings of the 19th
annual International Conference on
Supercomputing, pages 81–90, New
York, NY, USA, 2005. ACM Press.

[7] S. L. Graham, P. B. Kessler, and M. K.
McKusick. Gprof: A call graph
execution profiler. In SIGPLAN ’82:
Proceedings of the 1982 SIGPLAN

GCC Developers’ Summit 2006 • 35

Symposium on Compiler Construction,
pages 120–126, New York, NY, USA,
1982. ACM Press.

[8] John Levon et al. OProfile.
http://oprofile.sf.net/. 14
April 2006.

[9] J. Mellor-Crummey, R. Fowler, G. Marin,
and N. Tallent. HPCView: A tool for
top-down analysis of node performance.
The Journal of Supercomputing,
23:81–101, 2002.

[10] D. Mosberger-Tang. libunwind.
http://www.hpl.hp.com/
research/linux/libunwind/. 14
April 2006.

[11] S. Sandmann. Sysprof.
http://www.daimi.au.dk/
~sandmann/sysprof/. 14 April
2006.

[12] SPEC Corporation. SPEC CPU2000
benchmark suite. http:
//www.spec.org/cpu2000/. 29
April 2005.

[13] UNIX International. DWARF debugging
information format.
http://www.eagercon.com/
dwarf/dwarf-2.0.0.pdf. 29 April
2005.

36 • Call path profiling for unmodified, optimized binaries

Recent Developments in GDB

Paul J. Gilliam
IBM Linux Technology Center

pgilliam@ibm.com

The views and opinions expressed in this paper
are those of the author, not of his employer, nor of
his colleagues who comprise the GDB community.
Any errors of fact or judgment are his alone.

Abstract

Many programmers on many platforms depend
on GDB to help them find and fix bugs in their
programs. Some of these programmers use
GDB directly and others indirectly through one
of several available graphical front-ends.

This paper summarizes major changes in GDB
over the last few years, starting with the release
of GDB 6.0, which was released 2003-10-06.

These changes were made in a number of areas,
including:

• Support for additional architectures.

• Internal changes and reorganizations
aimed at better supporting current and
future architectures.

• New features to help programmers debug
their programs.

• Enhancements to make GDB easier to use,
both for those who use it directly and for
those who write and maintain front ends.

Also included is an overview of the GDB com-
munity and how it operates, touching on a re-
cent overhaul in the way the community inter-
relates to improve GDB.

1 Introduction

Many programmers on many platforms de-
pend on GDB to help them find and fix bugs
in their programs. Some of these program-
mers use GDB directly, while other use it in-
directly through one of several available graph-
ical front-ends, such as DDD from GNU or
Xcode from Apple.

These programmers have one thing in common
with respect to GDB: they all wish it were bet-
ter. Of course, each of them has a different idea
of what constitutes better, and what’s good for

38 • Recent Developments in GDB

one platform may not be good for all platforms.
These basic conflicts could have led to a war-
ring and bitter group of users. Instead, it has
led to a vibrant community that maintains and
extends GDB.

One measure of the vibrancy of the GDB com-
munity is the topic of this paper. What recent
developments have been made? The answer is
“lots!” There will be more about the GDB user
community later in this paper.

For the purposes of this paper, GDB activity
will be divided into five parts:

1. Platforms This part covers target archi-
tectures and host environments (operating
system and processor). When these two
are connected as part of GDB, it is called
a native debugger. Otherwise, the two are
connected by some communication proto-
col and GDB is called a remote debugger.

2. User-Level Features These are features
that are primarily aimed at the user. These
will directly help the user debug their pro-
gram. An example is support for a partic-
ular computer language.

3. Under-the-Hood Features These are fea-
tures that are primarily aimed at some part
of GDB itself. Hopefully, these will help
the user, but in a less direct way. For ex-
ample, doing a better job of understanding
a particular format for debug information
will help GDB do a better job, but may not
be reflected in GDB’s user interfaces.

4. Deleted Features These are features that
are no more. They are ex features. Some-
times they are features that were meant to
ease a migration from one internal scheme
to another and the migration has been
completed. Sometimes they are compo-
nents of GDB that have lost their useful-
ness. The most natural (in the Darwinian

sense) reason for a feature to be deleted is
a lack of interest in the GDB community
to maintain it.

5. Commands These are the most visible
part of GDB to most users. If GDB is
accessed through a GUI, these may not
be visible at all. In either case, they are
the basic building blocks of GDB’s func-
tionality. Commands are usually added to
GDB, but occasionally they are deleted.

2 Platforms

It’s kind of hard to know what a platform is
when talking about GDB. This comes from the
fact that GDB is used in different ways by dif-
ferent communities. For example, the imbed-
ded community sees GDB as running on a par-
ticular host, debugging their code on a partic-
ular target. A typical developer will see GDB
as running in the same environment as the pro-
gram they are developing on and for.

To keep things simple for this section, I’m go-
ing to ignore all this and hope that the descrip-
tion used is enough to figure out these details.

When indicating the affected version of GDB,
>6.4 means it will be in the 6.5 release of GDB,
which had not yet happened when this paper
was written, but should have happened by the
time it is presented.

2.1 Added

Table 1 shows the platforms that have been
added to the list supported by GDB.

2.2 Removed

The GDB community uses a two-step process
to remove a platform. First it is made obsolete,

GCC Developers’ Summit 2006 • 39

platform GDB
Morpho Technologies ms2 (target) >6.4
OpenBSD arm 6.4
OpenBDS mips64 6.4
GNU/Linux m32r 6.3
GNU/Linux hppa 6.2
OpenBSD m68k 6.2
OpenBSD m88k 6.2
OpenBSD PowerPC 6.2
NetBSD VAX 6.2
OpenBSD VAX 6.2
NetBSD amd64 6.1
OpenBSD amd64 6.1
OpenBSD alpha 6.1
OpenBSD sparc 6.1
OpenBSD sparc64 6.1

Table 1: Added Platforms

which means the code to support that platform
is ‘commented out.’ Then after time has passed
and no one has come forward to maintain it,
the platform is completely removed from the
source tree. (Of course, it’s still in the CVS
repository if someone wants to resurrect it). For
the purposes of this section, I’ll list the version
of GDB where the platform was removed, or if
it hasn’t been removed yet, where it was obso-
leted.

Table 2 shows the platforms that have been re-
moved.

3 New or Improved User-level Fea-
tures

It seems that the life-blood of many commer-
cial software packages is new features or newly
improved ones. This is driven by the need for
new sales of the same product to the same cus-
tomers. GDB does not feel this force because

it is Free (as in Freedom). The force that drives
new or improved user-level features in GDB is
provided by the programmers willing to do the
work (or by people paying someone to do the
work) to make GDB better.

A note of caution: Not all the features dis-
cussed in this section or the next are universally
available. Some are limited to particular oper-
ating systems and/or particular processors and
only native or remote. I have tried to indicate
where that is the case, but I may not have been
completely successful.1

3.1 Checkpoints

This is a really cool feature: it lets a user select
a point in time during a debugging session and
mark it as one that can be gone back to later.
The concept of checkpoints has been around for
a long time and still has the same underlaying
motivation: “If things go bad, I don’t want to
have to repeat every step I took to get there.”
Ideally, we would like to halt on an error and
‘undo’ back to a good state, but we can’t do
that.2

When you reach a point in your debugging that
you might want to go back to, use the command
checkpoint. GDB will tell you the number
of the new checkpoint, just like it tells you the
number of a new breakpoint. Now, after some
more debugging, you want to go back to the
way things were: use the command restart
id, where id is the id number GDB assigned
when you used the checkpoint command.
With the restart command, the state of the
target program is restored to what it was at the
time of the corresponding checkpoint com-
mand. Then you can try something else.

1See Section 7.
2Yet: see Section 7.

40 • Recent Developments in GDB

platform GDB platform GDB
Motorola MCORE 6.4 National Semiconductor NS32000 6.4
VxWorks and XDR protocol 6.4
Ah8300 6.3 mn10300 6.3
sh64 6.3 v850 6.3
Sun 2, running SunOS 3 6.2 Sun 2, running SunOS 4 6.2
Sun 3, running SunOS 3 6.2 Sun 3, running SunOS 4 6.2
T386BSD 6.1 AT&T 3b1/Unix pc 6.1
Bull DPX2 (68k, SVR3) 6.1 decstation 6.1
Fujitsu SPARClite 6.1 H8/500 simulator 6.1
HP/PA Pro target 6.1 HP/PA running BSD 6.1
HP/PA running OSF/1 6.1 LynxOS 6.1
Matsushita MN10200 w/simulator 6.1 Motorola 680x0 running LynxOS 6.1
PMAX (MIPS) running Mach 3.0 6.1 riscos 6.1
Sequent family 6.1 SGI Iris (MIPS) run. Irix V3: 6.1
SGI Irix-4.x 6.1 sonymips 6.1
SPARC running LynxOS 6.1 SPARC running SunOS 4 6.1
SunOS 4 6.1 sysv 6.1
sqware Sparclet 6.1 Z8000 simulator 6.1
Argonaut Risc Chip (ARC) 6.0 Fujitsu FR30 6.0
HP/Apollo 68k Family 6.0 i386 running Mach 6.0
i386 running Mach 3.0 6.0 i386 running OSF/1 6.0
I960 with MON960 6.0 IBM AIX PS/2 6.0
Mitsubishi D30V 6.0 Motorola Delta 88000 run. Sys V 6.0
OS/9000 6.0 V850EA ISA 6.0

Table 2: Deleted Platforms

Other commands allow you to manage check-
points. The infocheckpoints com-
mand tells you what checkpoints have been
saved, listing for each checkpoint: its num-
ber, pid, and source line number or la-
bel. The delete-checkpoint id com-
mand will delete the checkpoint numbered id.

There are some restrictions, of course. I/O can
not be ‘taken back.’ Data written to the disk
will not be erased, for example. File pointers
are, however, ‘rewound’ to their values at the
time the checkpoint was taken. Another poten-
tial problem is that each checkpoint will have
its own pid. When the restart command
is used, the restored program will not have the

same pid as before.

This only works for a native GDB on a
GNU/Linux system.3

3.2 Internationalization

When supported, GDB will be built with inter-
nationalization (libintl). Not all the necessary
mark up is complete, but it’s getting done and
such mark up is now the way things are done.
So all that’s needed now are translations: any
volunteers?

3For now. See Section 7.

GCC Developers’ Summit 2006 • 41

3.3 Ada

Support has been added for debugging ada
programs compiled with the GNAT compiler.
Currently, support is limited to expression eval-
uation, but it’s a start.

3.4 Pending Breakpoints

A pending breakpoint is one for which a valid
address can’t be found right now, but will be in
the future. A straightforward example would be
setting a breakpoint in a shared library that has
yet to be loaded. When the library is loaded,
GDB will be able to find the valid address for
the breakpoint. Then the pending breakpoint is
removed and a real breakpoint is created.

3.5 Objective-C

GDB fully supports the Objective-C language.
This should be no surprise because the ‘Next’
system, from back in the late 1980’s, used the
GNU toolchain to build its software, most of
which was in Objective-C. Why then is this a
‘recent’ development? Back then there was no
GDB community as we know it today. ‘Next’
had their own GDB, Tektronix had their own
GDB (I ported it to the M88000/SysV environ-
ment while at Tek), and the FSF had the ‘real’
version.

3.6 Processes

GDB did not deal with multiple processes very
well: if your program did a fork, you had to
make sure that the new process would sleep
long enough to get to another terminal, start an-
other GDB and attach to the new process.
The next step was to introduce the set|show

follow-fork commands so that the user
could decide which process, the parent or the
child, would be the one GDB continued to de-
bug. The one not being debugged would simply
keep running. This only works on a couple of
operating systems: HP-UX and GNU/Linux.

Now the fate of the fork not being de-
bugged can be decided using the new set
detach-on-fork command. If set to yes,
then the fork will detach from GDB and run
independently. But if set to no, then the fork
will stay in the stopped state and join the list
of forks being debugged. The command info
forks shows you the ids of the forks cur-
rently being debugged. The command fork id
tells GDB to stop debugging the current fork,
leaving it stopped, and start debugging form
id. To remove a fork from the list being de-
bugged, either use detach-fork to let the
fork run on its own after removing it or use
delete-fork to kill the fork after removing
it. This only works on GNU/Linux.4

3.7 Text-mode User Interface

The GDB Text User Interface, TUI for short, is
a terminal interface which uses the curses li-
brary to show the source file, the assembly out-
put, the program registers and GDB commands
in separate text windows.5 What’s new is that
this is now a run-time option where it used to
be a build-time option.

3.8 Convenience Variables/User Defined
Functions

Convenience variables are used in GDB either
for the user to save things they are interested
in or for GDB to make some value available.

4So far, see Section 7.
5Cut-n-pasted from gdb.textinfo.

42 • Recent Developments in GDB

For example, the user may want to remember
a particular index in an array while stepping
through a loop: set $foo = bar where
$foo is the convenience variable and bar is
the index variable for the user’s program. You
could use a value in a processor register in
an expression like this x12/g $r2*8+base
which tells GDB to print the twelve 64-bit inte-
gers in the array base indexed by register r2.

So what’s new? Two things are new, both de-
signed to help users who write their own GDB
commands.

The first one is a new convenience variable,
$argc. If you guessed that this variable con-
tains the number of arguments to the user-
defined command, you would be correct. Using
this, it is now possible (easier?) to write user-
defined commands that take a variable number
of arguments.

The other new thing provides a way to initial-
ize a convenience variable if it does not already
have a value. Normally, the first time a con-
venience value is used, it has a special ‘void’
value. Using the init-if-undefined
$variable = expression command, you can now
create a convenience variable that starts with a
value of your choice.

4 New or Improved Under-the-
Hood Features

The features in this section are not the ones the
sales force cares about. They are not glaringly
visible to users, even though they may have a
big impact. From a user’s point of view, these
features are more behind the scenes.

4.1 Threads

Support for threads has gotten a lot better. For
example, GDB used to get confused by pro-

grams that do a lot of thread creation and
deletions. Several flavors of threads are now
supported: NPTL threads, linux threads (on
GNU/Linux), and BSD user-level threads (on
OpenBSD and FreeBSD). Per-thread variables
(aka thread-local storage) is now supported on
GNU/Linux.

4.2 GDB/mi

The GDB/mi interface (interpreter in GDB par-
lance) is the new way for GDB to be used as
part of a larger system, such as a GUI or IDE,
DDD and XCode. The GDB/mi was introduced
with GDB 5.0, so it’s not new. But it is vastly
improved and as more experience is gained us-
ing it, it gets better and better. There have been
three versions of this interface, but only the two
most recent are still available. MI3, the most
recent, is now the default.

4.3 BSD libkvm Interface

Using set target kvm, when running na-
tive on a BSD flavored OS, allows debugging
of kernel core dumps and even live kernels,
though only on a few processors: i386, amd64,
m68k, and sparc. For GNU/linux, another ap-
proach was taken. There, a stand-alone variant
of GDB, called KDB, is used for kernel debug-
ging.

4.4 Windows Host Support6

GDB runs on MS Windows, either with Cyg-
win or MinGW. GDB support for both of these
environments has had improvements. For Cyg-
win, see Section 4.6 below.

6Lifted whole from GDB’s NEWS file.

GCC Developers’ Summit 2006 • 43

GDB now builds as a cross debugger hosted on
i686-mingw32, including native console sup-
port, and remote communications using either
network sockets or serial ports

4.5 Remote Debugging

GDB has had a number of improvements in this
area. Below are a few examples.

It has been possible for a while to set
the communication time-out using the
set remotetimeout n command, where n
is the number of seconds to wait before giving
up on reading from a target. Now, the time-out
value can also be set when GDB is started
using the new -l n command line option.

Before the new p packet was introduced as part
of the remote protocol, target registers had to be
read from the target in groups. Now using the p
packet, GDB can read a single register from the
target. Combine this improvement with the reg-
ister cache and communication with the target
is much more efficient and hence faster.

Another change to the protocol allows hosted
file I/O. This is where target programs access
files in GDB’s filesystem via the remote proto-
col.

4.6 Improvements in Dwarf Support

The DWARF 2 standard for debugging infor-
mation has had a profound impact on GDB, but
it didn’t happen all at once. In fact, GDB’s sup-
port for DWARF 2 is getting better all the time.
One example is that GDB built for Cygwin now
supports DWARF 2.

Another improvement is support for DWARF
2 location expressions. These are used by
DWARF to tell the debugger where to find the

value of a given variable. This used to be easy,
but now with different optimizations performed
by the compiler, the location of a variable’s
value can change during the execution of the
target program. Location expressions allow the
compiler to tell the debugger how to keep track.

One complaint lodged against DWARF is that
even though great care was taken by the
DWARF committee to keep DWARF’s ‘foot-
print’ small, DWARF can add tremendously to
the size of an executable. One answer to this
is the new -feliminate-dwarf2-dups
flag to GCC and GDB’s new support for it. Us-
ing this, GCC will try and pare down the du-
plicate information it puts out in the DWARF
sections. GDB was modified to deal with the
new DIEs7 GCC uses under this flag.

Another answer to the “debugger information
bloat” problem works with other debugger in-
formation formats as well. In conjunction with
BINUTILS, GDB now supports debug infor-
mation in separate files. Now, for example, li-
brary packages can be distributed without de-
bug info, making them much smaller. The de-
bug information can be in a separate package
which is only installed if needed.

4.7 Improved C++ Support

Support for debugging programs written in
C++ has been improved in a couple of areas.
For one, GDB has a new C++ name demangler.
Not only does it do a better job demangling the
names produced by newer versions of GCC, but
it does so faster than the old one. This can sub-
stantially reduce the start-up time when debug-
ging a large C++ program.

Another improvement is with support for C++
nested types and namespaces. GDB now un-
derstands that the namespace and/or outer type

7Debug Information Entries

44 • Recent Developments in GDB

must be included, using the scope operator, in
the type or function’s name.

4.8 Strictly Internal Improvements

In order to increase GDB’s reliability, main-
tainability, and all the other goodabilities, ma-
jor sections of the code have been overhauled
or re-architected.

The code that deals with signal trampolines has
been overhauled. This has fixed many problems
GDB was having in this area. A couple of these
problems were that GDB had trouble showing
a correct backtrace from inside a signal handler
and had trouble single stepping through a signal
trampolines.

Speaking of backtracing, a whole new mecha-
nism was created to help GDB do that. One ma-
jor improvement that this made possible was to
use DWARF 2’s call frame information. It also
makes it easier to separate out target depen-
dent heuristics and makes the whole approach
to backtracing more robust and modular.

In the same vain, a new framework for support-
ing different architectures was added to GDB.
This helps GDB keep track of all the different
target architectures it supports. It also paves the
way for two trends GDB is taking: object ori-
ented design and muli-arch support.8

5 Deleted Features

The features in this section, whether user-level
or under-the-hood, are no more. They are ex
features. All that’s left to say about them is
what they were and why they got the axe.

8See Section 7.

ARM rdi-share module9 RDI is an ABI
standard for ARM hardware debuggers
and simulators, giving you access to the
full processor state. In rdi-share, there was
support for building a gdb that could talk
to an RDI DLL and use that as a target.

IIRC it was removed because it was out-
dated and its legal status was unclear,
given that ARM ltd. gives you the nec-
essary headers under NDA only.

Netware NLM debug server It’s sometimes
hard to remember that Novell had the cor-
ner on networking PCs: Netware was the
best (only?) way to do it. Now other net-
working code has pretty much taken over
and the need to debug Netware Loadable
Modules (NLM’s) has gone away.

command line options -async and
-noasync| Once upon a time, GDB
had no “event loop”: it was totally
synchronous, you typed a command and
GDB would go away and do it. These
command options were an attempt to be
able to specify that behavior, even after
GDB became more event driven. But now,
that’s just not possible any more and these
options have been removed.

registers and frame compatibility modules
When there is a major internal change to
the way GDB does something, like access
registers, or deal with the stack, a ‘bridge’
is provided so that all the different config-
urations that GDB supports don’t have to
all change at once. But there comes a time
to burn the bridge and move on.

9Taken from an e-mail from Simon Richter. Thanks
Simon, I didn’t have a clue.

GCC Developers’ Summit 2006 • 45

6 Commands

Some of these commands have been discussed
above: they are included here as well for com-
pleteness.

6.1 New Commands

checkpoint This command creates a
checkpoint and tells you its id. At some
later point you can use that id to restore
your program’s state back to what it was
when you issued this command.

restart id Restore your program’s state
back to what it was when the checkpoint
with the given id was created.

info checkpoints Show information, in-
cluding id, about all the checkpoints that
have been taken and not deleted or de-
tached.

delete-checkpoint id Forget about id.

set detach-on-fork [on or off] If set
to on then GDB will detach from the par-
ent or child after a fork, depending on
what follow-fork is set to.

show detach-on-fork Show if
detach-on-fork is set to on or
off.

info forks Tell what forks are available
for debugging.

fork id Switch from debugging the current
fork, leaving it in the stopped state, and
start debugging the fork with the given id.

delete-fork id Delete the given fork and
kill the associated process.

detach-fork n Detach from the given fork,
letting its associated process run indepen-
dently.

init-if-undefined $variable = expres-
sion Set the given variable to the given
value, but only if the variable has not been
used before.

set print array-indexes When
array element values are displayed, their
index will also be shown.

set logging [on or off] If logging is
set on, then GDB’s output will be written
to a log file, as well as displayed.

set logging file name Set the logging
file name to name. the default is gdb.
txt.

set logging redirect [on or off]
Normally, when logging is on, GDB
output will both be displayed and written
to the log file. If this is set to on, then the
output is sent only to the log file.

set logging overwrite [on or off]
When logging is turned on, the log file
will be be overwritten if this value is on,
otherwise, it is appended to.

show logging Show if logging is set on or
off. Also show if the log file is, or would
be, overwritten or append to. Also show
if GDB’s output is to be displayed or just
written to the log file. And throw in the
name of the log file too.

start arguments This is the same as setting
a temporary breakpoint at “main” and then
issuing the “run arguments” command.

disconnect When detach is used to stop
debugging and disconnect from the target,
the target is allowed to run independent of
GDB. disconnect works the same way
except that the target is not allowed to run.
It just sits there, waiting for someone to
attach to it, and start debugging it. This
would let you debug the child and par-
ent with different GDBs after a fork. Or

46 • Recent Developments in GDB

maybe even debug with two altogether dif-
ferent debuggers.

maint set profile [on or off]
GDB has code built into it so that it can be
profiled. This is used to turn on or off
that code and is used to study the behavior
of GDB itself and has nothing to do with
the target.

6.2 Deleted Commands

Table 3 shows commands that have been
deleted along with the commands that replace
them.

7 The GDB Community and Fu-
ture Trends

Why does this section cover two different
things? Because they are so tightly linked.
The future of GDB depends on the community
of software freedom fighters that are involved
with it. In a simple view: no community, no
GDB development.

A more complex view: the impetus for change
comes from two different sources. One source
is the individual who wants something fixed,
changed, or added and is willing to do the work,
(or pay someone else to). The attitude of the
community is that if you want something and
are willing to do the work to get it, then go
for it. Of course there are limits. Those limits
are determined and enforced by a set of official
‘maintainers.’

There are two types of maintainers and just
recently, a third type was added. There
are ‘global’ maintainers who are free to OK
patches to any part of GDB. There are also what
might be called ‘areas of interest’ maintainers.

These maintainers can reject or OK patches to
particular areas of GDB. The new type of main-
tainers are patch champions. Their role is to
make sure that no patch gets lost. Patches can
be rejected, but thanks to the patch champions,
not by default.

So what if you have a good idea for some spe-
cific, but can’t do the work yourself, or you
see a need for a bigger change then one per-
son could do? This is where the “group mind”
aspect of the GDB community comes into play.

Someone tries to start a dialog in the GDB mail-
ing list, maybe just to call attention to some-
thing that needs some. If the message catches
someone else’s interest, then they reply to the
mailing list, and the discussion has begun.

The discussion can end in one of three ways:

1. the community reaches consensus that it
should be done, now who has the time to
do the work?

2. the community reaches consensus that it
should not be done. Sorry.

3. the community is leaning toward option
one above, but before they reach consen-
sus, someone gets tired of all the discus-
sion and says “I’ll just do it, OK?” and the
community replies “Fine, but if we don’t
like it when you’re done, it won’t become
a part of GDB.”

Sometimes an idea or request can stay in option
one for a long time before someone has time for
it. Or sometimes it is such a big or far reach-
ing idea that it needs to be done in steps. It is
mostly by this path that the community devel-
ops trends for the future.

So what are some of the future trends?

GCC Developers’ Summit 2006 • 47

deleted command replacement
set|show arm dissembly-favor set|show arm disassembler
othernames set arm disassembler
set|show remotedebug set|show debug remote
set|show archdebug set|show debug arch
set|show eventdebug set|show debug event
regs info registers
set prompt-escape-char - none -

Table 3: Deleted Commands

propagate Several really cool things only
work on one OS or with a small number
of processors and need to be propagated to
all configurations. This will not always be
possible due to hardware and/or software
incompatibilities. But things like kernel
bugs can be fixed and should be if that’s
the problem.

separate Some features that could logically
be independent, like the MI and the CLI,
are not quite. They should be separated
and made independent. The next trend
should help with that.

objectify GDB is slowly evolving into an ob-
ject oriented design. Thanks to the “ob-
server” mechanism, “Catch and throw”
and a bunch of other stuff Cagney and oth-
ers did, GDB looks a lot like a “coarse
grain” object oriented design. More is
needed. A more complete object orienta-
tion will make GDB much easier to deal
with as a large piece of software.10 Gen-
eralizations like “multi-arch” will be eas-
ier to do. A “multi-arch” GDB will work
with any architecture GDB knows about,
not just the one it was built for.

it’s a given There will be new processors, new
operating systems, new languages (natural
and computer), new compilers, etc.

10About 1.75 million lines of code

optimized code GDB has been getting bet-
ter in dealing with optimized code but still
has a ways to go. The mailing list often
gets messages asking “why does the line
number keep jumping around when I step
through my code?”

blue sky Some ideas start life as “blue sky”
ideas. They are real cool, but they will
never be practical. Then some new piece
of technology comes along and, just like
that, the idea isn’t so far fetched anymore.

A current Blue Sky idea for GDB is “re-
verse execution.” This would be like hav-
ing a target with a reverse gear. Every in-
struction could go forward or backward,
performing a computation or undoing the
results of one. Some believe that a proces-
sor is coming “soon” that will make this
possible. In the meantime, we can talk
about how GDB would deal with such a
processor and maybe even hack one of the
simulators so that the idea can be experi-
mented with.

And if we can’t go back instruction by
instruction, maybe we can go back by
some larger amount: maybe back to some
checkpoint. Oh right: already did that. So
now, what’s the next step? Better send a
query to the GDB mailing list and see if it
catches anyone’s eye.

48 • Recent Developments in GDB

Profile driven loop transformations

Richard Günther
SUSE Labs

rguenther@suse.de

Abstract

Today scientific computing applications are de-
veloped using modern principles of software
design. Among others, this leaves specializa-
tion and optimization of loop kernels to the
compiler. In particular, loops which run for a
known low number of iterations in one of the
dimensions, such as loops handling boundary
condition computation, usually produce infe-
rior code using F95 array expressions or C++
template library utility functions. The same
holds true for strides of multidimensional ar-
rays which usually are the same for all arrays
that participate in a loop kernel, but still are not
known so at compile time.

GCC has developed a rich infrastructure for
both loop analysis and transformation[1]
as well as supporting profile guided
optimizations[3]. Using this infrastructure
we present the results of developing loop
optimizations that rely on the use of loop
versioning and profiling of iteration counts
and access evolution. The goal is to reduce
the numbers of induction variables to consider
during induction variable optimization and
improve the generated code by requiring a
less overall number of registers. This is done
by providing loop specializations for both
the above mentioned cases. We present the
implementation of the instrumentation and the
optimizing phase discussing current limitations
of the framework GCC provides. A case

study involving the TraMP3d benchmark to
gather statistical data for the transformations
is presented as well as performance results for
applying the transformations on a standard
loop kernel.

1 Introduction

There are two different species of profiles, CFG
profiles, which profile for instance edge execu-
tion counts, and value profiles, which profile for
instance the value of the dividend in a division
instruction.

A CFG profile can be used to direct inlining de-
cisions such as emphasizing inlining into hot
sections of a program and keep cold sections
optimized for size. It also is used to estimate
branch probabilities to guide partitioning of hot
and cold code sections and basic block reorder-
ing to improve code locality and instruction
cache efficiency. A CFG profile can to some
extent also be used to estimate loop iteration
counts to guide optimizations such as loop un-
rolling and peeling, though in general CFG pro-
file info is too imprecise here.

Value profiles on the other hand are used to
decide whether specializations of computations
are worthwhile, such as specializing a division
instruction for a constant divisor or dividend.
In general value profile using optimizations in-
crease code size for introducing a new common

50 • Profile driven loop transformations

faster path based on knowledge of certain val-
ues used in the following computation.

A simple example for a value profile transfor-
mation is the instruction

c = a/b

which can be transformed into

if (b == 1) c = a;
else c = a/b;

based on profile information that b == 1 is in-
deed common.

In the following, we will use value profiles of
variables and predicates composed from quan-
tities used in nested loop code to create special-
izations of these loops which can then be opti-
mized by later passes.

1.1 Interesting Loops

We are interested in a certain type of loops.
This is not necessarily a requirement of the in-
strumentations and transformations we outline,
but we will restrict further discussion on nested
loops of the form

for (iN = i0N; iN < i1N; ++iN)

...

for (i0 = i00; i0 < i10; ++i0)

f (mem0[(i0 + C00) ∗ stride00

+ ... + (iN + CN0) ∗ strideN0],

...,

memM[(i0 + C0M) ∗ stride0M

+ ... + (iN + CNM) ∗ strideNM]);

That is, loops of the nest N which have an in-
ner loop body that is a function of M memory
reads or writes with possibly different access
patterns specified by the strides stride00 to stri-
deNM and the constant offsets C00 to CNM.

Interesting loops are required to have loop in-
variant strides, loop bounds and memory base
addresses.

GCC has infrastructure to analyze and identify
loops of the above form and canonicalize them
so that the above constraints can be verified by
looking at the SSA web. In particular, the scalar
evolution infrastructure[1] can be used to ver-
ify loop invariantness and to query the number
of iterations of each loop of the nest. It also
provides a way to decompose memory access
patterns to the form outlined above.

1.2 Transformations

The set of transformations we are after
is inspired by the TraMP3d[2] hydrody-
namics code. TraMP3d is based on the
FreePOOMA[4] library which provides data-
parallel array operations similar to Fortran90+.
As those go through a common loop expander
template function, common degenerate cases
are worth to optimize. The loop expander tem-
plate for three dimensions looks like the follow-
ing

template <class LHS, class Op, class RHS,

class Domain>

inline static void __attribute__((flatten))

evaluate(const LHS& lhs, const Op& op,

const RHS& rhs, const Domain& domain)

{
int e0 = domain[0].length();

int e1 = domain[1].length();

int e2 = domain[2].length();

#pragma omp parallel for

for (int i2=0; i2<e2; ++i2)

for (int i1=0; i1<e1; ++i1)

for (int i0=0; i0<e0; ++i0)

op(lhs(i0,i1,i2), rhs.read(i0,i1,i2));

}

Here memory access patterns such as strides
and constant offsets are encapsulated in the
lhs and rhs expression template[5] objects.

GCC Developers’ Summit 2006 • 51

Let op do a simple assignment of the rhs
object to the lhs object. Further be lhs.
strides an array specifying the strides
used to access the lhs memory, and rhs.
strides for the rhs memory. domain.
size should be an array specifying the size
of the domain to iterate over. We are then in-
terested in the following specializations being
done:

(a) lhs.strides[0] == rhs.strides[0] == 1

(b) lhs.strides[0] == rhs.strides[0] == 1 and
domain.size[0] == 2

(c) lhs.strides[0] == rhs.strides[0] == 1 and
domain.size[1] == 2

(d) lhs.strides[0] == rhs.strides[0] == 1 and
domain.size[2] == 2

Here (a) covers copying of unit stride array re-
gions, and (b) to (d) cover periodic boundary
updates. In addition to these specializations, re-
flecting boundary condition updates would be
optimized by versioning for lhs.strides[0] == 1
and rhs.strides[0] == -1 and the respective do-
main size conditions.

By providing specializations for these cases,
we rely on the following optimization passes to
take advantage about the additional knowledge.

• Induction variable optimization is pre-
sented with a problem reduced in com-
plexity due to the now partially constant
strides.

• The linear loop transformation pass can
decide to move the low-iteration count
loop either to the outermost or the inner-
most nest, which allows

• either loop unrolling to unroll the inner-
most loop completely,

• or induction variable optimization to con-
sider the most expensive updates for the
outermost loop to improve induction vari-
able selection for the inner nests.

2 Preparation

To be able to use the infrastructure mentioned
above we need to first do some cleanup trans-
formations on the loops, namely loop header
copying, which transforms the loops into do-
while loops, and loop invariant motion by us-
ing load-PRE to make loop invariant memory
references regular SSA variables in the SSA
web of the loop nest. To achieve this, we have
moved the tree profiling pass to a later point in
the optimization pipeline and inserted a set of
optimization passes before it. The relevant part
of the optimization pipeline now looks like (in-
serted passes marked with *):

Initial scalar cleanups:

pass-ccp
...
pass-dce

Kill empty loops getting in the way of loop ana-
lyzing. The WrapNoInit template leaves us with
empty loops counting from 2 to -1 otherwise.

pass-tree-loop-init
* pass-empty-loop
* pass-complete-unroll
* pass-tree-loop-done

The VRP pass above exposed new forwprop op-
portunities (which in turn exposes copyprop op-
portunities) due to folding casts again. And an-
other may-alias pass to expose the store copy-
prop opportunities to DOM.

52 • Profile driven loop transformations

* pass-forwprop
* pass-may-alias

pass-dominator
...
pass-ch

We need a load-PRE pass to hoist loads of loop
invariant strides and counts out of the loop bod-
ies. Possible due to loop header copying.

* pass-split-crit-edges
* pass-pre
* pass-may-alias
* pass-hoist-guards

We need a copyprop pass to have the same SSA
names for loop tests as the hoisted loads from
PRE.

* pass-rename-ssa-copies
* pass-copy-prop
* pass-dce
* pass-tree-loop-init

Try getting rid of extra PHIs inserted by loop-
init.

* pass-phi-only-cprop
pass-tree-profile

The early loop pass is to get rid of unrelated
inner loops in the TraMP3d benchmark, like-
wise the extra forward propagation and may-
alias passes are to expose SFTs of array ele-
ments to the following DOM pass doing store
copy propagation.

Entering the tree-profile pass, a properly opti-
mized loop looks like that in Fig. 1.

From the optimization pipeline you can see that
we needed to make the tree profiling code work

on SSA form. This was necessary anyway be-
cause the infrastructure for loop modification
and the SCEV analysis requires SSA form. In
the current state profiling is now done after in-
lining, so profile-based inlining is disabled. Af-
ter the merge of the IPA-branch it will be pos-
sible to place the early optimizations and the
profiling before the final inlining pass, which is
then done on SSA form.

2.1 Limitations of the current infrastruc-
ture

The current profiling and loop infrastructure
presents us with several limitations that have
been partially addressed for this work. First
of all, the existing profile instrumentation pass
does not work on SSA form, while SCEV anal-
ysis and all optimization passes require that.
This has been fixed and allows moving the
tree-profile pass to a later point in the
optimization pipeline.

SCEV analysis for figuring out the number of
iterations of a loop needs to be improved to
deal with more cases that happen for example
in TraMP3d. The situation with this has been
improved by us and Sebastian Pop. For exam-
ple we were not able to determine the number
of iterations of the loop for (int i=i0; i<=i1+1;
++i);, which runs i1-i0+2 times if it runs at all.

Loop header copying, SCEV and load-PRE in-
teract in interesting ways, in particular with
loop nests. We and Zdenek Dvorak have devel-
oped several ideas to work around these issues
for the testcases we looked at sofar. Still there
are cases where invariant loads are not hoisted
out of the loops even if they are known to iterate
at least once. This sometimes makes analyz-
ing of memory accesses impossible, see Fig. 2
for an illustration of the difficulty to hoist stride
loads.

GCC Developers’ Summit 2006 • 53

int e2 = d.sizes[2]; int j=0;
int e1 = d.sizes[1]; do {
int e0 = d.sizes[0]; int i=0;
int s2 = a.stride[2]; do {
int s1 = a.stride[1]; a.m[i*s0+j*s1+k*s2] = 0.0;
int s0 = a.stride[0]; ++i;
if (e2 > 0) } while (i<e0);
if (e1 > 0) ++j;
if (e0 > 0) } (while j<e1);
{ ++k;
int k=0; } (while k<e2);
do { }

Figure 1: Properly optimized loop-structure for analyzing with SCEV. All invariant memory loads
have been hoisted out of the loops.

if (d.sizes[2] > 0)
for (int k=0; k<d.sizes[2]; ++k) do { k=0;

if (d.sizes[1] > 0)
for (int j=0; j<d.sizes[1]; ++j) do { j=0;

if (d.sizes[0] > 0)
for (int i=0; i<d.sizes[0]; ++i) do { i=0;
... *stride; ... *stride;

++i; } while (i<d.sizes[0]);
++j; } while (j<d.sizes[1]);

++k; } while (k<d.sizes[2]);

Figure 2: Loop header copying interaction with PRE. All loop header copies need to be hoisted
out of the outermost loop for PRE to hoist the load of *stride out of the outermost loop. Compare
to properly optimized loop structure in Fig. 1

Further, the current CFG profile instrumenta-
tion code does not preserve loop structure in-
formation, as it inserts new basic blocks due
to instrumenting edges. Also the infrastructure
for loop versioning only deals with non-nested
loops. We didn’t fix any of those problems yet,
but restricted the transformations done to pro-
duce one loop version, which then can afford to
destroy loop information.

For optimization of the versioned loop the
biggest problem at the moment is the missing
ability of the value range propagation pass to
deal with a series of predicates of the form
A && B. This happens if we version for ex-
ample the loop in Fig. 3 for the stride condition

D.3300289_111. VRP in this case only han-
dles nested conditional statements, not a single
conditional statement with a composed condi-
tion.

In future work also need to teach the linear
loop transformation pass to consider exchang-
ing loops not only due to data locality reasons
but also considering the possibility to remove a
loop nest completely due to unrolling. This is
an important transformation as later measure-
ments will show.

54 • Profile driven loop transformations

3 Implementation

The implementation of the loop profiling pass
is divided into an analysis phase and an in-
strumentation or transformation phase, depen-
dent on the mode of compilation. The analy-
sis is done before the CFG profiling analysis
and instrumentation, while the instrumentation
is done after CFG profiling has cleaned up af-
ter itself. Profile counters are read and stored
alongside the analysis data.

3.1 Loop analysis

During analysis we walk the loop tree and
search for loop nests with a depth of at least
two where each of the loop satisfies the follow-
ing constraints:

• The loop has a single exit edge.

• The loop has at most one direct child.

• The number of iterations can be symboli-
cally computed at compile time and is in-
variant in the whole interesting nest.

The last constraint ensures we can insert instru-
mentation code on the exit edge of the outer
loop and that we can use the symbolic number
of iterations in the transformation phase for the
loop versioning condition. We rely on PRE to
move the necessary defining statements to be-
fore the loop header copies.

For each such nest found, we walk the inner-
most loop list of basic blocks to identify and
analyze memory loads and stores for their ac-
cess strides using the scalar evolution of the
memory address. To be interesting for profil-
ing, those strides need to be invariant with re-
spect to the outermost loop. From this data we

compute a single boolean value that is true if
all innermost loop strides are one. Building this
value in a different way, or computing multiple
values for other conditions is easily possible,
too. A useful extension would be to check if all
memory access strides for the innermost loop
are the same, or to handle loads and stores sep-
arately for the checks. Another useful property
to profile is alignment and data dependency, in-
formation that can be used for example by the
vectorizer.

3.2 Loop instrumentation

In the instrumentation phase we insert single-
value profiling counters for the conditions built
during the memory access stride analysis. The
outcome of the profile is then if the condition
was true or false most or all of the time.

For the loop iteration counts we insert interval
profiling counters with an interesting range of
one to two, which gives us exact counts for
once and twice iterating loops as well as the
overall number of times the nest was entered.

All profiling counters are inserted on the outer-
most loop single exit edge, so the instrumenta-
tion is cheap and all counts are relative to the
number of invocations of the whole loop nest.
Instrumenting on the exit edge requires all in-
strumented values definition site to dominate
the insertion place, which restricts the set of
possibly instrumented values to loop invariant
ones. The instrumentation place also requires
previous optimization passes to hoist all these
invariants out of the loop nest, which is possi-
ble due to canonicalization to do-while loops
done by loop header copying. In Fig. 3 the in-
strumented code after the tree-profiling pass is
shown for a selected loop from the TraMP3d-4
benchmark.

GCC Developers’ Summit 2006 • 55

<bb 2>:
D.3300088_50 = lhs->domain_m[0].domain_m[1];
D.3300097_65 = lhs->domain_m[1].domain_m[1];
D.3300106_80 = lhs->domain_m[2].domain_m[1];
if (D.3300106_80 > 0) goto <L34>; else goto <L12>;

<L34>:;
if (D.3300097_65 > 0) goto <L42>; else goto <L12>;

<L42>:; D.3300159_181 = D.3300144_177 + D.3300157_180;
if (D.3300088_50 > 0) goto <L47>; else goto <L12>; a_188 = D.3300159_181;

<L47>:; *a_188 = D.3300133_138;
D.3300117_133 = rhs->data_m; i0_194 = i0_6 + 1;
D.3300119_143 = rhs->strides_m[0]; if (D.3300088_50 > i0_194) goto <L5>; else goto <L7>;
D.3300121_150 = rhs->strides_m[1]; <L7>:;
D.3300124_82 = rhs->strides_m[2]; i1_99 = i1_139 + 1;
D.3300144_177 = lhs->data_m; if (D.3300097_65 > i1_99) goto <L24>; else goto <L9>;
D.3300146_90 = lhs->strides_m[0]; <L9>:;
D.3300148_2 = lhs->strides_m[1]; i2_94 = i2_146 + 1;
D.3300151_168 = lhs->strides_m[2]; if (D.3300106_80 > i2_94) goto <L30>; else goto <L55>;
i2_146 = PHI <i2_94(13), 0(5)>; <L55>:;

<L30>:; D.3300280_140 = (unsigned int) D.3300106_80;
D.3300125_3 = D.3300124_82 * i2_146; D.3300281_114 = (long long int) D.3300280_140;
D.3300152_155 = i2_146 * D.3300151_168; __gcov_interval_profiler (&*.LPBX2[0], D.3300281_114, 1, 2);
i1_139 = PHI <i1_99(11), 0(6)>; D.3300282_104 = (unsigned int) D.3300097_65;

<L24>:; D.3300283_151 = (long long int) D.3300282_104;
D.3300122_5 = i1_139 * D.3300121_150; __gcov_interval_profiler (&*.LPBX2[4], D.3300283_151, 1, 2);
D.3300149_67 = D.3300148_2 * i1_139; D.3300284_193 = (unsigned int) D.3300088_50;
i0_6 = PHI <i0_194(9), 0(7)>; D.3300285_187 = (long long int) D.3300284_193;

<L5>:; __gcov_interval_profiler (&*.LPBX2[8], D.3300285_187, 1, 2);
D.3300120_126 = i0_6 * D.3300119_143; D.3300287_92 = D.3300146_90 == 1;
D.3300123_129 = D.3300122_5 + D.3300120_126; D.3300288_109 = D.3300119_143 == 1;
D.3300127_132 = D.3300125_3 + D.3300123_129; D.3300289_111 = D.3300287_92 && D.3300288_109;
D.3300128_134 = (unsigned int) D.3300127_132; D.3300290_161 = (long long int) D.3300289_111;
D.3300129_135 = D.3300128_134 * 8; __gcov_one_value_profiler (&*.LPBX4[0], D.3300290_161);
D.3300130_136 = (double *) D.3300129_135; <L12>:;
D.3300131_137 = D.3300117_133 + D.3300130_136; return;
D.3300133_138 = *D.3300131_137;
D.3300147_170 = i0_6 * D.3300146_90;
D.3300150_173 = D.3300149_67 + D.3300147_170;
D.3300154_176 = D.3300152_155 + D.3300150_173;
D.3300155_178 = (unsigned int) D.3300154_176;
D.3300156_179 = D.3300155_178 * 8;
D.3300157_180 = (double *) D.3300156_179;

Figure 3: Instrumented loop from the TraMP3d-v4 benchmark (arc profiling code removed).

56 • Profile driven loop transformations

3.3 Loop transformation

The transformation phase decides whether spe-
cializations for low iteration count or constant
one inner strides are worthwhile. The latter
is done in case the strides proved to be one
all the time, while the former is decided based
upon the fraction of the times the count was
low compared to the overall loop nest invoca-
tions. A value of 1/7 has been extracted from
the TraMP3d profile counts, which enables the
wanted transformations in the boundary update
routine. Unfortunately, if loop versioning using
a condition combined from sub-conditions us-
ing logical AND, later VRP passes are not able
to extract value ranges from this compound
conditional, so the effect of the transformation
phase is limited until this is fixed.

4 Application statistics

We have run the loop instrumentation on the
TraMP3d-v4 benchmark application and col-
lected profile data to verify if we can success-
fully identify worthwhile transformations. The
profile collecting run invoked 10 iterations of
the benchmark, which ensures that all loop
nests are entered at least once. In TraMP3d-
v4 there are 63 interesting loops with different
kernels produced by the generic expander func-
tion templates. Out of these, for 8 loops we can
successfully instrument memory access strides
and 6 of these have all inner strides equal to one
for all invocations. For all 63 loops we can in-
sert counters for the number of iterations of the
loops, 8 of them happen to be never executed
because of benchmark flag settings.

The remaining not instrumented strides are due
to our inability to load-PRE the memory ac-
cesses to the strides out of the loop nest, which
causes SCEV analysis to punt on the memory

accesses. Improvements in this area are subject
of future work.

In the profile using compilation we schedule
the periodic boundary update kernel for three
specializations, one for each dimension with
its iteration count being two and the innermost
loop strides equal to one. The profile data in
this case tells us that each of the low-iteration
specialization will run 315 times, while the un-
versioned copy will run 2151 times. A total of
945 times, 30% of the loop nest invocations,
will be spent in optimized versions of the loop.

All of the 6 loops that have inner strides equal
to one for all invocations get an extra optimized
loop version created.

5 Performance experiments

Performance experiments have been carried out
using a small benchmark application that mim-
ics the basic structure of an abstract C++ ar-
ray operations framework like it is used in
TraMP3d. The loop kernel used for the exper-
iments is a simple assign operation applied us-
ing the following loop:

template <class Op>

void expand (const Array& a1, const Array& a2,

const Domain& d, const Op& op)

{

int ie = d.sizes[0];

int je = d.sizes[1];

int ke = d.sizes[2];

for (int k=0; k<ke; ++k)

for (int j=0; j<je; ++j)

for (int i=0; i<ie; ++i)

op(a1(i,j,k), a2.read(i,j,k));

}

with op assigning the second argument to the
first for the benchmark and the array accesses

GCC Developers’ Summit 2006 • 57

implemented as storage[i*strides[0] +

j*strides[1] + k*strides[2]].

The first experiment was to compare per-
formance of the loops with the transforma-
tions outlined above applied to the unmodified
loop. Specifically, comparing the original loop
(normal) with the loops with inner stride op-
timization (stride), unrolling and loop ex-
change (iter) and the loops with both opti-
mizations applied (both). The results are as
follows.

i686 normal stride iter both
full 1411 1371 1462 1471
dim0 390 333 164 159
dim1 137 125 189 98
dim2 109 101 189 97
amd64
full 1581 1493 1606 1531
dim0 237 201 158 170
dim1 128 112 159 63
dim2 114 100 148 63
ppc
full 2394 2380 2355 2351
dim0 785 803 141 144
dim1 317 314 141 145
dim2 284 284 142 146

The numbers are milliseconds for 100000 invo-
cations of the loop kernel operating on 64kB of
memory for full accesses and 8kB for the par-
tial accesses. Thus, memory bandwidth should
be that of the L1/L2 cache. The first column
specifies the type of data access, full being a
complete copy of one array to the other, while
dim0 to dim2 copy slices of width two in di-
mension N (0 being the innermost loop), simu-
lating boundary updates.

One can clearly see that for the simple loop ker-
nel reducing the number of induction variables
is a win only for register-starved machines such

as the i686, while on ppc the most gain in per-
formance is with the low iteration count loop
unrolled in the innermost nest position.

With profiling enabled we are able to obtain the
same performance results with training runs re-
stricted to one of the partial accesses. We can
also see that it would generate all the both spe-
cializations for dim0 to dim2 if training with
the full set of tests.

Due to the limitations outlined above we were
unable to produce meaningful performance
numbers for the TraMP3d benchmark. Work
on the FreePOOMA library has shown though,
that loop kernel specialization for innermost
strides being one are very important for at least
register starved machines. Similar experiments
with optimization for low iteration count have
been unsuccessful due to the explosion in num-
ber of template function instantiations caused
by a non-profile feedback directed approach.
Here, the profile based optimization is the so-
lution once the remaining issues are solved.

6 Conclusions

We have shown that with some work, the loop
and profiling infrastructure of GCC can be
used to perform loop specializations crucial for
heavy templated C++ code. In particular, rely-
ing on the compiler to identify optimization op-
portunities for boundary update loops makes it
possible to no longer manually specialize those
routines. Compared to tackling the same prob-
lem with template specialization, the profiling
approach leads to much lower compile time and
text size of the resulting program.

We also have identified certain weak spots in
the infrastructure of GCC. There is work on-
going to improve GCC in this regards and we
hope to provide the community with a cleaned

58 • Profile driven loop transformations

up infrastructure for profiling and loop opti-
mization in the 4.3 time frame.

Ultimately the goal should be to generally make
CFG manipulation loop aware and manage
loop structure as a required or provided pass
property. This should also allow to propagate
information gathered from the profiles to later
passes such as the loop unroller and the vector-
izer.

References

[1] David Edelsohn Daniel Berlin and
Sebastian Pop. High-level loop
optimizations for gcc. In The 2004 GCC
Developers’ Summit Proceedings, June
2004.

[2] Richard Günther. Three-dimensional
Parallel Hydrodynamics and Astrophysical
Applications. PhD thesis,
Eberhard-Karls-Universität Tübingen,
2005.

[3] Jan Hubicka. Profile driven optimizations
in gcc. In GCC Developers’ Summit
Proceedings, June 2003.

[4] John V. W. Reynders, Paul J. Hinker,
Julian C. Cummings, Susan R. Atlas,
Subhankar Banerjee, William F.
Humphrey, Steve R. Karmesin, Katarzyna
Keahey, Marikani Srikant, and Mary Dell
Tholburn. POOMA: A Framework for
Scientific Simulations of Paralllel
Architectures. In Gregory V. Wilson and
Paul Lu, editors, Parallel Programming in
C++, pages 547–588. MIT Press, 1996.

[5] Todd L. Veldhuizen. Expression
templates. C++ Report, 7(5):26–31, 1995.

Multi-Language Programming
The Challenge and Promise of Class-Level Interfacing

Cyrille Comar, Matthew Gingell, Olivier Hainque, and Javier Miranda
AdaCore

{comar, gingell, hainque, miranda}@adacore.com

Abstract

Many computer applications today involve
modules written in different programming lan-
guages, and integrating these modules together
is a delicate operation. This first requires
the availability of formalisms to let program-
mers denote “foreign” entities like objects and
subprograms as well as their associated types.
Then, proper translation of what programmers
express often calls for significant implementa-
tion effort, possibly down to the specification
of very precise ABIs (Application Binary In-
terfaces). Meta-language based approaches a-
la CORBA/IDL are very powerful in this re-
spect but typically aim at addressing distributed
systems issues as well, hence entail support in-
frastructure that not every target environment
needs or can afford. When component distri-
bution over a network is not a concern, straight
interfacing at the binary object level is much
more efficient. It however relies on numerous
low level details and in practice is most often
only possible for a limited set of constructs.

Binary level interaction between foreign mod-
ules is traditionally achieved through subpro-
gram calls, exchanging simple data types and
relying on the target environment’s core ABI.
Object Oriented features in modern languages
motivate specific additional capabilities in this
area, such as class-level interfacing to allow

reuse and extension of class hierarchies across
languages with minimal constraints. This pa-
per describes work we have conducted in this
context, allowing direct binding of Ada exten-
sible tagged types with C++ classes. Motivated
by extensions to the Ada typing system made
as part of the very recent language standard
revision, this work leverages the GCC multi-
language infrastructure and implementation of
the Itanium C++ ABI. We will first survey the
issues and mechanisms related to basic inter-
language operations, then present the interfac-
ing challenges posed by modern object oriented
features after a brief overview of the Ada, C++,
and Java object models. We will continue with
a description of our work on Ada/C++ class-
level interfacing facilities, illustrated by an ex-
ample.

1 Interfacing Across Programming
Languages - Introduction

Two general aspects of Multi-Language Pro-
gramming are the formalisms available to de-
note and use “foreign” entities exposed from a
different language than the one in which they
are referred to, and the support infrastructure
for what programmers express. “Interfacing”
can cover many different things, such as ac-
cess to foreign data, foreign type representa-

60 • Multi-Language Programming

tion, calls to foreign subprograms, handling of
foreign events like exceptions, and reuse of ob-
ject class hierarchies. In any case, an interface
always implies agreement between the involved
parties. For instance, a subroutine call will
only operate properly if the caller and the callee
agree on how arguments are passed (in what or-
der, using what machine resources), who allo-
cates/releases this or that part of the stack, how
aligned the stack pointer is expected to be, etc.
Likewise, operating on a foreign variable re-
quires a way to describe or denote the variable’s
“native” type to ensure a correct interpretation
of the actual value layout. Typically, more pow-
erful formalisms make programmers lives eas-
ier at the price of more complicated underlying
infrastructure.

1.1 Core Mechanisms - Basic Capabilities

A first set of basic interfacing possibilities is
provided by explicit programming language
features associated with well established call-
ing conventions and low level rules for the tar-
get environment specified in base Application
Binary Interface (ABI) documents.

Among other things, base ABI documents de-
scribe binary files formats, basic data type lay-
outs, stack frame organization, and machine
level conventions for passing parameters to and
returning results from subprograms. See [19]
and [12] for examples of such documents for
the i386 and amd64 architectures. Additional
calling conventions may apply in some envi-
ronments, such as the stdcall/fastcall
variants on x86-Windows [17], or for some spe-
cific programming languages as illustrated by
the differences between Pascal and C in argu-
ments passing order. These conventions pro-
vide a common ground for basic inter-language
interfacing capabilities and binary code inter-
operability, ensuring for instance proper inter-
action between GCC compiled code and target

operating system libraries.

On top of the common base conventions we
have just surveyed, various standard devices are
available on the programming languages side.
As a first example, the Ada Reference Man-
ual (ARM) includes a full annex dedicated to
the issue [22, Annex B], covering interfacing
with C, Cobol, and Fortran, and allowing im-
plementations to support other languages. The
minimum support specified in this annex con-
sists of standard packages for each language,
for instance the Interfaces.C hierarchy for
C, and specific compiler pragmas:

• Pragma Import, to import an entity de-
fined in a foreign language into an Ada
program, thus allowing a foreign-language
subprogram to be called from Ada, or a
foreign-language variable to be accessed
from Ada.

• Pragma Export, to export an Ada entity to
a foreign language.

• Pragma Convention, to specify that an
Ada entity should use the conventions of
another language for passing parameters
to subprograms, or else to represent a data
type in memory (for example determining
matrix element ordering).

• Pragma Linker_Options, to specify the
system linker parameters needed when a
given compilation unit is included in a pro-
gram.

The following code example illustrates the use
of some of these facilities to call a C func-
tion from Ada to print out an int value found
at a provided address. It uses the standard
Interfaces.C package to get access to the
Ada type corresponding to int, declares an
Ada subprogram to represent the C service in-
terface, and imports the service by way of an

GCC Developers’ Summit 2006 • 61

Import pragma. The latter tells the compiler
that the subprogram is external with C conven-
tion and states what symbol (link name) should
be used to refer to it.
with I n t e r f a c e s . C ; use I n t e r f a c e s ;
procedure Binding_Example i s

−− Map and use C f u n c t i o n
−− v o i d d u m p _ i n t _ a t (i n t ∗ p t r) ;

procedure Dump_Int_At (P t r : a c c e s s C . I n t) ;

pragma Im po r t
(Conven t ion => C ,

E n t i t y => Dump_Int_At ,
Link_Name => " d u m p _ i n t _ a t ") ;

Myint : a l i a s e d C . I n t := 1 2 ;
begin

Dump_Int_At (Myint ’ Access) ;
end ;

The Ada Access attribute used here in
Myint’Access corresponds to the & unary
addressing operator in C: It produces an ad-
dress, called an access value, said to desig-
nate the entity. Ada access values are nor-
mally subject to accessibility checks mandated
by the language to prevent the creation of dan-
gling pointers [22, 3.10.2-24]. Roughly, an ac-
cess value may only be assigned to an object
of an access type if the value lifetime is guar-
anteed to be shorter than the lifetime of the
target type. Performing these checks requires
run-time code in some cases, raising the prede-
fined Program_Error exception in case of fail-
ure. With GNAT, accessibility checks result
in automatic extra argument passing in calls to
subprograms with access parameters. A no-
ticeable effect of the C convention applied to
Dump_Int_At in our example is to disable
this circuitry, as the extra parameter is not part
of the base interface and only makes sense for
Ada subprograms.

As other examples, C++ provides linkage spec-
ifications such as extern "C" to allow the
use of C++ entities in other languages, and
calls to foreign routines from Java are possible
thanks to an exhaustive Java Native Interface
specification [11].

1.2 Higher Level Facilities and Paper
Overview

As time goes by, programming languages
evolve, higher level features are introduced,
implementation choices are made, and binary
compatibility issues, especially with respect to
other languages, are not always part of the pic-
ture upfront. This is legitimate, as a concept in
one language doesn’t necessarily have a coun-
terpart in others, and because complex factors
come into play views inevitably vary on what
scheme is best in each specific case. Still, com-
monalities do occur even for sophisticated fea-
tures, and the capability to interface across lan-
guages at these higher levels is often desirable
and an interesting challenge. For instance, an
Ada top-level subprogram might be interested
in catching exceptions raised by C++ subcom-
ponents, or vice-versa. Although the concept of
“exception” is similar in both languages, there
are variations in the way it is precisely mapped
on each side, and determining the appropriate
semantics for such a facility is difficult to start
with.

This paper describes work we have conducted
in this context, on GNU Ada/C++ “class-level
interfacing,” to allow direct binding of Ada ex-
tensible tagged types hierarchies to C++ classes
in both directions. Motivated by extensions to
the Ada typing system made as part of the very
recent language standard revision [1], this work
leverages the GCC multi-language infrastruc-
ture and implementation of the Itanium C++
ABI [5] to simplify interfacing between OO
languages at the class-level.

In Section 2 we briefly describe the Ada OO
model and its relationship with the C++ and
Java models. In Section 3 we present in greater
detail what “class-level interfacing” involves
and the various possible approaches. In Sec-
tion 4 we analyze the GNAT specific capabil-
ities for interfacing Ada with C++, illustrated

62 • Multi-Language Programming

with a commented example in Section 5, and
then offer our conclusions.

2 Static OO Models Comparison:
Ada, Java, C++

Booch [2] defines Object Orientation around
seven principles: Abstraction, Encapsulation,
Modularity, Hierarchy, Typing, Concurrency
and Persistence. The first two principles are
about separating how objects are defined and
used from how they are represented and imple-
mented. Modularity is about organizing pro-
grams as a collection of separate components
with defined interactions and limited access to
data. Typing and Hierarchy are about distin-
guishing different kinds of objects and structur-
ing them according to their common character-
istics. A complete description of these princi-
ples can also be found in [9, Section 1.3.2].

In C++ and Java, the notion of “class” is cen-
tral to all these principles even though mod-
ularity is also achieved through name-spaces
and separate files. In those languages, classes
allow grouping of data members along with
their associated function members (methods).
They also specify their position in a hierarchy
by specifying their immediate parents and of-
fer visibility restriction mechanisms for their
members.

In Ada, the first three concepts (Abstraction,
Encapsulation, and Modularity) are associated
with packages and “private” declarations while
the Typing concept is clearly associated with
the Ada typing model. The Hierarchy princi-
ple is found both in packages and types: the
child package construct allows the programmer
to define a hierarchy of packages, and the type
derivation allows him to create hierarchies of
types.

Ada 83, Ada’s original definition, was con-
sidered an Object-Based language. It was
based on the above principles without offering
any mechanism for dynamic polymorphism.
In fact, dynamic dispatching was deliberately
banned from the language since it was, at the
time, considered incompatible with its safety
requirements. In this first model, a class is
represented by a private type along with its
primitive operations (methods) encapsulated in
a package. The implementation of the pri-
vate type is typically a record grouping all data
members, and the implementation of methods
are hidden in the package body.

The second revision of the language, known as
Ada 95, enriches its typing system with a new
variety of record called “tagged” records. The
main characteristic of these records is that they
can be extended during derivation and thus are
used as the basis for dynamic polymorphism
under a single inheritance model. Both C++
and Java fully support single inheritance. Con-
trary to those languages where polymorphism
is implicit, Ada distinguishes it through an ex-
plicit notation: T’Class is the polymorphic,
called class-wide, version of a specific tagged
type T, which means that the actual run-time
type of an object declared of type T’Class can
be T or any of its descendant.

In Java, all methods are dispatching. In C++,
methods are dispatching when they are de-
clared “virtual.” In Ada, all methods are poten-
tially dispatching and a call dispatches or not
depending on the nature of the object it applies
to. Dispatching will only occur when the lat-
ter has a polymorphic type, as illustrated by the
code excerpt below:
−− A c a l l i s d i s p a t c h i n g i f t h e c o n t r o l l i n g
−− argument t y p e i s c l a s s w i d e :

X : T ’ C l a s s := . . . ;
Y : T := . . . ;
. . .

X . T_Method ; −− d i s p a t c h i n g
Y. T_Method ; −− n o t d i s p a t c h i n g

GCC Developers’ Summit 2006 • 63

C++ offers full-scale multiple inheritance. That
is to say, a class may have several parents and
inherits all their data and function members.
This is a powerful capability providing a great
deal of expressive power. At the design level,
it is particularly convenient for composing con-
cepts represented by independent classes. Pro-
gramming with full multiple inheritance re-
quires familiarity with the answers provided
by the language to tricky questions such as:
What happens when a class inherits multiple
times from the same ancestor through different
derivation paths? What happens when inherit-
ing methods with the same profile from differ-
ent parents? A thorough overview of how C++
answers such questions is available from [21],
along with many ideas on how multiple inheri-
tance can be implemented efficiently. Nonethe-
less, although multiple inheritance has proven
to be a very powerful paradigm for skilled pro-
grammers, its extensive use may have negative
consequences for the readability and long term
maintainability of software.

In recent years, a number of language designs
[6, 7] have adopted a compromise between full
multiple inheritance and strict single inheri-
tance, which is to allow multiple inheritance
of specifications, and only single inheritance of
implementations. Typically this is obtained by
means of “interface” types. An interface con-
sists solely of a set of operation specifications:
it has no data components and no operation im-
plementations. A type may implement multiple
interfaces, but can inherit code from only one
parent type. This model has much of the power
of full-scale multiple inheritance, but without
most of the implementation and semantic diffi-
culties of the C++ multiple inheritance model
[10].

Ada 2005 provides support for such abstract in-
terface types [1, Section 3.9.4]. Its character-
istics are introduced by means of an interface
type declaration and a set of subprogram dec-

larations. The interface type has no data com-
ponents and its primitive operations are either
abstract or null, in which case they behave as if
their body was empty. A data type that imple-
ments an interface must provide non-abstract
versions of all the abstract operations of its par-
ents. Here is a code sample to illustrate the
declaration of interface types and the associated
multiple inheritance capability in Ada 2005:

package I n t e r f a c e s _ E x a m p l e i s
type I1 i s i n t e r f a c e ;
f u n c t i o n P (X : I1) re turn I n t e g e r

i s a b s t r a c t ;

type I2 i s i n t e r f a c e and I1 ;
procedure Q (X : I1) i s n u l l ;
procedure R (X : I2) i s a b s t r a c t ;

type Root i s tagged record with p r i v a t e ;
procedure A (Obj : T) ;
f u n c t i o n B (Obj : T) re turn I n t e g e r ;

type DT i s
new Root and I1 and I2 with p r i v a t e ;

−− DT1 must imp lemen t P , and R
. . .

type DT2 i s new DT with p r i v a t e ;
−− I n h e r i t s a l l t h e p r i m i t i v e s and
−− i n t e r f a c e s o f t h e a n c e s t o r

p r i v a t e
type Root i s tagged record with
−− Root components
. . .

end record ;

type DT i s
new Root and I1 and I2 with record
−− DT components
. . .

end record ;

type DT2 i s new DT with record
−− DT2 components
. . .

end record ;
end I n t e r f a c e s _ E x a m p l e ;

The interface I1 has one subprogram, P. The
interface I2 has the same operations as I1 plus
two subprograms: the null subprogram Q and
the abstract subprogram R. Then, we define the
root of a derivation class that has two primitive
operations, A and B. DT extends the root type
and also inherits the two interfaces I1 and I2, so
it is required to implement all the associated ab-
stract subprograms. Finally, type DT2 extends

64 • Multi-Language Programming

DT1, inheriting all the primitive operations and
interfaces of its ancestor.

OO languages that provide abstract interface
types [6, 7] have a run-time mechanism that
determines whether a given object implements
a particular interface. Accordingly Ada 2005
extends the membership operation to interfaces
and allows the programmer to write the pred-
icate O in I’Class. Let us consider an exam-
ple that uses the types declared in the previous
fragment and displays both of these features:

procedure D i s p a t c h _ C a l l
(Obj : I1 ’ C l a s s) i s

begin
−− 1: d i s p a t c h c a l l
. . . := P (Obj) ;

−− 2: membership t e s t
i f Obj in I2 ’ C l a s s then

−− 3: i n t e r f a c e c o n v e r s i o n p l u s
−− d i s p a t c h c a l l
R (I2 ’ C l a s s (Obj)) ;

end i f ;

−− 4: d i s p a t c h t o p r e d e f i n e d op .
I1 ’ Wr i t e (Stream , Obj)

end D i s p a t c h _ C a l l ;

The type of the formal Ob j covers all the types
that implement the interface I1. At –1– we dis-
patch a call to the primitive P of I1. At –2– we
use the membership test to check if the actual
object also implements I2. In order to issue a
dispatching call to the subprogram R of inter-
face I2, at –3– we perform a conversion of the
actual to the class-wide type of interface I2. If
the object does not implement the target inter-
face and we do not protect the interface con-
version with the membership test, then the pre-
defined exception Constraint_Error is raised at
run-time. Finally at –4– we see that, in addi-
tion to user-defined primitives, we can also dis-
patch calls to predefined Ada operations: ’Size,
’Alignment, ’Read, ’Write, ’Input, ’Output, Ad-
just, Finalize, or the equality operator.

Ada 2005 also extends abstract interfaces for
its use in concurrency, but this topic is not dis-
cussed in this paper. For details on the GNAT

implementation of synchronized interfaces see
[15].

3 Interfacing at the class level

3.1 Basic Requirements

In general, reusing an object-oriented system
requires two distinct capabilities: creating in-
stances of existing classes and defining new
classes inheriting from them. Reusing an OO
system written in a different language requires
the additional capability: to “see” foreign
classes and use them with as few restrictions
as possible. In particular it implies the possi-
bility of defining in one language an instance
of a class which has been implemented in an-
other. Another interesting capability is inherit-
ing from foreign classes, which implies that dy-
namic binding can cross language boundaries
transparently. Although of less general inter-
est, Run Time Type Information (RTTI) queries
such as membership tests are also worth men-
tioning.

For such interfacing capabilities to make sense,
minimal commonalities between the OO mod-
els are required to preserve coherence between
a class hierarchy defined on one side and used
on the other.

3.2 Common Approaches

A well-known approach to inter-language
class-level interfacing consists of resorting to
a common meta language. CORBA [18] of-
fers an interesting case of the definition of such
a model. CORBA’s main goal is to support
the development of Object-Oriented distributed
systems. Thus inter-computer communication

GCC Developers’ Summit 2006 • 65

plays an important role. If we abstract the com-
munication component however, CORBA of-
fers a model for interfacing systems that may
be written in different languages and thus of-
fers a language independent object model. This
model is described using an Interface Defini-
tion Language (IDL). The CORBA IDL defines
the concepts needed to describe the most com-
mon abstractions: basic and composite data
types, modules, exceptions, and class hierar-
chies, possibly with multiple inheritance. Not
being an implementation language, only the
definition part of a class needs to be provided
in the CORBA IDL and corresponds to a Java
interface. In fact they are also called interfaces
in IDL jargon. Hence, CORBA IDL seems an
ideal solution for interfacing at the class level
since it offers the common ground on which
languages with different object models can use-
fully communicate.

At the practical level, however, the situation is
not ideal. Within the CORBA framework, each
language requires a binding between its native
OO model and the Definition Language, an IDL
compiler is needed to transform IDL models
into a set of native specifications or header files,
and these then have to be connected to the exist-
ing system. So, not only does the user need to
learn and use a yet another language, the final
system ends up with a thick layer for the inter-
facing part composed of the two bindings men-
tioned above connected by a complete commu-
nication middleware (Object Request Broker,
ORB). In situations where the various subsys-
tems are not intended to be deployed on differ-
ent machines, this can represent a very signif-
icant overhead both in development effort and
in the amount of code dedicated to interfacing.

The use of an Interface Definition Language
is not limited to CORBA. It is also used in
other contexts where interfacing at class level
is sought. [4] offers a good description of such
a case for interfacing two languages with quite

different OO models: OCaml and C#. The IDL
used in this context is very close to Java syn-
tax and the paper gives a good description of
the notion of shadow (or Proxy) classes, an-
other typical model for class level interfacing
between two incompatible worlds.

The “shadow/proxy class” idea is to define two
matching class hierarchies on each side of the
language fence. For each class implemented on
one side, a shadow class is defined on the other
side where all its methods are wrappers that ul-
timately call the corresponding foreign method.
On the shadow side, each class instance needs
to be associated to a real instance on the other
side, which can be done as part of the initializa-
tion of the shadow instance.

The SWIG system [20] is worth mentioning
in this context. SWIG is a software develop-
ment tool that connects programs written in C
and C++ with a variety of high-level program-
ming languages such as Java, Python, Ruby
or Scheme, most of which offer their own OO
model. As with CORBA, SWIG uses an IDL.
Its syntax is very close to C/C++ header files, so
interface files can be written quickly by simpli-
fying the existing header files of the system to
interface. SWIG automatically creates the hier-
archy of shadow classes that will allow those
various OO languages to access pre-existing
C++ class hierarchies.

The shadow class mechanism becomes com-
plicated when the original language features
garbage collection, since the shadow object
may end up being the only valid reference to the
real object and is usually hidden from the orig-
inal environment. When the language does not
provide garbage collection, the opposite prob-
lem can arise: how to make sure that those
shadow objects or their counterpart are released
properly before becoming unreachable? All
these issues are described in great detail in the
SWIG documentation.

66 • Multi-Language Programming

Apart from the aforementioned families of ap-
proaches, direct interfacing at the binary level
can sometimes be achieved, alleviating the
need for intermediate software layers. This is
what we have done for Ada/C++ interfacing
with the GNAT compiler, as described in the
following section.

4 The GNAT Approach to
Ada/C++ Interfacing

The interfacing mechanisms mentioned in the
previous section have been designed to be in-
dependent of compiler technologies. They gen-
erate potentially heavy glue code whose only
requirements are related to the semantics of the
languages to interface and not to their actual
implementation.

As compiler implementors with full control
over code generation on one side of the in-
terface, our perspective is different. Our pur-
pose is to provide a low-level mechanism that
simplifies interfacing and allow production of
lighter glue code when possible. For instance,
when an object is part of an Ada/C++ interface,
a heavy duty interfacing mechanism such as
CORBA requires the following steps: 1) mar-
shall the object to transform it from its Ada rep-
resentation to a machine independent represen-
tation such as CDR in the CORBA case; 2) send
this encoded data through the communication
channel (ORB for CORBA); and 3) unmarshall
the data into its C++ representation.

From the compiler viewpoint, a much simpler
method can be used if one side can mimic the
data representation expected by the other. In
such a situation interfacing becomes as sim-
ple as sharing a name or a reference. In this
context, our goal is to extend the base Ada
interfacing pragmas introduced in Section 1.1

to encompass the class concept and its associ-
ated mechanisms, such as dynamic dispatching.
This is possible thanks to the commonalities
between the Ada and the C++ object models:
a C++ class maps naturally to an Ada tagged
type, a class data member is a tagged record
component, a virtual function member maps to
an Ada primitive operation, and static members
functions or constructors can be mapped to Ada
operations on the classwide type. The follow-
ing subsections describe two different schemes
we have developed to achieve this goal.

4.1 Original Scheme for Ada95

When the original Ada95/C++ interfacing
mechanism was designed in the mid 90s, a
study of various C++ compilers showed wide
variation in the layout of C++ objects and their
virtual function tables. As a consequence, we
decided to provide a model of interfacing to
C++ which depended as little as possible on
the choices made by particular C++ implemen-
tations. In this approach, the GNAT compiler
made no assumptions about how objects gen-
erated by the C++ compiler were laid out, and
required that the user determine and provide a
correct matching representation in Ada them-
selves.

For instance, the compiler made no assump-
tions about where a virtual function table
pointer would appear in an imported object.
Hence, in the declaration of the correspond-
ing type in Ada the user had to provide a
dummy pointer field and mark it explicitly with
a pragma CPP_Vtable. Additionally the
compiler had no special knowledge of how
a virtual function table was actually laid out,
leaving it up to the user to determine whether
or not he needed to provide specific offsets
in his method bindings via pragma CPP_
Virtual.

GCC Developers’ Summit 2006 • 67

In addition, no knowledge about what might be
needed to call a C++ method was encapsulated
in the compiler itself. Instead, the compiler
delegated the responsibility for accessing the
vtable and calling methods through it to a set
of routines in the run-time with a well defined
procedural interface. This abstraction meant
it was possible to adapt GNAT to changes in
C++ compilers or to adapt it to new compilers
very easily at the run-time level without actu-
ally having to make any changes in the com-
piler itself.

On the one hand, this approach enabled a suf-
ficiently motivated user to find a way of inter-
facing to C++ objects generated by a wide vari-
ety of compilers. For instance, users interested
enough in finding the virtual function pointer in
objects generated by the Sun C++ compiler and
determining at what offsets it had placed what
methods could, with enough effort, put together
a useful Ada binding.

On the other hand, this process was labor in-
tensive and error prone, and required a level of
knowledge about the implementation of both
compilers that the user may not have had
and was unlikely to be interested in acquir-
ing. While in principle the facilities the user
required were provided, in practice there was a
great deal left to be desired.

4.2 Redesign for Ada 2005 - Leveraging the
C++ ABI

An alternate approach recently added to the
GNAT compiler takes advantage of knowledge
of the C++ ABI [5]. This approach takes re-
sponsibility for the details and complexities
which the previous approach left to the end
user. This ABI is also followed by GCJ, the
GNU Java compiler [8, Section 12.1]. For
each tagged type the compiler generates a pri-
mary dispatch table associated with its single-
inheritance line of derivation and a secondary

dispatch table for each abstract interface type
inherited by the tagged type. This model incurs
storage costs, in the form of additional point-
ers to dispatch tables in each object and thunks
that adjust the value of the pointer to the object
implementing abstract interface types.

A’Address
B’Address

Primary Dispatch Table

Offset_To_Top = 0
 RTTI Pointer

A’Address
B’Address
P’Address
Q’Address
R’Address

Primary Dispatch Table

P’Address

Secondary Table of I1

P’Address
Q’Address
R’Address

Secondary Table of I2

Offset_To_Top = 0
 RTTI Pointer

Offset_To_Top = -m
 RTTI Pointer

Offset_To_Top = -n
 RTTI Pointer

Thunk of I1.P

Thunk of I2.Q

Thunk of I2.R

Root’Tag

Root Object

Root Components

DT’Tag

DT Object

T Components

I1’Tag
I2’Tag

DT Components

n

m

Thunk of I2.P

Figure 1: Layout compatibility with C++

Following with the example presented in sec-
tion 2, Figure 1 represents the layout of the
tagged types Root and DT. The dispatch table
has a header containing the offset to the top
and the Run Time Type Information Pointer
(RTTI). For a primary dispatch table, the first
field is always set to 0. The tag of the object
points to the first element of the table of point-
ers to primitive operations. At the bottom of the
same figure we have the layout of DT, type de-
rived from Root that implements two interfaces
(I1 and I2). The layout of the object (left side of
the figure), shows that the derived object con-
tains all the components of its parent type plus
1) the tag of all the implemented interfaces, and

68 • Multi-Language Programming

2) its own user-defined components. Concern-
ing the contents of the dispatch tables, the pri-
mary dispatch table is an extension of the pri-
mary dispatch table of its immediate ancestor,
and thus contains direct pointers to all the prim-
itive subprograms of the derived type. The off-
set_to_top component of the secondary tables
holds the displacement to the top of the object
from the object component containing the inter-
face tag. The offset-to-top values of interfaces
I1 and I2 are m and n respectively. This off-
set provides a way to find the top of the object
from any derived object that contains secondary
dispatch tables and is necessary in type conver-
sions. In addition, rather than containing direct
pointers to the primitive operations associated
with the interfaces, the secondary dispatch ta-
bles contain pointers to small fragments of code
called thunks. These thunks are generated by
the compiler, and used to adjust the pointer to
the base of the object.

The main difference between the current ABI
layout provided by the Ada compiler and the
official C++ ABI [5] is the contents of the RTTI
pointer. On the Ada side this pointer refer-
ences a record containing information required
to support Ada semantics (accessibility level,
expanded name of the tagged type, etc.) plus
two additional tables: a table containing the
tag of all the immediate ancestors of the type,
and a table containing the tag of all the abstract
interface types implemented by the type plus
its corresponding offset-to-top values in the ob-
ject layout. These tables give run-time support
to the membership test and interface conver-
sions respectively. Figure 2 completes the run-
time data structure described in previous sec-
tion with the GNAT Type Specific Data record.

It is clear that this difference introduces several
incompatibilities. For example, on the Ada side
we cannot make use of the membership test on
a class imported from the C++ side, and simi-
larly on the C++ side the dynamic cast opera-

I1’Tag m
I2’Tag n

 GNAT
Type Specific Data

Access_Level
Expanded_Name
 :
 :

 Table of
Interfaces

Root’Tag
DT’Tag

 Table of
Ancestors

A’Address
B’Address
P’Address
Q’Address
R’Address

Primary Dispatch Table

P’Address

Secondary Table of I1

P’Address
Q’Address
R’Address

Secondary Table of I2

Offset_To_Top = 0
 RTTI Pointer

Offset_To_Top = -m
 RTTI Pointer

Offset_To_Top = -n
 RTTI Pointer

Thunk of I1.P

Thunk of I2.Q

Thunk of I2.R

DT’Tag

DT Object

T Components

I1’Tag
I2’Tag

DT Components

n

m

Thunk of I2.P

Figure 2: GNAT Layout

tor cannot be used with tagged types imported
from the Ada side. We are working on this area
to reduce these layout differences.

Regarding the C++ ABI’s [5] completeness for
use in the implementation of other OO lan-
guages, we have found that the case of variable
sized tagged objects is not supported. Compli-
cations arise when a tagged type has a parent
that includes some component whose size is de-
termined by a discriminant and the type is also
derived from abstract interface types. For ex-
ample:

type Root (D : P o s i t i v e) i s tagged record
Name : S t r i n g (1 . . D) ;

end record ;

type DT i s new Root and I1 and I2 with . . .
Obj : DT (N) ;
−− N i s n o t n e c e s s a r i l y s t a t i c

In this example it is clear that the final posi-
tion of the components containing the tags as-
sociated with the secondary dispatch tables of
DT depends on the actual value of the discrimi-
nant at the point the object Obj is elaborated.
Therefore the offset-to-top values can not be
placed in the header of the secondary dispatch
tables because these tables are shared by all
the objects of the type. The C++ ABI does
not address this problem for the simple reason

GCC Developers’ Summit 2006 • 69

that C++ classes do not have non-static compo-
nents.

In order to solve this problem we decided to
store the offset-to-top values immediately fol-
lowing each of the interface tags of the object
(that is, adjacent to each of the object’s sec-
ondary dispatch table pointers). In this way,
this offset can be retrieved when we need to ad-
just a pointer to the base of the object. There
are two basic cases where this value needs to
be obtained: 1) The thunks associated with a
secondary dispatch table for such a type must
fetch this offset value and adjust the pointer
to the object appropriately before dispatching
a call; 2) Class-wide interface type conversions
need to adjust the value of the pointer to ref-
erence the secondary dispatch table associated
with the target type. In this second case this
field allows us to reach the object’s base ad-
dress, but we also need this value in the table
of interfaces to be able to displace down the
pointer to reference the field associated with the
target interface. For this purpose the compiler
generates object specific functions which read
the value of the offset-to-top hidden field, and
stores pointers to these functions in the table of
interfaces. For further information see [16].

5 A Commented Example

In this section we present the new GNAT fea-
tures for interfacing with C++ by means of
an example. This example consists of a clas-
sification of animals; classes have been used
to model our main classification of animals,
and interfaces provide support for the manage-
ment of secondary classifications. We will first
present a case in which the types and construc-
tors are defined on the C++ side and imported
from the Ada side, and latter the reverse case.

5.1 Importing from C++

The root of our derivation will be the Animal
class, with a single private attribute (the Age of
the animal) and two public primitives to set and
get the value of this attribute.
c l a s s Animal {

p u b l i c :
v i r t u a l vo id Set_Age (i n t New_Age) ;
v i r t u a l i n t Age () ;

p r i v a t e :
i n t Age_Count ;

} ;

Abstract interface types are defined in C++ by
means of classes with pure virtual functions
and no data members. In our example we will
use two interfaces that provide support for the
common management of Carnivore and Do-
mestic animals:
c l a s s C a r n i v o r e {
p u b l i c :

v i r t u a l i n t Number_Of_Teeth () = 0 ;
} ;

c l a s s Domest ic {
p u b l i c :

v i r t u a l vo id Set_Owner (char∗ Name) = 0 ;
} ;

Using these declarations, we can now say that
a Dog is an animal that is both Carnivore and
Domestic, that is:
c l a s s Dog : Animal , C a r n i v o r e , Domest ic {

p u b l i c :
v i r t u a l i n t Number_Of_Teeth () ;
v i r t u a l vo id Set_Owner (char∗ Name) ;

Dog () ; / / C o n s t r u c t o r
p r i v a t e :

i n t Tooth_Count ;
char ∗Owner ;

} ;

In the following examples we will assume
that the previous declarations are located in a
file named animals.h. The following package
demonstrates how to import these C++ declara-
tions from the Ada side:
with I n t e r f a c e s . C . S t r i n g s ;
use I n t e r f a c e s . C . S t r i n g s ;
package Animals i s

70 • Multi-Language Programming

type C a r n i v o r e i s i n t e r f a c e ;
f u n c t i o n Number_Of_Teeth (X : C a r n i v o r e)

re turn I n t e g e r i s a b s t r a c t ;
pragma Conven t ion (CPP , Number_Of_Teeth) ;

type Domest ic i s i n t e r f a c e ;
procedure Set_Owner

(X : in out Domest ic ;
Name : C h a r s _ P t r) i s a b s t r a c t ;

pragma Conven t ion (CPP , Set_Owner) ;

type Animal i s tagged p r i v a t e ;
pragma CPP_Class (Animal) ;

procedure Set_Age
(X : in out Animal ; Age : I n t e g e r) ;

pragma Im po r t (CPP , Set_Age) ;

f u n c t i o n Age (X : Animal) re turn I n t e g e r ;
pragma Im po r t (CPP , Age) ;

type Dog i s new Animal
and C a r n i v o r e and Domest ic with p r i v a t e ;

pragma CPP_Class (Dog) ;

f u n c t i o n Number_Of_Teeth (A : Dog)
re turn I n t e g e r ;

pragma Im po r t (CPP , Number_Of_Teeth) ;

procedure Set_Owner
(A : in out Dog ; Name : C h a r s _ P t r) ;

pragma Im po r t (CPP , Set_Owner) ;

f u n c t i o n New_Dog re turn Dog ’ C l a s s ;
pragma CPP_Cons t ruc to r (New_Dog) ;
pragma Im po r t (CPP , New_Dog , "_ZN3DogC2Ev") ;

p r i v a t e
type Animal i s tagged record

Age : I n t e g e r := 0 ;
end record ;

type Dog i s new Animal
and C a r n i v o r e and Domest ic with

record
Tooth_Count : I n t e g e r ;
Owner : C h a r s _ P t r ;

end record ;
end Animals ;

Thanks to the compatibility between GNAT
run-time structures and the C++ ABI, inter-
facing with these C++ classes is easy. The
only requirement is that all the primitives and
components must be declared exactly in the
same order in the two languages. The code
makes no use of the GNAT-specific pragmas
CPP_Vtable and CPP_Virtual described
in Section 4.1.

Regarding the abstract interfaces, we must in-
dicate to the GNAT compiler by means of

a pragma Convention (CPP), the con-
vention used to pass the arguments to the called
primitives will be the same as for C++. For
the imported classes we use pragma CPP_
Class to indicate that they have been de-
fined on the C++ side; this is required because
the dispatch table associated with these tagged
types will be built on the C++ side and therefore
will not contain the predefined Ada primitives
which Ada would otherwise expect.

Finally, for each user-defined primitive op-
eration we must indicate by means of a
pragma Import (CPP) that they are im-
ported from the C++ side.

As the reader can see there is no need to indi-
cate the C++ mangled names associated with
each subprogram because it is assumed that all
the calls to these primitives will be dispatch-
ing calls. The only exception is the construc-
tor, which must be registered in the compiler
by means of pragma CPP_Constructor
and needs to provide its associated C++ man-
gled name because the Ada compiler generates
direct calls to it. In order to further simplify in-
terfacing with C++, we are currently working
on a utility for GNAT that automatically gen-
erates the proper mangled names for C++ im-
ported subprograms, as generated by the G++
compiler.

With the above packages we can now declare
objects of type Dog on the Ada side and dis-
patch calls to the corresponding subprograms
on the C++ side. We can also extend the tagged
type Dog with further fields and primitives, and
override some of its C++ primitives on the Ada
side. For example, here we have a type deriva-
tion defined on the Ada side that inherits all the
dispatching primitives of the ancestor from the
C++ side.
with Animals ; use Animals ;
package V a c c i n a t e d _ A n i m a l s i s

type Vaccina ted_Dog i s
new Dog with n u l l record ;

f u n c t i o n V a c c i n a t i o n _ E x p i r e d

GCC Developers’ Summit 2006 • 71

(A : Vacc ina ted_Dog) re turn Boolean ;
pragma Conven t ion

(CPP , V a c c i n a t i o n _ E x p i r e d) ;
end V a c c i n a t e d _ A n i m a l s ;

It is important to note that, because of the ABI
compatibility, the programmer does not need to
add any further information to indicate either
the object layout or the dispatch table entry as-
sociated with each dispatching operation.

5.2 Exporting to C++

Now let us define all the types and constructors
on the Ada side and export them to C++, using
the same hierarchy of our previous example:
with I n t e r f a c e s . C . S t r i n g s ;
use I n t e r f a c e s . C . S t r i n g s ;
package Animals i s

type C a r n i v o r e i s i n t e r f a c e ;
f u n c t i o n Number_Of_Teeth (X : C a r n i v o r e)

re turn I n t e g e r i s a b s t r a c t ;
pragma Conven t ion (CPP , Number_Of_Teeth) ;

type Domest ic i s i n t e r f a c e ;
procedure Set_Owner

(X : in out Domest ic ;
Name : C h a r s _ P t r) i s a b s t r a c t ;

pragma Conven t ion (CPP , Set_Owner) ;

type Animal i s tagged p r i v a t e ;
pragma Conven t ion (CPP , Animal) ;

procedure Set_Age
(X : in out Animal ;

Age : I n t e g e r) ;
pragma Ex po r t (CPP , Set_Age) ;

f u n c t i o n Age (X : Animal) re turn I n t e g e r ;
pragma Ex po r t (CPP , Age) ;

type Dog i s new Animal
and C a r n i v o r e
and Domest ic with p r i v a t e ;

pragma Conven t ion (CPP , Dog) ;

f u n c t i o n Number_Of_Teeth (A : Dog)
re turn I n t e g e r ;

pragma Ex po r t (CPP , Number_Of_Teeth) ;

procedure Set_Owner
(A : in out Dog ;
Name : C h a r s _ P t r) ;

pragma Ex po r t (CPP , Set_Owner) ;

f u n c t i o n New_Dog re turn a c c e s s Dog ’ C l a s s ;
pragma Ex po r t (CPP , New_Dog) ;

p r i v a t e

type Animal i s tagged record
Age : I n t e g e r := 0 ;

end record ;

type Dog i s new Animal
and C a r n i v o r e and Domest ic with

record
Tooth_Count : I n t e g e r ;
Owner : C h a r s _ P t r ;

end record ;
end Animals ;

Compared with our previous example the only
difference is the use of pragma Export to indi-
cate to the GNAT compiler that the primitives
will be available to C++. Thanks to the ABI
compatibility, on the C++ side there is nothing
else to be done; as explained above, the only
requirement is that all the primitives and com-
ponents are declared in exactly the same or-
der. For completeness, let us see a brief C++
main program that uses the declarations avail-
able in animals.h (presented in our first exam-
ple) to import and use the declarations from
the Ada side, properly initializing and finaliz-
ing the Ada run-time system along the way:

i n c l u d e " a n i m a l s . h "
i n c l u d e < i o s t r e a m >
us ing namespace s t d ;

void Check_Carn ivo re (C a r n i v o r e ∗ o b j) { . . . }
void Check_Domest ic (Domest ic ∗ o b j) { . . . }
void Check_Animal (Animal ∗ o b j) { . . . }
void Check_Dog (Dog ∗ o b j) { . . . }

e x t er n "C" {
void a d a i n i t (void) ;
void a d a f i n a l (void) ;
Dog∗ new_dog () ;

}

void t e s t () {
Dog ∗ o b j = new_dog () ; / / Ada c o n s t r u c t o r
Check_Carn ivo re (o b j) ; / / Check s e c o n d a r y DT
Check_Domest ic (o b j) ; / / Check s e c o n d a r y DT
Check_Animal (o b j) ; / / Check pr imary DT
Check_Dog (o b j) ; / / Check pr imary DT

}

i n t main () {
a d a i n i t () ; t e s t () ; a d a f i n a l () ;
re turn 0 ;

}

72 • Multi-Language Programming

6 Conclusion

The C++ ABI [5] was first defined as part of
a new processor ABI, but it has evolved into a
processor independent ABI for C++ which can
be used as a de-facto standard for other lan-
guages (ie. currently the GNU C++, Ada and
Java compilers support this ABI). This evolu-
tion not only allows mixing C++ objects com-
piled with different compilers in the same exe-
cutable, but also allows multi-language object-
oriented programs compiled into a single exe-
cutable. The common ABI allows the program-
mer to mix objects from different languages
and also permits him the use of features such
as dynamic dispatching, which are not limited
by language boundaries.

It is well known that several modern static
Object-Oriented languages offer similar sup-
port for single inheritance and multiple inher-
itance of abstract interface types. However, the
current C++ ABI does not completely fulfill all
the requirements of these languages. For exam-
ple, in this paper we have shown that this ABI
should be extended for languages with vari-
able sized objects like Ada. We think that it
would be desirable to extend this ABI with new
sections covering the basic data structures sup-
porting Object Oriented features, such as dy-
namic dispatching, in a language independent
way to give GCC full support to multi-language
programming at the class level. This would
improve interfacing capabilities between the
OO languages supported by GCC and would
open new opportunities for software reuse in
a world where programming language trends
evolve rapidly.

For this work to be of direct use to the GCC
users interested in reusing libraries written in
several languages (ie. Ada, C++, Java), a tool
for automating the generation of the interface
files would be hightly desirable. SWIG [20]
seems to offer a very promising framework for

developing such a tool since it provides all the
technology for generating shadow class hierar-
chies. In this context, languages with ABI com-
patibility have an important benefit: shadow
methods would not be wrappers anymore but
“direct” views of the real methods because the
need for shadow objects can be replaced by di-
rect views of the real object, thus improving the
efficiency of the code and eliminating all the
complexity related to memory management.

References

[1] Ada Rapporteur Group. Annotated Ada
Reference Manual with Technical
Corrigendum 1 and Amendment 1 (Draft
16): Language Standard and Libraries.
(Working Document on Ada 2005).
Ada-Europe, 2006.

[2] G. Booch Object-Oriented Analysis and
Design Addison-Wesley, 2nd
edition,1993. ISBN: 0805353402

[3] J. Byous. Java Technology: The Early
Years, 2006. http:
//java.sun.com/features/
1998/05/birthday.html.

[4] E. Chailloux, G. Grégoire, R. Montelatici
Mixing the Objective Caml and C+
Programming Models in the .NET
Framework The 3rd International
Conference on .NET Technologies,
Plenz, Czech Republic May 30-June 1,
2005

[5] CodeSourcery, Compaq, EDG, HP, IBM,
Intel, Red Hat, and SGI. Itanium C++
Application Binary Interface (ABI),
Revision 1.86, 2005. http://www.
codesourcery.com/cxx-abi

[6] E. International. C# Language
Specification (2nd edition). Standard

GCC Developers’ Summit 2006 • 73

ECMA-334. Standardizing Information
and Communication Systems, December,
2002.

[7] J. Gosling, B. Joy, G. Steele, and
G. Bracha. The Java Language
Specification (3rd edition).
Addison-Wesley, 2005. ISBN:
0-321-24678-0.

[8] Guide to GNU GCJ, 2005. http://
gcc.gnu.org/onlinedocs/gcj/

[9] Handbook for Object-Oriented
Technology in Aviation
http://www.faa.gov/
aircraft/air_cert/design_
approvals/air_software/oot/

[10] ISO/IEC. Programming Languages:
C++ (1st edition). ISO/IEC 14882:
1998(E). 1998.

[11] S. Liang. The Java Native Interface:
Programmer’s Guide and Specification.
ISBN: 0-201-32577-2, Addison-Wesley
Professional; 1st edition (June 10, 1999).

[12] M. Matz, J. Hubicka, A. Jaeger,
M. Mitchell. System V Application
Binary Interface - AMD64 Architecture
Processor Supplement. June 2005,
Available from http://www.
x86-64.org/documentation/

[13] J. Miranda, E. Schonberg. GNAT: On the
Road to Ada 2005. SigAda’2004,
November 14-18, Pages 51-60. Atlanta,
Georgia, U.S.A.

[14] J. Miranda, E. Schonberg, G. Dismukes.
The Implementation of Ada 2005
Interface Types in the GNAT Compiler.
10th International Conference on
Reliable Software Technologies,
Ada-Europe’2005, 20-24 June, York,
UK.

[15] J. Miranda, E. Schonberg, K. Kirtchov.
The Implementation of Ada 2005
Synchronized Interfaces in the GNAT
Compiler. SigAda’2005, November
13-17. Atlanta, Georgia, U.S.A.

[16] J. Miranda, E. Schonberg. Abstract
Interface Types in GNAT: Conversions,
Discriminants, and C++. 11th
International Conference on Reliable
Software Technologies,
Ada-Europe’2006, June, Porto, Portugal.

[17] N. Trifunovic. Calling Conventions
Demystified.
http://www.codeproject.com/
cpp/calling_conventions_
demystified.asp

[18] Object Management Group. Common
Object Request Broker Architecture:
Core Specification Version 3.0.3, March
2004.

[19] System V Application Binary Interface -
Intel 386 Architecture Processor
Supplement. Prentice Hall Trade, Third
Edition 1994, ISBN: 0-131-04670-5.
Fourth Edition available from http://
www.caldera.com/developers/
devspecs/abi386-4.pdf

[20] Welcome to SWIG.
http://www.swig.org/

[21] B. Stroustrup Multiple Inheritance for
C++ The C/C++ Users Journal, May
1999 issue http:
//www-plan.cs.colorado.edu/
diwan/class-papers/mi.pdf

[22] S. Taft, R. A. Duff, and R. L. Brukardt
and E. Ploedereder (Eds). Consolidated
Ada Reference Manual with Technical
Corrigendum 1. Language Standard and
Libraries. ISO/IEC 8652:1995(E).

74 • Multi-Language Programming

Springer Verlag, 2000. ISBN:
3-540-43038-5.

Interprocedural optimization on function local SSA
form in GCC

Jan Hubička
SuSE ČR s. r. o
jh@suse.cz

Abstract

GCC is slowly shifting towards interprocedu-
ral and intermodule optimization. The paper
describe experimental implementation of inter-
procedural optimization on single static assign-
ment form (SSA) and give an guide to writing
SSA aware interprocedural optimization pass
using the new framework. Some simple im-
provements allowed by SSA optimizations are
implemented and benchmarked to discuss pros
and cons of interprocedural optimization on
SSA compared to current GCC non-SSA im-
plementation.

1 Introduction

The GCC compiler has a pretty mature in-
traprocedural optimizer framework that, de-
spite the high number of different architectures
GCC can target, is able to compete well with
proprietary solutions that are specialized for
single architectures.

Instead, the GCC interprocedural optimization
framework is in its early stages. Several opti-
mizations passes were implemented with vary-
ing success, but the limitations of the frame-
work are clear, and more work is necessary in
order to make the design of passes easier (partly

addressed by this paper) and to make whole
framework more scalable.

In this paper we consider reorganizing the inter-
procedural optimizations to work on the func-
tions in single static assignment form (SSA
form from now, see [Cytron91]) in order to
strengthen the analysis and improve the flexi-
bility of optimization passes.

One of major drawbacks of GCC interpro-
cedural framework is the memory consump-
tion caused by the GIMPLE intermediate lan-
guage. Memory issues are so serious and are
considered a major showstopper towards im-
plementing link-time whole program optimiza-
tion. While in our work we are not attempt-
ing to solve the memory issues, we are trying
to make it no worse. There are SSA based
intermodule optimizers in existence, such as
LLVM [Lattner03] with significantly lower
memory footprint, proving that this approach
makes sense for a production compiler.

2 Design overview

During the tree-SSA project [Novillo03], the
GCC intraprocedural optimization framework
was reengineered to allow multiple intermedi-
ate languages and progressive lowering, instead

76 • Interprocedural optimization on function local SSA form in GCC

of optimizing directly on a very low level inter-
mediate language (RTL).

Front-ends now are supposed to produce
GENERIC, a high level intermediate language
similar to C parse trees. GENERIC is then
lowered to GIMPLE, a restricted subset of
GENERIC that is essentially a three-address in-
termediate language, represented as trees and
still with source level control flow represen-
tation. Further transformation include lower-
ing of control flow statements into conditional
jumps (with a control flow graph on top), and
later construction of the SSA form. Later on,
GIMPLE is brought back out of SSA form and
function bodies are transformed into the RTL
intermediate language used by code generation.

Despite a theoretical possibility to have opti-
mizations working on different levels of GIM-
PLE, all tree-level intraprocedural optimiza-
tions done now (except for constant folding
and basic control flow cleanups) are performed
on GIMPLE in SSA form with control flow
graph built. In contrast, the interprocedural
optimizations (profiling, constant propagation,
cloning, inlining and alias analysis) were per-
formed initially on GENERIC, and now on low
level GIMPLE before conversion to SSA form.

This design is believed to have smaller overall
memory footprint, since the function bodies are
expanded one at a time into the more memory
intensive SSA form. On the other hand this im-
poses restriction on the pass ordering, since it is
impossible to run any intraprocedural optimiza-
tion passes before interprocedural optimization
is finished.

3 Implementation details

The SSA data structures were modified to allow
multiple functions in SSA form at once. To ac-
complish this, most of global variables holding

SSA form of function have been localized to
the struct function structure used to hold
other function specific data. Some of datastruc-
tures don’t localize easily however.

3.1 SSA version numbers

The SSA versions (names) of each variable
are represented by unique tree nodes that are
assigned unique integers (version numbers).
These numbers are used not only for debug out-
put, but also by optimization passes to store
pass specific data in on-side arrays and bitmaps.
This means that the numbers must be reason-
ably dense.

In the current implementation the SSA version
numbers are kept local to each function. This
means that interprocedural passes dealing with
SSA versions from different functions at a time
needs to keep hashtables based on the addresses
of the SSA names instead of arrays. If this be-
come an issue in future, either the local passes
would need to be moved from arrays to hashta-
bles or two SSA version numbers (global and
local) would need to be assigned to each vari-
able.

3.2 Referenced variable numbers

Similarly to version numbers, information on
the referenced variables used to be kept in an
array, so that local information could be easily
attached. We changed this array to a hash table
in the mainline compiler, at the beginning of
our project.

3.3 Variable annotations

A lot of information about variables is stored
in so-called variable annotations—structures

GCC Developers’ Summit 2006 • 77

pointed to by direct pointer from variable dec-
larations. The annotations currently hold both
pass local data and data passed across optimiza-
tion passes. Unfortunately the variable annota-
tions can not be easily privatized, since anno-
tations of global variables needs to be shared
across multiple functions.

Actually, annotations mostly hold information
that is local to optimization passes (or passed
from a pass to subsequent one), so that it can
easily be shared by intraprocedural passes on
different function bodies. In fact the only field
that was made private is default_def.

Aliasing information is also stored in the vari-
able annotations, and is local to functions.
Since the optimizer currently is not building
any aliasing information in the early optimiza-
tion passes, this does not cause any issues.
(Aliasing information would also consume too
much memory because of the virtual operands.
It is probably impractical to build it for whole
compilation unit). In future however we proba-
bly want to make the early optimization passes
to take aliasing into account, at least in a lim-
ited fashion, so these issues should be resolved
in longer term.

The aliasing information should probably be
moved to separate datastructure allocated only
for pointers, where it is actually used. This
should conserve memory as well as make the
representation more flexible. However, the
only mean to assign the datastructure to vari-
able currently is an hashtable. This may prove
too slow because aliasing info is accessed fre-
quently during the operand scan.

From the memory consumption standpoint, the
variable annotations are poorly designed, since
the lifetime of temporary objects is extended
across whole SSA optimization queue. Since
the annotations accounts roughly of 7% of
overall memory consumption, we also suggest
trying to move as much as possible out of

the annotations, either eliminating them com-
pletely, or keeping only the global information
that need to be computed for each variable in
the function. Ironically no such information is
stored currently in the annotations at all and it
seems also natural to store such information di-
rectly in the variable declarations.

4 Pass manager

The GCC pass manager was extended to allow
interprocedural passes. The toplevel pass queue
now consist of interprocedural passes, while the
subpasses are considered to be intraprocedural
(the passmanager automatically takes care to
execute the subpasses for each function in com-
pilation unit). In future this might be relaxed to
allow interprocedural subpasses but there is no
reason for doing so at the moment.

Earlier implementation of interprocedural op-
timization in GCC were performing analysis
of all functions for all interprocedural passes
first and later applying the results of interpro-
cedural analysis on each function locally. Each
pass had defined analyze method called for
each function, execute method called once
all functions was analyzed and finally modify
method called again for each function sepa-
rately. This was believed to allow more scal-
able intermodule optimization.1

This scheme, however, turned out to be diffi-
cult to manage because of the interactions be-
tween passes. It seems unnecessary to intro-
duce such a restriction on interprocedural pass

1If all analysis are performed before any modifica-
tion, the analysis phase can be done locally at compi-
lation time and written into fake object files in function
summaries. The link-time optimizer then can read the
summaries first and perform interprocedural propagation
of collected data. Compilation then can be done at func-
tion basis with loading only the necessary function bod-
ies into compiler memory reducing peak memory usage.
See [Hubička04] for more discussion on the topic.

78 • Interprocedural optimization on function local SSA form in GCC

designers in such an early stages of develop-
ment on the framework. Once the implemen-
tation is sufficiently mature and we have better
understanding of the interactions of individual
passes, we might revisit this idea. It might be
however more profitable to simply forget about
it and concentrate more on reducing memory
usage of our intermediate language.

5 Order of optimization passes

At present the interprocedural pass queue in-
cludes the following passes:

1. Removal of unreachable functions and
variables.

2. Early inlining.

3. Early intraprocedural passes (profiling,
control flow graph cleanup, conversion to
SSA, constant propagation, value range
propagation and dead code removal) and
rebuilding the callgraph edges.

4. Interprocedural constant propagation and
function cloning.

5. Inlining

6. Removal of unreachable functions.

7. Alias analysis.

8. Type escape analysis.

9. Points-to analysis.

10. Intraprocedural passes and final output of
function.

11. Output of static variables still referenced
by optimized code.

12. Local optimization and output of individ-
ual functions.

13. Output of static variables still referenced
by the optimized function bodies.

The order is generally natural, perhaps with the
exception of early inlining pass. Early inlin-
ing was introduced to help C++ testcases with
high abstraction penalty and employs simpli-
fied heuristics, whereby we only inline func-
tions that are smaller than the expected call
overhead. In particular, wrapper functions
are eliminated reducing significantly (by more
than factor of 10) the profile instrumentation
overhead on the TraMP3d testcase [TraMP3d].
The pass should also improve the effective-
ness of early local optimization passes on test-
cases with a lot of small functions, where these
passes are otherwise close to useless.

Interprocedural constant propagation is per-
formed before inlining so that the inliner can
deal more aggressively with the specialized
bodies of functions. Unfortunately at the time
of writing the paper, the interprocedural con-
stant propagation is limited to create at most
one clone of each function body (and only in
the case the operand is the same constant in all
calls to the function but would not be propa-
gated without cloning because function might
be called externally), which makes the interac-
tion with the inliner suboptimal. The really in-
teresting case of function called with different
constant operands form different places spe-
cialized into multiple forms is not considered
for the moment.

To enhance the effectiveness of interprocedu-
ral alias analysis, it might be also be prof-
itable to redo early local optimization passes
before it. However, the lack of local alias anal-
ysis information in early optimization passes
causes any statement accessing memory to be
considered volatile and thus left unoptimized.
As a result, early optimizations won’t improve
code enough to make any difference for alias-
ing analysis.

GCC Developers’ Summit 2006 • 79

6 Writing an interprocedural GCC
pass

Thanks to the new pass manager framework,
the interface to interprocedural passes is very
similar to interface to local optimization passes.
The tree_opt_pass structure needs to be
filled in:

struct tree_opt_pass my_pass =
{
"pass_name"
gate_function,
execute_function,
NULL, NULL,
/* Local subpasses */
0, /* Static pass number. */
TV_PASS, /* tv_id */
PROP_cfg | PROP_ssa,
/* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_cgraph
| TODO_dump_func,
/* todo_flags_finish */
0 /* Used by RTL passes */

};

The function gate_function is used to
control execution of the pass and execute_
function is called when the pass should be
performed. The pass then needs to be registered
into optimization queue in passes.c.

6.1 Walking functions in program

To analyze functions, one should look at linked
list of callgraph nodes. The list contains all
functions, external or internal. To explore only
the functions whose body is known, the flag
analyzed needs to be tested:

struct cgraph_node *node;
for (node = cgraph_nodes; node;

node = node->next)
if (node->analyzed)
....

6.2 Walking callgraph

The callgraph edges (call sites) are represented
as linked lists of struct cgraph_edge
objects. Each callgraph node points to list
of callers by node->callers and list of
callees by node->callees. These lists are
built during analysis pass and are maintained
up to date until final local optimization passes
that are destructive to callgraph.

6.3 Walking function bodies

Most functions that manipulate control flow
graph or SSA form are not yet aware of mul-
tiple functions. When the control flow graph
needs to be manipulated, it is easiest to change
the current_function_decl and cfun
pointers. It is also necessary to setup the con-
trol flow graph hooks:

push_cfun
(DECL_STRUCT_FUNCTION

(node->decl));
tree_register_cfg_hooks ();
current_function_decl
= node->decl;

After the analysis is completed, it may be nec-
essary to destroy dominance info (if computed)
since this datastructure is global.

free_dominance_info
(CDI_DOMINATORS);
free_dominance_info
(CDI_POST_DOMINATORS);
pop_cfun ();

80 • Interprocedural optimization on function local SSA form in GCC

If the transformations affected the callgraph,
it is necessary to update the callgraph datas-
tructure, either by hand or via rebuild_
cgraph_edges. If substantial changes were
made to the function body, it might be prof-
itable to re-do early optimizations by tree_
early_optimization_passes that sub-
sume rebuild_cgraph_edges.

6.4 Walking variables

Variables are, similarly to functions, grouped in
a linked list:

struct cgraph_varpool_node *vnode;
for (vnode

= cgraph_varpool_nodes_queue;
vnode;
vnode = vnode->next_needed)

analyze_variable (vnode);

7 Experimental results

In this section we compare the memory con-
sumption, compilation time and quality of pro-
duced code of our experimental branch com-
pared to mainline compiler from date of last
merge to the branch (2006-04-06).

7.1 Cost of SSA form

The SSA form and is more memory intensive
because of the SSA_NAME wrappers and other
datastructures. We made no effort to reduce
memory usage of the SSA form and merely
localized all datastructures needed. Still, the
negative effect is slightly outweighed by the
scalar cleanups (constant propagation, value
range propagation, copy propagation, forward
propagation and dead code removal) performed
just after converting to SSA form.

On TraMP3d testcase (consisting of large num-
ber of tiny function), the memory consumption
increase after the lowering passes is 211 MB
compared to 209 MB on mainline compiler.
This testcase should expose near to worst-case
behavior since it consists of number of very
tiny functions. On combine.c (GCC mod-
ule) testcase, the memory is 8.4 MB compared
to 8.5 MB for mainline compiler. It looks like
the simple cleanups enabled by SSA conver-
sions are effective enough to pay back the extra
memory cost.

7.2 Cost of performing inlining on the
whole compilation unit

The extra memory cost of moving the inline
transformation early as discussed in Section 4
is measured by introducing garbage collector
pass just after the inliner pass. This way, we
can compute how much memory is still refer-
enced.

On the IPA branch, the memory consumption
for TraMP3d testcase just after inlining peaks at
390 MB, while on mainline it is only 184 MB.
Again, TraMP3d should expose near to worst
case behavior. There are no noticeable differ-
ences for combine.c testcase since very little
inlining is performed there.

While this memory increase seems serious, it
can be argued that it is bound by overall unit
growth parameter of the inliner and thus should
not lead to uncontrolled memory consumption
problems. However, we felt it was too early to
change inlining order in GCC 4.2, and decided
to delay its submission for later version when
we can use the extra flexibility introduced by
the change.

It is trivial to modify our experimental branch
back to mainline behavior in this case and it can
be easily verified that the overall memory peaks
of both compilers are same then.

GCC Developers’ Summit 2006 • 81

7.3 Overall compilation time

Compilation time is affected by multiple fac-
tors. Obviously the optimization queue was ex-
tended by another 4 scalar optimization passes,
that should account together by about 0.5–2%
of compilation time. Additionally, the inliner
now has to maintain the SSA form, with some
cost in compilation time.

However, the early optimizations save work af-
ter inlining and can reduce the memory foot-
print of the function body just after the first
alias analysis pass. Thus, overall compiler per-
formance is sped up for some testcase, as can be
seen by decrease in overall allocation of GGC
memory in both combine.c. As a result, the
compile time performance tests show a pretty
mixed picture. combine.c compiles about
2% slower, but the whole bootstrap is a few per-
cent faster, because early optimization is effec-
tive on insn-attrtab.c and saves a lot of
memory for the aliasing information.

For the TraMP3d testcase, compilation time
benchmarks are not directly comparable be-
cause the inliner decisions are significantly dif-
ferent. The experimental compiler seems to be
about 4% slower because of more aggressive
inlining; on the other hand, the resulting binary
is both smaller and slightly faster.

The overall compilation time of SPECint
benchmarks remains about the same for sin-
gle file optimization and improve from 510s to
490s for whole program optimization.

8 Runtime performance

The SPECint 2000 benchmark results (except
for twolf benchmark being misscompiled) of
mainline compiler are compared to the exper-
imental branch in Table 1. The tests was

compiled with -O3 -ffast-math optimiza-
tion setting. Three levels of interprocedu-
ral optimizations are considered: with sin-
gle file optimization, pseudo-link-time opti-
mization (where all the source files are parsed
first, via --combine, and optimized as single
compilation unit) without and with whole pro-
gram assumptions (via -fwhole-program
that make all functions and variables local with
the exception of main(). GCC is not able to
combine C++ modules into single compilation
unit and thus eon benchmark (only C++ bench-
mark in SPECint) is always compiled with the
same settings.

For broader picture, the comparison to Intel
C++ compiler (ICC 9.0) is included too. The
single file optimization benchmark was per-
formed with -axW -ip -O3, while whole pro-
gram with -axW -ipo -O3. It shall be noted
that ICC is not able to tune for AMD chips and
thus suboptimal pentium4 tuning was used in-
stead. ICC is able to do full linktime optimiza-
tion for eon benchmark too.

The results are not surprising. The branch
brings up to 2% improvements, almost entirely
because of improved inliner decisions in the
crafty benchmark, and improved aliasing in the
gcc benchmark. Both are caused by early op-
timization. The improvements are mostly vis-
ible in link time optimization, without whole
program assumptions that (even on mainline)
simplify the inlining of functions that are called
just once in whole program.

Noticeable improvements are also in overall
code size savings of roughly 117 Kb, 467 Kb,
382 Kb2 from overall size of binaries (compiled
with single file, link time and whole program
setting accordingly), suggesting that inliner is
able to make better decisions in both perfor-
mance and code size metrics.

2The SPEC binaries compiled with dynamic linking
and without debug info are about 5MB.

82 • Interprocedural optimization on function local SSA form in GCC

Author also measured 7% runtime speedup of
TraMP3d benchmark but due to its overall in-
stability relative to inliner decisions, this might
be just “luck” (earlier version of compiler had
opposite results). It can be expected however,
that for more complex (and/or less hand opti-
mized) testcases than SPECint benchmarks, the
benefits will be more noticeable.

9 Conclusion

As expected, the new SSA based intermodule
framework improve the runtime performance
of some benchmarks that are sensitive to in-
lining. The benefits come mostly from pre-
inline optimization passes and are supposed to
increase as the interprocedural optimization is
made more effective.

Surprisingly, the memory consumption prob-
lems caused by transition to SSA seems to
be no worse than with the current (non-SSA)
framework. Performing inlining before other
interprocedural passes, however, causes signif-
icant memory consumption growth—which is
fortunately limited by overall unit growth limit
of inliner. So far, this change is however inde-
pendent on the rest of work on IPA branch, so
both issues can be considered separately.

Sadly, memory consumption in mainline GCC
is considered to be one of the major showstop-
pers on the way towards intermodule optimiza-
tion and radical reductions will be necessary
in future. Perhaps, completely switching to a
new intermediate language is necessary, as dis-
cussed in [Lattner03] or developing different
memory representation of GIMPLE not based
on nested tree structure.

10 Acknowledgments

The plan for moving interprocedural optimiza-
tion into SSA form and was discussed at the
2005 GCC Summit with Daniel Berlin, Diego
Novillo, and Kenneth Zadeck. Daniel Berlin
contributed patch to avoid referenced_
vars array. Razya Ladelsky adapted interpro-
cedural constant propagation to work on SSA
form. Olga Golovanevsky contributed a devir-
tualization pass. Paolo Bonzini proofread the
paper, helped to clarify it, and significantly re-
duced the amount of Czenglish.

References

[Cytron91] R. Cytron, J. Ferrante,
B.K. Rosen, M.N. Wegman, F.K. Zadeck,
Efficiently Computing Static Single
Assignment Form and the Control
Dependence Graph, ACM Transactions
on Programming Languages and Systems
13,4 (1991), 451–490.

[Novillo03] D. Novillo, Tree SSA — A New
Optimization Infrastructure for GCC
Proceedings of the 2004 GCC
Developers Summit (2003), http:
//www.gccsummit.org/2003

[Hubička04] J. Hubička, Call graph module in
GCC, framework for inter-procedural
optimization, Proceedings of the 2004
GCC Developers Summit (2004), http:
//www.gccsummit.org/2004

[Lattner03] C.A. Lattner, Architecture for a
Next Generation GCC, Proceedings of
the 2004 GCC Developers Summit
(2003), http:
//www.gccsummit.org/2003,
http://www.llvm.org

GCC Developers’ Summit 2006 • 83

[TraMP3d] Template heavy C++ testcase
available at:
http://www.suse.de/
~gcctest/c++bench/

84 • Interprocedural optimization on function local SSA form in GCC

Benchmark single file linktime whole program
non-SSA SSA ICC 9.0 non-SSA SSA non-SSA SSA ICC 9.0

gzip 1206 1214 1225 1188 1210 1158 1175 1323
vpr 858 855 857 848 848 864 864 859
gcc 1072 1050 960 1074 1077 1101 1100 980
mcf 539 543 543 543 541 543 544 543
crafty 1944 2066 2100 1864 2116 2086 2097 2211
parser 828 829 801 826 832 836 830 811
eon 2414 2473 1803 2422 2477 2422 2478 2033
perlbmk 1479 1460 1419 1407 1472 1464 1470 1513
gap 1110 1147 1085 1174 1162 1194 1210 1094
vortex 1708 1737 1626 1824 1859 1857 1905 1917
bzip2 1020 1020 1005 1021 1019 1058 1072 1011
Geomavg 1188 1200 1138 1189 1214 1214 1227 1194

Table 1: Runtime performace (in SPECint ratios, bigger is better)

Improved Superblock Optimization in GCC

Robert Kidd and Wen-mei Hwu
Center for High Performance and Reliable Computing

University of Illinois at Urbana-Champaign
{rkidd,hwu}@crhc.uiuc.edu

Abstract

Superblock scheduling is a common technique
to increase the level of instruction level paral-
lelism (ILP) in generated code. Compared to a
basic block, the Superblock gives an optimizer
or scheduler a longer range over which instruc-
tions can be moved. The bookkeeping neces-
sary to execute that move is less than would be
necessary inside an arbitrary trace region. Ad-
ditionally, the process of forming Superblocks
generates more instructions that are eligible for
movement. These factors combine to produce
a significant increase in the ILP in a section of
code.

By identifying the key feature of Superblock
formation that allows this increase in ILP, we
can generalize the concept to describe a class of
similar optimizations. We refer to techniques in
this class as structural techniques. Combining
several optimizations in this class with aggres-
sive classical optimization has been shown in
the OpenIMPACT compiler to be particularly
useful in developing ILP when compiling for
the Itanium processor.

As a motivation for our work, we present an
investigation into the value of structural com-
pilation in the OpenIMPACT compiler. In this
domain, structural techniques have been cred-
ited with a 10% to 13% increase in code per-

formance over a compiler that implements only
classical optimizations.

As a first step toward developing structural
compilation techniques in GCC, we imple-
mented Superblock formation at the Tree-SSA
level. By performing structural transformations
early, we give the compiler’s high level opti-
mizers an opportunity to specialize the trans-
formed program, thereby cultivating higher lev-
els of ILP. The early results of this modification
are mixed, with some benchmarks improving
and others slowing. In this paper, we present
details on our implementation and study the ef-
fects of this structural transformation on later
optimizations. Through this, we hope to moti-
vate future work to implement and improve op-
timizations that can take advantage of the trans-
formed control flow.

1 Introduction

As an EPIC (Explicitly Parallel Instruction
Computing) processor, the Intel Itanium Pro-
cessor Family relies heavily on the compiler
to extract performance from a program. The
architecture provides a large number of func-
tional units, but the hardware does not dynam-
ically schedule instructions to discover instruc-
tion level parallelism. Instead, the compiler

86 • Improved Superblock Optimization in GCC

must find instructions that can execute in par-
allel during its code generation and scheduling
stage. Within the context of a traditional opti-
mizing compiler, control flow presents barriers
that make it difficult to statically generate a par-
allel schedule. Superblock formation [3] is one
technique to overcome the restrictions of con-
trol flow.

Originally, Superblock formation was devel-
oped solely to support instruction scheduling.
In this traditional method, a Superblock is con-
structed using trace formation and tail dupli-
cation. The result of Superblock formation is
a long single-entry, multiple-exit chain of ba-
sic blocks. This Superblock is then passed to
a variant of a list scheduler that is capable of
moving instructions across basic block bound-
aries. Compared to trace scheduling [1], the
lack of side entrances into a Superblock sim-
plifies the task of moving instructions between
basic blocks.

Superblock formation is useful for more than
instruction scheduling. Tail duplication elimi-
nates all but one of the control flow paths into
a basic block. As a result, much tighter bounds
can be drawn on the state of variables at the
block entrance. Optimizations such as constant
propagation can be profitably applied to the du-
plicated tail to specialize the block, counteract-
ing the code expansion inherent in Superblock
formation.

In the OpenIMPACT compiler [6], Superblock
formation is one of a class of structural compi-
lation techniques. Other members of this class
include function inlining and hyperblock for-
mation. These optimizations use profile feed-
back to radically alter the control flow graph
(CFG) to produce straight line sections for the
typical course of execution. Traditional op-
timizations are then applied to this CFG to
specialize blocks and discover ILP. While this
technique does entail a large amount of code
duplication, it packs the useful instructions into

a tight schedule, resulting in little increase in
instruction cache pressure.

Within GCC, we modified the pre-existing RTL
Superblock formation pass to work at the Tree-
SSA level. The overall performance change
due to this modification is minimal. Certain
benchmarks run faster, while others run slower.
However, this patch gives us a starting point
to investigate the possibility of applying struc-
tural optimization techniques within GCC. In
the following sections, we will discuss the ef-
fects, good and bad, of the patch and suggest
a future direction based on our experience with
OpenIMPACT.

The primary goal of our work is to improve the
performance of code compiled by GCC for the
Itanium processor. However, we believe that
the structural compilation model will also work
well on traditional superscalar processors. The
code specialization derived from traditional op-
timizers should apply to any architecture.

2 The Superblock and structural
compilation

Although it has been throughly covered in lit-
erature, it is useful to review here the process
through which a Superblock is constructed.
This process is illustrated in Figure 1. Start-
ing with a control flow graph annotated with
profile weights (part (a)), the trace formation
pass determines the typical path of execution.
This pass constructs the hot trace by follow-
ing the typical path of execution until execu-
tion frequency falls below some threshold or a
loop back edge is encountered. The resulting
trace is highlighted with a dotted outline in Fig-
ure 1(b). After constructing the trace, the tail
duplication pass eliminates side entrances. If a
basic block on the trace has more than one pre-
decessor, as is the case for block z, that block is

GCC Developers’ Summit 2006 • 87

if x

i++

w
450

y
400

z
450

x
50

(b)(a)

if x

i++

w
450

y
400

z
450

x
50

(c)

i++

if x

x
50

z
50

w
450

i++z'
400

y
400

Figure 1: Superblock formation process

copied and the duplicate inserted into the trace.
The sole predecessor of the duplicate will be on
the trace, as seen in part (c). The result of this
process is a Superblock, a series of basic blocks
that has a single entrance at the top and one or
more side exits. This is indicated by the dashed
line in Figure 1(c).

Structural compilation [5] is a generalization
of Superblock-based optimization. Structural
optimizations share a common attribute in that
they target side entrances (join points) of a fre-
quently executed trace. Inside the join block
and below, program context is blurred as the
compiler must assume that any predecessor
may have executed before the join block. Du-
plicating the join block and its children onto the
hot trace has the effect of extending the con-
text of the trace into the duplicated block. Spe-
cialization of the duplicated code through clas-
sical optimizations reduces the number of in-
structions on the trace, and use of features such
as speculation extend the range over which in-
structions can move. The end result for the typ-
ical path of execution is a shorter schedule with
higher levels of ILP.

In the structural model, code duplication is per-
formed early in the compilation path. Code ex-
pansion limits are raised to allow more code du-
plication. The expansion must be done some-
what speculatively, as it is difficult to predict
the precise effect later optimizations will have,
given a certain level of duplication. Therefore,
a large amount of code duplication is inherent
to the structural model. The code generated
using this model is bigger than that generated
with a traditional model, so one might expect
a degradation in instruction cache efficiency.
However, the expansion is mitigated by two
factors. First, the Itanium processor provides
large caches, which help offset the increase in
code size. The second factor, which applies to
all architectures, is that the code duplicated by
these techniques should appear outside the path
of typical execution. By specializing for the
typical path, we reduce the number of redun-
dant instructions and pack the useful ones more
closely. This reduces the number of cache lines
that need to be fetched and increases the num-
ber of useful instructions per line.

The compilation method used in GCC to this
point more closely resembles what we term the
incremental approach. In this method, tradi-
tional global scheduling techniques are evolved
and refined to deliver higher levels of ILP. Con-
trol flow may be altered, but it is done in re-
sponse to the needs of the optimizer or sched-
uler. The overall CFG tends to remain the
same, and can restrict optimization opportuni-
ties. An analogy with simulated annealing is
apt. The incremental model is a well tested and
reliable method to arrive at an optimal point
in the range of possible schedules. However,
in many cases, this optimal schedule is a local
minimum. By applying structural techniques,
we hope to move the optimizer’s starting point
to a place where a more optimal schedule can
be found.

88 • Improved Superblock Optimization in GCC

Benchmark g-no-spec I-CL I-NS I-CS
164.gzip 506 602 677 752
175.vpr 498 607 644 719
181.mcf 257 332 330 341
186.crafty 591 646 677 704
197.parser 494 520 523 541
252.eon 517 364 428 429
254.gap 421 558 573 599
256.bzip2 426 652 658 698
300.twolf 553 724 830 921
geomean 462 540 575 609
geomean2 456 567 596 637

Heading Compiler version options
g-no-spec GCC as of 3/6/2006 -O3, profile feedback enabled, no speculation
I-CL OpenIMPACT classical optimizations only
I-NS OpenIMPACT structural opti, no speculation, pointer analysis and

modulo scheduling disabled for 252.eon
I-CS OpenIMPACT control speculation, otherwise like I-NS
Scores generated on an Itanium 2 1.0 GHz, 1.5M L3 cache

Table 1: Comparison of classical and structural optimizing compilers

Table 1 presents estimated1 SPECint2000
scores to illustrate the benefit that a structural
optimization pass can have on code perfor-
mance. In this table, all benchmarks have been
compiled using profile feedback.

The g-no-spec column is our baseline GCC
configuration. This is a recent version of
GCC mainline that lacks speculation support.
This configuration includes the RTL level Su-
perblock formation pass2. I-CL is our baseline
OpenIMPACT configuration. Classical opti-
mizations are run, but structural techniques are
disabled. This configuration is roughly equiv-

1These numbers are the result of runs on real hard-
ware, but do not reflect a rigorous SPEC run. We
have followed SPEC’s run rules with respect to train-
ing/reference inputs and consistency of optimization set-
tings, but we have been unable to complete a full run of
the suite. We therefore label these results “estimated” as
per SPEC’s rules for research use.

2Results from the Tree-SSA level Superblock forma-
tion pass are presented in Section 3.

alent to g-no-spec. I-NS turns on structural
transformation, and I-CS turns on control spec-
ulation.

The geomean row shows the geometric mean
for all nine benchmarks. Geomean2 excludes
252.eon from the comparison, as GCC’s score
is inflated relative to OpenIMPACT for the pur-
poses of this paper. OpenIMPACT has a long
history as a C compiler, but C++ support has
only been added recently. Even now, C++ sup-
port is implemented by lowering the incoming
code to C and compiling. This is functional,
but inefficient. As a proper C++ compiler, GCC
has a distinct advantage over OpenIMPACT on
252.eon that is outside the scope of this paper.

A comparison of the I-CL and g-no-spec
columns shows that OpenIMPACT’s classical
optimization path improves performance ap-
proximately 24% over GCC. This can be at-
tributed to better alias analysis in OpenIM-
PACT and more aggressive settings on the clas-

GCC Developers’ Summit 2006 • 89

sical optimizers. Comparing I-CL and I-NS,
we see that turning on structural transforms in
OpenIMPACT gives a 5% improvement in per-
formance. We believe 5% to be a reasonable
estimate for the performance benefit possible in
GCC with the addition of structural transforma-
tion.

The I-CS column shows the effect of com-
bining control speculation and structural trans-
forms in OpenIMPACT. We see a 12% to 13%
increase in performance over the classical con-
figuration when these two features are com-
bined. Our Superblock work should therefore
fit in nicely with other work in progress to add
speculation support to the compiler.

Although it is not useful as a comparison be-
tween GCC and OpenIMPACT, it is interesting
to note that within OpenIMPACT, the structural
technique is particularly useful for 252.eon. In
this case, indirect call profiling and function
inlining combine to reduce the cost of virtual
method calls. Although OpenIMPACT does
not support static C++ optimizations such as
class hierarchy analysis, it is able to approx-
imate them in some cases through structural
transformation. Even with proper C++ sup-
port, structural transformation will likely still
be beneficial for heavily object-oriented code.

3 Technical details and perfor-
mance results

At the RTL level, GCC has included a Su-
perblock formation pass for some time [2].
This pass prepares Superblocks for the Haifa
interblock scheduler, but runs after most of
GCC’s optimization passes. Structural com-
pilation requires this transformation to happen
early in the compiler; to achieve this, we im-
plemented a Superblock formation pass at the
Tree-SSA level.

(a)

i++

if x

i++

x

z

w

z'

y

(b)

if x

i++

if x

i++

x

z

w

z'

y

w'

Figure 2: Loop header duplication to form a
simple loop from a Superblock

Because the CFG manipulation API is shared
between RTL and Tree-SSA, the modifications
necessary to run Superblock formation at the
Tree level were minor. The primary change
necessary was to add SSA variables generated
in the duplicated tail to the φ -nodes for its suc-
cessor blocks. We also adjusted the trace for-
mation routine so that it generates Superblock
loops that are of a simple form that can be pro-
cessed by the loop optimizers. This is illus-
trated in Figure 2.

Figure 2(a) shows the problem that can oc-
cur when forming a Superblock inside a loop.
By tail duplicating block z to form z′, we cre-
ated a Superblock for the common case in-
side the loop. However, because tail duplica-
tion stopped when it found the loop backedge,
we were forced to add a second control flow
arc back to the loop header. The loop is no
longer in a simple form that can be processed
by GCC’s loop optimizers. If trace forma-
tion instead follows the backedge one time and
stops after duplicating the loop header, our Su-
perblock forms a simple loop, as in Figure 2(b).
The form of this simple loop increases the ef-
fectiveness of later optimizations, as will be
seen in Section 4.2.

The final change we made was to remove the
Superblock layout pass. We leave code layout
to the basic block reordering stage later in RTL.

90 • Improved Superblock Optimization in GCC

The Tree-SSA Superblock formation executes
immediately after SSA form is constructed and
before any optimizers. Because tail duplication
has the potential to create new pointer loads and
stores, it is possible that formation will interfere
with alias analysis. We have tested building Su-
perblocks before and after alias analysis, but
neither configuration is noticeably better than
the other.

Our comparison baseline is GCC mainline re-
vision 112576, which supports Superblock for-
mation at the RTL level. Against this baseline,
we compare a build of the ia64-improvements
branch. This branch includes the changes to
mainline through revision 112576, but uses the
Tree-SSA level Superblock formation pass. We
run both versions of GCC with the -O3 flag and
with profile feedback enabled. Both versions
support speculation on Itanium. For the ia64-
improvements branch, we set an aggressive Su-
perblock expansion limit of 300% as opposed
to the 100% limit used with the RTL level pass.
We ran performance numbers on three archi-
tectures: x86, x86_64, and Itanium. Machine
specifications are listed in Table 2.

Tables 3 and 4 show the estimated change
in performance for selected SPEC2000 bench-
marks. For each architecture, we present the
score for GCC mainline (stock), the score for
the ia64-improvements branch (SB), and the
percent difference between the two. We have
not yet fully analysed the cause of the slight
performance degradation on x86_64, but we
believe this processor to be more sensitive
to code scheduling than x86. Forming Su-
perblocks at the Tree-SSA level is beneficial for
x86 and on Itanium for the floating point bench-
marks. Superblock formation tends to produce
simpler, straighter loops that are more palatable
to loop optimizers. This helps explain the per-
formance improvement in loop-intensive float-
ing point code.

For 191.fma3d on x86, Superblock formation

gives a significant performance improvement.
This improvement is due to a drastic reduc-
tion in the time spent executing one function,
platq_stress_integration. The pro-
logue of this function sets up a number of vari-
ables using MIN and MAX statements. These
statements are biased, so they become simple
assignments inside the Superblock. Constant
propagation can then simplify the body of the
function.

For integer codes, the results are more mixed.
These control-intensive benchmarks are where
we expect to see a significant performance im-
provement on Itanium, and yet we see a negligi-
ble change. This is not entirely unexpected. As
we have observed in OpenIMPACT, the com-
bined efforts of several structural techniques
are often necessary to get a significant perfor-
mance improvement. These passes must push
the program’s CFG to a critical point where
optimizations can radically specialize the typ-
ical path of execution. It is encouraging to
note that 181.mcf, 186.crafty, and 256.bzip2 do
improve. 186.crafty is an extremely control-
intensive chess simulator, and the improve-
ment here replicates a result from OpenIM-
PACT detailed in [5]. The improvement in
181.mcf, a memory-intensive benchmark, can
be attributed to the combined effect of Su-
perblock formation and data speculation. This
benefit of combining speculation and structural
transformation has also been observed in Open-
IMPACT. These results strongly suggest that
results from OpenIMPACT will apply to GCC
as development progresses. We will expand on
effect of Superblock formation on 256.bzip2 in
Section 4.2.

Finally, Table 5 compares the size of the
benchmark executable across the two com-
piler configurations. Even with an aggressive
Superblock expansion limit, executable size
does not significantly increase. By duplicat-
ing blocks, Superblock formation gives the op-

GCC Developers’ Summit 2006 • 91

Configuration Processor Operating System
ia64 Itanium 2, 1.6 GHz, 6 MB L3 Linux 2.6.8, LP64
x86_64 Athlon 2800+, 1.8 GHz, 512 KB L2 Linux 2.6.12, LP64
x86 Xeon, 2.4 GHz, 512 KB L2 Linux 2.4.18, LP32

Table 2: Machine configurations

ia64 x86_64 x86
Benchmark stock SB % stock SB % stock SB %
164.gzip 810 810 0.00% 914 850 -7.00% 676 696 2.96%
175.vpr 929 923 -0.65% 771 760 -1.43% 484 472 -2.48%
175.gcc 1032 1033 0.10% 922 947 2.71%
181.mcf 682 706 3.52% 587 587 0.00% 535 544 1.68%
186.crafty 942 983 4.35% 1531 1586 3.59% 460 477 3.70%
197.parser 901 901 0.00% 859 864 0.58% 731 763 4.38%
252.eon 792 785 -0.88% 831 790 -4.93%
254.gap 651 651 0.00% 999 1004 0.50%
255.vortex 1454 1532 5.36%
256.bzip2 798 825 3.38% 897 889 -0.89% 580 585 0.8%
300.twolf 1039 944 -9.14% 792 793 0.13% 606 611 0.83%
geomean 830 830 -0.01% 947 947 0.05% 631 638 1.04%

Table 3: Estimated change in SPECint2000 performance

ia64 x86_64 x86
Benchmark stock SB % stock SB % stock SB %
168.wupwise 605 578 -4.46% 1186 1140 -3.88% 903 918 1.66%
171.swim 773 804 4.01% 1142 1138 -0.35% 634 633 -0.16%
172.mgrid 346 347 0.29% 755 751 -0.53% 479 478 -0.21%
173.applu 519 538 3.66% 900 895 -0.56% 666 665 -0.15%
177.mesa 976 986 1.02% 1394 1383 -0.79% 483 487 0.83%
179.art 2716 2730 0.52% 777 785 -1.03% 272 268 -1.47%
183.equake 511 500 -2.15% 1085 1097 1.11% 960 967 0.73%
187.facerec 583 602 3.26% 791 772 -2.40% 477 479 0.42%
188.ammp 847 868 2.48% 882 884 0.23% 400 391 -2.25%
189.lucas 815 864 6.01% 1220 1200 -1.64% 546 538 -1.47%
191.fma3d 294 294 0.00% 870 874 0.46% 464 525 13.15%
200.sixtrack 371 368 -0.81% 451 449 -0.44% 429 431 0.47%
301.apsi 580 579 -0.17% 839 834 -0.60% 502 497 -1.00%
geomean 638 644 1.01% 912 906 -0.65% 527 531 0.75%

Table 4: Estimated change in SPECfp2000 performance

92 • Improved Superblock Optimization in GCC

int fp
Benchmark stock SB % Benchmark stock SB %
164.gzip 1069787 1071587 0.17% 168.wupwise 1629360 1633480 0.25%
175.vpr 1310609 1307185 -0.26% 171.swim 1590538 1591482 0.06%
176.gcc 5836321 5749873 -1.48% 172.mgrid 1588244 1488644 0.03%
181.mcf 942326 942566 0.03% 173.applu 1691129 1691929 0.05%
186.crafty 1413018 1505658 -0.52% 177.mesa 2444067 2435987 -0.33%
252.eon 6984346 6986010 0.02% 179.arg 1016630 1020022 0.33%
254.gap 2253387 2247859 -0.25% 183.equake 1020942 1015102 -0.57%
255.vortex 2398115 2366931 -1.30% 187.facerec 1804178 1806962 0.15%
256.bzip2 2398115 2366931 -0.12% 198.ammp 1387201 1388161 0.07%
300.twolf 1519425 1516401 -0.20% 189.lucas 1677890 1680458 0.15%

191.fma3d 4125512 4124912 -0.01%
200.sixtrack 3890478 3887366 -0.08%
301.apsi 1897353 1900977 0.19%

Table 5: Effect of Superblock formation on executable size (in bytes) for ia64

timizers more opportunity to eliminate instruc-
tions, controlling code expansion and increas-
ing performance.

4 Analysis of performance change

On Itanium, 256.bzip2 and 300.twolf showed
a significant change in performance. This sec-
tion delves deeper into these two benchmarks
to determine why performance improved or di-
minished.

We analysed the benchmarks using the
i2prof.pl and q-tools packages. These pack-
ages use HP’s libpfm library and pfmon
utility to retrieve values from the Itanium
performance counters to analyse.

i2prof.pl is a Perl script that wraps the pfmon
utility to record raw counter values for the en-
tire run of a program. Various performance
metrics are determined from these counters, but
they apply to the entire program and cannot be
attributed to individual functions or lines.

for (node = list; node;
node = node->next) {

a = ...
if (condition)

b = ...
else

b = a

*arg += b ...
}

Figure 3: Kernel from new_dbox_a

Q-tools provides the q-syscollect utility, which
performs statistical sampling using the Itanium
performance monitoring unit. At a specified in-
terval, the program is interrupted and the pro-
gram counter (PC) of the instruction triggering
the event being monitored is recorded. Q-tools
also includes the qprof program, which gener-
ates a gprof-style per-function report from the
per-PC data.

4.1 300.twolf

300.twolf slowed by 9% when Superblock for-
mation was performed at the Tree-SSA level. A

GCC Developers’ Summit 2006 • 93

(a)

L6

L7

L2

L3 L4

L5
ld arg
arg +=
st arg

L3

L5

L6

L7

L2

L4

L34

ld arg
arg +=
st arg

ld arg
arg +=
st arg

(b)

Figure 4: Structure of new_dbox_a before
and after Superblock formation

comparison of execution profiles showed that
much of the extra execution time could be at-
tributed to the function new_dbox_a. This
function is called approximately 120 million
times during execution. Figure 3 illustrates the
kernel of this function.

In this loop, arg is an integer pointer argument
used to return a value from the function. The
integer arg points to is updated, but the value
of arg is not changed inside this function. Be-
cause of this, GCC’s partial redundancy elimi-
nation (PRE) stage is able to move the load and
store of arg out of the for loop.

Figure 4 shows the control flow graph of this
kernel before and after Superblock formation.
Tail duplication moves a copy of the update of
arg onto both sides of the biased if state-
ment, shown in Figure 4(b). In this case, the
Superblock formation pass did not duplicate the
loop header as we would expect. The cause of
this is being investigated. If Superblock forma-
tion had duplicated the loop header, we would
expect the PRE pass to move the load out of
the more frequently executed side of this loop.
It is not yet clear whether GCC’s alias analysis
framework is strong enough to completely re-
move the load from the Superblock loop. We
plan to investigate further the interaction be-
tween Superblock formation and alias analysis.

L6: j = 0;
tmp = yy[j];

L8: while (ll_i != tmp) {
L7: j++;

tmp2 = tmp;
tmp = yy[j];
yy[j] = tmp2;

}
L9: yy[0] = tmp;

if (j == 0)
L10: /* do something */

/* yy is not touched */
else

L11: /* do something else */
/* yy is not touched */
/* L12 and L20 appear here */

L21: ...

Figure 5: The core of generateMTFValues
from 256.bzip2

4.2 256.bzip2

Performance of 256.bzip2 increased by approx-
imately 3% with the addition of the Tree-SSA
Superblock pass. The execution profile did not
show a significant difference in the run time of
any one function, so we used i2prof.pl to col-
lect overall performance statistics for the pro-
gram. These statistics showed that the Su-
perblock version experienced fewer L1D cache
misses than the standard version. Sampling
the L1D_READ_MISSES_ALL counter with q-
syscollect, we were able to locate a loop in
generateMTFValues that experienced a
decreased number of cache stalls.

The loop in question is shown in Figure 5. This
loop searches for a specific character in the ar-
ray y, determines the index j of that charac-
ter, rotates elements 0 through j - 1 to posi-
tions 1 through j, and writes the desired char-
acter to element 0. The important feature to
note is that this loop does a number of single

94 • Improved Superblock Optimization in GCC

(a)

L8 L7

L9

L10 L11

L21

L12

L20

L6

j = 0
tmp = yy[j] j++

tmp = yy[j]
yy[j]= tmp2

yy[0]= tmp
if j == 0

if tmp != ll_i

(b)

L8 L7

L9

L10 L11

L12

L6

j = 0
tmp = yy[j] j++

tmp = yy[j]
yy[j]= tmp2

yy[0]= tmp
if j == 0

if tmp != ll_i

L21

L20

(c)

yy[0]= tmp
if j == 0

L7

L9

L12

L6

L45

j = 0
tmp = yy[0]
if tmp != ll_i j++

tmp = yy[j]
yy[j]= tmp2

yy[0]= tmp
if j == 0

L21

L20

(d)

L7

L9

L12

L6

L45

j++
tmp = yy[j]
yy[j]= tmp2

yy[0]= tmp

j = 0
tmp = yy[0]
if tmp != ll_i

yy[0]= tmp

L21

L20

Figure 6: Interaction of structural techniques and traditional optimizations

byte loads and stores to the character array. In
certain circumstances, scheduling two stores to
nearby addresses within a couple cycles of one
another can trigger an L1D stall on the Itanium
2.

This stall is due to a quirk in the design of
the L1D cache on the Itanium 2. Although the
processor advertises two store ports, in reality,
the L1D cache is only pseudo-dual ported for
stores [4]. Cache lines are split into eight sin-
gle ported banks. Store coalescing hardware
helps mitigate the penalty that would otherwise
be associated with scheduling multiple stores
to sequential addresses. However, if two stores
that cannot be coalesced attempt to access the
same bank, the younger one will be forced to
stall. This appears in the benchmark compiled
by GCC mainline. The store to yy[0] in L9
is scheduled one cycle after the store to yy[j]
inside the loop. When the loop exits, the store
in L9 may stall if yy[0] uses the same bank
as yy[j]. Structural compilation transforms
the CFG enough that the store can be moved
many cycles later in the schedule, eliminating
this stall.

Figure 6 shows the evolution of
generateMTFValues as it is processed
by the optimizers. We have annotated signif-
icant lines of code onto their corresponding
CFG nodes. Figure 6(a) shows the core of

generateMTFValues immediately after SSA
form is constructed. Blocks L7 and L8 form
the rotate loop, which cycles zero or more
times. As the loop exits, L7 writes the jth
element of the array. One cycle later, L9 writes
into element 0 of the array and branches based
on the value of j. If j is 0, L10 falls through to
the rest of the function. Otherwise, L11 leads
into a complex block of code.

Figure 6(b) shows the function after Su-
perblock formation. Tail duplication copied the
header of the L7-L8 loop so that L7 now forms
a single block loop. We now have two flows
into L9. Along the L8-L9 arc, j will always be
0. Along L7-L9, j will be non-zero. The origi-
nal purpose of L9 was to determine whether the
loop iterates, and by duplicating L8, we have
made L9 redundant.

Figure 6(c) shows the kernel after constant-
and value range propagation (VRP). VRP du-
plicates block L9 to make L45. VRP then prop-
agates the value of j from L6 to L9 and from
L7 to L45. This, in turn, allows for the elimina-
tion of the if statements in L9 and L45. None
of the code in the subgraph headed by L12 uses
the array yy, so in part (d), store sinking is able
to move the write to yy[0] to L20. When this
code is finally scheduled, the write to yy[0]
doesn’t occur until at least 12 cycles after the
loop body, eliminating the stall.

GCC Developers’ Summit 2006 • 95

5 Future work

Fully implementing the structural compilation
model in GCC will be more a matter of tun-
ing pieces already written than writing new
code. At this point, Tree-SSA optimizers
should generally be capable of moving in-
structions across basic blocks. There are al-
ready several structural-style passes written at
the Tree-SSA level, such as the loop unroller.
Study into moving these types of passes for-
ward in the compilation order would be worth-
while.

Parameter and heuristic tuning is a matter that
still needs to be addressed. Many of GCC’s pa-
rameters governing code expansion are set con-
servatively relative to OpenIMPACT. If code
expansion is done early enough, these can be
set quite aggressively without adversely affect-
ing the instruction cache performance of the
generated code. Heuristics in the loop unroller
refuse to unroll loops containing control flow
for fear of increasing the number of branch mis-
predicts. Early unrolling combined with predi-
cation support may make unrolling such loops
profitable, and so heuristics like these should be
revisited.

Other code expanding transforms, such as
branch target expansion, could be easily im-
plemented within GCC. It would also be use-
ful to investigate running multiple rounds of
expansion. A Superblock-unroll-Superblock
sequence could potentially give a very nice
straight code sequence with high levels of ILP.

6 Conclusion

Although it has not yet demonstrated an over-
all performance improvement for Itanium, the
Tree-SSA Superblock formation pass holds

promise. We can already see an improve-
ment in certain benchmarks, such as 186.crafty
and 256.bzip2 due to the structural compilation
model. Implementing additional early struc-
tural transformation passes will give optimiz-
ers more freedom to move and simplify pro-
gram code. At the same time, we must ensure
that the optimization and analysis passes can
accept and use the modified control flow. When
the transformation and optimization stages are
fully compatible, we expect to replicate the
consistent, positive performance results from
the OpenIMPACT compiler.

7 Acknowledgments

We would like to thank the members of the
OpenIMPACT research group and the GCC
community for their help in this work. We
would also like to thank the Gelato federation
for its support of this project.

References

[1] J. A. Fisher. Trace scheduling: A
technique for global microcode
compaction. IEEE Transactions on
Computers, C-30(7):478–490, July 1981.

[2] Jan Hubička. Profile driven optimizations
in GCC. GCC Summit, 2005.

[3] W. W. Hwu, S. A. Mahlke, W. Y. Chen,
P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery. The Superblock: An
Effective Technique for VLIW and
Superscalar Compilation. The Journal of
Supercomputing, 7(1):229–248, January
1993.

96 • Improved Superblock Optimization in GCC

[4] Intel Corporation. Intel Itanium 2
Processor Reference Manual for Software
Development and Optimization, Document
Number 251110-003, May 2004.

[5] J. W. Sias, S.-Z. Ueng, G. A. Kent, I. M.
Steiner, E. M. Nystrom, and W. W. Hwu.
Field testing IMPACT EPIC research
results in Itanium 2. In Proceedings of the
31st Annual International Symposium on
Computer Architecture, pages 26–39, June
2004.

[6] UIUC OpenIMPACT Effort. The
OpenIMPACT IA-64 Compiler.
http://gelato.uiuc.edu/.

Matrix flattening and transposing in GCC

Razya Ladelsky
IBM Haifa Labs

razya@il.ibm.com

Abstract

The layout of data in memory can have a sig-
nificant effect on the performance of applica-
tions. Several compilation techniques can be
used to optimize this layout. This paper de-
scribes two such optimizations: the first is ma-
trix flattening, whose purpose is replacing a
m-dimensional matrix with its equivalent n-
dimensional matrix, where n<m. The frequent
case is when a multidimensional matrix is flat-
tened to its equivalent one dimensional matrix.
This reduces the level of indirection needed for
accessing the elements of the matrix. The sec-
ond optimization is matrix transposing, which
swaps rows and columns, and by doing so im-
proves cache locality.

Both optimizations are interprocedural, and use
the TREE-SSA based interprocedural frame-
work, currently on ipa branch. In this pa-
per we describe the algorithms used, as well
as implementation issues. Preliminary results
show substantial improvements for some float-
ing point benchmarks, and no degradation for
others. Finally we discuss the current status,
future work and potential extensions.

1 Matrix reordering—Motivation

In any processor that contains some sort of
memory hierarchy, access to a close location is

faster than to farther ones. Achieving high per-
formance requires effective use of cached data,
meaning cache locality should be exploited as
much as possible. One way to achieve lo-
cality is to transform loop nests. There has
been a lot of work in the area of loop trans-
formations. Among the techniques used are
unimodular and nonunimodular iteration space
transformations, tiling, loop fusion, and affinity
scheduling. These techniques focus on chang-
ing the iteration space traversal order, and by
doing so, they indirectly improve cache local-
ity. Data transformation, however, focus di-
rectly on the data space, by changing the data
layouts for better locality to be achieved. Un-
like loop transformations, data transformations
are not constrained by data dependencies, and
can be applied to imperfectly nested loops.
Also, while loop transformations affect all the
matrices referenced in the loop nest, data trans-
formations do not.

Not much work has been done in the area
of data transformations in GCC. In this paper
we present two matrix layout transformations.
First we present matrix flattening, which flat-
tens multi-dimensional dynamic matrices into
contiguous memory space to achieve better ref-
erence locality. The second optimization also
flattens multi dimensional dynamic matrices
into one dimensional matrices, but reorders the
elements of the flattened matrix differently, i.e.
not corresponding to the original dimensional
organization.

98 • Matrix flattening and transposing in GCC

2 Flattening a matrix

Throughout this paper, we’ll refer to the dimen-
sions of matrices as inner/outer, lower/higher.
For a matrix m[i1][i2]...[ik], we refer to i1 as
the outer most dimension, and ik as the inner
most. It is also convenient to number them.
We’ll number i1 as dimension 0, i2 as dimen-
sion 1, and so on. A lower dimension means an
outer one.

2.1 Flattening—the idea

In order to explain the matrix flattening idea,
we’ll look at a two dimensional dynamically al-
located matrix, a (as defined in C language).
Let’s denote the outer dimension as dimension
0, with size N, and the inner one as dimension
1, of size M. A typical creation of a will be:

a = (int**) malloc (N)
for (i=0; i<N; i++)

a[i] = (int *) malloc (M);

Let’s assume M=3 for simplicity of the exam-
ple. The layout for this matrix organization is
described in Figure 1:

a[0] = {x0, y0, z0}
a[1] = {x1, y1, z1}
...
a[N-1] = {xN-1, yN-1, zN-1}

Figure 1: two dimensional matrix example

Each access to an element of the matrix in-
volves two levels of indirections. An access to
a[i][j] requires accessing to a[i] in order to load
the address of the inner dimension, and then ac-
cessing the j-th element of that dimension. Flat-
tening the matrix a means that we allocate only
one memory space (of size N*M), and place
the elements contiguously in it. The matrix be-
comes one dimensional. An access to a[i][j]

will be translated to accessing base_of_new_

allocated_matrix + new_offset. The
two references to memory that were required
before, are replaced with only one memory ac-
cess. If this access is in a loop, many memory
references will be saved.

The resulting flattened matrix can be visualized
as:

{x0 y0 z0 x1 y1 z1 ... xN-1 yN-1 zN-1}
{ dim 1 } { dim 1} { dim 1 }
{ dim 0 }

An access to a[i][j] will now be an access to
a[i*M+j].

We see that the elements are organized accord-
ing to their original allocation, with the ele-
ments of the rows placed serially, and the rows
placed one after the other in the order of iterat-
ing the outer dimension from 0 to N-1 (i.e. a[0],
then a[1], and so on).

Flattening can be done for multiple dimension
matrices whose dimension is greater than 2 as
well. According to the same concept demon-
strated for a 2 dimensional array, the elements
of the inner most dimension are laid out seri-
ally. Iterating the outer dimension serially de-
termines the order of the inner dimension, and
so on, up to the outer most dimension. For ex-
ample, given the the matrix in Figure 2:

The flattening can be visualized as:

{x0 x1 y0 y1 z0 z1 v0 v1 w0 w1 s0 s1}

We’ll look at this example again in Section 6.4
that deals with transposing, and we’ll see that
there are alternative flattened layouts.

2.2 Partial flattening

In some cases the whole matrix cannot be flat-
tened. This happens if some of its dimen-
sions escape the application. Since flattening

GCC Developers’ Summit 2006 • 99

V0

V1

W0

W1

S0

S1

Z0

Z1

Y0

Y1

X0

X1

Figure 2: three dimensional matrix example

changes the definition of the matrix, we need to
see all uses of the dimensions we flatten. There-
fore, the escaped dimensions can’t be flattened.

We’ll present escape cases using an example
of a three dimensional matrix, a[M][N][L]. The
escape cases are:

1. The matrix, or part of it, is passed as an ar-
gument, e.g. call func(a[i][j]) or call func
(&a[i][j][k]) causes the innermost dimen-
sion to escape.

2. part of the matrix is modified: a[i][j] = x;
Again, the last (inner most) dimension es-
capes.

3. Multiple allocations for the same dimen-
sion. This is actually a private case of as-
signing a value to part of the matrix (case
2).

We call the outer most dimension that escapes,
the minimum indirection level, which
we’ll also mark as min_escape_level, as
any lower dimension (lower == outer) doesn’t
escape, and is safe for transformation, while
any higher dimension is considered escaping.
The dimensions from 0 (outer most) to the min-
imum indirection level are considered safe for
transformation, because we know their behav-
ior, while the rest should be left unchanged.

For the above escape examples of matrix a, a’s
minimum indirection level is 2, meaning that
dimensions 0,1 are safe for transformation and
will be flattened, while the inner most dimen-
sion remains unchanged. Therefore, an access
of a[i][j][k] to the old matrix, will be replaced
by a[i*M+j][k] of the new partially flattened
matrix.

3 Implementation Overview

Matrix flattening and transposing code has been
developed in the ipa branch. Matrix flattening
and transposing is one of the IPA passes, and is
enabled by the -fmatrix-flatten flag. The
option -fipa-dump-mreorg dumps informa-
tion related to the optimization. The matrix flat-
tening and transposing code can be found in the
file matrix-reorg.c. The implementation is
divided into three parts:

Analysis stage – performs a local analysis of
the method to collect information about
the allocation sites and the access sites for
each matrix. the information is recorded
in the mi structure (described below).

Decision making stage – decides whether to
flatten the matrix, or the transposed ma-
trix.

Transformation stage – changes the allocation
and access sites in the various functions
that access the matrix.

3.1 Data Structures

We need to collect a lot of data regarding the
allocation and accesses of the original matrix.
Everything is stored in three main structures:

matrix_info stores matrix information. It
contains the following fields:

100 • Matrix flattening and transposing in GCC

actual_dims – Maximum number of indirec-
tions used to access the matrix.

min_indirect_level_escape – Minimum indi-
rection level that escapes. 0 means that the
whole matrix escapes, k means that dimensions
k to actual_dims escape.

malloc_for_level – Holds the allocation site
for each level (dimension).

allocation_function_decl – The location of
the allocation sites (all allocations must be in
one function only)

free_info – The calls to free at each level of
indirection.

dimension_size – An array holding the size
for each dimension.

dim_hot_level – Array representing the hot-
ness of each level, for transposing decision.

access_l – An array of the access sites of the
matrix.

dim_map – A mapping from the old dimen-
sions to their new order in the flattened matrix
(also used for transposing)

access_site_info stores information
about matrix access sites. It contains the
following fields:

stmt – The access statement

offset – In case it is a PLUS_EXPR, this is the
offset.

level – The level of indirection of this access
statement.

iterated_by_inner_most_loop – Used for de-
ciding whether to flatten the matrix or the trans-
posed matrix.

allocation_info structure mainly con-
tains stmt, which is the allocation statement.

3.2 Matrix reorg functions

The driver of matrix reorg is matrix_
reorg(). The analysis part of matrix reorg
is implemented by the following functions:

analyze_matrix_allocation_
site() – Performs analysis of the allocation
sites: recognizes the various dimensions’
allocations and records them in the allocation
site structures of the matrix.

analyze_matrix_accesses() – Rec-
ognizes and records the access sites of the ma-
trix. By analyzing the accesses, it determines
and records the minimum escape level and the
actual dims of the matrix (the maximum level
the matrix is accessed at).

analyze_transpose() – Decides
whether to flatten the matrix as it is or flatten a
transposed matrix. Determines the permutation
of dimensions in which the matrix will be laid
out.

The transformation part of the optimization is
implemented by the functions:

GCC Developers’ Summit 2006 • 101

transform_allocation_sites() –
Replaces multiple mallocs with the equivalent
malloc for the flattened matrix.

transform_access_sites() –
Changes the access sites of the matrix to access
the new flattened (possibly transposed) matrix.

4 Analysis phase

The analysis part of the optimization collects
information about the allocation and access
sites of the matrix. In the process, it determines
K, the escape level of a N-dimensional matrix
(K <= N), that allows flattening of the exter-
nal dimensions 0, 1,..., K-1. An escape level
of 0 means that the whole matrix escapes and
no flattening is possible. The analysis phase is
divided into analyzing the allocation sites and
analyzing the access sites. We’ll demonstrate
the analysis methods using ssa representation.
Both analyses are recursive. The two triggering
calls from the analysis driver are as described
below:

for (i=0; i < num_ssa_names; i++)
{
ssa_var = ssa_name (i)
stmt = DEF_STMT (ssa_var)
if rhs is a matrix decl

analyze_matrix_accesses
(ssa_var, (level=)0)

if lhs is a matrix decl
analyze_allocation_site

(DEF_STMT(ssa_var), (level=)0)
}

analyze_allocation_site (stmt,

level) – Given a statement whose left hand
side is a matrix variable, we traverse backwards
to find the definitions that reach this variable,
until we get to the allocation site (malloc,
calloc, etc.) If we get some other kind of
definition, we mark the matrix escaping. The

analyze_allocation_site(stmt, level) {
if (code (stmt) != MODIFY_EXPR)

mark_matrix_escaping (level)

rhs = get right hand side of stmt
if (code (rhs) == SSA_NAME)

analyze_matrix_allocation_site(DEF_STMT(rhs))
else if (code (rhs) == CALL_EXPR) {

if (call ! memory_allocation
&& call ! memory_free)

mark_matrix_escaping (level)
else

add allocation site if there isn’t
a prior allocation statement at
this level

}
}

/* If needed, update the minimum escape
level of the matrix. */

mark_matrix_escaping (level) {
if (matrix->min_escape_level > level)

matrix->min_escape_level = level
}

Figure 3: Analyze Allocation Sites Algorithm

patterns we are looking for are demonstrated in
Figure 3.

analyze_accesses (ssa_var, level) –
Given a ssa var that is related to the matrix, and
level of indirection corresponding to the current
access level, we determine whether the matrix
escapes at that level. If not, we record this ac-
cess with the appropriate level. We follow the
uses of the ssa_var, and analyze what hap-
pens to them. The handling of various use cases
is described in Figure 4.

5 Transformation phase

In this phase we define the new flattened ma-
trices that replace the original matrices in the
code. We need to transform the allocation and
the access sites of the matrix.

102 • Matrix flattening and transposing in GCC

analyze_accesses(ssa_name, level) {
use_stmt = use_stmt (ssa_var)
switch (code(use_stmt)) {
case PHI:

/* The statement is of the form:
res = PHI <ssa_name, ...> */

check escaping levels of arguments of PHI:
if not all have the same level of escaping

mark_matrix_escaping
(minimum of escaping levels)

return
else

analyze_matrix_accesses (res, level)

case CALL_EXPR:
/* The statement is of the form:

... = call (ssa_name, ...) */
if (call != alloc or free)

mark_matrix_escaping (level)
else

record alloc or free, dim = level

case MODIFY_EXPR:
if ssa_name in lhs {

/* The statement is of the form:

*ssa_name = rhs */
if rhs != ssa var

mark_matrix_escaping (level)
else

/* Analyze the ssa var definition. */
def_stmt = DEF_STMT (rhs)
analyze_allocation_site

(def_stmt, level +1)
} else ssa_name in rhs {

/* Several optional patterns: */

/* Form is ... = *ssa_name */
record access site with dim = level
level ++
goto acc

/* Form is ... = call (ssa_name, ...) */
if (call != alloc or free)

mark_matrix_escaping (level)
else

record alloc or free site, dim = level

/* Form is ... = ssa_name + ... */
record access site with dim = level

/* Form is ... = ssa_name */
acc: if (lhs is ssa var)

analyze_matrix_accesses(lhs, level)
else

mark_matrix_escaping (level)
}

}
}

Figure 4: Analyze accesses

5.1 Transforming allocation sites

Given an allocation function, which is the func-
tion that contains all of the matrix’s memory
allocations (an allocation for each dimension),
we need to modify the code such that all mem-
ory allocations of dimensions that should be
flattened, will be replaced with a single mem-
ory allocation of the equivalent size.

We calculate and produce code that reflects a
new symbolic size for each dimension of the
flattened (part of the) matrix. The new size
symbolizes the over-all size of all elements
contained within this dimension. Each new di-
mension size is placed in a new global variable,
which we’ll annotate as Ti, so it could be read
from all functions that use the matrix (these val-
ues are used when changing the access sites of
the matrix). The new size for dimension 0 holds
the over-all memory size that should be allo-
cated for the flattened part of the matrix. In
the same manner of creating global variables
for the new dimension sizes, we need to keep
a global variable for each original size of the
original dimension. We’ll denote it T_ORIGi
for dimension i, and it is used by the access
sites to calculate the new offset.

When we start the transformation, we already
have information about the matrix we want to
transform. We collect this information in the
analysis phase. This is the input for our algo-
rithm. The minimum escape level has already
been determined, and so has the original size
for each dimension.

We’ll define the following symbolic structures
for each dimension i, where i=0, . . . , min_
escape_level-1: (min_escape_level-1
is the inner most dimension of the matrix that
should be flattened):

dim_size_orig[i] holds the original size of
the dimension i.

GCC Developers’ Summit 2006 • 103

transform_allocation_sites {
for all i = (min_escape_level-1 to 0) {
add_new_global_variable T_ORIGi
emit code : T_ORIGi = dim_size_orig[i]

dim_size_orig [i] = Ti
}
prev = type_size[min_escape_level-1]
for all i = (min_escape_level-1 to 0) {
dim_num =

dim_size_orig[i]
/ type_size[i]

dim_size =
prev * dim_num

add_new_global_variable Ti
emit code : Ti = dim_size

prev = dim_size [i] = Ti
}

Remove all allocation statements for
dimensions (1,...,min_escape_level-1)
from the allocation function

Change the allocation statement of level 0
to allocate size according to T0.

}

Figure 5: Transform Allocation Sites Algo-
rithm

dim_size[i] is initialized similarly to dim_

size_orig[i]. This value changes through-
out the algorithm to reflect the new symbolic
dimension size.

type_size[i] holds the original size of the
type of elements in dim i.

The algorithm is introduced in Figure 5.

The algorithm’s output: for each dimension
i, where i=0,...,min_escape_level-1,
dim_size[i] and Ti contain the new sym-
bolic dimension size for dimension i. Ti was
inserted to the allocation function and can be
read by other functions that access the matrix.
All allocations of the dimensions that need to
be flattened were replaced by a single equiva-
lent memory allocation.

In other words, for a matrix of N dimensions,
where we flatten dimensions 0 to D, the ma-
trix’s allocation sites:

malloc (dim (0))
malloc (dim (1))
...

malloc (dim (D))
malloc (dim (D+1))
...
malloc (N-1)

are transformed to

malloc (dim(0) * dim(1) * ...

* dim (D) * size_type (D))
malloc(dim(D+1))
....
malloc (N-1)

The handling of free statements is simple: we
remove all statements that free allocated mem-
ory for dimensions that we flattened, except for
the free of the outer most flattened dimension.

5.2 Transform Access sites

Since the definition of the matrix has changed,
it is obvious that the accesses to the matrix
should be modified. We need to calculate the
new offset from the base address of the new
flattened matrix. For matrix a of k dimen-
sions of sizes D1...Dk, and whose escape level
is m<=k, we’ll denote a’ as the new allocated
matrix. The original access a[I1][I2]...[Ik] will
be translated to:

b[I(m+1)]...[Ik]

where

b = a’ + I1*D2...*Dm + I2*D3...*Dm
+ ... + Im

In other words, access a[I1][I2]...[Ik] is trans-
lated to:

104 • Matrix flattening and transposing in GCC

a’[I1*D2...*Dm + I2*D3*...*Dm + ...
+ Im][I(m+1)]...[Ik]

In the analysis phase, we determined the level
of each access site, which is the dimension of
the matrix accessed by this access site. We need
to change only accesses whose level is lower
(outer) than the matrix’s escape level, because
these are the accesses to the dimensions that
were flattened.

The algorithm is introduced in Figure 6. We’ll
refer to the same structures described in the pre-
vious subsection.

transform_matrix_accesses {
level = access -> level
while (access in access list) {

if (level <= min_scape_level)
continue;

if (access->stmt includes offset) {
num = access->offset / type_size [level]
dim_num =

dim_size_orig[level] / type_size [level]

new_offset =
num *

(dim_size[level] / dim_num)

replace offset with new_offset
}
if (access->stmt includes dereferencing

&& acc_info->level < min_escape_level-1)
remove the stmt from code

}
}

Figure 6: Transform Accesses Algorithm

Notice that dim_size[level] was
assigned with the global variable Tlevel
and dim_size_orig[level] was
assigned with the global variable
T_ORIGlevel. (These global variables
were defined in the allocation function, see
transform_allocation_sites algorithm
in the previous subsection).

The value dim_size[level] / dim_num

represents the size of the dimension at level
+ 1.

The output of the transform_accesses
algorithm is the code created for the new off-
sets and the removal of accesses to flattened di-
mensions.

6 Matrix Transpose

6.1 Transposing—the idea

If we look at the order in which we organized
the flattened matrix, we notice that the elements
of the inner most dimension were placed con-
secutively. For example, for a two dimensional
matrix a, the elements of the array a[0] were
placed one after the other, then the elements of
a[1], and so on. This could produce good cache
behavior if the elements of the inner dimension
are accessed sequentially by the program. For
example:

for (i=0; i<N; i++)
for (j=0; j<M; j++)

access to a[i][j]

However, if the accesses are of the following
form:

for (i=0; i<N; i++)
for (j=0; j<M; j++)

access to a[j][i]

The outer dimension is iterated sequentially.
We basically iterate the columns and not the
rows. Therefore, if we placed the elements of
the columns serially, and the columns one af-
ter the other, we would have had an organiza-
tion with better (cache) locality. Another way
of looking at it is that if the matrix a was or-
ganized in a column-major fashion, we would
have had better data locality. Flattening this
column-major matrix could produce even bet-
ter performance.

GCC Developers’ Summit 2006 • 105

In order to achieve this effect, we conceptually
transpose the matrix a (i.e. swap the columns
and rows), and then flatten it. For example,
the row-major matrix a in Figure 1 was flat-
tened in Section 2.1. Now we show the flat-
tened transposed matrix:

{x0 x1...xN-1 y0 y1...yN-1 z0 z1...zN-1}
{dimension 0} {dimension 0}{dimension 0}
{ dimension 1 }

dimension 0 was originally the outer dimen-
sion, and dimension 1 was the inner one. When
organizing the transposed layout, dimension 0
is treated as the inner dimension, and dimen-
sion 1 as the outer one.

This can be enhanced for multiple dimensioned
matrices as well (the transformation for a three
dimensional matrix is exemplified in the further
subsections).

6.2 Transposing - transformation phase

The decision making phase explained in the
next subsection, determines whether to flatten
the transposed matrix. It then supplies a
mapping of the dimensions, which we’ll denote
dim_map. It is a function that maps the dimen-
sions according to their new order in the flat-
tened matrix. It is basically a permutation of
the dimensions. The mapping for the example
we saw in the above subsection, will be:

dim_map[0] = 1
dim_map[1] = 0

For dimensions i=0,1,...,k, dim_map[k] repre-
sents the dimension that will be treated as the
innermost dimension, dim_map[0] represents
the outermost.

The transformation part of matrix flattening
which was shown in Figure 5 was enhanced
to work with this dim_map, in order to en-
able flattening of transposed matrices as well.

transform_allocation_sites {
for all i = (min_escape_level-1 to 0) {

add_new_global_variable T_ORIGi
emit code : T_ORIGi = dim_size_orig[i]

dim_size_orig [i] = Ti
}
prev = type_size[min_escape_level-1]

for all i = (min_escape_level-1 to 0) {
dim_num =

dim_size_orig[dim_map[i]]
/ type_size[dim_map[i]]

dim_size =
prev * dim_num

add_new_global_variable Ti
emit code : Ti = dim_size

prev = dim_size [dim_map[i]] = Ti
}

Remove all allocation statements for
dimensions (1,...,min_escape_level-1)
from the allocation function

Change the allocation statement of level 0
to allocate size according to T0.

}

Figure 7: Transform Allocation Sites - com-
plete algorithm

For flattening the matrix without transposing,
the mapping is simply the identity function.
Note that only the allocation sites transforma-
tion needs to interact with the dim_map. Once
it assigns the structure dim_size (which holds
the size of each dimension in the new flattened
organization), the access sites transformation
already looks at updated dimension sizes struc-
ture, which actually identifies how the alloca-
tion is done.

The algorithm flattens the matrix while orga-
nizing the elements in the order determined by
the dim_map. The algorithm is demonstrated
in Figure 7.

6.3 Transposing—decision-making phase

As we’ve seen, the profitability of flattening the
transposed matrix depends on the accesses to

106 • Matrix flattening and transposing in GCC

the matrix. If all, or most accesses to the matrix
are of the form

for (i=0; i<N; i++)
for (j=0; j<M; j++)

access to a[j][i]

then it would be profitable to flatten the trans-
posed matrix. However, if all or most accesses
are of the from

for (i=0; i<N; i++)
for (j=0; j<M; j++)

access to a[i][j]

then it would be more valuable to flatten the
matrix as it is. In order to calculate the prof-
itability, we collect two types of information re-
garding the accesses:
1. profiling information used to express the hot-
ness of an access, that is how often the matrix is
accessed by this access site (count of the access
site).
2. which dimension in the access site is iterated
by the inner most loop containing this access.

The matrix will have a calculated value of
weighted hotness for each dimension. Intu-
itively the hotness level of a dimension is a
function of how many times it was the most fre-
quently accessed dimension in the highly exe-
cuted access sites of this matrix.

As computed by following equation:
m n
∑∑dim_hot_level[i]+ =
j i
acc[j]->dim[i]->iter_by_inner_loop * count(j)

Where n is the number of dims and m is the number of
the matrix access sites.

The organization of the new matrix should be
according to the hotness of each dimension.
The hotness of the dimension implies the lo-
cality of the elements.

6.4 Flattening transposed matrix - exam-
ple

Let’s look at the three dimensional matrix in
Figure 2:

Let’s assume that there are two access sites to
this matrix.

access site 1:
for (iterate i)
for (iterate j)

for (iterate k)
mat [i][j][k]

access site 2:
for (iterate i)
for (iterate j)

for (iterate k)
mat [k][i][j]

and count(access site 2) >

count(access site 1). According to
the decision making function, we have:

access site 1: the inner most dimension (dimen-
sion 2) is iterated in the inner most loop,

dim2->iter_by_inner_loop == 1 .
access_site 1 -> dim_hot_level [0] = 0
access_site 1 -> dim_hot_level [1] = 0
access_site 1 -> dim_hot_level [2] = count (access_site
1)

access site 2: dimension 1 is iterated in the in-
ner most loop
access_site 2 -> dim_hot_level [0] = 0
access_site 2 -> dim_hot_level [1] = count (access_site
2)
access_site 2 -> dim_hot_level [2] = 0

Summing up the two access sites produces:
dim_hot_level [0] = 0
dim_hot_level [1] = count (access_site 2)
dim_hot_level [2] = count (access_site 1)

GCC Developers’ Summit 2006 • 107

Since count(access site 2) > count(access site
1), the hottest dimension is dimension 1, then
dimension 2 and lastly, dimension 0.

The resulting dim_map will be:
dim_map [0] = dimension_0
dim_map [1] = dimension_2
dim_map [2] = dimension_1

and the resulting flattened matrix:

{x0 y0 z0 x1 y1 z1 v0 w0 s0 v1 w1 s1 }

7 Issues

We’ll discuss a few algorithmic and design is-
sues related to matrix flattening and transposing
optimizations.

7.1 Alignment issue

Transforming the allocation of the matrix might
cause a misalignment issue that did not ex-
ist before the flattening. For example, flat-
tening a 2 dimensional matrix according to
the algorithm previously introduced, results in
placing row after row sequentially. Originally
these rows were created by separate memory
allocations, which guaranteed their alignment.
For optimizations that follow matrix flattening,
there is no correctness problem because they al-
ready “see” the new flattened matrix. However,
problems may occur for optimizations that pre-
cede matrix flattening. One such example is
manual vectorization. Vector operations may
take into account that the rows are aligned. The
new matrix layout does not maintain the align-
ment for the rows anymore. This may be prob-
lematic and cause crashes. There are several
possible solutions. One is padding between the

rows. Another is to disable the optimizations if
such vector operations exist.

We chose not to insert padding for two reasons:
first is that it could effect cache behavior, and
secondly is that it gets very complicated when
we flatten a transposed matrix.

Therefore, the matrix flattening optimization
should be disabled when vector operations ex-
ist. We disable the optimization if any of the
following exist in the code:

1. convert expression of vector type.

2. call to builtin function which gets the ma-
trix (or part of it) as an argument.

3. ASM operations.

7.2 Fortran matrices

The matrices in fortran are already flattened by
the front end. Therefore matrix flattening is
useless for Fortran matrices. However, trans-
posing can be useful for these matrices. The
flattened matrices need to be recognized and
then reordered in a more optimal organization.
This is currently not handled.

7.3 Whole program

Matrix flattening requires whole program view,
as we change the definition of the matrices, and
therefore all uses must be seen by the analy-
sis and transformation. Therefore, we apply the
optimization only if whole program flag is en-
abled.

108 • Matrix flattening and transposing in GCC

8 Status

Matrix flattening code was submitted to ipa
branch in March 2006. It includes the ca-
pability to flatten dynamically allocated non-
escaping C matrices. The code produced im-
provements of 35% on art and 9% on equake
(tested on linux powerpc).

The code for transposing is currently being de-
veloped, and preliminary results show a 200%
improvement for transposing the matrices in
art. The decision making phase has not been
completed. It includes using the profiling in-
formation and also gathering the information
about which dimension was iterated by the in-
ner most loop at each access. This work will be
submitted shortly.

Currently the code handles only dynamically
allocated C matrices. Future enhancements in-
clude enhancing this work for other types of
matrices: statically defined matrices, Fortran
matrices, and so on. Future work also includes
extending the patterns recognized by the anal-
ysis phase, and also enhancing the reordering
algorithms for various matrix layouts.

9 Acknowledgements

I would like to thank Revital Eres and Mustafa
Hagog, who wrote the preliminary versions of
matrix flattening code, which I continued de-
veloping.

I would like to thank Jan Hubicka, Daniel
Berlin and Sebastisn Pop who advised with de-
sign and implementation issues.

I would like to thank Peter Bergner for review-
ing this paper, the IBM Haifa team for helpful
discussions, and all GCC contributors who of-
fered help and comments.

References

[1] M. Cierniak, W. Li. Unifying data and
control transformations for distributed
shared memory machines. ACM SIGPLAN
’95 Conference on Programming Language
Design and Implementation.

[2] M. Kandemir, A. Choudhary, J.
Ramanujam, and P. Banerjee. A
Matrix-Based Approach to Global Locality
Optimization . Parallel Architectures &
Compilation Techniques (PACT’98).

[3] M. Kandemir, A. Choudhary, N. Shenoy,
P. Banerjee, J. Ramanujam. A Data Layout
Optimization Technique Based on
Hyperplanes . Proceedings of the Eleventh
International Parallel Processing
Symposium, 1997.

[4] M. Kandemir, A. Choudhary, J.
Ramanujam, N. Shenoy, P. Banerjee
Enhancing Spatial Locality Via Data
Layout Optimizations . In Workshop on
Automatic Parallelisation, Southhampton,
UK, Sept. 1998.

[5] Steven S. Muchnick. Advanced Compiler
Design and Implementation. Morgan
Kaufmann, 1997.

[6] Ken Kennedy, Randy Allen Optimizing
Compilers for Modern Architectures: A
Dependence-based Approach. Morgan
Kaufmann; 1st edition (October 22, 2001)

A report on the progress of GNU Modula-2 and its
potential integration into GCC

Gaius Mulley
University of Glamorgan

gaius@glam.ac.uk

Abstract

This paper reports on the status of the GNU
Modula-2 front end to GCC and the exten-
sions made to Modula-2 and gdb to ease its
potential integration into the main GCC source
tree. GNU Modula-2 (gm2) is maturing into
a reliable tool and it now builds and passes
its regression tests on the following platforms:
x86, Opteron, Athlon 64, Alpha, Itanium pro-
cessors running GNU/Linux, Sparc based So-
laris, PowerPC MacOS, x86 Open Darwin and
the x86 processor running FreeBSD. GNU
Modula-2 currently conforms to all three Pro-
gramming in Modula-2 dialects as defined by
Wirth.

The paper also describes the two categories
of language extensions made. The first cate-
gory follows the tradition of other GCC front
ends by allowing the in-lining of assembly lan-
guage, conditional compilation, procedure in-
lining and allowing users to cleanly exploit
the GCC library of built-in functions and con-
stants. The second category provide easy ac-
cess to C libraries. The work presented here
discusses the portable implementation of open
arrays, module priorities, coroutine primitives
and multi-word sets. It also reports on many of
the key design decisions taken during the con-
struction of GNU Modula-2 and their various
implications.

1 Introduction

Source code which cannot port to another ar-
chitecture will die [Gancarz]. The motivation
for producing a Modula-2 front end for GCC
includes providing a robust compiler for pro-
duction systems, providing a migration path for
legacy source code and producing a compiler
which can generate enhanced semantic error
messages for student programmers.

Modula-2 is a relatively small language in con-
trast to C++ and Ada yet its flexibility with low
level processes, bit manipulation, interrupt han-
dling make it an ideal language with which to
implement small footprint embedded systems.
Its other strengths are an enforced modularity,
the abstract data type and its distinctive defini-
tion and implementation module files. It also
found favour amongst many academic under-
graduate teaching programs during the 1980s
and 1990s. Some eminent academics argue that
a language, of a similar simplicity to Modula-2,
is ideal for teaching new students to program. 1

Currently there are only a few commercial
Modula-2 compilers being actively maintained.
Code which was written ten or fifteen years
ago may still be compiled by older commercial
(possibly unmaintained) Modula-2 compilers,

1http://www.iticse2002.dk/
conference/Talk/iticse2002.html

110 • A report on the progress of GNU Modula-2 and its potential integration into GCC

however a number of these compilers generate
16 bit code. While the 32 bit x86 processors re-
main, compilers targeting these processors may
be run in compatibility mode. Time is run-
ning out as the computing industry is switching
to 64 bit microprocessors [AMD64] [Opteron]
[Intel1] [IBM970]. While x86 emulation, 16 bit
backwards compatibility or running 32 bit code
on a 64 bit platform are all possible they all
have serious drawbacks. In order for the older
source to be compiled into a native executable
it will either have to be translated into another
high level language or alternatively a Modula-2
compiler which can target these new generation
of microprocessors will have to be acquired.
GNU Modula-2 suits this purpose as it has the
advantage of being closely tied to GCC. Not
only does this produce excellent code and good
architectural and operating system coverage but
it also utilises many of the GCC features. For
example GNU Modula-2 can: invoke the C pre-
processor to manage conditional compilation;
in-line SYSTEM procedures, intrinsic functions
and memory copying routines; provide access
to assembly language using the GCC syntax.

GNU Modula-2 currently supports all dialects
of Programming in Modula-2 as defined by
Wirth [Wirth1] [Wirth2] [Wirth3] and work is
underway to support the ISO dialect [ISO]. It
enhances a number of language features, for ex-
ample: it allows sets to be declared of any or-
dinal type; abstract data types are not restricted
to a pointer type in the implementation mod-
ule; constants, types, variables may be declared
in any order. The compiler provides numerous
command line options which: enable runtime
and compile checking, specific optimisations,
runtime behaviour of DIV and MOD operators as
well as library dialect and various linking op-
tions.

Given that the original C compiler has become
the GNU compiler collection it is fitting that a
Modula-2 front end should exist.

2 Previous work

There was a previous GNU Modula-2 effort un-
dertaken by the computer science department
at the State University of New York at Buf-
falo [Bowen]. A substantial amount of work
was achieved but funding terminated before the
compiler was complete. In particular Modula-2
support was added to the GNU debugger gdb.
The compiler had an elegant method of inter-
facing to C through the use of the keywords
DEFINITION MODULE FOR "C" in the defi-
nition module. This front end matched GCC
release 2.3.3 in 1994. Since then the GCC in-
ternals have changed substantially to incorpo-
rate a different paradigm of garbage collection.

Previously at the University of Glamorgan a
Modula-2 compiler (m2f) was produced which
performed detailed semantic checks and infor-
mative error messages [Mulley] [Lewis]. A
number of these checks were performed post
intermediate code optimisation in an attempt
to maximise the knowledge the compiler had
about the program source. This resulted in the
compiler having the ability to detect elementary
infinite loops.

3 Goals of GNU Modula-2

GNU Modula-2 will support the language as
defined by Wirth [Wirth1] [Wirth2] [Wirth3]
in “Programming in Modula-2” (PIM) and also
the ISO Modula-2 standard [ISO]. The GNU
Modula-2 project has opted for a release early
strategy [Raymond] and it will initially support
the PIM dialect of the language before imple-
menting the ISO standard. The differences be-
tween the last three PIM editions are so small
that they can all be incorporated into one com-
piler and they may be individually selected by
command line options.

GCC Developers’ Summit 2006 • 111

The GNU Modula-2 implementation must re-
spect the fact that Modula-2 allows program-
mers to declare types, variables, constants and
procedures in any order. Also the compiler
must not include any artificial programming
limits [Pronk] and therefore the implementa-
tion must avoid fixed array sizes and use dy-
namic data structures throughout [Stallman2].

Given that modern software projects are un-
likely to be completely written in Modula-2 and
a large target audience of gm2 will be maintain-
ers of legacy software it is vital to include good
access to other languages. This is crucial since
it is a core aim that gm2 will be one component
of the GNU compiler collection. A clean inter-
face between Modula-2 and C also aids the de-
velopment of gm2. There will be two types of
extensions to Modula-2 the first facilitates ac-
cess to other languages and the second provides
features found in the other GNU compilers.

4 Extensions to Modula-2

There is no mechanism to manage conditional
compilation in any of the four language spec-
ifications of Modula-2 mentioned earlier. The
GNU implementation of Modula-2 allows the
C preprocessor to be invoked when the option
-Wcpp is present on the command line. This
option tells the C preprocessor to operate in tra-
ditional mode, using assembler as a base lan-
guage and it preserves comments and pays no
attention to single quote or double quote char-
acters. Thus macro argument symbols are re-
placed by the argument values even when they
appear within string or character constants. It
also ensures that the symbols # and ## have no
special meaning. This strategy also matches the
behaviour of another GNU compiler front end
(namely f77).

GNU Modula-2 allows local procedures to be
compiled in-line. Currently the programmer

has to declare a procedure using the keyword
sequence PROCEDURE __INLINE__. Again
this matches the GNU C compiler. If a pro-
cedure is exported then the procedure is still in-
lined locally and a copy of the code is placed in
the object file to resolve external references.

The __BUILTIN__ keyword occasionally ap-
pears in a definition module. In this case the
procedure is implemented internally within the
compiler back end. This allows the compiler
to utilise its library of optimal routines without
changing an applications import list. For exam-
ple memcpy, alloca can be exported from the
library libc and sin, cos, log2 are exported
from MathLib0.

Figure 1 contains the complete PIM compli-
ant MathLib0 definition module which defines
many standard mathematical functions and two
constants.

By examining the definition module the user
can immediately determine which of the func-
tions will be in-lined if the appropriate opti-
misation flags are present on the gm2 com-
mand line. In the implementation module the
mapping between PIM function names and the
GCC back end functions are stated. Figure 2
contains the first 30 lines of the MathLib0 im-
plementation module.

In this implementation module the keywords
__ATTRIBUTE__ __BUILTIN__ are used to
denote the mapping between the internal GCC
function name and the equivalent Modula-2
function. It is also worth noting that this mod-
ule imports cbuiltin and libm. The mod-
ule cbuiltin declares all GCC built-in func-
tions whereas the module libm provides ac-
cess to the C library libm.a. The above im-
plementation module is constructed by calling
upon cbuiltin functions wherever possible
and only falling back upon the services of libm
when no built-in is available.

112 • A report on the progress of GNU Modula-2 and its potential integration into GCC

DEFINITION MODULE MathLib0 ;

CONST

pi =3.1415926535897932384626433832795028841972;
exp1=2.7182818284590452353602874713526624977572;

PROCEDURE __BUILTIN__ sqrt (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ sqrtl (x: LONGREAL) :
LONGREAL ;

PROCEDURE __BUILTIN__ sqrts (x: SHORTREAL) :
SHORTREAL ;

PROCEDURE exp (x: REAL) : REAL ;
PROCEDURE exps (x: SHORTREAL) : SHORTREAL ;

PROCEDURE ln (x: REAL) : REAL ;
PROCEDURE lns (x: SHORTREAL) : SHORTREAL ;

PROCEDURE __BUILTIN__ sin (x: REAL) : REAL ;

PROCEDURE __BUILTIN__ sinl (x: LONGREAL) :
LONGREAL ;

PROCEDURE __BUILTIN__ sins (x: SHORTREAL) :
SHORTREAL ;

PROCEDURE __BUILTIN__ cos (x: REAL) : REAL ;
PROCEDURE __BUILTIN__ cosl (x: LONGREAL) :

LONGREAL ;
PROCEDURE __BUILTIN__ coss (x: SHORTREAL) :

SHORTREAL ;

PROCEDURE tan (x: REAL) : REAL ;
PROCEDURE tans (x: SHORTREAL) : SHORTREAL ;

PROCEDURE arctan (x: REAL) : REAL ;
PROCEDURE arctans (x: SHORTREAL) : SHORTREAL ;

PROCEDURE entier (x: REAL) : INTEGER ;
PROCEDURE entiers (x: SHORTREAL) : INTEGER ;

END MathLib0.

Figure 1: PIM compliant Mathlib0 definition
module

In keeping with other GNU compilers gm2

allows in-line assembly language statements
through the ASM VOLATILE keywords. The
ASM statement in gm2 is an extension to the
statement sequence EBNF rule found in the
PIM appendices [Wirth1] [Wirth2] [Wirth3].
These follow the method outlined in the GCC
manual [Stallman1]. For example on the
Pentium[Intel2] the following function adds the
two CARDINALs i and j together and places the

IMPLEMENTATION MODULE MathLib0 ;

IMPORT cbuiltin, libm ;

PROCEDURE __ATTRIBUTE__ __BUILTIN__
((__builtin_sqrt))
sqrt (x: REAL): REAL;

BEGIN
RETURN cbuiltin.sqrt (x)

END sqrt ;

PROCEDURE __ATTRIBUTE__ __BUILTIN__
((__builtin_sqrtl))
sqrtl (x: LONGREAL): LONGREAL;

BEGIN
RETURN cbuiltin.sqrtl (x)

END sqrtl ;

PROCEDURE __ATTRIBUTE__ __BUILTIN__
((__builtin_sqrts))
sqrts (x: SHORTREAL) : SHORTREAL ;

BEGIN
RETURN cbuiltin.sqrtf (x)

END sqrts ;

PROCEDURE exp (x: REAL) : REAL ;
BEGIN

RETURN libm.exp (x)
END exp ;

Figure 2: Section of Mathlib0 implementation
module

result in k.

ASM VOLATILE ("movl %1,%%eax; \
addl %2,%%eax; movl %%eax,%0"

: "=g" (k) (* outputs *)
: "g" (i), "g" (j) (* inputs *)
: "eax") ; (* we trash *)

The VOLATILE keyword indicates that the in-
struction has important side effects and the
back end is told not to reschedule other instruc-
tions across it. The "g" informs the back end
that the following expression requires an inte-
ger register ("f" indicates that a floating point
register is required). The output integer vari-
able k must have an operand string "=g". Fi-
nally the back end is told that the eax register
is destroyed.

Interfacing to other languages is performed by
using a language specific definition. The key-
words DEFINITION MODULE FOR "C" indicate

GCC Developers’ Summit 2006 • 113

the implementation module is written in C. It
also causes parameters in all exported proce-
dures to be adjusted to match the C calling con-
vention. The example below shows how ac-
cess to the libc function printf is achieved.
The first parameter a: ARRAY OF CHAR will
be mapped onto char * but will be type com-
patible with ARRAY OF CHAR, all subsequent
arguments will be promoted to the Modula-2
type SYSTEM.WORD.

DEFINITION MODULE FOR "C" libc ;

EXPORT UNQUALIFIED printf ;

PROCEDURE printf (a: ARRAY OF CHAR; ...) ;

END libc.

5 Structure of the GNU C compiler

The internal details of the latest release of
the GNU C compiler are well documented in
[Stallman1] and older versions in [Pizka] and
[Granlund].

Until the introduction of GIMPLE and
GENERIC into GCC 4.0 the C compiler could
be considered as a one pass compiler with four
phases. The first phase parses input source and
builds a tree structure describing the program’s
behaviour. This is then manipulated by the
second phase to produce a register transfer
language (RTL) description. The RTL is
a lisp like generic assembly language and
this is heavily optimised by the third phase
before being transformed into target assembly
language by the fourth phase.

It is the duty of the first phase, the compiler
front end, to resolve all types, check the cor-
rectness of the declarations and enforce the lan-
guage rules.

5.1 GNU Modula-2 configuration compli-
ance with the GNU C compiler

The file structure of a GCC front end is ex-
pected to contain certain key configuration
files together with the source code. GNU
Modula-2 adheres to this structure and it can
be grafted onto GCC 3.3.6 in the subdirectory
gcc-3.3.6/gcc. It includes the following
configuration files:

• Make-lang.in defines the high level
rules for building the front end. Typically
these include rules to build the compiler
driver, in this case the command line tool
gm2, and the rules to build the info files,
support tools and different compiler gen-
erations.

• Makefile.in is only used by the main-
tainers to create GM2 release snapshots.

• lang-options.h defines the GNU
Modula-2 language specific options.
These include: range checks, seman-
tic checking options, dialect options,
optimisation, library and linking options.

• config-lang.in describes the executa-
bles which will be built and a list of
Makefiles which will be automatically
created [MacKenzie] by ./configure in
the top level directory.

• lang-specs.h defines all the command
line options which are legal in the front
end. It also determines how and which
support tools will be invoked. In GNU
Modula-2 the C preprocessor can be in-
voked by -Wcpp. The specialist gm2 spe-
cific linking options are also defined in this
file. The -Wmakeall command line op-
tion will compile the current module and
all dependents and perform the final link.

114 • A report on the progress of GNU Modula-2 and its potential integration into GCC

The main data type used in the interface be-
tween front end and the GCC back end is the
tree. Trees are used to represent constants,
types, variables, procedures and all statements.
They maybe chained together to represent pa-
rameter lists, sequences of record fields or an
enumerated data type. The tree is imple-
mented in C as a pseudo abstract data type.
In the implementation of GNU Modula-2 front
end (itself written in Modula-2 and C) this
type is presented as an abstract data type.
There exists a definition module gccgm2.def
which provides a functional interface to a wide
range of tree operators. A corresponding
gccgm2.c implements this specification. This
works extremely well in practice as the separa-
tion and purpose of the Modula-2 and C com-
ponents are clear.

6 GNU Modula-2 compiler options

The GNU Modula-2 compiler options are
fully documented in the texinfo based man-
ual [GM2]. This section describes some of
the more interesting compiler options. The
compiler provides extensive runtime checking
through the -Wbounds, -Wreturn, -Wnil,
-Wcase options, which: check array bounds,
functions execute a RETURN statement, point-
ers do not dereference through NIL and all case
expression values are tested.

The compiler can be told to compile PIM2,
PIM3, PIM4 dialect Modula-2 via the -Wpim2,
-Wpim3 and -Wpim4 switches respectively.
The -Wiso is only partially complete, and it
currently gives access to the ISO SYSTEM
module and modifies the library path to include
the ISO libraries.

The options -Wextended-opaque and -Wcpp
enable abstract data types to be implemented by

any type and preprocess all source code with
the C preprocessor respectively.

One expected category of users are students
learning to program. The option -Wstudents

checks for bad programming style and it checks
whether variables of the same name are de-
clared in different scopes and whether variables
look like keywords [Lewis]. The -Wpedantic
option forces the compiler to reject nested
WITH statements referencing the same record
type and does not allow multiple imports of the
same item from a module. It also checks that:
procedure variables are written to before being
read; variables are not only written to but read
from; variables are declared and used. It also
checks to see that FOR loop indices are not used
outside the end of a loop without being reset.

The -Wpedantic-param-names ensures that
procedure parameter names are the same in the
definition module and in the implementation
module counterpart. This is not necessary in
ISO or PIM versions of Modula-2, but it can be
extremely useful, as long as code is intention-
ally written in this way.

Lastly the -funbounded-by-reference op-
tion enables optimisation of unbounded param-
eters by attempting to pass non VAR unbounded
parameters by reference. This optimisation
avoids the implicit copy inside the callee pro-
cedure. GNU Modula-2 will only allow un-
bounded parameters to be passed by reference
if, inside the callee procedure, they are not writ-
ten to, no address is calculated on the array and
it is not passed as a VAR parameter. Note that
it is possible to write code to break this opti-
misation, therefore this option should be used
carefully. For example it would be possible to
take the address of an array, pass the address
and the array to a procedure, read from the ar-
ray in the procedure and write to the location
using the address parameter. Due to the danger-
ous nature of this option it is not enabled when
the -O option is specified.

GCC Developers’ Summit 2006 • 115

7 Structure of the GNU Modula-2
front end

The language Modula-2 allows declarations to
occur in any order and GNU Modula-2 allows
an abstract data type to be implemented as any
type (not restricted to a pointer type). The
Modula-2 import and export rules together with
the out of order declaration naturally lends it-
self to using a multi-pass approach to compila-
tion.

The GNU Modula-2 compiler uses a flex built
lexical analysis phase to build a dynamic buffer
for all source tokens. This is then parsed twice
to resolve enumerated types, exports, abstract
data types and all the forward declarations. It
is parsed for a third time to produce quadru-
ple intermediate code. At this point the quadru-
ples are optionally optimised and semantically
checked before being converted into trees and
passed to the GCC backend.

The front end symbol table contains a tree

field for each table entry. This is necessary to
implement the optimisation phases in the front
end and which provide extra knowledge for se-
mantic analysis. At this point constants and lit-
erals will have their tree fields initialised in
the front end symbol table. Once all the check-
ing has been performed the remaining front end
symbol are converted into trees. This tech-
nique works well as the front end handles all
the backward declarations and it is only when
the front end symbol table is entirely complete
that many of the type trees are created. This
makes the interface to the back end simpler and
much easier to debug. The interface routines
can ignore many of the error nodes which are
only created by the back end when the input
source is illegal.

8 Bootstrapping GNU Modula-2

The GNU Modula-2 front end source tree in-
cludes the Modula-2 source code for the com-
piler and libraries as well as a modified ver-
sion of p2c. The modifications to p2c allow
it to translate the Modula-2 front end compo-
nent into C. The main changes were: to imple-
ment the PIM2 dialect of Modula-2, implement
BITSET set types and abstract data types.

When building GNU Modula-2 natively the
make gm2.paranoid test may be performed,
this proceeds to compile the Modula-2 sources
into object form using the previous version of
the compiler. These objects and the GCC back
end are linked to form a second generation
compiler. The second generation of the com-
piler is used to create a third generation of the
compiler and finally all three compilers are re-
quested to produce assembly language files for
all Modula-2 sources. These assembly lan-
guage files are then diffed to check that the
compiler is completely stable. This paranoid
test has proven very worthwhile during the de-
velopment cycle. It also gives a high degree
of confidence that the second generation of the
compiler is behaving in exactly the same way
as the first generation of the compiler and there-
fore it can be debugged using gdb against the
original source code (rather than the translated
intermediate C code of the first generation com-
piler).

9 Implementing open arrays using
trees

The trees that the back end provide are used
right at the start of the compilation process. Ini-
tially the back end creates key base types such
as integer_type_node, char_type_node
and constants of zero and one. The Modula-2

116 • A report on the progress of GNU Modula-2 and its potential integration into GCC

front end continues to create language specific
types such as BOOLEAN and initialises trees for
any built-in functions that the back end offers.
GNU Modula-2 obtains a reference to memcpy

and alloca in gccgm2.c. 2

tree gm2_memcpy_node
= builtin_function

("__builtin_memcpy",
memcpy_ftype, BUILT_IN_MEMCPY,
BUILT_IN_NORMAL, "memcpy");

tree gm2_alloca_node
= builtin_function

("__builtin_alloca",
alloca_ftype, BUILT_IN_ALLOCA,
BUILT_IN_NORMAL, "alloca");

In many instances the Modula-2 types can be
mapped onto the equivalent C data types. How-
ever, as with many other languages, there will
be specialist data types required which have no
direct C equivalent. The most prominent ex-
amples in GNU Modula-2 are that of the open
array or unbounded array and large sets. The
open array mechanism allows programmers to
specify an array parameter to a procedure has
no fixed limit. The example below is a declara-
tion for a procedure to concatenate two strings
(performing a := a+b).

PROCEDURE concat (VAR a: ARRAY OF CHAR;
b: ARRAY OF CHAR) ;

GNU Modula-2 creates an internal unbounded
type which is declared as a RECORD

unbounded = RECORD
_arrayAddress: ADDRESS ;
_arrayHigh : CARDINAL ;

END ;

A call to concat will involve the caller cre-
ating two unbounded temporary structures for

2alloca_ftype and memcpy_ftype are the
prototypes for the respective functions

parameters a and b. It fills in the fields to an
unbounded structure with the address of the
array and the last legal index. These two struc-
tures become the parameters into the proce-
dure concat. GNU Modula-2 adopts the pol-
icy of callee save and therefore in the example
concat must make a copy of the non VAR pa-
rameter (b). This is achieved using the follow-
ing tree and it is called from within the front
end Modula-2 source.

nBytes :=
mult(add(indirect(add(addr(param),

offset(arrayHighField)),
getIntegerType()),

getIntegerOne())
findSize(arrayType)) ;

addr :=
indirect(add(addr(param),

offset(arrayAddressField)),
getIntegerType()) ;

newArray := gccMemCopy(gccAlloca(nBytes),
addr,
nBytes) ;

This mechanism works well and utilises the
functional interface to the tree data structure
provided by the GCC back end. Essentially the
single front end primitives VAR a: ARRAY OF

data type and a: ARRAY OF data type are im-
plemented by considering their C equivalent us-
ing non simple data types and in-lining calls to
libc and in-lining C statements. Of course GNU
Modula-2 does not generate C but rather it gen-
erates the same internal trees that the GNU C
compiler generates. In turn these trees define
the construction and manipulation of open ar-
ray data structures.

10 Implementing sets using trees

In ISO Modula-2 set types may have more
members than bits in a machine word. For ex-
ample a user may define large set types in the
following way.

GCC Developers’ Summit 2006 • 117

TYPE
foo = SET OF CHAR ;
bar = SET OF [-1..01000H] ;

VAR
a: foo ;
b: bar ;

BEGIN
a := {’a’, ’c’, d’, ’z’} ;
b := {1, 2, 3, 5, 7, 11, 01000H} ;

As the GCC back end does not contain a large
set basic type GNU Modula-2 was forced with
two choices. Either a new basic type would be
added to the GCC back end or GNU Modula-2
could manufacture this type in a similar way
to that of an open array. It was decided to
manufacture multi word set types rather than
introduce a new data type for the GCC back
end. The advantages of this technique include
simplicity and a clearer separation between the
GCC releases and the GNU Modula-2 front end
releases. The front end implements set com-
parison and set element testing routines based
on single a multi word set types. It attempts to
propagate constants by providing tree func-
tions which exploit constant operands when-
ever possible.

In fact this practice has proved sensible as from
GCC release 4.0 onwards the basic word sized
set type has been removed. In its place GCC
now provides GIMPLE and GENERIC which
allow front ends to construct language specific
types. Thus the changes to the GNU Modula-2
front end when migrating to GCC 4.1 will in-
clude recreating a set type via GIMPLE and
GENERIC. GNU Modula-2 was in effect us-
ing the GIMPLE technique for both open arrays
and large set types, thus the changes should be
reasonably well isolated.

The GNU Modula-2 front end manufactures the
SET OF CHAR construct for a 32 bit data word
length processor by generating a GCC tree

representing the record shown in figure 3. To
hide this transformation from the user there ex-
ist a collection of patches to be applied to the

RECORD
: SET OF [CHR(0)..CHR(WordLength-1)];
: SET OF [CHR(WordLength)

..CHR(2*WordLength-1)];
: SET OF [CHR(2*WordLength)

..CHR(3*WordLength-1)];
: SET OF [CHR(3*WordLength)

..CHR(4*WordLength-1)];
: SET OF [CHR(4*WordLength)

..CHR(5*WordLength-1)];
: SET OF [CHR(5*WordLength)

..CHR(6*WordLength-1)];
: SET OF [CHR(6*WordLength)

..CHR(7*WordLength-1)];
: SET OF [CHR(7*WordLength)

..CHR(8*WordLength-1)];
END ;

Figure 3: Record representing SET OF CHAR

Modula-2 components of gdb. These patches
allow users to print types and display data in
a Modula-2 source code representation. The
modified gdb understands that a structure con-
taining word sized sets with contiguous ranges
and NULL field names are to be displayed as
a single large set. This mechanism is a prag-
matic and release early [Raymond] solution and
works well for small to medium sized sets,
clearly a more compile time scalable solution
is required for really large sets.

11 Modula-2 and interrupt priori-
ties

Another important aspect of Modula-2 is that
it provides all the necessary primitives to im-
plement a microkernel either through language
constructs or system procedures [Wirth4]. The
language allows for modules to be specified to
run with a specific interrupt mask. This has
the effect that any procedure declared within
a module will also inherit this interrupt mask.
Thus when an exported procedure is invoked
it will automatically set the processor interrupt
mask to that of its parent module and restore
the previous processor interrupt mask before

118 • A report on the progress of GNU Modula-2 and its potential integration into GCC

returning. For example in figure 4, it can be
seen that procedure foo is declared in the inner
module which was specified to operate with an
interrupt mask of 7 whereas the outer module
was specified to operate with an interrupt mask
of 0. When the procedure foo is called from
the outer module the current interrupt mask is
saved and set to 7. After foo returns the inter-
rupt mask is restored back to 0 again.

MODULE outer[0] ;

MODULE inner[7] ;
EXPORT foo ;

PROCEDURE foo ;
BEGIN
END foo ;

END inner ;

BEGIN
foo

END outer.

Figure 4: Example of a procedure associated
with an interrupt mask

11.1 Modula-2 and processes

The SYSTEM module as defined by Wirth
[Wirth1][Wirth2][Wirth3] provides four pro-
cedures which can be used to create a pro-
cess, context switch between two processes
and switch to another process should an inter-
rupt occur. The prototypes for these SYSTEM

module procedures are given in figure 5. The
procedure NEWPROCESS instantiates the proce-
dure represented by parameter p into a process
new. Whereas the procedure TRANSFER con-
text switches from process p1 to process p2.
The procedure IOTRANSFER initially context
switches from process first to second how-
ever when an interrupt occurs it saves the cur-
rent processor volatile environment in second

and then context switches back to the process
first. The LISTEN procedure briefly re-
moves the processor interrupt mask.

PROCEDURE NEWPROCESS (p: PROC;
a: ADDRESS;
n: CARDINAL;
VAR new: PROCESS)

PROCEDURE TRANSFER (VAR p1: PROCESS;
p2: PROCESS)

PROCEDURE IOTRANSFER (VAR First,
Second: PROCESS;

InterruptNo: CARDINAL)

PROCEDURE LISTEN

Figure 5: Prototypes of the SYSTEM proce-
dures which coordinate process activity

Fortunately the GNU Pthread library contains
low level context switching primitives and
these allow for a straightforward implemen-
tation of NEWPROCESS and TRANSFER. The
procedure NEWPROCESS is implemented by
calling pth_uctx_create and pth_uctx_

make. These two Pthread primitives create a
process context. Each Modula-2 process is rep-
resented by a single Pthread context with an
associated interrupt priority mask. In GNU
Modula-2 the definition for the PROCESS type
and the interrupt range and the implementation
of NEWPROCESS is shown in figure 6.

The implementation of TRANSFER and
IOTRANSFER are shown in figures 7 and 8
respectively. There are three categories of in-
terrupts currently implemented in this runtime
system: input, output and clock interrupts. The
input and output interrupts are generated by
providing a mapping to a file descriptor and
the clock interrupts are simulated through the
use of a relative ordered time ascending list. A
module SysVec provides procedures to map
file descriptors onto simulated interrupt vectors
and it also implements an interrupt dispatcher.
This dispatcher is called whenever the interrupt
mask is altered and the duty of the dispatcher is
to build the set parameters and time parameters
for pth_select. The values to the set param-
eters are derived from the active interrupt list

GCC Developers’ Summit 2006 • 119

which were populated by successive calls to
IncludeVector via the IOTRANSFER proce-
dure. A function TurnInterrupts was added
as a GNU extension to the module SYSTEM.
This function modifies the current interrupt
mask and returns the previous mask value
but it will also call the interrupt dispatcher
if the new mask allows more interrupts to
become visible. The compiler generates calls
to TurnInterrupts whenever one procedure
is about to call another procedure associated
with a different interrupt mask (as in figure 4).

PROCESS = RECORD
context: ADDRESS ;
ints : PRIORITY ;

END ;
PRIORITY = [0..7] ;

PROCEDURE NEWPROCESS (p: PROC; a: ADDRESS;
n: CARDINAL;
VAR new: PROCESS) ;

TYPE
ThreadProcess = PROCEDURE (ADDRESS) ;

VAR
ctx: ADDRESS ;
tp : ThreadProcess ;

BEGIN
localInit ;
tp := ThreadProcess(p) ;
IF pth_uctx_create(ADR(ctx))=0
THEN

Halt(__FILE__, __LINE__, __FUNCTION__,
’unable to create user context’)

END ;
IF pth_uctx_make(ctx, a, n, NIL, tp, NIL,

illegalFinish)=0
THEN

Halt(__FILE__, __LINE__, __FUNCTION__,
’unable to make user context’)

END ;
WITH new DO

context := ctx ;
ints := currentIntValue ;

END
END NEWPROCESS ;

Figure 6: Implementation of NEWPROCESS
and definition of the type PROCESS

Every call to IOTRANSFER results in a new
IOTransferState being constructed and this
is kept on the callers stack so that the context of
first process can be restored when the inter-
rupt is serviced. The procedure IOTRANSFER

initially saves the current processes context into

PROCEDURE TRANSFER (VAR p1: PROCESS;
p2: PROCESS) ;

VAR
r: INTEGER ;

BEGIN
localMain(p1) ;
p1.ints := currentIntValue ;
currentIntValue := p2.ints ;
IF p1.context=p2.context
THEN

Halt(__FILE__, __LINE__, __FUNCTION__,
’switching to the same process’)

END ;
currentContext := p2.context ;
IF pth_uctx_switch(p1.context,

p2.context)=0
THEN

Halt(__FILE__, __LINE__, __FUNCTION__,
’unable to context switch’)

END
END TRANSFER ;

Figure 7: Implementation of TRANSFER

IOTransferState =
RECORD

ptrToFirst,
ptrToSecond: POINTER TO PROCESS ;
next: POINTER TO IOTransferState

END ;

PROCEDURE IOTRANSFER (VAR First,
Second: PROCESS;
InterruptNo: CARDINAL)

VAR
p: IOTransferState ;

BEGIN
localMain(First) ;
WITH p DO

ptrToFirst := ADR(First) ;
ptrToSecond := ADR(Second) ;
next := AttachVector(InterruptNo,

ADR(p))
END ;
IncludeVector(InterruptNo) ;
TRANSFER(First, Second)

END IOTRANSFER ;

Figure 8: Implementation of IOTRANSFER

first and then restores the context belonging
to process second. The IOTransferState

is constructed and initialised appropriately. A
pointer to this record, (q in figure 9) is created
when calling AttachVector. The procedure
AttachVector associates q with the partic-
ular interrupt number. When the interrupt is
serviced the dispatcher context switches back

120 • A report on the progress of GNU Modula-2 and its potential integration into GCC

to process second by invoking TRANSFER and
passing the relevant fields of q.

TRANSFER(q^.ptrToSecond^, q^.ptrToFirst^)

The last SYSTEM procedure LISTEN simply lis-
tens to all pending interrupts briefly before re-
turning. LISTEN is easily implemented by a
call to the interrupt dispatcher after un-masking
all interrupts. The SYSTEM module also pro-
vides a non standard procedure ListenLoop

which exhibits the same behaviour as:

LOOP
LISTEN

END

except that it allows the interrupt dispatcher to
block waiting for an interrupt to occur thus re-
specting the underlying operating system.

The implementation of Modula-2 processes
works well, it only amounts to 1600 lines
of code and it allows input, output and
time based interrupts to be managed through
IOTRANSFER. These modules form part of the
GNU Modula-2 runtime system and they pro-
vide a method whereby microkernel executives
originally designed for stand alone systems can
be executed under UNIX like operating sys-
tems.

12 GNU Modula-2 source code

At the time of writing GNU Modula-2 0.5 has
been released. This front end can be grafted
onto GCC-3.3.6 source tree and the front end
contains patches for GCC and GDB. To make
the source code grafting and build process as
simple as possible there is a build package
which downloads the appropriate GCC, GDB
and GM2 releases, applies the various patches

ptrToFirst

ptrToSecond

next

first: PROCESS

pthread context

interrupt no

second: PROCESS

pthread context

interrupt no

stack of secondstack of first

q: POINTER TO TransferState

Figure 9: Interaction between IOTransferState
and IOTRANSFER

and proceeds to build and install GNU Modula-
2 and a modified version of GDB. This utility,
gm2-harness-0.7, can be found on the GNU
Modula-2 web site at http://www.nongnu.
org/gm2.

13 Conclusions and further work

In conclusion gm2 has been produced and it
builds successfully with the GCC-3.3.6 release
on UNIX, GNU/Linux, FreeBSD and Solaris
on seven different processors.

The compiler is fully PIM Modula-2 compli-
ant and a complete set of PIM libraries exist.
The PIM libraries include: Logitech compat-
ible libraries, University of Ulm libraries and
m2f libraries. The user can specify which set
of libraries an application should link against.

GCC Developers’ Summit 2006 • 121

The compiler will bootstrap reliably and pro-
vides accurate debugging information for gdb.
GNU Modula-2 has also been configured as a
cross compiler for the StrongARM [Intel3] and
MinGW platforms. It is also the only known
free 64 bit implementation of Modula-2 and it
will build successfully on the AMD Opteron
[Opteron] and Intel Itanium [Intel1] processors
running Debian Pure64.

The technique of double book keeping in the
symbol table handling has been successful and
simplifies the interface between the front and
back end. The front end only translates error
free and resolved symbols into the GCC tree

equivalent.

Open array and multi word set implementa-
tion in GNU Modula-2 show that GCC front
ends can successfully manufacture data types
and manipulate data types by providing a map-
ping onto C derived trees. This will smooth
the transition to GCC release 4.1 which uses
GENERIC and GIMPLE. It is expected that
both: open arrays, set types could be expressed
as front end trees which are converted onto
back end types appropriately. Ironically the
choice of quadruples as front end intermedi-
ate code can also be exploited as the quadru-
ples have a direct correspondence with GIM-
PLE code. This work will be undertaken in the
near future.

GNU Modula-2 has implemented the ISO SYS-
TEM module and some of the ISO language
features, clearly however the ISO Modula-2 di-
alect needs to be completed together with a set
of ISO compatible libraries.

Lastly it is a core aim that GNU Modula-2 be
integrated within the GCC source tree at a con-
venient time in the future.

14 Acknowledgements

I would like to thank my employer for fund-
ing this research, my colleagues for their sup-
port, and my family for being so patient. Thank
you to all of the readers and contributors of
the GNU Modula-2 mailing list for their many
valuable bug reports, repeated test builds and
patches over the last six years. Many people
and organisations have been very generous in
providing access to a wide variety of computing
equipment which has enabled extensive testing
and porting to occur.

Finally a great debt of thanks is owed to the
Free Software Foundation and all its contrib-
utors without which the source code to GCC
would not be free to read, modify, and redis-
tribute.

References

[AMD64] AMD, x86-64 Architecture
Programmer’s Manual, AMD USA
(2003).

[Bowen] Devon Bowen, A Highly Portable
Modula-2 Compiler, The State University
of New York at Buffalo, Computer
Science Department, 226 Bell Hall,
Buffalo, New York, 14260, USA (1994).

[Gancarz] Mike Gancarz, Linux and the Unix
Philosophy, Digital Press (2002).

[GM2] Gaius Mulley, The GNU Modula-2
front end to GCC, Edition 0.5, Free
Software Foundation, 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301
USA (2006).

[Granlund] Torbjörn Granlund and Richard
Kenner, Eliminating branches using a
superoptimizer and the GNU C compiler,

122 • A report on the progress of GNU Modula-2 and its potential integration into GCC

ACM SIG-PLAN Notices, Volume 27(7),
p341-352 (1992).

[IBM970] IBM, IBM PowerPC 970FX RISC
Microprocessor User’s Manual, IBM,
(2006).

[Intel1] Intel, Intel Itanium Architecture
Software Developer’s Manual, Volume 3:
Instruction Set Reference, Revision 2.2,
Intel (2006).

[Intel2] Intel, Pentium Processor Family
Developer’s Manual, Intel Literature,
P.O. Box 7641, Mt. Prospect, IL
60056-7641, USA (1995).

[Intel3] Intel, Intel StrongARM SA-1110
Microprocessor Developers Manual,
Intel, Intel, USA (2001).

[ISO] ISO/IEC, Information technology -
programming languages - part 1:
Modula-2 Language, ISO/IEC 10514-1
(1996).

[Lewis] Stuart Lewis and Gaius Mulley, A
comparison between novice and
experienced compiler users in a learning
environment, 6th Annual Conference on
the Teaching of Computing, 3rd Annual
Conference on Integrating Technology
into Computer Science Education,
ITiCSE ’98 18th - 31th August, Dublin
Ireland, ACM 0-89791-xxx/98/03 (1998).

[MacKenzie] David MacKenzie and Ben
Elliston, Creating Automatic
Configuration Scripts, Edition 2.13, Free
Software Foundation, 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301
USA (1998).

[Mulley] Gaius Mulley and Keith Verheyden,
Enhancing a Modula-2 compiler to help
students learn interactively within the
Ceilidh system, Knowledge Transfer 97
(1997).

[Opteron] AMD, Software Optimization
Guide for the AMD Opteron Processor,
AMD, (2003).

[Pizka] Markus Pizka, Design And
Implementation of the GNU
INSEL-Compiler gic, Technische
Universitaet Muenchen, Institut fuer
Informatik (1997).

[Pronk] Cornelis Pronk, Stress Testing of
Compilers for Modula-2, Software
Practice and Experience, Volume 22(10),
p885-897 (1992).

[Raymond] Eric Raymond, The Cathedral
and the Bazaar, O’Reilly Publishers,
USA (1999).

[Stallman1] Richard Stallman, Using and
Porting the GNU Compiler Collection,
Free Software Foundation, 51 Franklin
Street, Fifth Floor, Boston, MA
02110–1301 USA (2001).

[Stallman2] Richard Stallman, GNU Coding
Standards, Free Software Foundation, 51
Franklin Street, Fifth Floor, Boston, MA
02110–1301 USA (2006).

[Wirth1] Niklaus Wirth, Programming in
Modula-2, Springer-Verlag, Berlin
Heidelbery New York, 2nd Edition
(1983).

[Wirth2] Niklaus Wirth, Programming in
Modula-2, Springer-Verlag, Berlin
Heidelbery New York, 3rd Edition
(1985).

[Wirth3] Niklaus Wirth, Programming in
Modula-2, Springer-Verlag, Berlin
Heidelbery New York, 4th Edition
(1988).

[Wirth4] Niklaus Wirth, Design and
Implementation of Modula, Software

GCC Developers’ Summit 2006 • 123

Practice and Experience, Vol 6(7),
p. 67–84 (1976).

124 • A report on the progress of GNU Modula-2 and its potential integration into GCC

Devirtualization in GCC

Mircea Namolaru
IBM Haifa Research Lab - HiPEAC Member

namolaru@il.ibm.com

Abstract

A major optimization for object oriented lan-
guages is converting dynamically bound func-
tion calls into (statically bound) direct calls, a
process called devirtualization. This saves the
dynamic dispatch overhead, and more impor-
tantly, enables further inlining of these function
calls. For devirtualization we designed an ex-
tension of the Rapid Type Analysis (RTA) al-
gorithm, a fast and effective algorithm [1]. The
resulting algorithm combines RTA with a sim-
ple data-flow analysis.

We have an initial version of devirtualization
for C++, implemented in GCC. We describe
how the implementation makes use of the exis-
tent GCC code, and how it deals with the com-
plexities of the C++ language. Finally we dis-
cuss the major implementation issues for com-
pleting the implementation.

1 Introduction

In order to support abstraction, object-
orientated languages support dynamic binding
of methods based on the run-time of the
object. This presents a compiler with a prob-
lem, as it has to generate code to activate
the method at run-time. In addition as the
method invoked is unknown at compile-time,

valuable optimizations opportunities may be
lost. As dynamic binding is extensively used
by object-orientated programmers, this may
cause a significant overhand in performance.

In order to statically bind a method, we must be
able to statically determine the type of the ob-
ject upon which the method is invoked. A num-
ber of different analyses have been developed
for C++ in an attempt to solve this problem.

One of them is Rapid Type Analysis (RTA), in-
troduced in [1]. An in depth description of the
algorithm, its performance and its implementa-
tion can be found in [2]. The RTA algorithm is a
simple algorithm, and yet its performance com-
pares very well versus other much more com-
plex type inference algorithms.

Some simple data-flow analysis may succeed
in devirtualizing calls for which RTA analy-
sis have failed. For instance, a simple (intra-
procedural and/or inter-procedural) type propa-
gation algorithm may find that the object upon
which a virtual method is invoked, is an object
returned by a new operator (therefore its type is
know statically). In spite of its simplicity, such
an analysis may be quite effective, and comple-
ments RTA, creating a more powerful devirtu-
alization algorithm.

We have designed an algorithm that combines
RTA with a simple type propagation algorithm.
The resulting call graph computed by our algo-
rithm is more accurate then the one computed

126 • Devirtualization in GCC

by RTA and/or class propagation applied sep-
arately and this may cause better devirtualiza-
tion. The differences between the original RTA
algorithm and this algorithm are discussed fur-
ther.

We have a partial implementation of this algo-
rithm in GCC for C++ and we are working to
complete it. RTA is conceptually simple, but
due to the complexity of C++ and to the current
GCC infrastructure, its implementation raises a
number of issues that are discussed further.

2 The algorithm

As the RTA algorithm is the basis of our work it
is presented first in a form adapted to our needs,
which is slightly different from the one appear-
ing in [2](e.g. we build the call graph on the
fly)

RTA assumes that a Class Hierarchy Graph
(CHG) that describes the inheritance relation-
ship between classes is available. Another pre-
requisite for RTA is a call graph with only the
virtual calls not resolved. The RTA analysis
will compute the possible targets for a virtual
call and the ones that have a single possible tar-
get can be devirtualized.

The RTA algorithm is outlined in Figure 1. It
maintains a list of methods. This list is initial-
ized with the root node of the call graph. Ini-
tially, no class in the program is considered as
being live. The algorithm also maintains a list
of the already visited call sites called the live
call sites.

Each method in the list is analyzed in turn. For
each virtual call site in the method, the static
class of the object upon which the method is in-
voked and its live subclasses are used to find the
possible targets of the virtual call and to build

the corresponding edges in the call graph. As
other subclass may be marked live at a later
time, we maintain information about live call
sites.

We mark as live all the classes instantiated in
this method. When a new class is found to be
live, new methods may be reached via live vir-
tual calls invoked on a base of the new instanti-
ated class. The information on live virtual call
site is used to find these methods and to build
the corresponding edges in the call graph.

At the end of the algorithm we have found all
the live classes and resolved the virtual call
sites in the call graph. Virtual call site with a
single target can be devirtualized.

In our algorithm we integrate RTA with a sim-
ple data-flow analysis that propagates informa-
tion about the types of objects passed as argu-
ments. The algorithm is outlined in Figure 2.

If an argument of a call is an object returned
by a new operator or it is a formal parameter of
the method containing the call, the argument is
marked as df-dep (data flow dependent). A
virtual call invoked on a df-dep object (con-
sidered to be the first argument of the call) is
marked as df-dep virtual call.

The lattice of values used for type propaga-
tion is unknown, df-dep and rta, where
unknown is the minimal element and rta is
the maximal one. For df-dep values there is
a secondary value with the classes reaching the
df-dep argument. The rules for propagation
are described in Figure 3.

One alternative propagation rule would be that
if two different classes are propagated to a
df-dep argument, then the value propagated
further is rta. But as the propagated classes
are from the same hierarchy, maintaining all the
classes reaching a df-dep argument could be
implemented rather efficiently.

GCC Developers’ Summit 2006 • 127

build_virtual_calls_targets:

for each method m in the call graph
visited (m) = false;

for each class cls in the program
live (cls) = false;

list_methods = root_method;
live_call_Sites = empty

while list_methods is not empty

remove m head of list_methods
if (visited (m))
continue

for all call sites cs of m
if is_virtual (cs)
/* Based on the static type at cs and

its live subclasses, find the possible
targets at cs. */

build_edges_cv (static_type (cs), m)
add cs to live_call_sites

else if is_not_virtual (cs)
for each target tm in targets (cs)
add tm to list_methods

for each class cls instantiated in m
if (live (cls)
continue

live (cls) = true
for each call site cs in live_call_sites
/* Find the method invoked at cs if

dynamic type is cls. */
tm = target_cs_cls (cs, cls);
if (tm == NULL) continue
build_edge (m, tm)
add tm to list_methods

visited (m) = true;

Figure 1: The RTA algorithm

Initially, each class parameter of a method has
the value unknown. A df-dep argument of
a call that is a formal parameter of its enclosing
method is initialized to the value unknown. A
df-dep argument that is an object propagated
from a new operator is initialized to the value
df-dep (and the secondary value to the class
instantiated by new). A non df-dep argument
receives the value rta.

In the original RTA algorithm, every instanti-
ated class assumes that all the live virtual calls
may be reached by the new created object. Our
algorithm optimistically assumes for a new in-
stantiated object that df-dep virtual calls are

not reached, letting data-flow analysis to find
out if the call is reached or not.

For a df-dep virtual call, the computation of
possible targets of the call is based on the type
information propagated to the call, and not on
the live classes information as in RTA.

Our algorithm requires that type information
reaching the formal arguments of a method be
propagated further in the call graph. Each time
a method is reached, the type information of
its arguments needs to be propagated to its call
sites, and from there to the current targets of the
call. A method is added to the method list each
time new type information reaches its parame-
ters.

Basically, this algorithm tries to infer the type
of df-dep arguments via a simple data-flow
analysis (propagation of type of objects re-
turned by a new operator). For the rest of the
arguments, the RTA analysis is used.

As in RTA, at the end of the algorithm we have
found all the live classes and resolved the vir-
tual call sites in the call graph.

3 An example for modified RTA

To illustrate the algorithms from the previous
section and the differences between them we
will use the example from Figure 4.

In the example, we have a simple class hierar-
chy, where B is a subclass of A and C a sub-
class of B. The class B overrides the methods
foo and foo1 (A::foo and A::foo1 not shown),
and the class C overrides the method foo1.

There are two virtual call sites, one in foo2 and
the other in B::foo which is a def-dep call
site.

128 • Devirtualization in GCC

build_virtual_calls_targets:

for each method m in the call graph
visited (m) = false
df_init (m)

for each class cls in the program
live (cls) = false;

list_methods = root_method
live_call_Sites = empty

while list_methods is not empty

remove m head of list_methods
if (visited (m))
for all call sites cs of m
for each target tm in targets (cs))
/* Propagate type information from the
formals of the method to the df-dep
arguments in the call site. */
df_prop (m, cs)
/* Check if new type information is

propagated to the target. */
if (df_merge (cs, tm))
add tm to list_methods

continue

for all call sites cs of m
if is_virtual (cs) && not_df_dep (cs)
/* Based on the static type at cs and

its live subclasses, find the
possible targets at cs. */

build_edges_cv (static_type (cs), m)
add cs to live_call_sites

else if is_virtual (cs) && df_dep (cs)
/* Based on the type information

propagated at cs, find the possible
targets at cs. */

build_edges_cv (propagated_type (cs), m)
else if is_not_virtual (cs)
/* Check if new type information is

propagated to the target. */
for each target tm in targets (cs)
if (df_merge (cs, tmp) or not visited (tm)

add tm to list_methods

for each class cls instantiated in m
if (live (cls)
continue

live (cls) = true
for each call site cs in live_call_sites
/* Find the method invoked at cs if

dynamic type is cls. */
tm = target_cls_cs (cs, cls);
if (tm == NULL) continue
/* Check if new type information is

propagated to the target. */
if (df_merge (cs, tm) or not visited (tm))
add tm to list_methods

build_edge (cs, tm)

visited (m) = true;

Figure 2: The modified RTA algorithm

prop (unknown, v) = v, v any value

prop (v, rta) = rta , v any value

prop ((df-dep,A),(df-dep,B)) = (df-dep,(A, B))

Figure 3: Type propagation rules

The method list is initialized with foo2. First
we find that the class C is instantiated and that
B::foo is reachable. Then we discover that
C::foo1 is reachable and that the class B is in-
stantiated.

From this point onward, the two algorithms dif-
fer. RTA will consider that B::foo1 is reachable
(via the call site from B::foo), and that the class
A is instantiated. This will find two new meth-
ods reachable via the two call sites A::foo and
A::foo1. So in this case, RTA will find that the
classes A, B and C are live and no call site can
be devirtualized.

If type propagation is done afterward, it will
succeed to devirtualize the call site from B::foo.
However, since the class live information re-
mains the same, the other virtual call site could
not be devirtualized.

With the modified RTA algorithm, after class B
has been instantiated, we will not consider the
method B::foo1 reachable. As again B::foo is
reached (via the call site from foo2), we will
check if new type information is propagated to
it. This doesn’t happen in this example, and the
algorithm ends. The algorithm will find that the
classes B and C are live. Since both call sites
have a single target in the call graph, both can
be devirtualized.

4 RTA issues

Since our algorithm is based on RTA, it shares
its requirements and limitations which are de-

GCC Developers’ Summit 2006 • 129

// B subclass of A
// C subclass of B
static A *pn;

B:: foo1 (A *p) {
new A;

}

C:: foo1 (A *) {
new B;

}

B:: foo (A *p) {
p->foo1 ();

}

foo2 () {
p = new C;

pn->foo (p);
}

Figure 4: An example for modified RTA

scribed further.

4.1 Type safety

RTA assumes that the dynamic type of the ob-
ject upon which a virtual call may be invoked
is a subclass of its static type. In C++, this as-
sumption may be invalidated via a downcast as
it is possible to see in Figure 5(a). This code
is not type-safe, and it may cause a run-time
exception if foo is not defined in A. If foo is de-
fined in A, many C++ implementation (includ-
ing GCC) may invoke it, which may or may
not be what the programmer expected. But in
this case RTA will decide that the target of this
virtual call is B::foo and change the behavior
of the program. As we see in Figure 5(b), in
the presence of a downcast RTA may work per-
fectly well. To statically differentiate between
such cases is not always possible.

Two possible solutions are discussed in [1].
The first is to not apply RTA if a downcast is
detected in the program. As downcasting is
a common C++ practice, this may restrict too

// B subclass of A
void *obj = (void *)new A
B *obj1 = (B *) obj
obj1->foo

(a)

void *obj = (void *)new B
B *obj1 = (B *)
obj obj1->foo

(b)

Figure 5: Downcast examples in C++

much this optimization. A better solution is
to print a message if a downcast is encoun-
tered. The message will indicate that RTA may
change the behavior of the program for truly
unsafe downcasting.

4.2 Whole program analysis

In order to ensure the correctness of RTA, the
entire program code must be analyzed (oth-
erwise some instantiation of a class may be
missed). This is not always possible. In many
cases, part of the code is supplied in libraries
whose code is not available. Following [2], we
show the modifications required to RTA to han-
dle incomplete programs.

We differentiate between classes internal to the
program and classes exported by libraries. The
classes internal to the program are not know
to the libraries, hence they cannot be instan-
tiated there, but their methods can be called
from libraries. This may happen if their address
have been taken in the program. Therefore, we
need to consider all the methods whose address
have been taken in the program as roots in the
call graph (in the algorithms described previ-
ously, the initial list of methods should include
them). Another change required is that classes
exported by the libraries are initially considered
live.

130 • Devirtualization in GCC

We must also consider the case when the pro-
gram subclasses a library class and overrides
one of its methods. When such a subclass in in-
stantiated, all its methods that override methods
in the library code must be assumed to be reach-
able (as they may be invoked by a virtual call in
the library) and inserted in the list of methods.

The whole class hierarchy of the program is
known. The compiler may analyze the class
hierarchy and mark the standard C++ libraries
classes as exported. The rest of the classes
are considered internal to the program. If the
program exports also other libraries beside the
standard C++ libraries, information about their
exported classes should be provided by the
user.

5 Implementation

In this section, we describe several implemen-
tation problems and discuss the current stage
of the implementation, as well as future work
items.

5.1 Class instantiation

The algorithm needs to detect all the instanti-
ated classes in the program. In order to do this,
we find all invocations of constructors in the
program. Constructors for sub-objects part of
a base in a derived type are not considered to
instantiate a class.

The constructors are identified at the gimple (or
in the development branch used at the SSA)
level, with the help of a C++ hook. The ad-
vantage of this approach is that an easy adapta-
tion of this analysis to other languages is pos-
sible. The problem is that some constructors
may be inlined by the front end and are not ap-
pearing at gimple (or SSA) level. However, we

thought that would be easier for a given lan-
guage to modify the front end, and let the reg-
ular inlining at gimple (or SAA) level to inline
the constructors.

5.2 Class Hierarchy Graph

The implementation of the RTA algorithm
needs a data structure to represent the class hi-
erarchy graph (CHG). In this graph all nodes
represent classes, and the edges describe the
hierarchy relationship. We need to be able to
reach from a base all its immediate subclasses,
and from a subclass all its direct bases. Also,
we want to annotate the nodes with the specific
information needed by our analysis. We have
implemented the CHG as a separate data struc-
ture internal to our analysis. There is a hash
table that provides a mapping from a type to its
corresponding node in the CHG.

The information about the bases of a given class
is already available in GCC in the binfo (base
info) trees build by the front end. As a class is
instantiated, we complete the CHG with edges
from a base to its subclasses. This is done by
an upward traversal of the CHG starting with
the class instantiated. For each edge (subclass,
base) traversed, an edge (base, subclass) is con-
structed. If a node in CHG has no downward
edges to its subclasses, none of its subclasses
have been instantiated (or it is a leaf node). The
information about instantiated classes is also
kept in the CHG nodes.

5.3 Resolving a virtual call site

In this section, we show how the information
about instantiated (or live) classes is used to re-
solve a virtual call site in the call graph. For
such a call, the static class of the object upon
which the method is invoked is available. The
instantiated classes in the subgraph rooted at

GCC Developers’ Summit 2006 • 131

this class provide the possible dynamic types
for this object. For every couple (static type,
dynamic type) we find the method that will be
invoked at run-time. These methods are the tar-
gets of the virtual call analyzed.

We have implemented a method that given the
static and dynamic type upon which a virtual
call is invoked returns the method invoked (a
simple variant of this method was already ex-
istent in GCC for the case when the dynamic
type and the static type are the same). Such a
method is dependent on how the object model
(the layout of objects, the virtual method ta-
bles etc) is implemented. This is the reason for
which this method is provided as a C++ hook.

5.4 A special issue for C++

There is a special issue in C++, for virtual
methods invoked on the this object in a con-
structor. For the example in Figure 6, if an ob-
ject of type B is created, the constructor of A
is invoked (via the constructor of B), and then
the virtual method foo is invoked on this.
The C++ reference manual specifies that in this
case, the type of this is A and not B (as we
would expect, since the A constructor was in-
voked on a B object). In order to preserve the
correctness of RTA we must consider that class
A is live (even if no explicit instantiation of this
class have been found).

A possible solution to this problem is to do in
constructors an escape analysis of this. If it is
passed as an argument to another method (other
than the implicit this pointer) or it is copied,
it is considered as escaped. In this case we will
consider the class defining the constructor as
live.

class A {
public A::A() { foo ();}
virtual void foo ();

}

// B subclass of A
class B: public A {

public void foo ();
}

Figure 6: A C++ problem

5.5 A simple variant of RTA

We have already implemented a simple vari-
ant of RTA to help us to build the infrastruc-
ture needed by the more complex algorithms
described in this paper. It is a RTA algorithm
that assumes that all the methods are reached.

In the first stage, all the methods are scanned
and the classes instantiated are marked as live.
In this stage we construct the CHG as shown in
a previous subsection. In the second stage for
all virtual calls we find their targets in the call
graph, and build the corresponding edges.

In the case when a virtual call has a single tar-
get, it is replaced by a direct call. This made
possible the further inlining of this method.

5.6 Call graph

In GCC, a call graph has been already imple-
mented. At this point no analysis is done to try
to infer the possible targets for a call done via
a pointer. In the absence of this information we
need to make very conservative assumptions re-
garding the methods reachable via such calls.
This was another reason for which we imple-
mented the simple variant of RTA from the pre-
vious section that assumes that all methods are
reachable. For a complete RTA we will need to
address the issue of calls via pointers first.

132 • Devirtualization in GCC

5.7 Inter-module analysis

RTA requires inter-module analysis. GCC al-
ready has an inter-module analysis capability
for C (enabled by the option -combine), that at
this stage is not functional for C++. The prob-
lems that prevent this have been detailed in [5].
The lack of this capability for C++ is a prob-
lem that needs to be solved, in order to make
possible the implementation of powerful inter-
procedural algorithms in GCC C++.

5.8 RTA implementation

For an efficient implementation of the RTA, we
need to be able to reach from a newly instanti-
ated class all the live virtual calls that may be
affected. This can be done by maintaining a
mapping from a class to the live virtual calls
that are statically invoked on it. For an instanti-
ated class, we will start an upward traversing in
the CHG starting at the class instantiated. Dur-
ing this traversal, the mapping will provide all
the virtual call sites that may be affected by this
class instantiation. This is a work item.

5.9 Type propagation

The inter-procedural constant propagation op-
timization already implemented in GCC [4]
computes information about formal parameters
of a method used as arguments in a call in the
method. It provides an inter-procedural prop-
agation engine, that could be extended to also
propagate type information.

For determining that an object returned by a
new operator reaches an argument in a call
site (found in the same method as the new)
the intra-procedural constant propagation im-
plemented in SSA may be used.

An implementation, based on the existent GCC
infrastructure, of the type propagation needed
by the modified RTA algorithm is another work
item.

5.10 Other languages

We have seen that the implementation of RTA
(or one of its variants) make use of only two
language hooks, one for detecting constructors
in the language and the other for finding the
method invoked by a virtual call given the static
and the dynamic type upon which the call is in-
voked.

6 Future work

We intend to complete the implementation of
the modified RTA algorithm. As we have seen,
there are parts in the infrastructure that are
missing (an accurate call graph and the inter-
module capability for C++). We will see how
we can help (together with GCC community)
to make them functional.

We intend to asses and to tune the performance
of this algorithm on the new SPEC2006 that has
much more C++ benchmarks then SPEC2000
(where eon was the single C++ benchmark).

7 Conclusions

We have presented an algorithm that integrates
two simple, but effective analysis, RTA and a
simple data-flow analysis (type propagation).
The resulting analysis is more accurate then if
these analysis are applied separately.

We have described a partial implementation of
this algorithm and outlined the issues for com-
pleting its implementation.

GCC Developers’ Summit 2006 • 133

8 Acknowledgements

I would like to thank the IBM Haifa team for
advising with implementation and design is-
sues, to Peter Bergner for reviewing this paper,
as well as to Daniel Berlin and all other GCC
developers that provided helpful comments.

References

[1] David F. Bacon and Peter F. Sweeney.
Fast static analysis of C++ virtual function
calls. OOPSLA’96.

[2] David F. Bacon. Fast and Efective
Optimization of Statically Typed
Object-Oriented Languages. PhD thesis,
University of California at Berkeley, 1998.

[3] David Callahan, Keith D. Cooper, Ken
Kennedy, and Linda Torczon.
Interprocedural Constant Propagation.
Symp. on Comp. Construct, 1986.

[4] Razya Ladelsky and Mircea Namolaru.
Interprocedural Constant Propagation in
GCC. GCC Developer’s Summit, 2005.

[5] Geoff Keating. Inter-module analysis in
GCC. GCC Developer’s Summit, 2005.

[6] CodeSourcery and others. Itanium C++
ABI (Revision: 1.86). http://www.
codesourcery.com/cxx-abi/.

[7] Kazuaki Ishizaki, Motohiro Kawahito,
Toshiaki Yasue, Hideaki Komatsu, and
Toshio Nakatani. A study of
devirtualization techniques for a Java
Just-In-Time compiler. OOPSLA, 2000.

[8] David Detlefs and Ole Agesen. Inlining of
Virtual Methods. European Conference on
Object-Oriented Programming, 1999.

[9] Steven S. Muchnick. Advanced Compiler
Design and Implementation. Morgan
Kaufmann, 1997.

[10] Ken Kennedy and Randy Allen.
Optimizing Compilers for Modern
Architectures: A Dependence-based
Approach. Morgan Kaufmann, 2001.

134 • Devirtualization in GCC

OpenMP and automatic parallelization in GCC

Diego Novillo
Red Hat Canada

dnovillo@redhat.com

Abstract

This paper describes the design and imple-
mentation of the OpenMP specification v2.5 in
GCC. The implementation supports all the lan-
guages specified in the standard (C, C++ and
Fortran), and it is generally available on any
platform that supports POSIX threads.

Emphasis is placed on the internal architecture
and, in particular, the intermediate represen-
tation, which could be used in the implemen-
tation of automatic parallelization techniques.
The paper also presents performance results on
the SPEC OMP2001 benchmark.

1 Introduction

OpenMP defines language extensions to C,
C++ and Fortran for implementing shared-
memory multi-threaded applications [1]. Com-
piler pragmas are used to define parallel re-
gions, data and work sharing attributes. A run-
time library implements the actual mechanism
for creating threads, synchronization and data
sharing.

This paper describes GOMP (GNU OpenMP),
an OpenMP implementation for GCC. There
are four main components: parser, intermediate
representation, code generation and the runtime

library (libgomp). The parser identifies and
validates the OpenMP pragmas and emits the
corresponding GENERIC representation. The
IR used to represent OpenMP is an extension to
GENERIC and GIMPLE. It serves a dual pur-
pose: as an interface to libgomp and as a code
generation target for auto-parallelization trans-
formations.

2 Parser

OpenMP defines a collection of compiler prag-
mas for C, C++ and Fortran. As such, three sep-
arate implementations were required for each
of the front ends. The new pragmas are catego-
rized in two groups: directives for specifying
parallelism and work-sharing, and clauses for
specifying data sharing and thread scheduling
properties.

Every OpenMP command starts with
#pragma omp and though the standard
defines quite a few of them, they are mostly
straightforward to recognize in a recur-
sive descent scan. The recognition code
is hooked into the standard pragma pro-
cessing code in each of the front ends:
c-parser.c:c_parser_omp_* for C,
cp/parser.c:cp_parser_omp_*
for C++ and fortran/parse.c:
parse_omp_* for Fortran.

136 • OpenMP and automatic parallelization in GCC

Once recognized, the front ends generate
the corresponding GENERIC representa-
tion as described in the next section. Some
of the semantic analysis and validation is
also done during parsing. Structural di-
agnostics such as nesting of directives is
done after the representation is in GIM-
PLE form (omp-low.c:diagnose_
omp_structured_block_errors).
Other common diagnostics are emit-
ted during the conversion into GIMPLE
(gimplify.c:gimplify_omp_* and
gimplify.c:omp_*).

3 Intermediate Representation

Most directives and clauses have a correspond-
ing GENERIC node defined in tree.def.
The basic code generation strategy is to outline
the body of parallel regions into functions that
are used as arguments to the libgomp thread
creation routines. Data sharing is implemented
by passing the address of a local structure with
all the data items marked for sharing. Copy-in
data is passed by value, while copy-in/copy-out
data and variables that are bigger than a certain
threshold are passed by address.

To illustrate at a high-level how OpenMP pro-
grams are compiled, consider the program in
Figure 1 to compute the sum of all the thread
IDs in parallel.1

Figure 2 shows the corresponding High GIM-
PLE representation. Note that for debug-
ging convenience, the IL pretty-printer renders
OpenMP statements using the #pragma omp
syntax. Some transformations and mappings
are done during parsing and gimplification. For
instance, all predetermined or implicitly deter-
mined sharing attributes are made explicit for

1Yes, the program makes absolutely no sense.

main()
{

int sum = 0;
#pragma omp parallel

{
#pragma omp atomic
sum += omp get thread num ();

}
printf ("sum = %d\n", sum);

}

Figure 1: OpenMP program to compute a sum.

main ()
{

sum = 0;
#pragma omp parallel shared(sum)

{
D.1324 = omp get thread num ();
D.1325 = (unsigned int) D.1324;

sync fetch and add 4 (&sum, D.1325);
}

sum.0 = sum;
printf ("sum = %d\n", sum.0);

}

Figure 2: High GIMPLE form for Figure 1.

the benefit of code generation. In the case of
Figure 2, variable sum is predetermined shared.
Also, the atomic add operation is mapped into
the corresponding __sync built-in.

The next lowering stage (omp-low.c:
pass_lower_omp) sets up mappings for sat-
isfying data sharing attributes and linearizes the
bodies of the OpenMP directives. Converting
the code into linear form, requires the addition
of OMP_RETURN markers that indicate the end
of each body. This becomes important later
when the parallel work-sharing regions are ex-
panded into the corresponding libgomp calls.
In Figure 3, the OMP_RETURN at line 9 marks
the end of the parallel region starting at line 3.

Data sharing is implemented using an arti-
ficial data structure (struct .omp_data_
s) whose fields are all the variables included

GCC Developers’ Summit 2006 • 137

main ()
{
1 sum = 0;
2 .omp data o.sum = ∑
3 #pragma omp parallel shared(sum)
4 .omp data i = &.omp data o;
5 D.1324 = omp get thread num ();
6 D.1325 = (unsigned int) D.1324;
7 D.1334 = .omp data i−>sum;
8 sync fetch and add 4 (D.1334, D.1325);
9 OMP RETURN

10 sum.0 = sum;
11 printf (&"sum = %d\n"[0], sum.0);
12 return;
}

Figure 3: Low GIMPLE form for Figure 1.

in data sharing clauses like shared and
copyin. This is why the front end is re-
quired to explicitly indicate all the variables
with sharing semantics. In general, vari-
ables with sharing or copy-in/copy-out seman-
tics are passed by reference while variables
with copy-in semantics are passed by value.
However, if a copy-in variable is too large,
it will also be passed by reference. This is
controlled by omp-low.c:use_pointer_
for_field.

Two local variables are created: .omp_data_
o, which is filled in with the addresses and
values of every shared variable to be sent to
the children threads (line 2 in Figure 3), and
.omp_data_i, which will hold the address
of .omp_data_o (line 4 in Figure 3). This
way, every reference to variable sum inside the
body of the omp parallel directive, is re-
written to use .omp_data_i->sum.

This seemingly convoluted rewriting is nec-
essary for outlining the body of the omp
parallel into a separate function as shown
in Figure 4. The new function main.omp_
fn.0 receives &.omp_data_o in its ar-
gument .omp_data_i. Final expansion
replaces the parallel body with calls into

main ()
{
1 # BLOCK 0
2 # PRED: ENTRY (fallthru)
3 sum = 0;
4 .omp data o.sum = ∑
5 builtin GOMP parallel start(main.omp fn.0,
6 &.omp data o, 0);
7 main.omp fn.0 (&.omp data o);
8 builtin GOMP parallel end ();
9 sum.0 = sum;

10 printf (&"sum = %d\n"[0], sum.0);
11 return;
12 # SUCC: EXIT
}

main.omp fn.0 (.omp data i)
{
13 # BLOCK 0
14 # PRED: ENTRY (fallthru)
15 D.1324 = omp get thread num ();
16 D.1325 = (unsigned int) D.1324;
17 D.1334 = .omp data i−>sum;
18 sync fetch and add 4 (D.1334, D.1325);
19 return;
20 # SUCC: EXIT
}

Figure 4: Final expansion for Figure 1.

libgomp to launch children threads and ex-
ecute main.omp_fn.0 (lines 5−8 in Figure
4).

The sequence of transformations proceeds as
follows:

1. The front end parses the OpenMP pragmas
and emits the corresponding GENERIC
statements as described in Section 3.1.

2. The gimplifier determines which variables
are used inside parallel regions and es-
tablishes mappings according to the data
sharing clauses. It also tries to re-
place omp atomic directives with cor-
responding atomic update functions.

138 • OpenMP and automatic parallelization in GCC

3. pass_lower_omp creates the artificial
data structure to implement the data shar-
ing mappings, rewrites variables to use the
fields in struct .omp_data_s, ex-
pands some forms of synchronization and
adds OMP_RETURN markers for directive
bodies.

4. pass_lower_cf linearizes the direc-
tives and their bodies to remove the nested
property and prepare the IL for building
the flow graph.

5. pass_build_cfg builds the control
flow graph, making sure that incoming
edges into parallel regions are marked ab-
normal to avoid CFG cleanups from mak-
ing any assumptions that may violate par-
allel semantics. This is mostly a pre-
cautionary measure, as no such cleanups
are currently implemented that may cause
these problems.

One important property about
omp parallel regions is that they
are guaranteed to be single-entry, single-
exit. This is exploited by the expansion
phase.

6. pass_expand_omp runs just before the
code is put into SSA form. With the ex-
isting implementation, omp parallel
regions cannot be put into SSA form be-
cause it does not support concurrency se-
mantics.

This pass outlines the single-entry, single-
exit region of every omp parallel into
a new function and expands all the other
directives into calls to libgomp or the
corresponding GIMPLE expansion. For
instance, the computations needed to cal-
culate iteration space bounds for statically
scheduled parallel loops are expanded in-
line (Figures 5(a) and 5(b)).

3.1 Directives

Most OpenMP directives and clauses have a
corresponding GENERIC and GIMPLE code.
The exception are those that can be repre-
sented with built-in function calls (e.g. omp
barrier, omp flush) or attributes (e.g.
omp threadprivate are handled with the
standard the thread-local storage attributes).

Calls to libgomp are encoded as built-in func-
tions in omp-builtins.def. Directives
and clauses encoded as IL statements are de-
fined in tree.def. All the front ends emit the
statements and built-ins defined in these files.

The C and C++ front ends share common code
generation routines in c-omp.cwhile the For-
tran front end converts its parse trees into
GENERIC in fortran/trans-openmp.
c.

OMP_PARALLEL

Represents #pragma omp parallel
[clause1 ... clauseN]. It has
four operands:

Operand OMP_PARALLEL_BODY is valid
while in GENERIC and High GIMPLE
forms. It contains the body of code to
be executed by all the threads. During
GIMPLE lowering, this operand becomes
NULL and the body is emitted linearly af-
ter OMP_PARALLEL.

Operand OMP_PARALLEL_CLAUSES is
the list of clauses associated with the di-
rective.

Operand OMP_PARALLEL_FN is created
by pass_lower_omp, it contains the
FUNCTION_DECL for the function that
will contain the body of the parallel re-
gion.

Operand OMP_PARALLEL_DATA_ARG
is also created by pass_lower_omp. If

GCC Developers’ Summit 2006 • 139

foo ()
{
#pragma omp for
for (i = 0; i <= 8; i = i + 1)
do work (i);
OMP CONTINUE
OMP RETURN
return;

}

(a) Low GIMPLE form.

foo ()
{

/* Lines 3-14 compute the iteration space for
each thread. */

3 D.1330 = builtin omp get num threads ();
4 D.1331 = (unsigned int) D.1330;
5 D.1332 = builtin omp get thread num ();
6 D.1333 = (unsigned int) D.1332;
7 D.1334 = 9 / D.1331;
8 D.1335 = D.1334 * D.1331;
9 D.1336 = D.1335 != 9;

10 D.1337 = D.1334 + D.1336;
11 D.1338 = D.1337 * D.1333;
12 D.1339 = D.1338 + D.1337;
13 D.1340 = MIN EXPR <D.1339, 9>;
14 if (D.1338 >= D.1340) goto <L3>; else goto <L0>;

/* Lines 20-25 compute the first and last value of
’i’ taking the loop increment value into
consideration. */

17 # BLOCK 1
19 <L0>:;
20 D.1341 = (int) D.1338;
21 D.1342 = D.1341 * 1;
22 i = D.1342 + 0;
23 D.1343 = (int) D.1340;
24 D.1344 = D.1343 * 1;
25 D.1345 = D.1344 + 0;

/* Lines 31-34 are the actual loop. */
28 # BLOCK 2
30 <L1>:;
31 do work (i);
32 i = i + 1;
33 D.1346 = i < D.1345;
34 if (D.1346) goto <L1>; else goto <L3>;

/* This barrier is emitted because the loop
was not marked with the ’nowait’ clause. */

37 # BLOCK 3
39 <L3>:;
40 builtin GOMP barrier ();
41 return;
}

(b) Corresponding expansion.

Figure 5: Expansion of a statically scheduled parallel loop.

140 • OpenMP and automatic parallelization in GCC

there are shared variables to be communi-
cated to the children threads, this operand
will contain the VAR_DECL that contains
all the shared values and variables.

OMP_FOR

Represents #pragma omp for
[clause1 ... clauseN]. It
has 5 operands:

Operand OMP_FOR_BODY contains the
loop body.

Operand OMP_FOR_CLAUSES is the list
of clauses associated with the directive.

Operand OMP_FOR_INIT is the loop ini-
tialization code of the form VAR = N1.

Operand OMP_FOR_COND is the loop
conditional expression of the form VAR
{<,>,<=,>=} N2.

Operand OMP_FOR_INCR is the loop in-
dex increment of the form VAR {+=,-=
} INCR.

Operand OMP_FOR_PRE_BODY contains
side-effect code from operands OMP_
FOR_INIT, OMP_FOR_COND and OMP_
FOR_INC. These side-effects are part of
the OMP_FOR block but must be evaluated
before the start of loop body.

The loop index variable VAR must be a
signed integer variable, which is implicitly
private to each thread. Bounds N1 and N2
and the increment expression INCR are re-
quired to be loop invariant integer expres-
sions that are evaluated without any syn-
chronization. The evaluation order, fre-
quency of evaluation and side-effects are
unspecified by the standard.

OMP_SECTIONS

Represents #pragma omp sections
[clause1 ... clauseN].

Operand OMP_SECTIONS_BODY con-
tains the sections body, which in turn con-
tains a set of OMP_SECTION nodes for

each of the concurrent sections delimited
by #pragma omp section.

Operand OMP_SECTIONS_CLAUSES is
the list of clauses associated with the di-
rective.

OMP_SINGLE

Represents #pragma omp single.

Operand OMP_SINGLE_BODY contains
the body of code to be executed by a single
thread.

Operand OMP_SINGLE_CLAUSES is the
list of clauses associated with the direc-
tive.

OMP_MASTER

Represents #pragma omp master.

Operand OMP_MASTER_BODY contains
the body of code to be executed by the
master thread.

OMP_ORDERED

Represents #pragma omp ordered.

Operand OMP_ORDERED_BODY contains
the body of code to be executed in the se-
quential order dictated by the loop index
variable.

OMP_CRITICAL

Represents #pragma omp critical
[name].

Operand OMP_CRITICAL_BODY is the
critical section.

Operand OMP_CRITICAL_NAME is an
optional identifier to label the critical sec-
tion.

OMP_ATOMIC

Represents #pragma omp atomic.

Operand 0 is the address at which the
atomic operation is to be performed.

GCC Developers’ Summit 2006 • 141

Operand 1 is the expression to evaluate.
The gimplifier tries three alternative code
generation strategies. Whenever possi-
ble, an atomic update built-in is used. If
that fails, a compare-and-swap loop is at-
tempted. If that also fails, a regular critical
section around the expression is used.

OMP_RETURN

This does not represent any OpenMP di-
rective, it is an artificial marker to indi-
cate the end of the body of an OpenMP.
It is used by the flow graph (tree-cfg.
c) and OpenMP region building code
(omp-low.c).

OMP_CONTINUE

Similarly, this instruction does not repre-
sent an OpenMP directive, it is used by
OMP_FOR and OMP_SECTIONS to mark
the place where the code needs to loop
to the next iteration (in the case of OMP_
FOR) or the next section (in the case of
OMP_SECTIONS).

In some cases, OMP_CONTINUE is placed
right before OMP_RETURN. But if there
are cleanups that need to occur right af-
ter the looping body, it will be emit-
ted between OMP_CONTINUE and OMP_
RETURN.

3.2 Clauses

Clause codes are defined in tree.h as sub-
codes for the main OMP_CLAUSE code. This
was necessary because of code space overflow
in tree.def. GCC does not support more
than 256 IL codes, so clauses are all repre-
sented by a main code (OMP_CLAUSE) and a
sub-code, which can be one of OMP_CLAUSE_
PRIVATE, OMP_CLAUSE_SHARED,
OMP_CLAUSE_FIRSTPRIVATE, OMP_
CLAUSE_LASTPRIVATE, OMP_CLAUSE_

COPYIN, OMP_CLAUSE_COPYPRIVATE,
OMP_CLAUSE_IF, OMP_CLAUSE_NUM_
THREADS, OMP_CLAUSE_SCHEDULE,
OMP_CLAUSE_NOWAIT, OMP_CLAUSE_
ORDERED, OMP_CLAUSE_DEFAULT, and
OMP_CLAUSE_REDUCTION.

Clauses associated with the same directive are
chained together via OMP_CLAUSE_CHAIN.
Those clauses that accept a list of variables are
restricted to exactly one, accessed with OMP_
CLAUSE_VAR. Therefore, multiple variables
under the same clause C need to be represented
as multiple C clauses chained together. This
facilitates adding new clauses during compila-
tion.

4 Auto parallelization

The new GENERIC and GIMPLE codes used
for OpenMP can also be the target for an auto
parallelization pass. Although GCC does not
currently implement such a transformation, all
the necessary data dependency and code gener-
ation tools are already present.

It is possible to emit both task and data par-
allel code using OMP_SECTIONS and OMP_
FOR respectively. Data sharing semantics can
be implemented with the corresponding OMP_
CLAUSE_* codes and synchronization needed
to preserve sequential data dependency seman-
tics may use the appropriate OMP directive or
call the libgomp routines directly.

Once parallel GIMPLE code is generated,
pass_expand_omp may be used to do the
outlining and low-level expansion work, and
schedule the new function into the call-graph.
Currently, care should be taken to take the func-
tion out of SSA form prior to these transforma-
tions because the call graph manager currently
expects functions to be in normal form. How-
ever, this limitation may be lifted in the future.

142 • OpenMP and automatic parallelization in GCC

5 Runtime Library

The runtime library (libgomp) is essentially
a wrapper around the POSIX threads library,
with some target-specific optimizations for sys-
tems that support lighter weight implementa-
tion of certain primitives. For instance, lock-
ing primitives in some Linux targets are im-
plemented using atomic instructions and futex
system calls. To support libgomp, the target
must also implement thread-local storage.

The implementation is in gcc/libgomp and
most entry points into the library are defined as
built-in function calls inside the compiler.

5.1 Thread creation

The main entry point is GOMP_parallel_
start, which takes as arguments the func-
tion to run on each thread, a pointer to the
.omp_data_s structure as described earlier
and the number of threads to be launched. If
the specified number of threads is 0, the num-
ber of threads is computed automatically.

Once the parallel region ends, threads are
docked so that they can be re-used at a later
time. The master thread keeps executing the
code after GOMP_parallel_start, which
in this case is just another invocation to the
same function that the children threads are ex-
ecuting. A call to GOMP_parallel_end
Tears down the team and returns to the previ-
ous parallel state.

There are alternate entry points for com-
bined parallel and work-sharing constructs that
avoid one extra synchronization at the start
of the work-sharing construct. The com-
piler tries to emit these combined calls when-
ever possible (omp-low.c:determine_
parallel_type).

5.2 Synchronization

With few exceptions, most synchronization is
just a direct mapping to the underlying POSIX
routines. The exceptions are omp master
and omp single:

omp master simply blocks the thread with
a thread-id different than 0.

omp single has two alternate entry points,
with and without the copyprivate
clause. Since copyprivate is used to
broadcast the values computed inside the
omp single body, the compiler emits
a call to GOMP_single_copy_start,
which will block all the threads except
one. On return, the blocked threads
receive a pointer into a common area
which will have been filled by the thread
that entered the region. That area con-
tains the broadcast data. See omp-low.
c:lower_omp_single_copy for de-
tails.

5.3 Work sharing

Every scheduling variant of omp for has
been implemented in the library. There are
three main functions, GOMP_loop_*_start
to initialize the loop bounds, GOMP_loop_*_
next to get the next chunk of iteration space to
work on, and GOMP_loop_*_end to finalize
the parallel loop.

The omp sections construct is simpler.
The compiler transforms the construct into a
switch statement using the section id as in-
dex. The call to GOMP_sections_start
sets up the work-share construct and record the
number of sections found in the body. GOMP_
sections_next returns the next section id
to execute. Once all the sections have been exe-
cuted, a barrier after the switch synchronizes
all the threads.

GCC Developers’ Summit 2006 • 143

Benchmark ICC 9.0 GCC 4.2.0 % Diff

wupwise 227.0 224.0 -1.3%
swim 140.0 138.0 -1.4%
mgrid 146.0 140.0 -4.1%
applu 154.9 147.3 -4.9%
equake 267.2 264.5 -1.0%
apsi 179.0 179.0 0.0%
fma3d 139.0 133.0 -4.3%
ammp 140.0 153.0 9.3%

Mean 169.11 167.31 -1.1%

wupwise
swim

mgrid
applu

equake
apsi

fma3d
ammp

Mean

0.0

25.0

50.0

75.0

100.0

125.0

150.0

175.0

200.0

225.0

250.0

275.0

SPEC OMP2001 (-O2)

ICC 9.0

GCC 4.2.0

Benchmarks

S
c
o

re

Figure 6: SPEC OMP2001 scores for GCC and ICC on a dual processor EM64T. Higher scores
indicate better performance.

144 • OpenMP and automatic parallelization in GCC

6 Implementation Status

At the time of this writing, the implementation
is feature complete for all the three languages
defined in the standard and scheduled to be re-
leased with GCC 4.2. It has also been ported to
the GCC 4.1 version included in Fedora Core
5.

The focus over the next few months will be bug
fixing and performance tuning. No firm plans
exist yet for an auto-parallelization pass as de-
scribed in the previous section, but it should
not be an exceedingly complex project to im-
plement.

To assess the performance of the code gener-
ated by GCC, I used SPEC OMP2001 on a dual
processor Intel EM64T at 3.4Ghz with 2Gb of
RAM, running Fedora Core Linux 3. The com-
pilers tested were GCC v4.2.0 20060406 (ex-
perimental) and ICC v9.0 20050914.

As shown in Figure 6, the performance differ-
ences between the two compilers are negligible.
GCC has a slight edge in some tests and vice
versa, but the geometric mean is almost identi-
cal.

Both compilers used the standard -O2 opti-
mization level. Note that the goal was to get
a rough idea on how the GCC implementation
compares to other compilers. This was not a
valid SPEC run as neither GCC nor ICC were
able to run all the benchmarks without errors.
GCC failed to execute gafort and art, while
ICC failed to build galgel and failed to exe-
cute gafort. Tests that failed in either com-
piler were taken out of the chart.

References

[1] OpenMP Architecture Review Board.
Openmp application program in-
terface v2.5. May 2005. http:

//www.openmp.org/drupal/
mp-documents/spec25.pdf.

Autovectorization in GCC—two years later

Dorit Nuzman
IBM Haifa Research Lab - HiPEAC Member

dorit@il.ibm.com

Ayal Zaks
IBM Haifa Research Lab - HiPEAC Member

zaks@il.ibm.com

Abstract

The first version of auto-vectorization was con-
tributed to the GCC lno-branch on January 1st,
2004. Later that year it was presented at the
second GCC summit, featuring basic capabil-
ities and preliminary experimental results on
PowerPC970. Since then, the vectorizer has
made a long way, starting from its acceptance
to the GCC 4.0 release, and gradually increas-
ing its applicability both in terms of the appli-
cation domain it can address and the range of
platforms it can target.

This paper overviews the evolvement of the
vectorizer in the past two years. This in-
cludes support for pointer based and unaligned
references, conditional operations, reductions,
special idioms, type conversions, and a novel
generic vectorization of accesses with power-
of-2 strides. Some of these features required
new abstractions to express vector operations.
It took a collaborative effort to devise abstrac-
tions that are general enough, applicable to
existing architectures, and fit GCC conven-
tions. This collaboration yielded a vectoriza-
tion scheme that balances the conflicting needs
of different platforms while efficiently support-
ing each individual target. This is the most

comprehensive effort that considers the multi-
platform aspect of vectorization, demonstrating
applicability on diverse SIMD platforms by one
compiler. We also present experimental results
on a wide range of key kernels and on several
different SIMD platforms, and conclude with
directions for future work.

1 Introduction

In early June 2004 we introduced the initial
implementation of GCC’s automatic vectoriza-
tion optimization at the second annual GCC
Developers Summit. At that stage, the vec-
torizer was still in its infancy on a develop-
ment branch and was capable of handling sim-
ple constructs only: loops with a single ba-
sic block that contain unit-stride accesses to
aligned memory locations, all accessing data
types of the same size, and no loop-carried de-
pendencies. The vectorizer has enhanced con-
stantly in the past two years starting from its
acceptance into GCC mainline version 4.0, fol-
lowed by new features including vectorizing re-
duction operations (GCC 4.1), reduction pat-
tern recognition (committed to GCC 4.2), and
additional enhancements to support non unit
stride accesses and multiple types (submitted

146 • Autovectorization in GCC—two years later

to GCC 4.2). In this paper we describe these
enhancements and show how collectively they
facilitate vectorizing important multimedia ker-
nels. In concert with these functionality en-
hancements, the vectorizer has also been ex-
tended to support many different vector tar-
gets [7]. Continued development of the vec-
torizer takes place on the autovect development
branch; the interested reader is referred to the
Free Software Foundation website [2] for ac-
cess to source files. For general background on
automatic vectorization, the reader is referred
to our previous paper [6].

The main achievements of the vectorizer over
the past two years are in three areas:

More loops can now be vectorized, thanks to
efficient support for alignment, pointer ac-
cesses, conditional operations, reductions,
pattern recognition, multiple types and
non unit strided accesses.

More platforms are now supported, due to
collaborative design of new vector ab-
stractions.

Real performance improvements can now be
obtained by vectorizing real world code
for a multitude of SIMD platforms.

These achievements provide the first industry-
strength framework capable of considering
the multi-platform aspect of vectorization [7].
Many users are exercising the vectorizer (see,
e.g., [4]), whose patches are now part of offi-
cial GCC releases (or are pending approval for
inclusion in future releases), thereby helping to
reveal various issues [5].

The paper is organized as follows. Section 3
explains the major tradeoffs that we faced when
introducing new idioms to the intermediate rep-
resentation of GCC. In section 4 we describe

ability of the vectorizer to handle loops with re-
duction operations which involve loop-carried
dependencies. Section 5 shows how the basic
infrastructure was seamlessly extended to sup-
port non-unit stride accesses to memory, recog-
nizing and exploiting spatial locality efficiently.
In section 6 we describe the ability of the vec-
torizer to handle loops with accesses to multi-
ple data types and sizes, effectively requiring a
restricted form of unrolling. Section 7 provides
experimental results that exercise the new capa-
bilities and support for different SIMD targets.
We present our conclusion in Section 8.

2 Back to the Future

The starting point for this paper is the directions
for further development projected two years
ago [6]. These were organized into four cate-
gories:

“Support additional loop forms. Support for
unknown loop bounds and if-then-else con-
structs is nearly complete. The major remain-
ing restriction on loop form is the nesting level.
Vectorization of nested loops will be considered
in the future.”

Indeed, the vectorizer now handles counted
loops with arbitrary bounds using loop peeling
(contributed by Olga Golovanevsky), based on
a generic utility to compute number of itera-
tions (contributed by Sebastian Pop and Zdenek
Dvorak). An if-conversion pass is also in place
prior to vectorization to collapse simple if-then-
else constructs (contributed by Devang Patel).
Further extension to the if-converter are cur-
rently under development, including the han-
dling of loads/stores and collapsing multiple if-
then-else constructs. Vectorization of nested
loops is yet to be addressed.

“Support additional forms of data references.
Potential extensions in this category include en-

GCC Developers’ Summit 2006 • 147

hancements to the dependence tests (as dis-
cussed in Section 5) and support for additional
access patterns (reverse access, and accesses
that require data manipulations like strided or
permuted accesses). Exploiting data reuse as
in [9] is an optimization related to data refer-
ences that we plan to consider in the future.”

The major enhancement in this category is the
support for additional access patterns in the
form of non unit strided accesses whose stride
is a power of 2, which has been submitted to
mainline and is pending review (for inclusion
in GCC 4.2; available on the autovect branch).
Handling other access patterns such as reverse
or permuted accesses has not been addressed
yet. The dependence tests have been enhanced
to consider dependencies of distance greater
than the vectorization factor (as discussed in
the above mentioned Section 5), and there have
been enhancements to the generic dependence-
tests engine (e.g., Omega tests, contribution of
Sebastian Pop). The dependence test used by
the vectorizer now handles pointers references
as well, in addition to the originally supported
array references. Using loop distribution to re-
solve dependencies has not been addressed yet,
and neither has the issue of exploiting outer-
loop related reuse.

“Support additional operations. Vectorization
of loops with multiple data-types and type cast-
ing is the first extension expected in this cate-
gory. This capability requires support for data
packing and unpacking, which breaks out of
the one-to-one substitution scheme, and cannot
be directly expressed using existing tree-codes.
The next capabilities to be introduced will be
support for vectorization of induction, reduc-
tion, and special idioms (such as saturation,
min/max, dot product, etc.), using target hooks
or adding new tree-code as necessary.”

Much progress has been achieved in this cate-
gory. Specifically, support for reduction opera-
tions (including regular summation, min/max)

has been incorporated into GCC 4.1, and
support for reduction patterns including dot-
product and widening summation has been
committed to mainline (for GCC 4.2). Patches
that handle multiple data-types and type casting
are available on the autovect branch and have
been submitted to GCC mainline (pending re-
view). Support for induction is under develop-
ment.

“Other enhancements and optimizations. Two
general capabilities that we are planning to in-
troduce are support for multiple vector lengths
for a single target, and the ability to evaluate
the cost of applying vectorization. This will
require some form of cost modelling for the
vector operations. Interaction with other op-
timization passes should also be examined, and
in particular, potential interaction with other
(new) passes that might also exploit data paral-
lelism. One example could be loop paralleliza-
tion (using threads). Another example could be
straight-line code vectorization (as opposed to
loop based), such as SLP [3].”

This category of ‘other enhancements’ is again
a subject of future work.

In addition to the above categories, the han-
dling of alignment has been improved consid-
erably over the last two years, with the abil-
ity to perform loop versioning (contributed by
Keith Besaw) and loop peeling for multiple
loads/stores known to have the same misalign-
ment value. Some of the major issues involving
the vectorizer have been presented in other fo-
rums [7] [8]. This paper provides a summary
of the work achieved in the last two years, with
additional more recent details not conveyed by
prior publications, focusing on mature patches
that have been incorporated or at-least submit-
ted to mainline.

The capabilities of the vectorizer two years
ago relied on the available idioms of GCC’s
GIMPLE intermediate representation, and were

148 • Autovectorization in GCC—two years later

limited accordingly. The major enhancements
mentioned above involve vector operations that
were not previously expressible in GIMPLE.
One of the key factors to the success of the re-
cent enhancements was the introduction of ap-
propriate vector abstractions to GCC. This re-
quired a collaborative effort of different ven-
dors and individuals, in order to come up with
abstractions that are general enough, applica-
ble to existing architectures, and comply with
GCC conventions. This collaboration yielded
a vectorization scheme that is able to balance
the conflicting needs that arise from the diverse
nature of SIMD architectures while supporting
each individual target efficiently, as we explain
next.

3 New vector abstractions

Vector operations are generally represented in
GIMPLE like scalar operations: the same oper-
ation codes are used, but the arguments are of
vector type. This is suitable for ‘pure SIMD’
operations, in which the functionality repre-
sented by the operation code (e.g., addition) is
performed on each element of the vector. Other
vector operations like reductions, alignment-
support mechanisms, and vector element shuf-
fling operations are meaningless in the context
of scalar computations and are therefore un-
available in GIMPLE. In order to express these
mechanisms in the vectorized GIMPLE IL,
we introduce some new high-level platform-
independent abstractions during the last two
years.

The general issues and considerations involved
in introducing new vector operations to GCC
and the GIMPLE IL are discussed in detail
in [7], especially in the context of alignment
and reduction mechanisms. These considera-
tions include: (1) weighing the benefits of com-
pound abstractions with the advantages of us-

ing simpler more basic abstractions; (2) balanc-
ing the generality of abstractions with the ap-
plicability of existing architectures; (3) consid-
ering existing GCC conventions, and; (4) per-
formance considerations — striving to use ab-
stractions that translate into the most efficient
instructions available on targets.

For example, consider the issue of non unit
stride accesses. Most SIMD architectures pro-
vide access only to contiguous memory items,
from base addresses that are aligned on a nat-
ural vector size boundary. Computations, on
the other hand, may access data elements in
an order which is neither contiguous nor ade-
quately aligned. Special data reordering mech-
anisms are provided to help cope with such sit-
uations. These mechanisms usually involve ad-
ditional memory accesses and shuffling instruc-
tions for combining data elements from differ-
ent vectors. The vectorizer must be aware of the
available data reordering mechanisms in order
to determine whether vectorization of a given
computation on a given platform is possible and
profitable. It also needs to generate code that
correctly and efficiently accesses data located
at disjoint and potentially unaligned memory
addresses.

We therefore need to abstract low-level data
shuffling and alignment handling constructs,
and express them in the GIMPLE IL. How-
ever, these data shuffling mechanism often dif-
fer widely from one SIMD platform to another,
posing a challenge to formulate adequate ab-
stractions. A similar situation involving data
shuffling arises when vectorizing computations
that contain type conversions. In such cases,
data elements that reside in one vector need to
be expanded and placed in two or more vectors,
and vice-versa.

Data shuffling can be accomplished using a
general “permute” operation, which selects
an arbitrary set of elements from two vec-
tors (possibly restricted to only one) and packs

GCC Developers’ Summit 2006 • 149

them in one vector. Most platforms, however,
do not support such a powerful permute id-
iom in its most general form. Only the Al-
tiVec vperm instruction allows arbitrary, vari-
able permutation. Other platforms (MMX,
SSE, MIPS, IA-64 and SPE) either have in-
structions to merge the high or low halves of
two vectors, or something akin to the AltiVec
vperm that accepts fixed (compile-time con-
stant) permutations. This is a perfect exam-
ple of the conflict between the desire to in-
troduce general, powerful abstractions and the
need to consider what the target platforms ac-
tually support. Instead of using a general
permute abstraction, the different flavors of
data shuffling mechanisms are more appro-
priately addressed in GCC via simpler, spe-
cialized idioms that better match the avail-
able technology: the vec_extract_even
and vect_extract_odd abstractions ex-
tract elements at even/odd indices, respec-
tively, from two vectors, treated as one stream
of elements; the vec_interleave_hi
and vec_interleave_lo abstractions ex-
tract the high/low-order elements of two vec-
tors, respectively, and merge them together.
These simple abstractions are supported effi-
ciently on most SIMD targets, and provide
the means to handle power-of-2 strided ac-
cesses [8], as explained in Section 5.

A similar case of data shuffling is related
to handling accesses to unaligned addresses,
where data elements are to be extracted
from two vectors according to the misalign-
ment of the address. Here too, instead
of using a general permute abstraction, we
created the specialized realign_load id-
iom [7] which takes three arguments: two
vectors and a realignment_token. The
realignment_token can be an address,
a bit mask, a vector of indices, an off-
set, or anything that can be generated as
a function of the respective address. The
realignment_token hides low-level de-

tails, allowing each target to express its
best alignment handling capabilities thereby
keeping the realign_load idiom general
enough yet not too general.

4 Reduction

The basic support for vectorizing loops with
reduction operations is provided in GCC ver-
sion 4.1. Enhanced support for more complex
reduction patterns was committed to mainline
and will become part of GCC version 4.2.

4.1 Basic reduction

A loop containing a basic reduction operation
is depicted in Figure 1(a), where op is an as-
sociative and commutative operation (such as
addition or min/max) which creates a cross it-
eration data flow dependence cycle, formed by
the reduction variable (a in the example). If
there are no other uses of a1 and a2 in the
loop, and if it’s ok to change the computation
order, the vectorizer transforms code by hav-
ing the loop compute a vector of partial results
followed by a loop epilog which reduces this
vector to the desired scalar result, thereby al-
tering the order of operations. This is shown
in Figure 1(b), where the loop executes parallel
independent op operations (vop) and the loop
epilog (labelled loop_exit) reduces the vec-
tor of partial results using a reduc_op, from
which the final scalar element desired is ex-
tracted (bit_field_ref).

Specific details involving epilog code gener-
ation and accumulator initialization are de-
scribed by Nuzman and Henderson [7].

150 • Autovectorization in GCC—two years later

(a) scalar :
loop:

a1 = phi <a0, a2>
s1: x = ...
s2: a2 = op <x, a1>

loop_exit:
a3 = phi <a2>

s3: use <a3>
s4: use <a3>

(b) vector :
loop:

va1 = phi <va0, va2>
vs1: vx = ...
vs2: va2 = vop <vx, va1>

loop_exit:
va3 = phi <va2>

vs3: va4 = reduc_op <va3>
vs4: a5=bit_field_ref<va4,0>
s3: use <a5>
s4: use <a5>

Figure 1: Basic reduction

4.2 Reduction patterns

Vector targets often have efficient support for
complex operations that involve reduction op-
erations. For example, a target may provide an
instruction that both multiplies two vectors of
multipliers and adds (some of) the products to-
gether, to support efficient dot product compu-
tations. This example also helps to deal with
multiple types (see Section 6), as fewer results
of a wider type need to be recorded. It is there-
fore important for the vectorizer to detect when
such complex operations can be applied.

We implemented a pattern recognition engine
(vect_pattern_recog) for this purpose, which
has been committed to mainline (planned for
GCC version 4.2). This engine searches for
a sequence of statements that follows a cer-
tain idiom; if such a sequence is found, a new
‘pattern’ statement ps representing the idiom
is added before the last statement of the se-

sum0 = phi <init, sum1>
dx = (type1) x;
dy = (type1) y;
dprod = dx * dy;
[dprod = (type2) dprod;]
sum1 = dprod + sum0;

Figure 2: Reduction pattern example: dot prod-
uct

quence ls (with cross links between the two),
and ls is marked as ‘in_pattern’. Later on,
if we reach ls during the bottom-up scan
to mark statements relevant for vectorization
(vect_mark_relevant), we mark the new ps
statement instead of ls. This way we detect if
all intermediate statements of the sequence are
used only by ls, and if so vectorize only ps.

The original support for reduction operations
handles single statements of the form a = op
<x, a> having two arguments, where the first
(x) is defined in the loop and the second (a)
is the reduction variable defined by the loop-
header φ , and both have the same type. The ex-
tension to handle reduction patterns considers
more than one x argument defined in the loop,
keeping the last a argument as the reduction
variable, and allowing the type of a to be wider
than the types of the x arguments. This ex-
tension captures the dot-product and widening-
summation reduction patterns.

The pattern for dot product, for example,
is given in Figure 2, where dx is dou-
ble the size of x, dy is double the size
of y, dx, dy, dprod all have the same
type, sum is the same size of dprod [or
wider], and sum has been recognized as a
reduction variable. The pattern statement
for such dot product patterns is denoted by
a new DOT_PROD_EXPR tree-code taking
three arguments <x,y,sum0>. It is equiva-
lent to a WIDEN_MULT_EXPR statement of
<x,y> (see Section 6) followed by a regular
PLUS_EXPR or a WIDEN_SUM_EXPR state-

GCC Developers’ Summit 2006 • 151

ment.

When vectorizing reduction patterns that in-
volve multiple types, care must be taken
to select the appropriate types in the final
loop epilog code; inside the loop we use
statements with complex tree-codes such as
DOT_PROD_EXPR, but at the epilog we may
use the simple PLUS_EXPR statements to
combine the partial results together, using both
the wider type and the tree-code of the origi-
nal scalar reduction operation. This is contrary
to simple reductions in which the types of all
arguments (including that of the reduction vari-
able) are the same, allowing us to use the same
vector type and tree-code for the epilog code
and for the code inside the loop.

5 Non Unit Stride Accesses

Work on vectorizing loops which access data
in a non-consecutive strided pattern has been
presented recently by Nuzman, Rosen and
Zaks [8]. This work has been submitted to
GCC mainline for inclusion in version 4.2,
and is pending review (at the time of writ-
ing; contribution of Ira Rosen). The challenge
in vectorizing accesses to non-consecutive ad-
dresses is twofold: first, the appropriate sets
of loads/stores and extract/interleave instruc-
tions have to be established, and second, spatial
reuse opportunities should be identified and ex-
ploited. In terms of the underlying infrastruc-
ture, a new type of analysis which groups to-
gether independent statements was devised to
represent spatial reuse partners. In contrast,
previous analyses dealt with individual data
references, dependent statements or the entire
loop.

Despite the above challenges, integrating the
support for non-unit stride accesses with the
existing framework was pretty smooth. We

extended the existing dependence resolution
traversal over pairs of load/store statements, to
construct groups of interleaved loads or stores
that have the same stride and adjacent base ad-
dresses. The data is then provided to each
group using a set of loads and extract_even/odd
operations, or a set of interleave_low/high op-
erations and stores. This mechanism supports
strides that are a power of 2, which are the more
common strides and are efficiently handled on
most platforms using these abstractions.

For example, if we have a group of four loads
with stride four and consecutive base addresses,
and VF=8, we will generate the following in-
structions: a set of four vector loads that
load consecutive elements into vectors (0. . . 7),
(8. . . 15), (16. . . 23), (24. . . 31) followed by a
set of four (intermediate) extract_even/odd op-
erations that produce the vectors (0,2. . . 14),
(16,18. . . 30), (1,3. . . 15), (17,19. . . 31) and a
set of four (final) extract_even/odd operations
that produce the desired vectors: (0,4. . . 28),
(1,5. . . 29), (2,6. . . 30), (3,7. . . 31). The case
of strided stores is analogous, using inter-
leave_lo/hi instead of extract_even/odd. Addi-
tional examples and details are available in pre-
vious publications [8, 1].

6 Multiple Types

When the computations inside a loop operate
on data-types of different sizes, the vectoriza-
tion scheme can no longer be a simple ‘strip-
mine by a single vectorization factor and re-
place 1-to-1’ [6]. This is because different op-
erations prefer different vectorization factors.
In general, we set the vectorization factor ac-
cording to the smallest data type in the loop;
operations that operate on larger data types will
be replicated similar to loop unrolling. Peeling
the loop to align accesses was also updated to

152 • Autovectorization in GCC—two years later

consider multiple data types; the original mis-
alignment values in byte units had to be aug-
mented with the corresponding data type size,
to deduce the correct number of elements to
handle in the loop prolog.

The overall transformation scheme is as fol-
lows. First, as mentioned above, we set the vec-
torization factor (VF) to the largest value ac-
cording to the smallest data type in the loop.
Then when we vectorize a statement that op-
erates on a data-type of which VF elements
cannot fit in one vector word, multiple vec-
tor statements are generated to compute VF
results. For example, say a loop contains (1
byte) chars and (4 byte) ints, and the vector
size (VS) is 16 bytes; the VF in this case will
be 16 due to the operations on chars. Each
scalar statement that deals with chars is vec-
torized as usual by replacing it with its vector
counterpart. In contrast, each scalar statement
that deals with ints is replaced by four vec-
tor statements (denoted VS1.0, VS1.1, VS1.2,
VS1.3) that together compute 16 results in one
iteration of the vectorized loop (see Figure 3).
This is because only four ints fit in one vec-
tor word. When we continue and vectorize the
statement that uses the value defined by S1 (de-
noted S2), each of the 4 vector statements that
we generate (denoted VS2.0, VS2.1, VS2.2,
VS2.3) will use the respective vector value de-
fined by VS1.0, VS1.1, VS1.2, VS1.3. In or-
der to be able to find these 4 vector definitions,
we chain the vector statements together (via
the RELATED_STMT field of the stmt_info
struct: VS1.0→ VS1.1→ VS1.2→ VS1.3. For
this reason a stmt_info struct is now cre-
ated for the newly generated vector statements
as well). The changes to the vector transforma-
tion routines therefore mainly consist of adding
a loop around the original vector-statement-
creation code to create multiple vector state-
ments per scalar statement, and perform the
bookkeeping described above to chain together
these vector statements.

(a) scalar :
S1: x = memref
S2: z = x + 1

(b) after vectorizing S1 :
VS1.0: vx0 = memref0
VS1.1: vx1 = memref1
VS1.2: vx2 = memref2
VS1.3: vx3 = memref3
S1: x = memref
S2: z = x + 1

(c) after vectorizing S2 :
VS1.0: vx0 = memref0
VS1.1: vx1 = memref1
VS1.2: vx2 = memref2
VS1.3: vx3 = memref3
S1: x = memref
VS2.0: vz0 = vx0 + v1
VS2.1: vz1 = vx1 + v1
VS2.2: vz2 = vx2 + v1
VS2.3: vz3 = vx3 + v1
S2: z = x + 1

Figure 3: Multiple types: simple example

We now describe several issues that arise for
certain kinds of computations operating on
multiple data types. Many of these issues are
related to loop unrolling in general, but are
raised here in the context of vectorization.

6.1 Multiple load/stores

When vectorizing a load/store statement and re-
placing it with multiple vector load/store state-
ments, one issue that comes up is the cre-
ation of the vector pointer: we always cre-
ate a single vector pointer per scalar load/store
that we vectorize; all copies of the correspond-
ing vector loads/stores that we generate use the
same vector pointer, which is bumped by VS
bytes between each pair of consecutive vector
loads/stores.

An alternative approach is to bump the mutual
vector pointer only once in each iteration of

GCC Developers’ Summit 2006 • 153

the vectorized loop, and use a different offset
for each of the multiple vector load/store state-
ments involved. It is possible for a subsequent
pass to introduce such multiple offsets (which
may require more registers) in order to reduce
dependencies.

6.2 Multiple reductions

One issue that comes up when generating mul-
tiple vector statements for a scalar reduction
statement, is how to combine the multiple ac-
cumulators. Suppose we vectorize a summa-
tion of ints in a loop that also operates on chars,
and the VS is 16 bytes. We generate four vector
statements to add 16 int elements in each iter-
ation of the vectorized loop. One option is to
use four independent accumulators, and com-
bine them at the loop epilog (Figure 4(b)); an-
other option is to have each of the four vector
statements feed the next, effectively using a sin-
gle accumulator (Figure 4(c)).

We chose to implement the latter option of the
single accumulator primarily because it uses
fewer registers. A subsequent accumulator-
expansion pass could in the future replace the
single accumulator with multiple accumula-
tors, similar to GCC’s current modulo-variable-
expansion optimization in the loop unroller (ex-
cept that in our case we unroll the relevant
statements ourselves). In contrast, the converse
operation of collapsing multiple independent
accumulators feeding a final reduction at the
loop epilog into a single accumulator, primarily
to save registers, seems more difficult to recog-
nize and realize.

6.3 Type demotion

When operations involving different data types
are not independent, data is transferred from
one type to another. Type demotion refers to

(a) scalar :
x = memref
z = z + x

(b) multiple vector accumulators :
loop:

vz0 = phi (init0, vz0)
vz1 = phi (init1, vz1)
vz2 = phi (init2, vz2)
vz3 = phi (init3, vz3)
vx0 = memref0
vx1 = memref1
vx2 = memref2
vx3 = memref3
vz0 = vz0 + vx0
vz1 = vz1 + vx1
vz2 = vz2 + vx2
vz3 = vz3 + vx3

epilog:
vz3 = (vz0 + vz1 + vz2 + vz3)

(c) single chained vector accumulator :
vz = phi (init, vz)
vx0 = memref0
vx1 = memref1
vx2 = memref2
vx3 = memref3
vz = vz + vx0
vz = vz + vx1
vz = vz + vx2
vz = vz + vx3

Figure 4: Multiple types: reduction

154 • Autovectorization in GCC—two years later

the case where data is transferred from a larger
type to a smaller type. In this case, one usu-
ally either disregards the excessive bits (mod-
ulo demotion) or uses them to perform satura-
tion if needed (saturating demotion). We added
new tree-codes to support both options, namely
VEC_PACK_MOD_EXPR and VEC_PACK_SAT_

EXPR, and accompanying optabs. The term
’pack’ stems from the fact that we can place
more elements in a vector word after demoting
them.

The current implementation of type-demotion
is restricted to ‘half-demotion’ cases where the
wider-type (the type of the arguments) is twice
that of the smaller type (the type of the result).
Note that most targets provide instructions that
directly support half-demotion, where the con-
tents of two source operands are packed into
a single destination operand; for this reason, a
scalar half-demoting operation may be replaced
by a single vector statement (which is fed by
multiple vector statements).

6.4 Type promotion

Type promotion refers to the case where data is
transferred from a smaller type to a larger type.
This often occurs when an operation produces
a result that can be larger than its operands, the
prominent case being multiplication. In gen-
eral, type promotion appears as a cast opera-
tion; the operands are first casted and then the
operation is performed on the wide data type.
However, most targets provide vector support
that combines certain operations with type pro-
motion. It is important for the vectorizer to
make use of such combined operations because
of their efficiency and because targets may not
support the same operation on wider operands.

In addition to combining operations with type
promotion, targets typically provide instruc-
tions that produce only a subset of the results,

each result being wider than the input argu-
ments of the operation. In some cases, as in
the case of widening multiplication, the subset
of products may be noncontiguous, requiring
subsequent shuffling statements to sort the ob-
tained products according to the original (mul-
tiplier) order, if needed. Again, the vectorizer
should identify when such shuffling code needs
to be generated.

Type promotion involves taking one vector of
elements (or several, as in the case of widen-
ing multiplication) and producing a vector in
which each element is of larger size; the result-
ing vector therefore typically does not fit in a
single vector register, so several vector state-
ments are used to replace a single scalar state-
ment (chained together as described earlier in
this section).

We implemented support for both general cast
promotion and for widening multiplication.
General cast promotions are represented us-
ing the existing NOP_EXPR tree-code, and are
vectorized using new vec_unpack_hi/lo id-
ioms. Widening multiplication promotions
are represented using the new WIDEN_MULT_

EXPR tree-code, and are vectorized using the
vec_widen_mult_hi/lo idioms, which pre-
serve the order of the products. If the vec-
torizer can prove that the order of the prod-
ucts does not have to be preserved (e.g.,
when the products are used only to feed a
reduction computation) then the target hooks
builtin_mul_widen_even/odd are used if avail-
able; they produce the products of even and odd
elements in two separate vectors.

The current implementation of type-promotion
is restricted to ‘double-promotion’ cases where
the wider-type (the type of the result) is twice
that of the smaller type (the type of the argu-
ments). Note that most targets provide instruc-
tions that directly support double-promotion,
where half of the elements in the source

GCC Developers’ Summit 2006 • 155

operand(s) are expanded to fill the destina-
tion operand; for this reason, scalar double-
promoting statement are often replaced by pairs
of vector statements.

The following new tree-codes and accompa-
nying optabs were added to express vector-
ized widening operations. To double-promote
the low/high half of a vectors elements, using
sign-extension for signed and zero-extension
for unsigned data types: VEC_UNPACK_[LO,

HI]_EXPR To produce double-width products
of the low/high half of (signed/unsigned) vector
multipliers and multiplicands: VEC_WIDEN_

MULT_[LO,HI]_EXPR.

The TARGET_VECTORIZE_BUILTIN_MUL_

WIDEN_[ODD,EVEN] target hooks were
added, to produce double-width products of
odd/even half of vector multipliers and multi-
plicands. These hooks are used only when we
know that the order of products can be altered.
We currently detect such situations during the
‘mark_stmts_to_be_vectorized’ scan,
which was augmented to indicate if a statement
is used (only) by reduction operations (in
addition to the original indication if it is used
in the loop or not).

7 Experimental Results

The results we present in this section exemplify
how the enhancements developed in the past
two years can be put to work, and successfully
vectorize important kernels on a multitude of
platforms. We generated the results automati-
cally using the autovect-branch which contains
the enhancements of GCC 4.1 and those sub-
mitted to GCC 4.2, available from [2]. Experi-
ments were performed on an IBM PowerPC970
processor with Altivec, an AMD Athlon pro-
cessor with SSE2, an Intel PentiumD (dual-
core Pentium 4) processor with SSE2, an

Name Description
saxpy_fp constant times a vector plus a vector
sdot_fp dot product of two vectors
vecsum_fp sum elements of a vector
vecmax_fp find maximum over elements of a vector
cond_replace_fp copy selective vector elements
add_sat_fp add two vectors and clip the result
tcpip_checksum_s16 tcpip checksum
audio_dissolve_s16 audio steam fade away
dot_s16 dot product (used in audio FIR filters)
eudist_s16 euclidian distance of vectors (GSM EFR)
linear_comb_s16 linear combination of two vector
vecmax_s16 find maximum over elements of a vector
video_dissolve_u8 image fade away
linear_comb_u8 linear combination of two vector
vecsum_u8 summation of a vector elements
vecmax_u8 find maximum over elements of a vector
i2_cxdot-fp complex dot product
i4_mixStreams-s16 mix two 4-channel audio streams
i8_cvt_codec-u8 convert rrggbbaa codec to aarrggbb

Table 1: Benchmark description

Intel Itanium2, and a MIPS64 instruction-
accurate simulator with paired-single-fp sup-
port. For the AMD/Intel and MIPS plat-
forms, the measurements as well as the required
platform-specific development were performed
by Richard Henderson and Chao-Ying Fu, re-
spectively.

Table 1 provides a brief description of the ker-
nels used in our experiments. The kernels
we use are representative of the main com-
putations in important applications from dif-
ferent domains—linear algebra, video and au-
dio processing, and networking and cover all
the features discussed in previous sections (if-
conversion, multiple types, reduction, and re-
duction patterns). The last set of kernels also
includes interleaved data (strided accesses),
with strides 2, 4, and 8 in i2_cxdot, i4_
mixStreams, and i8_cvs_codec, respec-
tively. We report the speedup factors achieved
by an automatically vectorized version over the
sequential version of the benchmark, compiled
with the same optimization flags. Time is mea-
sured using the getrusage routine (except
for MIPS speedups that measure dynamic in-
struction count instead) and includes any over-
heads introduced by vectorization. Figures 5–
9 summarize the speedup factors obtained for

156 • Autovectorization in GCC—two years later

��������	���
���������
����������������������

����

����

����

����

����

�����

�����

�����

�����

�����
	

�
�

�
��
��
��
�

��
��
�
��
�

��
��
��
�

�
�	
��
��
�

�
�
	�
�
�
��

	
�
��
��
��
��
	�
��
�

��
��
��
��
��

�
�
	
�
��
��

��
�
	�
�
��
�
��

��
��
�
��
��
��
�

	

�	
��
�
�
��
�

	

�
�

�
��
��
��
�

�
�	

��
�
��
�

�
��
��
��
�
	�
��
��

���
�
��
�
	�

�
�
��
�

�
��
�
��
�

��
�

��

��
�
�
��
��
�

�
��
�
��
��
��
�

��
	�
�
�
��

	

�
�
�
��
�
��
�

��
	
�
��
��

��
�
	�
��
	�
��
	�
�
�

�

�
�
�
�

��
	
�
��
�

�����!��� ���!���

Figure 5: PowerPC970 (Altivec) speedups

��������	���
���������
����������
����������

����

����

����

����

����

�����

�����

	

�
�

�
��
��
�
��

��
��
�
��
�

�
��
��
��

�
�	
��
��
�

��
	�
�

�
��

	�
��
��
�
��
�
	�
��
�

�
��
�
��
��
��

��
	
�
��
��

��
��
��
�
�
��
�
�

	

�	
��
�

�
��
�

	

�
�

�
��
��
�
��

��
	
��
�
��
�

�
��
��
��
�
	�
�
��
�

���
��
��
	�

��
��
�

�
��
��
��

�
��
�
�
��
�
�
��

�
�	
��

�
�
�

	

��

�
��
�
��
�

�
�	

�
��
�
�

�

�
�
�
�

��
	
�
��
�

����� ��� ��� ���

Figure 6: Athlon (SSE2) speedups

two versions of each testcase—one in which the
alignment of the data is unknown and the other
when the data is aligned.

PPC970 Speedups (Altivec): On PowerPC970
we expect an improvement factor between 2
– 4 on floating point benchmarks (one SIMD
unit vs. two scalar units), speedups be-
tween 4 – 8 on the short benchmarks, and be-
tween 8 – 16 on the char benchmarks (mi-
nus realignment overhead on the unaligned ver-
sions). The speedups obtained are generally
within these ranges. Super-linear speedups on
dot_s16, vecmax_u8/s16/fp, add_sat_fp, and
cond_replace_fp are due to the availability
of specialized instructions on the vector unit,
while they are absent from the scalar unit

��������	���
���������
��
������
�������������

����

����

����

����

����

�����

�����

	

�
�

��
��
�
��
�

��
��
��
��

��
��
��
�

�
�	
��
��
�

�
�
	�
�

�
��

	
��
�
��
��
��
	�
��
�

�
�
��
��
��
��

�
�
	
�
��
��

��
��
�
��
��
��
�

	

�	
��
�

�
��
�

	

�
�

�
��
��
��
�

�
�
	
��
�
��
�

�
��
��
��
�
	�
��
��

���
�
�
��
	�

�
�
��
�

�
��
�
��
�

�
��
�
��
��
��
�

��
	�
�

�
��

	

��

�
��
�
��
�

��
	
�
��
��

�

�
�
�
�

��
	
�
��
�

����� ��� ��� ���

Figure 7: PentiumD (SSE2) speedups

��������	���
���������
��
������	
�����

����

����

����

����

����

����

����

	���

���

��
�
�
�
��
��
�
�
�

��
��
��
��

��
��
��
�

�
��
��
�
��

��
��
��

�
��

��
��
�
�
�
��
��
�
��

�
��
�
��
��
��

��
��

��
�
��

�
��
��
��
��
��
�

��
��
��
�
�
�
��
�

��
�
�
�
��
��
�
�
�

��
��

��
�
��
�

�
��
��
��
��
�
�
��
�

���
�
�
�
��
�

��
�
�

�
��
��
�
�

�
��
��
��
��
�

��
��
��

�
�

��
�
�
�
��
��
�

��
��

��
�
�

�

�
�
�
�

��
	
�
��
�

�����!��� ���!���

Figure 8: Itanium2 speedups

��������	���
���������
���������	��������

���

�

���

�

���

�

��
�	

�
�
��
�

��

�
��
��

��
�
��
�

��
	�
��
��

��
	�
��
��
�

	�
��
��
��
��
	�
��
�

��
��
��
�
��

��
	�
�

��
�

�

�
�
�
�

��
	
�
��
�

��������� �������

Figure 9: MIPS64 speedups

GCC Developers’ Summit 2006 • 157

(mulsum (dot), max, and conditional instruc-
tions). Lower speedups on dissolve_s16/u8,
checksum, and linear_comb are due to ad-
ditional overheads incurred by type conver-
sion and widening multiplication, which take
twice as many vector operations to accomplish.
Lower speedups on i2_cxdot, i4_mixStreams,
and i8_cvs_codec are due to data reordering
overheads (usage extracts nad interleaves) to
cope with interleaving levels (strides) 2, 4, and
8, respectively.

x86 (Athlon and Pentium) Speedups (SSE2):
While the SSE2 architecture supports 128-bit
vectors, the current implementations can only
operate on 64-bit simultaneously. Therefore,
the expected improvement on the benchmarks
is between VF/2 and VF, closer to VF/2 (2
for the fp benchmarks, 4 for the short bench-
marks, and 8 for the char benchmarks), mi-
nus alignment handling overhead on the un-
aligned versions. The super-linear speedup on
vecmax_s16/u8and dot_s16 is due to inefficient
code that is generated for the scalar version.

Itanium2 speedups: We expect an improve-
ment factor of 2 for floats, as the SIMD float
instructions run on the same functional units
as the scalar float instructions. For integer
data, we expect the improvement to be corre-
lated with the number of elements packed in the
word size. The high speedup in dissolve_s16 is
due to the slower 32-bit integer multiply used
in the scalar version as opposed to the parallel
16-bit multiply used for dissolve_u8. The eu-
dist_s16, linear_comb_s16 and dot_s16 do not
get vectorized on this platform due to the lack
of a 32-bit vector integer multiply.

MIPS64 Speedups: The latencies on the
paired-single-fp instructions for MIPS64 are
similar to the latencies of scalar instructions,
and both share the single fp functional unit. The
expected speedup is therefore VF = 2 (minus
the alignment handling overhead). Super-linear
improvements on dot_fp and cond_replace_fp

are due to inefficient addressing in the scalar
code compared to the vector code, and lack
of conditional move in the scalar unit, respec-
tively. Lower speedups on i2_cxdot are due to
data ordering overheads to handle a strided ac-
cess.

8 Conclusions

The auto-vectorization optimization of GCC
has been enhanced in the past two years in three
main areas: (1) adding support to vectorize
more complex computations involving in par-
ticular reductions, multiple types and non unit
strides; (2) extending the GIMPLE intermedi-
ate language to represent the desired vector ab-
stractions, through active collaboration that ad-
dressed the needs of different platforms and re-
sulted in acceptance into GCC’s mainline code
base; and (3) applying these stable functional
enhancements to important kernels on a multi-
tude of platforms to achieve significant perfor-
mance improvements. More work lies ahead,
including items suggested two years ago and
refinements of currently supported features.

9 Acknowledgments

Many people have contributed to the vectorizer
over the past two years. We tried to specify
major individual contributions throughout the
paper. Richard Henderson has reviewed our
patches, and together with Ira Rosen, Daniel
Berlin, Sebastian Pop, and Zdenek Dvorak
have provided continuous support; thanks to
all!

References

[1] Free Software Foundation.
Auto-Vectorization in GCC,

158 • Autovectorization in GCC—two years later

http://gcc.gnu.org/projects/tree-
ssa/vectorization.html.

[2] Free Software Foundation. GCC,
http://gcc.gnu.org.

[3] S. Larsen and S. Amarasinghe.
Exploiting Superword Level Parallelism
with Multimedia Instruction Sets. In
Proc. of the ACM SIGPLAN Conference
on Programming Language Design and
Implementation (PLDI), pages 145–156,
June 2000.

[4] T. Moene. GFortran: Compiling a
1,000,000+ line NumericalWeather
Forecasting System. In Proc. of the GCC
Developers Summit, pages 159–164, June
2005.

[5] T. Moene. Public and private
communication. 2005 and 2006.

[6] D. Naishlos. Autovectorization in GCC.
In Proc. of the GCC Developers Summit,
pages 105–117, June 2004.

[7] D. Nuzman and R. Henderson.
Multi-platform Auto-vectorization. In
Proc. of the 4th Annual International
Symposium on Code Generation and
Optimization (CGO), March 2006.

[8] D. Nuzman, I. Rosen and A. Zaks.
Auto-Vectorization of Interleaved Data
for SIMD In Proc. of the ACM SIGPLAN
Conference on Programming Language
Design and Implementation (PLDI), June
2006.

[9] J. Shin, J. Chame and M. W. Hall.
Compiler-Controlled Caching in
Superword Register Files for Multimedia
Extension Architectures. In Proc. of the
11th International Conference on
Parallel Architectures and Compilation
Techniques (PACT), pages 45–55,
September 2002.

Speeding Up Thread-Local Storage Access in Dynamic
Libraries

Alexandre Oliva
Red Hat and IC-Unicamp

aoliva@redhat.com, oliva@lsd.ic.unicamp.br

Guido Araújo
IC-Unicamp

guido@ic.unicamp.br

Abstract

As multi-core processors become the norm
rather than the exception, multi-threaded pro-
gramming is expected to expand from its cur-
rent niches to more widespread use, in soft-
ware components that have not traditionally
been concerned about exploiting concurrency.

Accessing thread-local storage (TLS) from
within dynamic libraries has traditionally re-
quired calling a function to obtain the thread-
local address of the variable. Such function
calls are several times slower than typical ad-
dressing code that is used in executables. While
instructions used in executables can assume
thread-local variables are at a constant offset
within the thread Static TLS block, dynamic li-
braries loaded during program execution may
not even assume that their thread-local vari-
ables are in Static TLS blocks.

Since libraries are most commonly loaded as
dependencies of executables or other libraries,
before a program starts running, the most com-
mon TLS case is that of constant offsets. This
paper proposes an access model that enables
dynamic libraries to take advantage of this fact,

without giving up the ability to be loaded dur-
ing program execution. This new model was
implemented and tested on GNU/Linux sys-
tems, initially on the Fujitsu FR-V architecture,
and later on IA32 and AMD64/EM64T, such
that performance could be compared with that
of the existing models.

Experimental results revealed the new model
consistently exceeds the old model in terms of
performance, particularly in the most common
case, where the speedup is often well over 2x,
bringing it nearly to the same performance of
access models used in plain executables.

1 Introduction

As mainstream microprocessor vendors turn
to multi-core processors as a way to improve
performance[1, 2], the relevance of multi-
threaded programming to leverage on such po-
tential performance improvements grows.

Besides the common difficulty multi-threaded
programs run into, namely the need for syn-
chronization between threads, it is often the

160 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

case that a thread would like to use a global
variable,1 for extended periods of time, without
other threads modifying its contents, and with-
out having to incur synchronization overheads.

Using automatic variables to achieve this is a
possibility, since each thread has its own stack,
where such variables are allocated. However,
if multiple functions need to use the same data
structure within a thread, a pointer to it must
be passed around, which is cumbersome, and
might require reengineering the control flow so
as to ensure that the stack frame in which the
data structure is created is not left while the data
is still in use.

Widely-used thread libraries have introduced
primitives to overcome this problem, enabling
threads to map a global handle, shared by
all threads, to different values, one for each
thread. This feature is offered in the form
of function calls (pthread_getspecific
and pthread_setspecific, in POSIX[3]
threads), that are far less efficient than access
to global variables and even less efficient than
access to automatic variables. Besides the ef-
ficiency issues, they are syntactically far more
difficult to use than regular variables. These
were the main motivations for the introduction
of Thread Local Storage (henceforth, TLS[4,
5]) features in compilers, linkers and run-time
systems, that enable selected global variables
to be marked with a __thread specifier or a
threadprivate pragma, indicating that, for
each thread, there should be a separate, inde-
pendent copy of the variable.

By using custom low-level thread-specific
implementations[6], or with cooperation from
the compiler and the linker, access to thread-
local variables can be far more efficient than
using the standard functions that offer abstrac-
tions of thread-specific data. In some cases,

1The strictly-correct term here would be variable
whose storage has static duration.

such as when generating code for dynamic li-
braries, the compiler-generated code is still
very inefficient, for reasons detailed in Sec-
tion 2; for main executables, access can some-
times be just as efficient as accessing automatic
or global variables. The mechanisms intro-
duced in Section 3, based on the novel con-
cept of TLS Descriptors[7, 8], yield a major
speedup, that brings the performance of TLS
access in dynamic libraries close to that of exe-
cutables, as shown in Section 4. Section 5 sum-
marizes the results with some final remarks and
future directions.

2 Background

In this paper, we use the term loadable mod-
ule, or just module, to refer to executables, dy-
namic libraries and the dynamic loader. A pro-
cess may consist of a set of loadable modules
consisting of exactly one executable, a dynamic
loader (for dynamic executables) and zero or
more dynamic libraries. We call initial mod-
ules the main executable, any dynamic libraries
it depends upon (directly or indirectly) and
any other dynamic libraries the dynamic loader
chooses to load before relinquishing control to
the main executable. Moreover, we use the
term dlopened modules to refer to modules
that are loaded after the program starts run-
ning, typically by means of library calls such
as dlopen.

Every loadable module may define a memory
address range delimiting its TLS segment. This
range, after relocation processing, contains the
memory image to be used to initialize the TLS
block associated with that module, for each dif-
ferent thread.

For every thread, two data structures are al-
located: a Static TLS Block and a Dynamic
Thread Vector (DTV), as depicted in Figure 1.

GCC Developers’ Summit 2006 • 161

DTV

Static TLS Block

Module Index

Offset

TP

Offset

TP offsets

Dynamic TLS Blocks

x zy

Figure 1: Per-thread data structures used to
support TLS.

A reserved register, called the Thread Pointer
(TP, for short), points to a base address within
that thread’s Static TLS Block. At a fixed rel-
ative location within the Static TLS Block lies
a pointer to the DTV. The DTV, in turn, starts
with a generation counter, followed by point-
ers to TLS Blocks. For every module contain-
ing a TLS segment, a module index is assigned,
that indicates the entry in each thread’s DTV re-
served to hold a pointer to the TLS Block cor-
responding to that module.

The dynamic loader can use information about
the TLS segments of all initial modules to
lay out the Static TLS Block. Each thread’s
static block will contain TLS blocks for all ini-
tial modules. Using the same layout for all
threads implies that the relative locations, in
the Static TLS Block, of the initial modules’s
TLS blocks’s are the same across all threads,
thus enabling not only efficient code generation
for some TLS access models, but also the opti-
mization proposed in Section 3.

2.1 Access Models

If a main executable contains a TLS segment,
the dynamic loader not only reserves the first
entry in the DTV for it, but also lays out the
Static TLS Block in such a way that the offset
from the TP to the executable’s TLS block is
a constant computable at link time. The exact
location of the executable’s TLS block within

the Static TLS Block only depends on the size
and alignment requirements of the executable’s
TLS segment, and conventions set by the Ap-
plication Binary Interface (ABI) of the hard-
ware architecture and operating system. Since
the linker can compute the offset from the TP
to the executable’s TLS block, and the relative
location of a variable defined within this block,
it can compute the exact TP offset of such a
variable (say, variable x in Figure 1), and use
that as a displacement from the TP to access the
variable. This access model is known as Local
Exec. It is the most efficient, but least general,
access model, since only the main executable
can use it. In theory, all initial modules could
use it, but this would require text segments to
be modified at dynamic relocation processing
time, and modifying text segments is highly un-
desirable, mainly because it prevents page shar-
ing across multiple processes, which is what
shared libraries are supposed to enable.

An example of computing the address of a vari-
able var into register reg using the Local
Exec access model, in low-level pseudo code,
is given below. TPoff is a functional notation
to denote the TP offset of a variable.

let reg← TP + TPoff(var)

Accessing thread-local variables that are not
defined in the main executable preclude the use
of the Local Exec access model. The main ex-
ecutable, however, can still take advantage of
the fact that every dynamic library it depends
on, that might provide the variable it wants to
access, is an initial library, and therefore its
relative location within the Static TLS Block
is a run-time constant, which holds for vari-
ables x and y in Figure 1. Emitting a reloca-
tion to get the dynamic loader to compute this
run-time constant and store it into a Global Off-
set Table (GOT) entry, and using this constant,
loaded from the GOT, as an offset from the TP

162 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

to access the variable, is called the Initial Exec
access model. Under certain circumstances, it
may be used in dynamic libraries as well, but it
may come at the cost of being unable to dlopen
such libraries. The use of indirection through
the GOT, allocated in the data segment, not
only retains the ability to share pages of code,
but also merges all the dynamic address com-
putation related with a symbol into a single lo-
cation, reducing the number of dynamic reloca-
tions needed.

An example of computing the address of vari-
able var into register reg using the Initial
Exec access model follows. GOT, in such low-
level pseudo code, denotes a reserved regis-
ter or some PC-relative addressing mode that
yields the GOT base address. GOTTPoff de-
notes the offset of a GOT entry that, at run time,
will hold the TP offset of a variable.

load reg, GOT[GOTTPoff(var)]
let reg← TP + reg

The other two access models, General Dynamic
and Local Dynamic, require the (implicit) use
of the DTV. Both access models involve call-
ing a function, normally called __tls_get_
addr, to obtain a thread-local address. Func-
tion __tls_get_addr requires two pieces
of information to compute the requested ad-
dress: a Module Index and an Offset within
the module’s TLS segment, as depicted in Fig-
ure 1 for variable z. These two pieces of infor-
mation are normally computed by the dynamic
loader, in response to relocation entries that re-
quest them to be stored in the GOT. An exam-
ple of the use of the General Dynamic access
model is given below, using adjacent GOT en-
tries and passing it by reference in a register.
Other implementations use independent GOT
entries for the two values, and/or pass them by
value. GOTModIdx\&Off is a functional no-
tation to denote the offset of a GOT entry that,

at run time, will hold a Module Index followed
by a corresponding Offset.

let reg← GOT + GOTModIdx&Off(var)
call __tls_get_addr

Local Dynamic is a variant of General Dynamic
that calls the function to compute a base ad-
dress, normally by passing the function a zero
offset. Having obtained the base address of
a module’s TLS block with a single call, the
Local Dynamic access model then uses vari-
ables’s offsets to access them using the same
base address. The offsets can all be computed
by the linker, since they are a local property
of the module. An example follows, in which
GOTModIdx denotes the GOT offset for an en-
try that, at run time, will hold the Module Index
and a zero offset, and ModOff represents the
Offset of a given variable.

let reg← GOT + GOTModIdx()
call __tls_get_addr
let reg1← reg + ModOff(var1)
let reg2← reg + ModOff(var2)

2.2 Dynamic behavior

At thread creation time, the DTV is initialized
such that every entry corresponding to an ini-
tial module points to a TLS block within the
Static TLS Block, like the second and third
slots in the DTV in Figure 1, and all other en-
tries are marked as not allocated, like the fourth
slot. Entries for dlopened modules have to be
assigned on demand to TLS blocks allocated
dynamically, as depicted by the two Dynamic
TLS Blocks in the figure. Dynamic allocation
is necessary because multiple threads may al-
ready be running at the time a new module is
loaded into a process. Function __tls_get_
addr is responsible for the run-time mainte-
nance of the DTV.

GCC Developers’ Summit 2006 • 163

The generation counter in the DTV is used to
keep track of such dynamically-allocated TLS
blocks: every time a dlopened module with a
TLS segment is loaded or unloaded, a global
generation counter is incremented. Function
__tls_get_addr checks whether the DTV
generation counter is up to date every time it is
called. If the DTV is found to be out of date,
the function may have to release the memory
associated with its outdated entries, to dynami-
cally resize it, and to set any released or newly-
created entries to the unallocated state.

Once the DTV is up to date, if function __
tls_get_addr finds that the requested DTV
entry is not allocated, it allocates the necessary
storage, initializes it with the contents of the
TLS segment from the corresponding module
and sets the DTV entry to the allocated address.
At last, it loads the module’s TLS block’s base
address from the corresponding DTV entry and
adds to it the variable offset it was passed as
argument, returning the result.

3 Optimization

Let us first investigate why __tls_get_
addr is perceived as so slow, and then proceed
to introducing the optimization subject of this
paper.

3.1 Inefficiencies in __tls_get_addr

It might seem that the dynamic access models
should not be so expensive, since in the most
common case, the run-time behavior of func-
tion __tls_get_addr will involve two test-
and-branch sequences, with branches predicted
not taken, followed by offsetting the base ad-
dress already loaded for the second test by the
amount given as an argument, as in the low-
level pseudo code below. DTVoff denotes the

offset from the TP to the DTV address stored
in the Static TLS block; DTVGCoff, the rel-
ative location of the generation counter in the
DTV, normally 0; DTVentrysize, the size
of a DTV entry; arg1 and arg2, the module
index and the offset, respectively; result, the
register in which __tls_get_addr returns
its result.

load reg1← TP[DTVoff]
load reg2← generation_counter
branch to slow path 1 if reg1[DTVGCoff] < reg2
load reg2← reg1[arg1 × DTVentrysize]
branch to slow path 2 if reg2 == UNALLOCATED
let result← reg2 + arg2
return

The first test, however, involves a global vari-
able, the global generation counter. Accessing
a global variable can be relatively expensive in
such a simple function, since it may require set-
ting up the GOT register to compute its address,
if PC-relative addressing is not available.

A bigger performance penalty follows from the
compiler’s inability to shrink-wrap functions[9,
10], namely, to avoid saving and restoring reg-
isters, and even setting up a stack frame, in
the fast path that issues no function calls and
needs only two scratch registers. Since the slow
paths issue function calls, compilers will gener-
ally set up a stack frame for the entire function,
and since such paths are complex, possibly re-
quiring multiple registers, several such registers
have to be saved and restored every time the
function is called, even though they are seldom
actually used.

Although some register saving and restoring
performance can be recovered by means of
shrink-wrapping, compilers cannot help the
fact that the definition of __tls_get_addr,
in the dynamic loader, is publicly visible and
not actually known before run time, so the
compiler must assume it complies with the

164 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

platform-defined calling conventions. ABI-
defined custom calling conventions for this
function could shift into the __tls_get_
addr slow path the penalties involved with
preserving registers that would otherwise have
to take place in its callers.

Yet another performance penalty is related with
the fact that __tls_get_addr is always
called through Procedure Linkage Table (PLT)
entries. Since it is defined in the dynamic
loader, calls to it in other modules have to go
through such an entry that loads the actual func-
tion address from the GOT and then jumps to it.

Without such inefficiencies, the instruction se-
quence above would be observed at run time.
However, with all the inefficiencies, the dy-
namic instruction trace after an instructions that
calls __tls_get_addr is as follows. Addi-
tional instructions, not present above, are em-
phasized. GOToff(sym) denotes the offset
from the GOT to the address of symbol sym.

jump to address loaded from PLT GOT entry
set up stack frame
save call-preserved registers used in slow path
save and set up GOT register if needed
load reg1← TP[DTVoff]
load reg2← GOT[GOToff(generation_counter)]
branch to slow path 1 if reg1[DTVGCoff] < reg2
load reg2← reg1[arg1 × DTVentrysize]
branch to slow path 2 if reg2 == UNALLOCATED
let result← reg2 + arg2
restore registers
destroy stack frame
return

Even if the compiler could be improved so as
to avoid setting up a stack frame, the GOT-
relative addressing mode to access the gener-
ation counter is unavoidable. As for the PLT
entry, the additional jump could be avoided by
using a call sequence in __tls_get_addr
callers that referenced its GOT entry directly,

precluding lazy relocation of this reference and,
most often, requiring larger code size at all
call sites, negatively impacting the instruction
cache efficiency.

3.2 TLS Descriptors

From the previous paragraph, it would seem
that improving the performance of the dynamic
access models would not involve a change in
the access models themselves, but rather in the
compiler used to compile __tls_get_addr.

It is possible, however, to make them more
efficient, by introducing specialized versions
thereof for different situations, and by provid-
ing such specialized versions with additional
information. Let us put aside for a moment the
issue of how to get the most appropriate spe-
cialized version selected efficiently, and con-
centrate on the potential benefits first.

3.2.1 Improving Static TLS

One major shortcoming of __tls_get_
addr is that it fails to take advantage of the
fact that, to access the TLS block for an ini-
tial module, no tests are necessary. Since ini-
tial modules’ TLS blocks are laid out as part of
Static TLS Blocks, all threads’ DTVs already
contain the correct addresses in the entries cor-
responding to such modules, so it would suffice
to dereference the DTV and add the variable
offset.

However, it is possible to do even better in the
Static TLS case: since the initial module’s TLS
block is at an offset from the TP that is the same
for all threads, we can use the provision above
of passing additional information to the special-
ized function and pass it this constant TP offset,
instead of the then-unused module index. Thus,
all this specialized function has to do is to add

GCC Developers’ Summit 2006 • 165

the module’s TP offset to the TP, and then to
the variable offset.

In a further step, this specialized function could
take as arguments, instead of the TP offset and
the variable offset, the precomputed result of
adding them together. This specialized function
is thus reduced to the following pseudo code:

let result← TP + arg
return

Selecting this specialized function reduces sig-
nificantly the computation performed in the
function, rendering its performance very simi-
lar to that of the Initial Exec or even Local Exec
models, discounting the function call overhead.
The use of this specialized version is the most
significant improvement we have introduced,
but there are additional minor improvements to
follow.

One important point to consider is that all spe-
cializations must present the same interface,
such that callers are totally unaware of which
specialization is selected; such selection takes
place at run time, at which point it is undesir-
able to modify code. Therefore, when we mod-
ify the interface of a specialization so as to take
a single argument, we are either determining
that none of the specializations can take more
than one argument, or that this one specializa-
tion will ignore any additional arguments other
specializations might require.

3.2.2 Returning TP offsets

On some architectures, register-plus-register
indirect addressing modes is little or no more
expensive than indirect addressing modes. On
Fujitsu FR-V, for example, there is no single-
register indirect addressing mode: loads and

stores compute the address by adding a regis-
ter to either another register or a constant dis-
placement. On IA32 and AMD64/EM64T, on
GNU/Linux, segment registers are used as TP,
so an instruction with a single-register indirect
addressing mode can be modified to use this
register as an offset from the segment base ad-
dress by using a 1-byte prefix, with no signifi-
cant performance penalty.

On such architectures, it makes sense to ar-
range for the function to return not the address
of the variable, but rather its TP offset. If it is
also possible to arrange for the argument to be
passed in the register used to hold return values,
then the specialization optimized for Static TLS
becomes a single return statement, as on FR-V.
On IA32 and AMD64/EM64T, it could be pos-
sible to achieve the same, but at the expense
of additional code at every call site to load the
argument from memory. Thus, it is more effi-
cient, in terms of code size, to leave it up to the
specialized function to load it before returning.

3.2.3 Linker relaxations

TLS-related relaxations are always defined so
as to turn accesses using dynamic access mod-
els into Initial Exec or Local Exec, when link-
ing an executable. In general, the __tls_
get_addr call sequence, including the in-
structions that set up the arguments, has to con-
tain padding such that, if the linker relaxes the
code to a more efficient access model, there is
room for the instruction that adds the TP and
the TP offset, regardless of whether it is the Lo-
cal Exec link-time constant or the Initial Exec
run-time constant loaded from the GOT.

The convention of returning the TP offset in-
stead of the actual address simplifies linker re-
laxations, because the addition of the TP does
not have to fit in the replacement sequence: it is

166 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

already there, after the call sequence. So it suf-
fices to arrange for the value loaded from the
GOT, or the fixed constant used in Local Exec,
to make it to the register in which the call would
have returned the TP offset. With the reduced
padding, code size is reduced, improving the
efficiency of the instruction cache.

3.2.4 Avoiding unnecessary DTV updates

The use of a global variable, namely the gener-
ation counter, when testing whether a DTV is
up to date, is not only a bad idea because of the
potential performance hit associated with sav-
ing, setting up and restoring the GOT register.

The fact that some thread A may choose to
dlopen or dlclose a module a may slow down
another thread B that accesses TLS variables
from module b. This occurs because the test in
__tls_get_addr checks whether the DTV
is up to date, and not whether it is recent
enough to access a variable in the requested
module.

While indexing some TLS module table to de-
termine the generation count associated with
a module could be feasible, it would signifi-
cantly slow down the fast path. However, with
our provision of passing additional information
to the specialized functions, we can arrange to
have the minimum generation count needed to
access a module’s TLS passed to a specialized
function used to handle Dynamic TLS.

Since we have arranged for the Static TLS spe-
cialization to use a single argument, we can do
the same for the Dynamic TLS specialization
at hand. Since there is no way to avoid the re-
quirement for the module index and the offset,
however, in order to fit all this information in
a single argument, the only solution is to use
indirection.

Since Dynamic TLS is designed to be the rare
case, allocating additional storage for refer-
ences to such variables is not deemed unaccept-
able, so what we do here is to arrange for the
Dynamic TLS specialization to be passed, as
its argument, a pointer to a data structure con-
taining not only the module index and the off-
set, but also the generation counter needed by
the module. The specialized function can thus
avoid the need for the GOT register in the fast
path, using for the test the generation counter
stored in this data structure passed as its argu-
ment, also avoiding DTV updates that would
not affect its ability to access the requested
module.

On Fujitsu FR-V, a particular detail of the
ABI[11] required an additional field in this data
structure. The ABI requires the GOT register
to be set up for a function not by the function
itself, but rather by its caller. Since no special-
izations of TLS calls would require the GOT
register in their fast paths, we have arranged for
the argument data structure to contain the GOT
pointer the specialization may need.

An additional micro-optimization, applied on
FR-V, is to arrange for this data structure to
contain not the module index, but rather the
offset into the DTV where its entry is stored.
This saves a shift-left instruction in the fast path
of the specialized function, because FR-V does
not have an addressing mode that adds an in-
dex register multiplied by a constant to a base
register.

3.2.5 Specialized calling conventions

The IA32 version of __tls_get_addr on
GNU/Linux has traditionally used custom call-
ing conventions in that its arguments are not
passed on the stack, as usual, but rather on reg-
isters. This should also be the case of special-
izations of this function.

GCC Developers’ Summit 2006 • 167

Besides specifications of where arguments are
passed and where return values are stored, an-
other important aspect of calling conventions
is that of defining which registers a function
can modify without preserving (caller-saved or
call-clobbered), and which have to be saved be-
fore they can be modified (callee-saved or call-
preserved).

The most common TLS cases in code compiled
for dynamic libraries, namely Static TLS spe-
cialization and relaxation for main executable,
can assume that, in a TLS call instruction or its
replacement, no register is modified other than
the one holding the resulting address or TP off-
set.

Only the Dynamic TLS specialization needs a
pair of temporary registers for the fast path, and
potentially several other registers for the slow
path.

Since in this work we are defining a new inter-
face for __tls_get_addr specializations,
we might as well define the conventions regard-
ing preserved registers to privilege the most
common cases. We have thus defined that
the specializations are to preserve all regis-
ters other than the return value, such that TLS
calls can be modeled like simple loads, en-
abling the full register set to be used without
concerns about preserving registers across such
calls. This requires that, when the slow path
of the Dynamic TLS specialization issues calls
to other functions, it preserves all registers that
they might modify. Since it is the slow path,
and it has so much work to do anyway, this ad-
ditional work is insignificant. Unfortunately,
this decision also affects the fast path, in that
it has to preserve the two scratch registers it
needs, but since Dynamic TLS is assumed to
be the uncommon case, privileging the Static
TLS case is a reasonable decision.

3.2.6 Selecting specializations at run time

Now that we have established that both special-
izations work with a single argument, and de-
fined that they should use customized calling
conventions to do their jobs, we are ready to
specify how the appropriate specialization is to
be selected and called.

In the existing dynamic access models, two
GOT entries are needed to hold the arguments
to __tls_get_addr. Since for the special-
ized versions we can use only one, we can use
the other to hold the address of the specialized
function. Then, we arrange for the code, that
used to call __tls_get_addr, to call the
function whose address is stored in that loca-
tion.

As a general rule, we can store the function ad-
dress at the GOT entry that would, in the tra-
ditional access model, contain the module in-
dex, and the argument to the function, in the
GOT entry that would contain the variable off-
set. Since, for a given module, the decision on
whether its TLS block can be accessed with the
Static or the Dynamic specialization is the same
for all variables in the block, this general rule
works even for ABIs that enable the module in-
dex and the variable offset to be in non-adjacent
entries, with potential use of the module index
entry to access multiple variables.

The machines on which the new access model
was implemented, however, all use adjacent
GOT entries, since they make the code much
simpler, at the expense of additional GOT space
due to the multiple copies of the the same mod-
ule index. Nevertheless, the absence of such
sharing enables lazy processing of relocations,
as detailed in Section 3.2.8. When the entries
are adjacent, they form a data structure that we
call TLS Descriptor, named after Function De-
scriptors, present in ABIs such as IA64’s[12],
PPC64’s[13] and FR-V’s[11], that contain a

168 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

Argument

Function
Pointer

TP Offset

Static TLS
Specialization

Lazy TLS
Specialization

Relocation
Pointer

Dynamic TLS
Specialization

Offset

Module
Index

Counter
Generation

Figure 2: General structure of a TLS Descrip-
tor, with 3 different specialization types, for
Static and Dynamic TLS, and Lazy TLS that
decays to one of the other two on the first use.

function’s entry point and a context pointer,
e.g., the GOT pointer to be used by the func-
tion. TLS descriptors also take two words, but,
instead of a context pointer, their second word
contains an argument to the function whose
pointer is in the first word, as depicted in Fig-
ure 2.

Fujitsu FR-V has never had a traditional TLS
ABI, since it was already designed taking ad-
vantage of the new access model, but we can
imagine that, if it had, the instruction sequence
would be as follows.

sethi.p #gottlsgdhi(var), gr8

setlo #gottlsgdlo(var), gr8
ldd #tlsgd(var)@(gr15, gr8), gr8
call __tls_get_addr

The ldd instruction loads into the pair of regis-
ters starting at gr8 the pair of words starting at
the address obtained by adding gr15, the GOT
pointer, and gr8, whose value was set to the
linker-computed displacement for the GOT en-
try containing the module index and the vari-
able offset. In the actual FR-V TLS ABI, the
call sequence is as follows.

sethi.p #gottlsdeschi(var), gr8
setlo #gottlsdesclo(var), gr8
ldd #tlsdesc(var)@(gr15, gr8), gr8
calll #gettlsoff(var)@(gr8, gr0)

The variation here is mainly from relocations
that reference a TLS Global Dynamic GOT en-
try to those that reference a TLS Descriptor
GOT entry, and the last instruction, that is a call
to a named function in the former, that goes
through a PLT entry, and a call to a given ad-
dress in the latter, that goes straight to the spe-
cialization. The address was loaded into gr8;
gr0 is fixed at zero.

On GNU/Linux IA32, the difference is a bit
more significant. The current TLS ABI speci-
fies the following sequence for the General Dy-
namic access model.

leal var@TLSGD(,%ebx,1), %eax
call ___tls_get_addr@PLT

This uses an extraneous addressing mode for
leal, equivalent to (%ebx), but longer, mak-
ing the instruction long enough for the relax-
ation replacement, that takes 12 bytes. Our ver-
sion, however, is as short as 8 bytes for the
call sequence, although it requires an additional
byte for the segment prefix to the load or store
instruction that uses the resulting offset.

GCC Developers’ Summit 2006 • 169

leal var@TLSDESC(%ebx), %eax
call *var@TLSCALL(%eax)

Note that var@TLSCALL is just an annota-
tion to aid linker relaxations, such that the two
instructions can be scheduled apart. The ac-
tual instruction encoding is the two-byte indi-
rect call, that calls the function at the address
stored at the memory location whose address
was computed into %eax by the leal instruc-
tion. The called specialization knows that, at its
entry point, %eax points to the TLS descriptor,
so it can load its argument from the descriptor.

On AMD64/EM64T, the original call sequence
contains several meaningless padding prefixes
to make room for relaxation substitutions, as
follows.

.byte 0x66
leaq var@TLSGD(%rip), %rdi
.word 0x6666
rex64
call __tls_get_addr@PLT

Our improved call sequence follows the very
same pattern as IA32, with the difference that
GOT accesses do not involve a fixed register,
but are PC-relative, and register and addresses
are 64-bits wide. While the above takes 16
bytes, the following takes as little as 9, plus one
for the byte prefix in actual accesses.

leaq var@TLSDESC(%rip), %rax
call *var@TLSCALL(%rax)

3.2.7 DTV compression

When this new access model is used, and the
traditional one is not (i.e., __tls_get_addr
is never called directly), it is possible to remove
all static entries from the DTV, since they are
never used. Since we know that every access to

Static TLS will go through the static specializa-
tion, that does not use the DTV, entries for such
modules can be entirely removed, enabling the
initial DTV to be trivially set up.

This offers a slight speed up in thread creation
for processes that have multiple initial modules
with TLS segments, potentially saves memory
by delaying the need for dynamically growing
the DTV, and enables the DTV to be reduced
by half, since its current definition reserves a
word in every entry to tell whether it is static
or dynamic when the time comes to release that
entry and free up its storage.

Even when the traditional dynamic TLS ac-
cess model is used, it is possible to enable this
DTV compression, as long as the index range
reserved for initial modules can be easily dis-
tinguinshed from that of dlopened modules, for
example, by having the most significant bit set.
__tls_get_addrwould then have to recog-
nize this case and use an alternate code path
that, instead of relying on the DTV, obtained
the module’s constant TP offset from a separate
table.

3.2.8 Lazy relocations

Processing relocation entries lazily enables sig-
nificant speedups in start-up time for applica-
tions. The mechanism consists in performing a
very quick pass over relocations that can be re-
solved lazily (something that can be determined
by the linker), setting them up such that, only
when they are used for the first time are they
actually resolved.

This has traditionally been used to resolve func-
tion addresses in dynamic linking. A call to
a function that does not bind locally (i.e., that
may be resolved to a definition in a separate
module) is directed to go through a PLT entry,

170 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

that loads an address from the GOT and jumps
to it.

In the first pass, the dynamic loader sets these
GOT entries to point to a stub that calls the dy-
namic resolver with enough information for it
to identify the relocation that it should resolve
at that time.

The dynamic resolver applies the relocation,
modifying the GOT entry such that subsequent
calls go straight to the actual function, and then
transfers control to the function that should
have been called, as if it had been called di-
rectly.

Although lazy relocation processing is very of-
ten applied to function calls, it is never applied
to data accesses, since there is no transfer of
control involved, and introducing it would ren-
der the access model too costly in terms of per-
formance.

In our optimized dynamic access model, how-
ever, there is a control transfer, and we realized
we could use that to enable lazy relocation pro-
cessing. In the quick pre-relocation pass, the
function address in the TLS descriptor is set to
another specialization that handles lazy reloca-
tion, and the argument is set so as to point to
the relocation itself.

When the function is called, it resolves the sym-
bol the relocation refers to, decides whether to
use the Static or Dynamic specialization and
sets up the TLS descriptor according to the de-
cision, such that subsequent calls involving the
same TLS descriptors go straight to the most
efficient specialization.

Care must be taken to ensure that the TLS de-
scriptor is never in a state that, should another
thread perform an access using it, will yield an
incorrect result.

On FR-V, that is not very difficult, since the in-
structions that read and store a pair of words

are atomic given sufficient alignment. On IA32
and AMD64/EM64T, however, there is no in-
struction that can read or modify a pair of words
atomically. Since requiring every call site to
use synchronization would be too costly, a solu-
tion was devised that requires synchronization
only in the lazy relocation function itself.

The lazy relocation specialization first acquires
a dynamic loader lock and verifies that the TLS
descriptor still points to itself. If so, it modifies
it so as to point to a hold function and reads the
argument. At that point, it can release the lock
and compute the final value of the TLS descrip-
tor, using the argument read while the lock was
held.

Before modifying the descriptor, it acquires the
lock again, wakes up any threads that might be
waiting for it in the hold function (using say
a condition variable), finally releasing the lock
and transferring control to the function whose
address was stored in the TLS descriptor.

The hold function simply acquires the lock and,
in a loop, tests whether the TLS descriptor still
points to it and, if so, waits on the condition
variable until it is signaled, otherwise, it re-
leases the lock and transfers control to the func-
tion specified in the TLS descriptor.

A simpler, yet less scalable, alternate design
for the hold function, that does not involve
condition variables, relies on the lock alone:
the lazy relocation function does not release
the lock throughout its operation, and the hold
function is as simple as acquiring the lock, re-
leasing it and transferring control to the func-
tion specified in the TLS descriptor. This de-
sign is quite appropriate when the relocation-
processing code in the dynamic loader already
requires a lock to be held, as it is the case in
GNU libc.

GCC Developers’ Summit 2006 • 171

4 Performance

Verifying any actual performance improve-
ments provided by the optimizations intro-
duced herein proved to be a major challenge.
To the best of our knowledge, the only library
that makes heavy use of Thread Local Storage
is GNU libc itself. To make matters worse,
GNU libc takes advantage of the fact that its
dynamic loader and C library are always loaded
initially, and thus they use the Initial Exec ac-
cess model throughout the libraries offered by
GNU libc, ensuring that any thread-local vari-
ables accessed with this access model are lo-
cated in one of these two libraries.

Even forcing GNU libc to not use the Ini-
tial Exec access model and running the Native
Posix Thread Library (NPTL[14]) performance
benchmark to evaluate the benefit of the opti-
mization to this benchmark showed no differ-
ence whatsoever. Investigation showed that this
benchmark called __tls_get_addr only a
handful of times during a test run that took tens
of seconds, so performance differences could
not possibly be exposed by this benchmark.

The main reason as to why the thread perfor-
mance test did not use dynamic access models
very often is that, first of all, it did not exer-
cise thread-local storage access itself and, even
if it did, it is a main application, not a dy-
namic library, so dynamic models do not apply.
As for the libraries it uses, GNU libc’s C and
thread libraries maintain information pertaining
to threads in the thread’s static TLS block, and
access it using a model similar to Local Exec,
so they are not affected by the choice to not use
the Initial Exec model within libc.

Although Gomp[15], the implementation of
OpenMP[16] for the GNU toolchain, has very
recently become a viable platform for mea-
suring TLS performance, the SPEC OMP2001
benchmark uses threadprivate variables

in only one of its tests, and even then, not in
a dynamic library, so using this benchmark was
not viable either, and we were left with the need
for creating synthetic microbenchmarks.

We have created a total of 40 tests for our
benchmark, such that every test is represented
as a function that returns a result that is some-
how related with one or more thread-local vari-
ables, with variations in 4 different dimensions,
described in the following paragraphs.

Operation Half of the tests compute the ad-
dress of a thread-local variable (addr), whereas
the other half computes the actual value stored
in the thread-local copy of the variable (load).
This exposes differences related with the ef-
ficiency of accessing a thread-local variable
without explicitly adding the thread pointer to
its relative location. On all tested CPUs, the
TP register is a special register whose contents
cannot be read or modified from userland. It
can be used as a base register to read or mod-
ify a thread-local variable, but computing the
address of a variable requires loading the regis-
ter’s value from a reserved location in the Static
TLS block.

Timing All of the timing is performed using
the clock tick counting instructions available
on the CPUs we’ve used for testing. Half of
the test functions time their operation by them-
selves (Internal), storing the number of clock
ticks elapsed while performing the operation in
a pointer passed in as an argument. The other
half perform no timing whatsoever, relying on
their callers to obtain the clock tick count for
the entire call (External). Unlike the previ-
ous dimension, that intends to expose differ-
ences, this one intends to confirm the perfor-
mance improvements we’ve achieved, by offer-
ing multiple performance measures of different
but functionally-similar code.

172 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

The confirmation was not straightforward,
though; the little room for scheduling in the in-
ternal timing variants and the high pressure on
the registers used by both the timing instruc-
tions and function call return values would cre-
ate pipeline bubbles that, without care to avoid
such worst-case conditions (unlikely to occur in
real life), would have made some tests that per-
form very little work appear to be slower than
some that perform much more work.

Access model We have four different kinds
of tests in this dimension, in which knowledge
about the location of the thread-local variable
used varies, plus one kind of test that combines
access to multiple variables.

Half of the single-variable tests use Initial Exec
access models, but in half of these, the compiler
generated Initial Exec code because it was told
the variable was in Static TLS (OIE, for origi-
nal IE); in the other half, the compiler was told
the variable was in Dynamic TLS, so it gener-
ated General Dynamic code, and then the linker
relaxed that to Initial Exec, being aware of the
Static TLS location of the variable (RIE, for re-
laxed IE).

The other half of the single-variable tests use
General Dynamic access models. In half of
these, the variable is in Static TLS, so our main
optimization kicks in (SGD, for static GD); in
the other half, the variable is in Dynamic TLS,
so the main optimization does not apply (DGD,
for dynamic GD).

The multi-variable tests (Cmb, for combined)
subtract the values or addresses of the RIE and
the SGD variables, and adds the value or ad-
dress of the DGD variable, returning the result.
All this work grants the compiler more oppor-
tunity to hide the latency of certain operations
through instruction scheduling.

Local State Half of the test functions are so
simple that, when they have to call __tls_
get_addr or equivalent, any automatic vari-
ables of their own can easily be assigned to call-
preserved registers, so the optimized calling
conventions suggested in this paper show no
benefit whatsoever (Min St). In order to expose
such benefits, the other half of the test func-
tions contain a large number of automatic vari-
ables (Max St) whose contents are forced into
registers before and after the TLS operation,
such that, with the standard calling conven-
tions, almost all call-clobbered registers have
to be spilled before the call and reloaded after
it, whereas with our optimization, none of this
takes place.

The number of variables is chosen such that
all but one of the general-purpose registers are
taken up by these variables. On IA32, we use
5 such variables, considering that %ebx is re-
served as the GOT pointer, and that %ebp can
be used as a general-purpose register, making
up for 6 available registers, 3 call-saved, 3 call-
clobbered. On AMD64, we use 14 such vari-
ables, since %esp is not really usable in the
16-register set. On both CPUs, we keep one
register available to hold the result of the TLS
operation, with the explicit intention of show-
ing a worst-case scenario for the traditional
code, where the advantages of the custom call-
ing conventions would be greatest. The actual
benefit from this change will be somewhere in
between the two variants in this dimension.

The 40 combinations of the above variations
are all located in a dynamic library that is
dlopened by the main benchmark program.
This ensures that the test functions do not get
inlined into the main benchmark loop, which
might enable hoisting of operations, making
operations look faster than they are.

We build two such dynamic libraries for each
tested architecture: one created with the com-

GCC Developers’ Summit 2006 • 173

piler configured to generate code in the tra-
ditional way (Ol), another following our new
proposed method (Nu). A full test run goes
through all 40 tests for each of the 2 libraries,
which makes up for the 80 tests total.

Every test is run a large number of times, in two
different configurations. In one configuration,
we run each one of them in a tight loop to then
proceed to the next test; in the other, each test
is run once in a randomized sequence generated
for every iteration in a loop. More details are
given below.

Although running the tests in a tight loop has
enabled us to initially measure a lower bound
for the execution time of each test, such lower
bound was initially not thought to be very rep-
resentative of real-life performance, since it de-
pends heavily on hot caches and nearly-perfect
branch and call/return prediction, something
that is not necessarily expected in practice.

In order to try to obtain more representative
results, we collect all of the tests into a vec-
tor and then, for every iteration in the main
benchmark loop, we get the vector sorted at
random and then iterate over the randomized
vector, running each test once per iteration in
the main loop. Each test run produces a time
result that is immediately logged to a file. This
logging and randomization helps avoid getting
cache, branch and call/return prediction hits
too common for any single test, which enables
us to achieve moderately reproducible results
with thousands of runs of each test, as opposed
to hundreds of millions that we needed in the
tight-loop test. It often (but not always) gets
us identical per-iteration lower bounds, but the
average run times no longer tend to the lower
bound as the iteration count increases.

Unfortunately, this randomization, and the pos-
sibility of long interrupts and context switches
that could skew averages up at random, have
caused average times over 1 million runs to

vary by as much as 30%, even after discarding
values that appear to be too high.

That said, in spite of the significant error mar-
gin in the exact averages, we’ve verified that
there appears to be a strong correlation between
improvements in minimum times, as measured
in the tight loop, and improvements in the aver-
age times, although speedups tend to be smaller
for averages than for minimums.

Given this correlation and the irreproducibil-
ity of the exact average results, we’ve decided
to not include the average times in the pa-
per. Since binaries and the complete source
code of the implementation, including the
benchmark program that can generated them,
are available for download at http://www.
lsd.ic.unicamp.br/~oliva/, publish-
ing only the minimum times, that are perfectly
reproducible, was deemed enough.

4.1 Analysis

Testing procedure was as follows. A toolchain
was built on Fedora Core 4, based on snapshots
of the GCC and GNU binutils development
trees taken on Oct 30, 2005. This toolchain was
capable of generating code for both IA-32 and
AMD64, selecting the old or the new TLS call
sequences through a command-line switch. A
development snapshot of GNU libc, taken on
the same day, was built using this compiler for
both IA-32 and AMD64. The IA-32 version
was built with optimizations for Pentium II or
newer; the AMD64 version was built with de-
fault settings. The benchmark program and li-
braries were built with the same settings.

The benchmark program was run on 3 different
environments, each one described in the cap-
tion of the corresponding table: a Pentium III
processor ran the 32-bit benchmark (Table 1),

174 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

Internal Timing External Timing
Acc Min St Max St Min St Max St
Mod Op Ol Nu Ol Nu Ol Nu Ol Nu

OIE
load 33 33 37 37 48 48 58 58

addr 33 33 38 38 45 45 55 55

RIE
load 35 35 40 38 50 50 61 60

addr 34 34 39 37 48 50 62 59

SGD
load 64 39 67 43 77 53 88 64

addr 63 39 67 43 76 53 87 64

DGD
load 64 58 67 58 77 67 90 78

addr 63 53 68 58 76 67 87 76

Cmb
load 104 63 108 77 110 78 131 100

addr 94 64 101 69 113 78 123 90

Table 1: Minimum run times, in CPU cycles,
over 100000000 iterations on a Pentium III
Speedstep 1.0GHz (32-bit only). The timing
overhead, included in the figures above, was
measured as 33 CPU cycles.

and an Athlon64 processor ran both the 32-
bit (Table 2) and the 64-bit (Table 3) bench-
marks. In all cases, the processors were con-
figured to avoid clock speed switching, and the
boxes were very lightly loaded, except for the
benchmark program. The results were mechan-
ically converted to LATEX tables.

Figures 3, 4, 5, and 6, also generated mechan-
ically, display information from the SGD and
DGD internal-timing tests in the tables. In
each chart, the left cluster of bars is for Min
St tests; that on the right is for Max St tests.
Within each cluster, the bars represent each of
the tested machines, in the same order that their
tables appear. Within each bar, the dotted line
represents the timing overhead (see below), the
lower bar is the Nu time and the upper bar is the
Ol time. Speedups are computed in each bar;
the lower speedup is computed as a fraction of
the Ol and Nu numbers directly from the table,
the upper speedup is computed by first subtract-
ing the timing overhead from the dividend and
the divisor. The real speedup in practice ought
to be between the two figures.

The timing overhead is the difference in the
clock tick count between two subsequent ex-

Internal Timing External Timing
Acc Min St Max St Min St Max St
Mod Op Ol Nu Ol Nu Ol Nu Ol Nu

OIE
load 9 9 10 10 24 24 29 29

addr 5 5 10 10 21 20 30 29

RIE
load 9 9 17 10 25 25 34 30

addr 5 5 13 10 21 22 30 29

SGD
load 34 9 40 15 49 29 57 31

addr 32 9 38 11 44 25 56 31

DGD
load 35 23 40 25 48 38 57 42

addr 31 18 38 21 46 37 56 40

Cmb
load 76 29 79 39 78 46 98 59

addr 66 23 68 32 76 42 87 49

Table 2: Minimum run times, in CPU cy-
cles, over 100000000 iterations on an Athlon64
3000+ (1.8GHz) notebook, running the bench-
mark compiled for 32-bit mode. The timing
overhead, included in the figures above, was
measured as 8 CPU cycles.

Internal Timing External Timing
Acc Min St Max St Min St Max St
Mod Op Ol Nu Ol Nu Ol Nu Ol Nu

OIE
load 9 9 9 9 9 9 19 19

addr 8 8 8 8 9 10 18 17

RIE
load 9 9 22 9 13 9 32 19

addr 5 8 20 8 9 10 28 16

SGD
load 26 9 37 11 29 15 47 20

addr 23 9 36 10 28 12 47 18

DGD
load 26 25 37 25 29 26 48 31

addr 23 21 36 21 28 22 47 31

Cmb
load 47 30 62 39 52 31 72 50

addr 42 23 59 28 49 27 68 37

Table 3: Minimum run times, in CPU cy-
cles, over 100000000 iterations on the same
Athlon64 notebook from Table 2, running
the benchmark compiled for 64-bit (AMD64)
mode. The timing overhead, included in the
figures above, was measured as 5 CPU cycles.

GCC Developers’ Summit 2006 • 175

0

10

20

30

40

50

60

70

5.2x
1.6x

26.0x
3.8x 5.2x

2.9x

3.4x
1.6x

4.6x
2.7x 5.3x

3.4x

Figure 3: SGD load internal timing results.

0

10

20

30

40

50

60

70

5.0x
1.6x

24.0x
3.6x

4.5x
2.6x

3.4x
1.6x

10.0x
3.5x

6.2x
3.6x

Figure 4: SGD addr internal timing results.

ecutions of the instruction that obtains this
count, including the time needed to copy the
contents of the first measurement elsewhere be-
fore they are overwritten by the second mea-
surement. Careful analysis of the tables shows
that the overhead is greater than or equal to the
times measured for certain simple operations.
Such simple instruction sequences are believed
to fit in, or even help avoid additional pipeline
bubbles.

OIE tests confirm the expected absence of
variation, given that it is the exact same code
being generated for both the old and the new
TLS conventions.

0

10

20

30

40

50

60

70

1.2x
1.1x

1.8x
1.5x

1.1x
1.0x

1.4x
1.2x

1.9x
1.6x 1.6x

1.5x

Figure 5: DGD load internal timing results.

0

10

20

30

40

50

60

70

1.5x
1.2x

2.3x
1.7x

1.1x
1.1x

1.4x
1.2x

2.3x
1.8x

1.9x
1.7x

Figure 6: DGD addr internal timing results.

176 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

RIE remains nearly identical in terms of per-
formance on IA-32 for the minimum-state tests,
as expected. For the maximum-state tests, the
new method begins to show improvements, as
it enables the compiler to preserve more state
across the TLS calls that, in these tests, end
up being relaxed, but the advantage remains
since the linker cannot recover the performance
loss due to register spilling and reloading. The
performance loss in the 64-bit minimum-state
address RIE probably indicates there might be
better instruction sequences we could use for
relaxation.

SGD is where the new method really shines.
That is no surprise, since it’s exactly the sit-
uation that the new method is designed to
improve, and fortunately also the most com-
mon situation in code generated for dynamic
libraries that accesses thread-local variables.
Absolute reductions in clock cycles are consis-
tent between internal and external timing in 32-
bit mode, where the calling conventions opti-
mization plays a less significant role; in 64-bit
mode, the absolute reductions in clock cycles
are consistent if you compare results among the
minimum-state tests, or among the maximum-
state ones.

DGD shows that performance is improved
significantly even in the case that the new
method regarded as the slow case. Clearly, in
64-bit mode, most of the savings stem from the
optimized calling conventions, that enable the
retention of state in registers, as shown in the
comparison between minimum- and maximum-
state in the internal timing column, where the
new model remains unchanged upon the growth
in state and the old model slowed down by a
significant amount. In the external timing col-
umn, the overhead from having to preserve all
callee-saved registers that are used is noticeable
in the maximum-state column, but not as much

as in the old model. In 32-bit mode, the ability
to check whether the DTV is up-to-date with-
out setting up the GOT pointer is likely what
brings most of the benefit.

Cmb essentially only confirms the results
above, not offering any obvious new insights.

5 Conclusion

The proposed optimization improves perfor-
mance of access to thread-local variables from
dynamic libraries by a big margin for initial li-
braries, without any data size penalty and most
often with code size reductions. For dlopened
libraries, there are still performance advan-
tages, but to a lesser, yet still significant extent,
and there are data size penalties.

It should be highlighted that the performance
gains from lazy relocations, by avoiding reloca-
tion processing at load time, and from code size
reductions, by improving the instruction cache
hit rate, have not been taken into account at all
in the micro-benchmarks exposed here.

The implementation is readily available for
widely-used CPU types, under Free Software
licenses that enable any library to take advan-
tage of this novel technique.

Some open questions remain to be answered in
future work: whether there are relaxation se-
quences that could make the new relaxed code
at least as fast as the old one on AMD64,
and faster on IA32; whether returning an off-
set instead of an address from the specialized
__tls_get_addr calls does indeed help im-
prove performance; whether enabling the spe-
cializations to clobber one or two registers,
which would enable the dynamic-case fast path
to save fewer or even no registers, would cause

GCC Developers’ Summit 2006 • 177

a measurable decrease in performance in the
more common cases; how much of a perfor-
mance improvement could have been obtained
over the old model by using the same call se-
quences, and only modifying the run-time so as
to compute relocations differently, and modi-
fying __tls_get_addr to cope; how much
benefit would be obtained by implementing
DTV compression; how well the optimizations
described here do on other architectures.

Acknowledgements

Alexandre Oliva thanks Glauber de Oliveira
Costa, for having reviewed this paper and of-
fered to extend this work to the ARM platform;
colleagues Roland McGrath, Jakub Jelínek,
Richard Henderson, and Ulrich Drepper for the
early discussions on the design, for the sup-
port and reviews in designing and implement-
ing the optimizations on various architectures;
Aldy Hernandez for tolerating the delays due
to the creativity in designing the FR-V TLS
ABI, for drafting its early descriptions and for
doing the compiler work for that implementa-
tion; Eric Bachalo, his manager at that time,
for giving his approval to such creativity in a
customer-funded project, approval that in the
end made this work possible.

References

[1] Herb Sutter. The free lunch is over: a
fundamental turn toward concurrency in
software. Dr. Dobb’s Journal, 30(3),
2005. http:
//www.gotw.ca/publications/
concurrency-ddj.htm.

[2] Kunle Olukotun and Lance Hammond.
The future of microprocessors. ACM
Queue, 3(7):26–34, September 2005.

[3] Portable Applications
Standards Committee of the IEEE
Computer Society and The Open Group.
Portable Operating System Interface
(POSIX), The Base Specifications. IEEE
Std 1003.1, 2004. Issue 6, Incorporating
Technical Corrigendum 1 and Technical
Corrigendum 2.

[4] Ulrich Drepper. ELF Handling for
Thread-Local Storage.
http://people.redhat.com/
drepper/tls.pdf, February 2003.
Version 0.20.

[5] John R. Levine. Linkers and Loaders.
Morgan Kaufmann, October 1999.

[6] Hans-J. Boehm. Fast multiprocessor
memory allocation and garbage
collection. Technical Report 165, HP
Labs, 2000.

[7] Alexandre Oliva and Aldy Hernandez.
The FR-V thread-local storage ABI.
http://people.redhat.com/
aoliva/writeups/FR-V/
FDPIC-TLS-ABI.txt, December
2004. Version 0.22.

[8] Alexandre Oliva. Thread-Local Storage
Descriptors for IA32 and
AMD64/EM64T. http://people.
redhat.com/aoliva/writeups/
TLS/RFC-TLSDESC-x86.txt,
October 2005. Version 0.9.4.

[9] Fred C. Chow. Minimizing register usage
penalty at procedure calls. In PLDI ’88:
Proceedings of the ACM SIGPLAN 1988
conference on Programming Language
design and Implementation, pages 85–94.
ACM Press, 1988.

[10] Steven S. Muchnick. Advanced compiler
design and implementation. Morgan
Kaufmann, 1997.

178 • Speeding Up Thread-Local Storage Access in Dynamic Libraries

[11] Kevin Buettner, Alexandre Oliva, and
Richard Henderson. The FR-V FDPIC
ABI. http:
//people.redhat.com/aoliva/
writeups/FR-V/FDPIC-ABI.txt,
April 2004. Version 1.0.

[12] Intel Itanium Processor-specific
Application Binary Interface (ABI).
http:
//refspecs.freestandards.
org/elf/IA64-SysV-psABI.pdf,
May 2001.

[13] Ian Lance Taylor. 64-bit PowerPC ELF
Application Binary Interface
Supplement. http://www.
linuxbase.org/spec/ELF/
ppc64/PPC-elf64abi-1.7.pdf,
September 2003. 1.7 Edition.

[14] Ulrich Drepper and Ingo Molnar. The
Native POSIX Thread Library for Linux.
http://people.redhat.com/
drepper/nptl-design.pdf,
February 2005.

[15] GOMP — An OpenMP implementation
for GCC. http://gcc.gnu.org/
projects/gomp/, November 2005.

[16] OpenMP Architecture Review Board.
OpenMP Application Programming
Interface. http:
//www.openmp.org/drupal/
mp-documents/spec25.pdf, May
2005. Version 2.5.

GRAPHITE: Polyhedral Analyses and Optimizations
for GCC

Sebastian Pop 1 Albert Cohen 2 Cédric Bastoul 2 Sylvain Girbal 2

Georges-André Silber 1

Nicolas Vasilache 2

1 CRI, École des mines de Paris, Fontainebleau, France
lastname@cri.ensmp.fr

2 Alchemy group, INRIA Futurs and LRI, Paris-Sud 11 University, Orsay, France
firstname.lastname@inria.fr

Abstract

We present a plan to add loop nest optimiza-
tions in GCC based on polyhedral representa-
tions of loop nests. We advocate a static anal-
ysis approach based on a hierarchy of inter-
changeable abstractions with solvers that range
from the exact solvers such as OMEGA, to
faster but less precise solvers based on more
coarse abstractions. The intermediate repre-
sentation GRAPHITE1 (GIMPLE Represented
as Polyhedra with Interchangeable Envelopes),
built on GIMPLE and the natural loops, hosts
the high level loop transformations. We base
this presentation on the WRaP-IT project de-
veloped in the Alchemy group at INRIA Futurs
and Paris-Sud University, on the PIPS compiler
developed at École des mines de Paris, and on
a joint work with several members of the static
analysis and polyhedral compilation commu-
nity in France.

The main goal of this project is to bring more
high level loop optimizations to GCC: loop fu-
sion, tiling, strip mining, etc. Thanks to the

1This work was partially supported by ACI/APRON.

WRaP-IT experience, we know that the poly-
hedral analyzes and transformations are afford-
able in a production compiler. A second goal
of this project is to experiment with compile
time reduction versus attainable precision when
replacing operations on polyhedra with faster
operations on more abstract domains. How-
ever, the use of a too coarse representation for
computing might also result in an over approx-
imated solution that cannot be used in subse-
quent computations. There exists a trade off be-
tween speed of the computation and the attain-
able precision that has not yet been analyzed
for real world programs.

1 Introduction

Static compiler optimizations can hardly cope
with the complex run-time behavior and hard-
ware components interplay of modern proces-
sor architectures. Multiple architectural phe-
nomena occur and interact simultaneously. The
optimizer needs to combine multiple program
transformations to harness the computing and

180 • GRAPHITE: Polyhedral Analyses and Optimizations for GCC

storage resources and to fight all sources of
pipeline stalls or flushes. In addition, con-
ventional processor architectures are shifting
towards coarser grain on-chip parallelism, to
avoid diminishing returns of further extending
instruction-level parallelism. This shift rejuve-
nates the hard static analysis and optimization
problems associated with automatic paralleliza-
tion (extraction, exploitation and optimization
of parallelism).

Even provided with enough static information
or annotations (OpenMP directives, pointer
aliasing, separate compilation assumptions),
compilers have a hard time exploring the huge
and unstructured search space associated with
these application-to-architecture mapping and
optimization challenges [16, 32, 23, 53, 1]. In
a sense, the task of the compiler can hardly be
called optimization anymore, in the traditional
meaning of lowering the abstraction penalty of
a higher-level language. Together with the run-
time system (whether implemented in software
or hardware), the compiler is responsible for
most of the combinatorial code generation deci-
sions to map the simplified and idealistic oper-
ational semantics of the source program to the
highly complex and heterogeneous machine.

Unfortunately, optimizing compilers have tra-
ditionally been limited to systematic and te-
dious tasks that are either not accessible to the
programmer (e.g., instruction selection, regis-
ter allocation) or that the programmer in a high
level language does not want to deal with (e.g.,
constant propagation, partial redundancy elimi-
nation, dead-code elimination, control-flow op-
timizations). Generating efficient code for deep
parallelism and deep memory hierarchies with
complex and dynamic hardware components is
a completely different story: the compiler (and
run-time system) now has to take the burden of
much smarter tasks that only expert program-
mers would be able to carry.

Recent work showed that polyhedral compila-

tion techniques are good candidates to address
these challenges, and that new algorithms allow
them to scale to real-size optimization prob-
lems (beyond tiny loop kernels) [34, 64]. This
paper exposes our road-map towards making
GCC the first general-purpose compiler to build
on full-scale polyhedral compilation techniques
(analysis and transformations, including affine
scheduling).

In the first part of the paper we will present
the steps to transform the loops and GIMPLE
representations to systems of linear constraints,
or polyhedra, to transform the matrix form ob-
tained, and to eventually regenerate GIMPLE
trees. This part corresponds to an adaptation
to GCC of the WRaP-IT tool. Then, we dis-
cuss the integration of additional numerical do-
mains, to support a wider range of (interpro-
cedural) static analyses, and to improve the
compile time on polyhedral compilation passes.
This work will use the APRON library as a
starting point, to facilitate the transparent sub-
stitution of abstract numerical domains. The
APRON library is part of a joint work between
different members of the static analysis com-
munity in France, and aims at providing a com-
mon interface between numerical abstract do-
mains. Because some computations might not
be tractable, or too expensive on a too precise
representation, it is interesting to use more ab-
stract representations on which computations
have lower costs.

We will present experimental results to mo-
tivate the polyhedral program transformation
approach, and we will survey our methods to
let the code analysis and generation techniques
scale to full-scale loop nests (with aggressive
inlining). We will present the benefits of adopt-
ing this infrastructure: composition of transfor-
mations, and interchangeability of abstract do-
mains.

GCC Developers’ Summit 2006 • 181

2 State of the art

In compilers, polyhedral domains are used for
different purposes:

Static analysis. Polyhedra represent conserva-
tive approximations of the properties of
a program [24]. In this case, the opera-
tions on the abstract domain should pre-
serve the safety of the computed proper-
ties, and thus the results are allowed to be
over approximations.

Code transformations. Polyhedra represent
the code itself [31], through the iteration
domain, iteration and statement sched-
ules, and memory access functions. The
translation and the operations over the
polyhedral representation have to be exact
(with no loss of information), to guarantee
that the code generated from the polyhe-
dral representation after transformation
will be semantically equivalent to the
original program.

Several works addressed these applications in
different experimental frameworks, but the un-
derlying mathematical framework is the same.

In this section we provide an overview of the
techniques used in research and industrial com-
pilers based on polyhedral domains: first we
present the polyhedral representations for loop
iteration domains, then we present the array re-
gions that approximate data accesses. We end
this survey with the cost models based on the
polyhedral representations.

2.1 Translation to a Polyhedral Represen-
tation

The polyhedral representations are restricted
by their expressiveness to represent only se-
quences of loop nests with constant strides

and affine bounds. It includes non-rectangular
loops, non-perfectly nested loops, and condi-
tionals with boolean expressions of affine in-
equalities. Loop nests fulfilling these hypothe-
ses are amenable to a representation in the poly-
hedral model [54]. We call Static Control Part
(SCoP) any maximal syntactic program seg-
ment satisfying these constraints [20]. The
reader interested in techniques to extend SCoP
coverage (by preliminary transformations) or in
partial solutions on how to remove this scop-
ing limitation (procedure abstractions, irregu-
lar control structures, etc.) should refer to
[62, 37, 21, 72, 25, 12, 60, 11, 19, 22].

In the polyhedral model [57, 31], the iteration
steps of a loop nest of depth d are represented
as the integer points of a polyhedra in Zd . In
the general case, the polyhedra are bounded by
symbolic parameters: they are called paramet-
ric polyhedra, and each symbolic parameter is
represented using an extra dimension. All vari-
ables that are invariant within a SCoP are called
global parameters. For each statement within
a SCoP, the representation separates four at-
tributes, characterized by parameter matrices:
the iteration domain, the schedule, the data lay-
out and the access functions.

2.2 WRaP-IT

The WRaP-IT framework [34], developed in
the Alchemy group, improves on classical poly-
hedral representations [31, 68, 41, 46, 2, 47]
to support a large array of useful and efficient
program transformations (loop fusion, tiling,
array forward substitution, statement reorder-
ing, software pipelining, array padding, etc.), as
well as compositions of these transformations.
It is implemented within the Open64 and Path-
Scale EKOPath [17] compilers. This compiler
family provides key interprocedural analyses
and pre-optimization phases such as inlining,

182 • GRAPHITE: Polyhedral Analyses and Optimizations for GCC

interprocedural constant propagation, loop nor-
malization, integer comparison normalization,
dead-code and goto elimination, as well as in-
duction variable substitution. Thanks to these
preliminary passes, our tool extracts large and
representative SCoP for SPEC fp benchmarks:
on average, 88% of the statements belong to a
SCoP containing at least one loop. See [34]
for detailed static and dynamic SCoP coverage.
GCC now comes close to Open64 in terms of
loop-oriented program normalizations, and the
situation improves quickly; our future research
will thus benefit from migrating the WRaP-IT
framework to GCC.

The main technical idea behind polyhedral pro-
gram representations is to clearly separate the
four different types of actions performed by
loop-centric transformations: modification of
the iteration domain (loop bounds and strides),
modification of the schedule of each individ-
ual statement, modification of the access func-
tions (array subscripts), and modification of the
data layout (array declarations). This separa-
tion makes it possible to provide a matrix rep-
resentation for each kind of action, enabling
the easy and independent composition of the
different representation operations associated
with each program transformation, and as a re-
sult, enabling the composition of transforma-
tions themselves. Current representations do
not clearly separate these four types of actions;
as a result, the implementation of certain com-
positions of program transformations can be
complicated or even impossible. For instance,
current implementations of loop fusion must in-
clude loop bounds and array subscript modifi-
cations even though they are only byproducts
of a schedule-oriented program transformation;
after applying loop fusion, target loops are of-
ten peeled, increasing code size and making
further optimizations more complex. Within
our representation, loop fusion is only ex-
pressed as a schedule transformation, and the
modifications of the iteration domain and ac-

cess functions are implicitly handled, so that
the code complexity is exactly the same before
and after fusion. Similarly, an iteration domain-
oriented transformation like unrolling should
have no impact on the schedule or data layout
representations; or a data layout-oriented trans-
formation like padding should have no impact
on the schedule or iteration domain representa-
tions.

3 Loop Transformations in the
Polyhedral Model

This section is a quick overview of the polyhe-
dral framework and shows the expressiveness
benefits on a practical example. A more for-
mal presentation of the model may be found in
[57, 31].

3.1 Quick Overview of the Framework

Polyhedral compilation usually distinguishes
three steps: one first has to represent an in-
put program in the formalism, then apply a
transformation to this representation, and fi-
nally generate the target (syntactic) code.

Consider the polynomial multiplication kernel
in Figure 1(a). It only deals with control as-
pects of the program, and we refer to the two
computational statements (array assignments)
through their names, S1 and S2. To bypass
the limitations of syntactic representations, the
polyhedral model is closer to the execution it-
self by considering statement instances. For
each statement we consider the iteration do-
main, where every statement instance belongs.
The domains are described using affine con-
straints that can be extracted from the program
control. For example, the iteration domain of
statement S1, called DS1 , is the set of values (i)

GCC Developers’ Summit 2006 • 183

for (i=2; i<=2*n; i++)
S1 Z[i] = 0;

for (i=1; i<=n; i++)
for (j=1; j<=n; j++)

S2 Z[i+j] += X[i] * Y[j]; 1

2

n
j

1 2 i

i>=1
i>=2

i<=n
j<=n

j>=1 i<=2n

S2
S1

S2
S2

S2 S1

n

instance of S1

2n

instance of S2

(a) Syntactic form (b) Polyhedral domains (n ≥ 2)

Figure 1: A polynomial multiplication kernel and its polyhedral domains

(
I Θ

0 Λ

)
·

−t
i
g
1

 = 0
≥ 0

1

2

2
1

n

2n

1 2 n 2n

n

i

j

t

(a) Transformation template formula (b) Transformed polyhedra

Figure 2: Transformation template and its application

such that 2 ≤ i ≤ n as shown in Figure 1(b); a
matrix representation is used to represent such
constraints: in our example, DS1 is character-
ized by

[
1 0 −2

−1 2 0

] i
n
1

≥ 0.

In this framework, a transformation of the exe-
cution order is characterized by affine schedul-
ing functions ΘS, for all statements S in the
SCoP. Each statement has its own schedul-
ing function which maps each run-time state-
ment instance to a logical execution date. In
our polynomial multiplication example, an op-
timizer may notice a locality problem and dis-
cover a good data reuse potential over array Z,
then suggest ΘS1(i) = (i) and ΘS2

(
i
j

)
= (i +

j + 1) to achieve better locality (see e.g., [14]
for a method to compute such functions). The

intuition behind such transformation is to ex-
ecute consecutively the instances of S2 having
the same i+ j value (thus accessing the same ar-
ray element of Z) and to ensure that the initial-
ization of each element is executed by S1 just
before the first instance of S2 referring this el-
ement. In the polyhedral model, a transforma-
tion is applied following the template formula
in Figure 2(a) [13], where i is the iteration vec-
tor, g is the vector of constant parameters, and t
is the time-vector, i.e. the vector of the schedul-
ing dimensions. The nature of these vectors and
the structure of the Θ and Λ matrices is detailed
in [34]. Notice that in this formula, equality
constraints capture schedule modifications, and
inequality constraints capture iteration domain
modifications. The resulting polyhedra for our
example are shown in Figure 2(b), with the ad-
ditional dimension t.

Once transformations have been applied in the
polyhedral model, one needs to (re)generate the
target code. The best syntax tree construction

184 • GRAPHITE: Polyhedral Analyses and Optimizations for GCC

scheme consists in a recursive application of
domain projections and separations [59, 13].
The final code is deduced from the set of con-
straints describing the polyhedra attached to
each node in the tree. In our example, the first
step is a projection onto the first dimension t,
followed by a separation into disjoint polyhe-
dra, as shown on the top of Figure 3(a). This
builds the outer loops of the target code (the
loops with iterator t in Figure 3(b)). The same
process is applied onto the first two dimensions
(bottom of Figure 3(a)) to build the second loop
level and so on. The final code is shown in Fig-
ure 3(b) (the reader may care to verify that this
solution maximally exploits temporal reuse of
array Z). Note that the separation step for two
polyhedra needs three operations: DS1 −DS2 ,
DS2 −DS1 and DS2 ∩DS1 , thus for n statements
the worst-case complexity is 3n.

It is interesting to note that the target code, al-
though obtained after only one transformation
step, is quite different from the original loop
nest. Indeed, multiple classical loop transfor-
mations are necessary to simulate this one-step
optimization (among them, software pipelining
and skewing). The intuition is that arbitrarily
complex compositions of classical transforma-
tions can be captured in one single transforma-
tion step of the polyhedral model. This was
best illustrated by affine scheduling [31, 41]
and partitioning [46] algorithms. Yet, be-
cause black-box, model-based optimizers fail
on modern processors, we propose to step back
a little bit and consider again the benefits of
composing classical loop transformations, but
using a polyhedral representation. Indeed, be-
fore our recent work, polyhedral optimization
frameworks have only considered the isolated
application of one arbitrarily complex affine
transformation. The main originality of our
work is to address the composition of program
transformations on the polyhedral representa-
tion itself, which vastly facilitates the coordi-
nation of polyhedral transformations with clas-

2
1

n

2n

1 2 ni

t

i<=n

i>=1

i<=t−2

i>=t−n−1

S1
i=t

2n

S1 alone

S2 alone

Projection

Projection
onto t

onto (t,i)

S2

S2

S2

S2

t=2
S1

t>=3
S1S2

t<=2n
S1S2 S2

S1 alone S1 and S2 S2 alone

t=2n+1

(a) Projections and separations

t=2; // Such equality is a loop running once
i=2;

S1 Z[i] = 0;
for (t=3; t<=2*n; t++)
for (i=max(1,t-n-1); i<=min(t-2,n); i++)

j = t-i-1;
S2 Z[i+j] += X[i] * Y[j]

i=t;
S1 Z[i] = 0;

t=2*n+1;
i=n;

j=n;
S2 Z[i+j] += X[i] * Y[j];

(b) Target code

Figure 3: Target code generation

sical heuristics and cost models, enabling their
integration into production compilers.

3.2 Code Generation from the Polyhedral
Model

Regenerating syntax trees from affine sched-
ules is one of the most time-consuming parts of
the polyhedral compilation flow. The history of
code generation in the polyhedral model shows
a constant growth in transformation complex-
ity, from basic schedules for a single statement
to general affine transformations for wide code
regions. In their seminal work, Ancourt and
Irigoin limited transformations to unimodular
functions (determinant 1 or −1) and the code
generation process was applicable for only one

GCC Developers’ Summit 2006 • 185

domain at once [5]. Several works succeeded
in relaxing the unimodularity constraint to in-
vertibility (the T matrix has to be invertible),
enlarging the set of possible transformations
[27, 45]. A further step has been achieved by
Kelly et al. by considering more than one do-
main and multiple scheduling functions at the
same time [42]. All these methods relied on
the Fourier-Motzkin elimination method [61] to
build the target code.

Quilleré et al. showed how to use polyhedral
operations based on the Chernikova Algorithm
[66] instead, to benefit from its practical ef-
ficiency to handle bigger problems [59]. Re-
cently, a new transformation policy has been
proposed to allow general non-invertible, non-
uniform, non-integral affine transformations
[13, 64]. Such freedom allowed to apply poly-
hedral techniques to much larger programs with
very sophisticated transformations, and led to
novel complexity, scalability and code quality
challenges we discuss in this paper. In the con-
text of GCC, it would be very interesting to try
to preserve the robustness of the Quilleré algo-
rithm, but further improve the complexity of
the method, using depth-sensitive relaxations
(approximations) and Fourier-Motzkin elimi-
nations.

3.3 Optimization Experiment

We applied the WRaP-IT tool to the swim
SPEC CPU2000 fp benchmark, extracting sev-
eral SCoP: aggressive inlining yields one SCoP
of 421 lines of code—112 instructions in the
polyhedral representation—in consecutive loop
nests within the main function. We applied
more than 30 transformations to this SCoP,
including multi-level loop fusion, loop shift-
ing (pipelining), loop tiling, loop peeling, loop
unrolling, loop interchange, and strip-mining
[71, 4]. All these transformations are general-

ized to non-perfectly nested codes, and embed-
ded in our compositional framework [34].

The resulting code is significantly larger—
2267 lines—roughly one third of them be-
ing naive scalar copies to map schedule itera-
tors to domain ones, fully eliminated by copy-
propagation in the subsequent run of EKOPath
or Open64. This is not surprising since most
transformations in the script require domain de-
composition, either explicitly (peeling) or im-
plicitly (shifting prolog/epilog, at code genera-
tion). It takes 39s to apply the whole transfor-
mation sequence up to native code generation
on a 2.08GHz AthlonXP. Transformation time
is dominated by back-end compilation (22s).
Polyhedral code generation takes only 4s. Ex-
act polyhedral dependence analysis (computa-
tion and checking) is acceptable (12s). Apply-
ing the transformation sequence itself is neg-
ligible. These execution times are very en-
couraging, given the complex overlap of peeled
polyhedra in the code generation phase, and
since the full dependence graph captures the
exact dependence information for the 215 ar-
ray references in the SCoP at every loop depth
(maximum 5 after tiling), yielding a total of 441
dependence matrices.

Compared to the peak performance attain-
able by the best available compiler, Path-
Scale EKOPath (V2.1) with the peak-SPEC
optimization flags, our tool achieves 32%
speedup on Athlon XP and 38% speedup
on Athlon 64. Compared to the base-
SPEC performance numbers, our optimization
achieves 51% speedup on Athlon XP and
92% speedup on Athlon 64. We are not aware
of any other optimization effort—manual or
automatic—that brought swim to this level of
performance on x86 processors.2

2Notice we consider the SPEC CPU2000 version of
swim, much harder to optimize through loop fusion than
the SPEC 95 version.

186 • GRAPHITE: Polyhedral Analyses and Optimizations for GCC

4 Static Analysis with Polyhedra

Let us now discuss some of the static analysis
opportunities and challenges offered by poly-
hedral methods.

4.1 Instancewise Polyhedral Dependence
Analysis

Many tests have been designed for dependence
checking between different statements or be-
tween different executions of the same state-
ment. It has been shown that this problem
is equivalent to detecting whether a system of
equations has an integer solution inside a re-
gion of Zn [9].

Most of the dependence tests try to find effi-
ciently a reliable, approximative but conserva-
tive (they overestimate data dependences) solu-
tions. The GCD-test [8] has been the very first
practical solution, it is still present in many im-
plementations as a first check with low com-
putational cost. This test assumes that if the
greatest common divisor of the coefficients of
an equation divides the constant term, then a so-
lution exists. A generalized GCD-test has been
proposed to handle multi-dimensional array
references [9]. The Banerjee test uses the in-
termediate value theorem to disprove a depen-
dence: it computes the upper and lower bounds
of an equation and checks if the constant part
lies in that range [69]. The λ-test is an exten-
sion to this test that handles multi-dimensional
array references [43]. Some other important so-
lutions are a combination of GCD and Banerjee
tests called I-test [43], the ∆-test [35] that gives
an exact solution when there is at most one vari-
able in the subscript functions, and the Power-
test which uses the Fourier-Motzkin variable
elimination method [61] to prove or disprove
dependences [70]. Beside their approxima-
tive nature, these dependence tests suffer from

many other major limitations. The most strin-
gent one is their inability to precisely handle
if conditionals, loops with parametric bounds,
triangular loops (a loop bound depends on an
outer loop counter), coupled subscripts (two
different array subscripts refer the same loop
counter), or parametric subscripts.

On the opposite, a few methods allow to find an
exact solution to the dependence problem, but
at a higher computational cost. The OMEGA-
test is an extension to the Fourier-Motzkin vari-
able elimination method to find integral solu-
tions [55]. On one hand, once a variable is
eliminated, the original system has an integer
solution only if the new system has an integer
solution (if this is not the case there is no solu-
tion). On the other hand, if an integer point ex-
ists in a space computed from the new system,
then there exists an integer point in the original
system (if this is the case, there is a solution).
The PIP-test uses a parametric version of the
dual-simplex method with Gomory cuts to find
an integral solution [30]. These two tests not
only give an exact answer, they are also able to
deal with complex loop structures and (affine)
array subscripts. The PIP-test is more precise
than the OMEGA-test when dealing with para-
metric codes (when one or more integer sym-
bolic constant are present), for instance, in the
following pseudo-code:

for(i=0; i<=N; i++) {
A[i] = ...;
... = ... A[i+100] ...;

}

the OMEGA-test will state that there is a de-
pendence between the two statements while the
PIP-test will precise that the dependence only
exists if N is greater or equal to 100. Both tests
have worst-case exponential complexities but
work quite well in practice as shown by Pugh
for the OMEGA-test [55]. Other costly exact

GCC Developers’ Summit 2006 • 187

tests exist in the literature [49, 28] but are often
not able to handle complex control in spite of
their cost.

We do not advocate for the use of any of
these tests, but rather for the computation of
instancewise dependence information as pre-
cisely as possible, i.e., for intensionally de-
scribing the statically unbounded set of all pairs
of dependent statement iterations, called in-
stances. Dependence tests are statementwise
decision problems associated with the exis-
tence of a pair of dependent instances, while
instancewise dependence analysis provides ad-
ditional information that can enable finer pro-
gram transformations, like affine scheduling
[44, 31, 46, 36]. The intensional characteriza-
tion of instancewise dependences can take the
form of multiple dependence abstractions, de-
pending on the precision of the analysis and
on the requirements of the user. The simplest
and least precise one is called dependence lev-
els, it specifies for a given loop nest which loop
carry the dependence. It has been introduced
in the Allen and Kennedy parallelization algo-
rithm [3]. The direction vectors is a more pre-
cise abstraction where the i-th element approx-
imates the value of all the i-th elements of the
distance vectors (which shows the difference of
the loop counters of two dependent instances).
It has been introduced by Lamport [44] and
formalized by Wolfe [71] and is clearly the
most widely used representation. A more pre-
cise abstraction is the dependence polyhedron
[40] which is able to determine exactly the set
of statement instances in dependence relation.
The choice of a given dependence abstraction
is crucial for further study: choosing an impre-
cise one can result in blacking out interesting
transformations. For instance, let us consider
the following example:

for(i=0; i<=N; i++)
for(i=0; i<=N; i++)

S A[i][j] = A[j][i] + A[i][j-1];

there are three dependences in this loop nest
(a read-after-write dependence from 〈S, i, j〉
to 〈S, i, j + 1〉, another read-after-write depen-
dence from 〈S, i, j〉 to 〈S, j, i〉 and a write-after-
read from 〈S, j, i〉 to 〈S, i, j〉). Dependence lev-
els are 2, 1 and 1: each loop carries at least one
dependence and no parallelism can be found.
Direction vectors are (0,1), (+,−), (+,−): the
second coefficients 1 and − hamper any par-
allelism detection. Using dependence polyhe-
dra, parallelism may be found: the Feautrier al-
gorithm suggests the affine schedule θ(i, j) =
2i+ j−3 (all instances with the same schedule
may be run in parallel), see [67]. We propose to
compute one of the most precise representation
of dependences: the dependence polyhedra.

We exercise this implementation on 6 full
SPEC CPU2000 fp benchmarks. In the most
challenging examples, the biggest SCoP almost
contains the whole program after inlining. On a
2.4GHz Pentium 4, the full instancewise depen-
dence analysis takes up to 37.512 seconds, for
the largest SCoP in applu. This is an extreme
case with huge iteration spaces (more than 13
dimensions on average, and up to 19 dimen-
sions). This may sound quite costly, but it still
shows that the analysis is compatible with the
typical execution time of aggressive optimizers
(typically more than ten seconds for Open64
with interprocedural optimization and aggres-
sive inlining and loop-nest optimizations). In
all other cases, it takes less than 5 seconds,
despite thousands of operations on polyhedra
with close to 10 dimensions on average. These
are very compelling results since we compute
very large dependence graphs, taking all pairs
of references into account, without k-limiting
heuristic on their syntactic or nesting distance

188 • GRAPHITE: Polyhedral Analyses and Optimizations for GCC

as it is the case in classical optimization frame-
works. Also, a typical loop optimizer will per-
form on-demand computations on part of the
dependence graph only.

4.2 Array Regions

In the context of interprocedural analysis of
data dependences, array regions techniques
have been proposed to extend the data depen-
dence analysis. This representation is able to
accurately describe sets of reads or writes that
occur during the execution of a procedure. Ap-
proximations of accessed regions is not useful
in general, as the precision degradation harm
to the extraction of precise use-def chains, or
dependence tests. As a practical implementa-
tion, the PIPS compiler [39, 38] uses the no-
tion of transformers, or transfer functions for
defining polyhedral relations between memory
stores. Transformers are computed interproce-
durally bottom-up accumulating the effects of
procedures on memory accesses [26, 25], while
preconditions are computed top-down accumu-
lating a safe description of the state of the pro-
gram when entering a procedure. Once this in-
formation has been gathered, the dependence
test can be refined using the interprocedural in-
formation. A more advanced dependence test
can be implemented by gathering more precise
information: the in and out regions. The re-
gions that contain both reads and writes po-
tentially prevent the parallelization of a loop.
When the data is written once and then read,
the region can be selected to be privatized [63].
Because the duplication of runtime data can be
harmful to the execution speed, the decision to
privatize the data is deferred to an analyzer that
can determine the benefit of the transformation.

4.3 Cost Models

Most of the loop nest transformations require
a profitability analysis: often, several trans-

formation schemes are available and following
the specificities of the target architecture some
strategies are preferable. The metrics devel-
oped for the polyhedral model are generally
based on counting the number of integer points
in polyhedra [58, 18, 65]. As polyhedra repre-
sent iteration spaces or data accesses, the eval-
uation of the number of integer points corre-
sponds to the evaluation of the number of iter-
ations of a loop nest, or the size or frequency
of the accessed data. From this measure it is
possible to infer other useful informations such
as the memory bandwidth, cache reuse for the
execution of a loop [48], cache misses [33],
etc. Most of these methods are exponential,
but some recent works [65] implemented and
experimented with promising polynomial time
algorithms for counting integer points in poly-
hedra.

5 Road Map

We describe the components that compose
GRAPHITE, the priorities and dependences be-
tween the modules, and discuss the proposed
plan for the integration into GCC. An overview
of the modules is depicted in Figure 4: the de-
velopment of the modules contains five stages.
First the translation from GIMPLE to the poly-
hedral representation, then the translation back
to GIMPLE, the development of cost models
and the selection of the transform schedule.
The interprocedural refinement of the data de-
pendence information based on the array re-
gions is optional, but it is necessary for gather-
ing more precise informations that potentially
could enable more transformations, or more
precise transform decisions. Finally, the least
critical component is the integration of the nu-
merical domains common interface, based on
which it will be possible to change the com-
plexity of the algorithms used in the polyhedral
analyses.

GCC Developers’ Summit 2006 • 189

1 2

0

4

5

3

3

PolyLib

Omega PIPlib

Numerical Domains Common Interface

Cost Models

Transform Selection

GIMPLE

GIMPLE GenerationFrom GIMPLE

Data Dependences

Array Regions

GIMPLE GRAPHITE

Intervals
CongruencesOctagons

Figure 4: Overview of the modules composing GRAPHITE. The numbers indicate the order in
which each module will be integrated.

5.1 Polyhedral Data Dependences

The code for statementwise dependence testing
has been integrated in GCC and directly uses
the OMEGA data structures for representing
polyhedra.

Instancewise dependence analysis will be im-
ported from the WRaP-IT framework, and
extended to non-affine constructs and while
loops [72, 10].

The main challenge here is memory usage, and
the associated adaptation of dependence ab-
straction accuracy depending on some form of
distance in the SCoP.

5.2 Translation to and from GRAPHITE

The next step for the integration of the
GRAPHITE project is the translation of the
code to the polyhedral representation and back
to GIMPLE. This translation will be developed
as an extension of the existing LAMBDA ker-
nel [45, 15]. The main limitation of LAMBDA
is that it works only on a single loop nest

and on distance vectors, whereas more ex-
act dependence informations like the polyhe-
dral representation of the dependences among
several sibling loop nests will be needed for
GRAPHITE.

To support the code generation engine of
GRAPHITE, we will only need a reduced set of
operations on polyhedra [13, 64]—projection,
difference, and intersection—but these opera-
tions are very expensive when naively imple-
mented on top of OMEGA. For this reason we
will use a more efficient algorithm that is part
of the PIP library [29].

After this basic infrastructure has been imple-
mented, it is possible to transform the code by
selecting the transformations either by hand, or
let an expert system select the transformation
sequence based on some metric.

5.3 Optimization Heuristics

Cost models and optimization selection could
be implemented using different techniques.
Purely static methods are based on the evalu-
ation of statically computable properties, and

190 • GRAPHITE: Polyhedral Analyses and Optimizations for GCC

are frequent in the classic heuristics for loop
transformations. New heuristic techniques in-
clude cost models based on performance mea-
surements either on abstract interpreters, sim-
ulators, or real hardware. The integration of
this information in the compiler can be based
on machine-learning techniques [1] operating
directly on the polyhedral representation. Hy-
brid techniques include a part of static analy-
sis in the classification or compression of the
data gathered by the dynamic measurement for
enabling the generalization of the decisions for
patterns contained in programs that were not
part of the training benchmark suite.

The analyzers for the profitability of a transfor-
mation sequence are critical to GRAPHITE and
have to be implemented just after the translators
in and out of the polyhedral form.

5.4 Integration of Array Regions

The computation of transformers and pre-
conditions as in PIPS, will be based on the
generic propagation engine [52], that has to be
extended to the interprocedural mode. In in-
traprocedural mode, the array regions informa-
tions is not very useful, because the data de-
pendence analysis is able to produce the same
accurate results.

The extraction of more precise memory ac-
cesses in interprocedural mode can be deferred
to a later stage of improvements. More im-
provements in the precision of the data depen-
dence analysis can be done in parallel with
the implementation of GRAPHITE as they will
also benefit to other optimization passes.

5.5 Numerical Domains Common Inter-
face

Up to now, we considered parameterized poly-
hedra (with integral points) as the foundation

for program abstractions, representations and
optimizations. In the search for faster compila-
tion techniques or more flexible representations
(beyond static control nests), we are interested
in several related numerical domains.

A common interface for numerical domains
computations has been designed in the APRON
project [6] that gathers several members of the
static analysis community in France: École
des mines de Paris, École normale supérieure,
École polytechnique, Vérimag, and IRISA. The
goal of this interface is to ease the use of differ-
ent numerical domains libraries with minimal
code changes. Several existing libraries that
implement intervals, octagons, polyhedra, lin-
ear and polynomial equalities, polynomial in-
equalities, etc., have been considered during the
design, and a reduced number of common op-
erations have been retained for the common in-
terface: these operations are those that occur
among all the domains, i.e. construction, meet,
join, projection, etc., for which every numerical
domain library is providing an implementation.

One of the main goals to the integration of this
common interface in GCC is to ease the in-
tegration of new developments from the static
analysis community. This interface is just a
contract between the user and the implementors
of the numerical domains, as the interface does
not include the code of the underlying libraries:
it is just a guarantee that a new numerical do-
main library will provide the basic operations.
For this reason we will have to either consider
the inclusion of the numerical domains libraries
in the core of GCC, or add a new dependence
on some library developed aside. In both cases
there is an overhead to the inclusion. We con-
sider the integration of the APRON common
interface only as a long term project, as we can
use the OMEGA library for precise operations,
and implement on the side the missing special-
ized algorithms provided by other libraries.

In the following, we separately describe some

GCC Developers’ Summit 2006 • 191

of the libraries that contain the main function-
alities needed for the GRAPHITE project.

5.5.1 OMEGA Library

The OMEGA Library [56] has been developed
for solving and reducing Presburger arithmetic
formulas. OMEGA is known to be expressive,
but it is doubly exponential in the worst case
(and often exponential in practice). This li-
brary has been already integrated to GCC, and
will also be part of the APRON common inter-
face, but it cannot (alone) face the complexity
of polyhedral code generation and dependence
analysis. Some specialized algorithms that are
faster in practice are used: as for example the
algorithm from the PIP library.

5.5.2 PIP Library

The PIP library [29] contains a specialized al-
gorithm to compute affine objective function or
lexicographical minima (or maxima) in convex
polyhedra. The main algorithms of this library
can be contributed to GCC as a refinement for
the operations that use OMEGA.

5.5.3 Octagons

A library that provides a domain for octagons
has been implemented by Antoine Miné [50,
51]. Its use in GRAPHITE would be just exper-
imental, yet has the potential to be a local multi-
criteria optimum in terms of accuracy, expres-
siveness (as a program representation vehicle)
and compilation speed. We wish to conduct ac-
tive research in this area, yet it is not on the
critical path.

5.5.4 Specific Algorithms for Polyhedra

There are some libraries that implement spe-
cialized algorithms that we will consider for the
reduced computation cost: we will consider the
integration of the Barvinok library [65] to count
in polynomial time the number of points in in-
teger polyhedra, but also some missing parts of
the PolyLib.

5.6 Maintenance of Components

The objective is to minimize the effort needed
to implement and to maintain the code: small-
est number of lines of code, fast algorithms
specialized to compilation, rewrite some ex-
isting code, clean up, etc, as for the integra-
tion of OMEGA. It will also be interesting to
benefit from the existence of active communi-
ties that develop some of the abstract numeri-
cal domains, and create dependences on outer
libraries when their license is compatible.

More concretely, all existing code for the
WRaP-IT project is licensed under the (L)GPL.
The code is mostly implemented in C, ex-
cept for parts of WRaP-IT (C++ and domain-
specific transformation language). As all this
code is specific to the internal representations
of the compiler, it will be integrated to GCC.
This will be the most costly part, in number of
lines of code, to be integrated in GCC.

The analysis of the profitability will be based
on libraries developed aside, and will contain
fewer lines of code. The APRON library will be
licensed under LGPL, and the libraries that will
work within this framework are either in the
public domain, as the OMEGA library, or under
GPL, as the Parma PolyLib [7], the PolyLib,
and Polka. We propose to keep all these li-
braries out of the core of GCC, for taking profit
of their active communities. When one of the
libraries is not maintained anymore, as in the

192 • GRAPHITE: Polyhedral Analyses and Optimizations for GCC

case of OMEGA, there are several ways to han-
dle the changes: the first solution is to host the
changes on savannah as a new project for the li-
brary, the other solution is to integrate the code
to an active library, or as a last resort, to in-
tegrate the code to GCC. For instance the PIP
library is a short, a few thousand lines of code,
specialized algorithm that could be integrated
in the PolyLib.

5.7 Other Loop Optimization Modules

The heavy infrastructure of the loop-nest op-
timizer can be implemented independently of
GRAPHITE, such as privatization, array re-
naming, flattening of arrays, automatic paral-
lelization, etc. However some of these transfor-
mations could use the cost models and validity
analyses developed for GRAPHITE.

6 Conclusion

GRAPHITE is the first production compiler
project to implement a polyhedral loop-nest op-
timizer. It has a strong potential for existing ar-
chitectures, and even more, as a framework to
improve the productivity of compiler construc-
tion for future and emerging processors.

From a research perspective, GRAPHITE will
raise several unsolved problems.

• Polyhedral frameworks only offer a lim-
ited support for interprocedural or irreg-
ular control flow. Solving this problem
would lead to a dramatic extension of the
potential of the polyhedral model.

• Is there a good tradeoff in expressiveness
and algorithmic complexity? Are the oc-
tagons precise enough to represent enough
common cases?

• What is the future of cost models and
heuristics, based on polyhedral description
of target machines, static and feedback-
directed performance estimation?

References

[1] F. Agakov, E. Bonilla, J.Cavazos,
B.Franke, G. Fursin, M. O’Boyle,
J. Thomson, M. Toussaint, and
C. Williams. Using machine learning to
focus iterative optimization. In 4th
Annual International Symposium on
Code Generation and Optimization
(CGO), Mar. 2006.

[2] N. Ahmed, N. Mateev, and K. Pingali.
Synthesizing transformations for locality
enhancement of imperfectly-nested loop
nests. In ACM Supercomputing’00, May
2000.

[3] R. J. Allen and K. Kennedy. Automatic
translation of FORTRAN programs to
vector form. ACM Transactions on
Programming Languages and Systems,
9(4):491–542, october 1987.

[4] R. J. Allen and K. Kennedy. Optimizing
Compilers for Modern Architectures.
Morgan and Kaufman, 2002.

[5] C. Ancourt and F. Irigoin. Scanning
polyhedra with DO loop. In ACM Symp.
on Principles and Practice of Parallel
Programming (PPoPP’91), pages 39–50,
June 1991.

[6] Apron: Numerical program analysis.
http://www.cri.ensmp.fr/apron/.

[7] R. Bagnara, E. Ricci, E. Zaffanella, and
P. M. Hill. Possibly not closed convex
polyhedra and the parma polyhedra
library. In M. V. Hermenegildo and

GCC Developers’ Summit 2006 • 193

G. Puebla, editors, Static Analysis:
Proceedings of the 9th International
Symposium, LNCS 2477, pages 213–229,
2002.

[8] U. Banerjee. Data dependence in
ordinary programs. Master’s thesis, Dept.
of Computer Science, University of
Illinois at Urbana-Champaign, November
1976.

[9] U. Banerjee. Dependence Analysis for
Supercomputing. Kluwer Academic
Publishers, Boston, 1988.

[10] D. Barthou. Array Dataflow Analysis in
Presence of Non-affine Constraints. PhD
thesis, Université de Versailles, France,
Feb. 1998. http://www.prism.uvsq.
fr/~bad/these.html.

[11] D. Barthou, A. Cohen, and J.-F. Collard.
Maximal static expansion. Int. J. of
Parallel Programming, 28(3):213–243,
June 2000.

[12] D. Barthou, J.-F. Collard, and
P. Feautrier. Fuzzy array dataflow
analysis. J. of Parallel and Distributed
Computing, 40:210–226, 1997.

[13] C. Bastoul. Code generation in the
polyhedral model is easier than you
think. In Parallel Architectures and
Compilation Techniques (PACT’04),
Antibes, France, Sept. 2004.

[14] C. Bastoul and P. Feautrier. Improving
data locality by chunking. In CC’12
International Conference on Compiler
Construction, LNCS 2622, pages
320–335, Warsaw, april 2003.

[15] D. Berlin, D. Edelsohn, and S. Pop.
High-level loop optimizations for GCC.
In Proceedings of the 2004 GCC
Developers Summit, pages 37–54, 2004.
http://www.gccsummit.org/2004.

[16] F. Bodin, T. Kisuki, P. Knijnenburg,
M. O’Boyle, and E. Rohou. Iterative
compilation in a non-linear optimisation
space. In Proc. Workshop on Profile and
Feedback Directed Compilation, 1998.

[17] F. Chow. Maximizing application
performance through interprocedural
optimization with the pathscale eko
compiler suite. http://www.
pathscale.com/whitepapers.html,
Aug. 2004.

[18] P. Clauss and V. Loechner. Parametric
Analysis of Polyhedral Iteration Spaces.
In IEEE Int. Conf. on Application
Specific Array Processors, ASAP’96.
IEEE Computer Society, August 1996.

[19] A. Cohen. Program Analysis and
Transformation: from the Polytope Model
to Formal Languages. PhD thesis,
Université de Versailles, France, Dec.
1999.

[20] A. Cohen, S. Girbal, and O. Temam. A
polyhedral approach to ease the
composition of program transformations.
In Euro-Par’04, number 3149 in LNCS,
pages 292–303, Pisa, Italy, Aug. 2004.
Springer-Verlag.

[21] J.-F. Collard. Automatic parallelization
of while-loops using speculative
execution. Int. J. of Parallel
Programming, 23(2):191–219, Apr.
1995.

[22] J.-F. Collard. Reasoning About Program
Transformations. Springer-Verlag, 2002.

[23] K. D. Cooper, D. Subramanian, and
L. Torczon. Adaptive optimizing
compilers for the 21st century. J. of
Supercomputing, 2002.

[24] P. Cousot and N. Halbwachs. Automatic
discovery of linear restraints among

194 • GRAPHITE: Polyhedral Analyses and Optimizations for GCC

variables of a program. In 5thACM Symp.
on Principles of Programming
Languages, pages 84–96, Jan. 1978.

[25] B. Creusillet. Array Region Analyses and
Applications. PhD thesis, École
Nationale Supérieure des Mines de Paris
(ENSMP), Paris, France, Dec. 1996.

[26] B. Creusillet and F. Irigoin.
Interprocedural array region analyses.
Int. J. of Parallel Programming,
24(6):513–546, Dec. 1996.

[27] A. Darte and Y. Robert. Mapping
uniform loop nests onto distributed
memory architectures. Parallel
Computing, 20(5):679–710, 1994.

[28] C. Eisenbeis and J.-C. Sogno. A general
algorithm for data dependence analysis.
In ICS ’92: Proceedings of the 6th
international conference on
Supercomputing, pages 292–302,
Washington, D. C., United States, 1992.
ACM Press.

[29] P. Feautrier. Parametric integer
programming. RAIRO Recherche
Opérationnelle, 22:243–268, Sept. 1988.

[30] P. Feautrier. Dataflow analysis of scalar
and array references. Int. J. of Parallel
Programming, 20(1):23–53, Feb. 1991.

[31] P. Feautrier. Some efficient solutions to
the affine scheduling problem, part II,
multidimensional time. Int. J. of Parallel
Programming, 21(6):389–420, Dec.
1992. See also Part I, one dimensional
time, 21(5):315–348.

[32] G. Fursin, M. O’Boyle, and
P. Knijnenburg. Evaluating iterative
compilation. In 11thWorkshop on
Languages and Compilers for Parallel
Computing, LNCS, Washington DC, July
2002. Springer-Verlag.

[33] S. Ghosh, M. Martonosi, and S. Malik.
Cache miss equations: a compiler
framework for analyzing and tuning
memory behavior. ACM Transactions on
Programming Languages and Systems,
21(4):703–746, 1999.

[34] S. Girbal, N. Vasilache, C. Bastoul,
A. Cohen, D. Parello, M. Sigler, and
O. Temam. Semi-automatic composition
of loop transformations for deep
parallelism and memory hierarchies. Int.
J. of Parallel Programming, 2006. 57
pages. Accepted for publication.

[35] G. Goff, K. Kennedy, and C. Tseng.
Practical dependence testing. In
Proceedings of the ACM SIGPLAN’91
Conference on Programming Language
Design and Implementation, pages
15–29, New York, june 1991.

[36] M. Griebl. Automatic parallelization of
loop programs for distributed memory
architectures. Habilitation thesis. Facultät
für Mathematik und Informatik,
Universität Passau, 2004.

[37] M. Griebl and J.-F. Collard. Generation
of synchronous code for automatic
parallelization of while loops. In
S. Haridi, K. Ali, and P. Magnusson,
editors, EuroPar’95, volume 966 of
LNCS, pages 315–326. Springer-Verlag,
1995.

[38] F. Irigoin, P. Jouvelot, and R. Triolet.
Overview of the PIPS project. In
P. Feautrier and F. Irigoin, editors,
2ndIntl. Workshop on Compilers for
Parallel Computers, pages 199–212,
Paris, Dec. 1990.

[39] F. Irigoin, P. Jouvelot, and R. Triolet.
Semantical interprocedural
parallelization: An overview of the pips
project. In ACM Int. Conf. on

GCC Developers’ Summit 2006 • 195

Supercomputing (ICS’91), Cologne,
Germany, June 1991.

[40] F. Irigoin and R. Triolet. Computing
dependence direction vectors and
dependence cones with linear systems.
Technical Report ENSMP-CAI-87-E94,
Ecole des Mines de Paris, Fontainebleau
(France), 1987.

[41] W. Kelly. Optimization within a unified
transformation framework. Technical
Report CS-TR-3725, University of
Maryland, 1996.

[42] W. Kelly, W. Pugh, and E. Rosser. Code
generation for multiple mappings. In
Frontiers’95 Symposium on the frontiers
of massively parallel computation,
McLean, 1995.

[43] X. Kong, D. Klappholz, and K. Psarris.
The i test: A new test for subscript data
dependence. In ICPP’90 International
Conference on Parallel Processing, pages
204–211, St. Charles, august 1990.

[44] L. Lamport. The parallel execution of do
loops. Communications of ACM,
17(2):83–93, 1974.

[45] W. Li and K. Pingali. A singular loop
transformation framework based on
non-singular matrices. International
Journal of Parallel Programming,
22(2):183–205, Apr. 1994.

[46] A. W. Lim and M. S. Lam.
Communication-free parallelization via
affine transformations. In 24thACM
Symp. on Principles of Programming
Languages, pages 201–214, Paris,
France, jan 1997.

[47] A. W. Lim, S.-W. Liao, and M. S. Lam.
Blocking and array contraction across
arbitrarily nested loops using affine

partitioning. In ACM Symp. on Principles
and Practice of Parallel Programming
(PPoPP’01), pages 102–112, 2001.

[48] V. Loechner, B. Meister, and P. Clauss.
Precise data locality optimization of
nested loops. J. of Supercomputing,
21(1):37–76, Jan. 2002.

[49] D. E. Maydan, J. L. Hennessy, and M. S.
Lam. Efficient and exact data
dependence analysis. In PLDI ’91:
Proceedings of the ACM SIGPLAN 1991
conference on Programming language
design and implementation, pages 1–14,
New York, NY, USA, 1991.

[50] A. Miné. The octagon abstract domain.
In AST 2001 in WCRE 2001, IEEE, pages
310–319. IEEE CS Press, October 2001.

[51] A. Miné. The octagon abstract domain.
Higher-Order and Symbolic
Computation, 2006. (to appear)
http://www.di.ens.fr/~mine/
publi/article-mine-HOSC06.pdf.

[52] D. Novillo. A propagation engine for
gcc. In Proceedings of the 2005 GCC
Developers Summit, pages 175–184,
2005.
http://www.gccsummit.org/2005.

[53] D. Parello, O. Temam, A. Cohen, and
J.-M. Verdun. Towards a systematic,
pragmatic and architecture-aware
program optimization process for
complex processors. In ACM
Supercomputing’04, Pittsburgh,
Pennsylvania, Nov. 2004. 15 pages.

[54] G.-R. Perrin and A. Darte, editors. The
Data Parallel Programming Model.
Number 1132 in LNCS. Springer-Verlag,
1996.

[55] W. Pugh. The omega test: a fast and
practical integer programming algorithm

196 • GRAPHITE: Polyhedral Analyses and Optimizations for GCC

for dependence analysis. In Proceedings
of the third ACM/IEEE conference on
Supercomputing, pages 4–13,
Albuquerque, Aug. 1991.

[56] W. Pugh. The omega test: a fast and
practical integer programming algorithm
for dependence analysis. In
Supercomputing, pages 4–13, 1991.

[57] W. Pugh. Uniform techniques for loop
optimization. In ACM Int. Conf. on
Supercomputing (ICS’91), pages
341–352, Cologne, Germany, June 1991.

[58] W. Pugh. Counting solutions to
presburger formulas: How and why. In
SIGPLAN Conference on Programming
Language Design and Implementation,
pages 121–134, 1994.

[59] F. Quilleré, S. Rajopadhye, and D. Wilde.
Generation of efficient nested loops from
polyhedra. Intl. J. of Parallel
Programming, 28(5):469–498, Oct. 2000.

[60] L. Rauchwerger and D. Padua. The
LRPD test: Speculative run–time
parallelization of loops with privatization
and reduction parallelization. IEEE
Transactions on Parallel and Distributed
Systems, Special Issue on Compilers and
Languages for Parallel and Distributed
Computers, 10(2):160–180, 1999.

[61] A. Schrijver. Theory of Linear and
Integer Programming. John Wiley and
Sons, Chichester, UK, 1986.

[62] R. Triolet, P. Feautrier, and P. Jouvelot.
Automatic parallelization of fortran
programs in the presence of procedure
calls. In Proc. of the 1stEuropean Symp.
on Programming (ESOP’86), number
213 in LNCS, pages 210–222.
Springer-Verlag, Mar. 1986.

[63] P. Tu and D. Padua. Automatic array
privatization. In 6thWorkshop on
Languages and Compilers for Parallel
Computing, number 768 in LNCS, pages
500–521, Portland, Oregon, Aug. 1993.

[64] N. Vasilache, C. Bastoul, and A. Cohen.
Polyhedral code generation in the real
world. In Proceedings of the
International Conference on Compiler
Construction (ETAPS CC’06), LNCS,
pages 185–201, Vienna, Austria, Mar.
2006. Springer-Verlag.

[65] S. Verdoolaege, K. Woods,
M. Bruynooghe, and R. Cools.
Computation and manipulation of
enumerators of integer projections of
parametric polytopes. Technical Report
CW 392, Katholieke Universiteit Leuven,
Dept. of Computer Science, 2005.
http://www.kotnet.org/~skimo/
barvinok/.

[66] H. L. Verge. A note on Chernikova’s
algorithm. Technical Report 635, IRISA,
1992.

[67] F. Vivien. Détection de parallélisme dans
les boucles imbriquées. PhD thesis, ENS
- Lyon, 1997.

[68] M. E. Wolf. Improving Locality and
Parallelism in Nested Loops. PhD thesis,
Stanford University, Aug. 1992.
Published as CSL-TR-92-538.

[69] M. Wolfe and U. Banerjee. Data
dependence and its application to parallel
processing. International Journal of
Parallel Programming, 16(2):137–178,
1987.

[70] M. Wolfe and C. W. Tseng. The power
test for data dependence. IEEE
Transactions on Parallel and Distributed
Systems, 3(5):591–601, 1992.

GCC Developers’ Summit 2006 • 197

[71] M. J. Wolfe. High Performance
Compilers for Parallel Computing.
Addison-Wesley, 1996.

[72] D. G. Wonnacott. Constraint-Based
Array Dependence Analysis. PhD thesis,
University of Maryland, 1995.

198 • GRAPHITE: Polyhedral Analyses and Optimizations for GCC

Treegion Instruction Scheduling in GCC

Michael C. Rosier and Thomas M. Conte
Center for Embedded System Research

Department of Electrical and Computer Engineering
North Carolina State University
{mcrosier,conte}@ncsu.edu

Abstract

Instruction scheduling is a critical compila-
tion phase for extracting significant amounts of
parallelism within a program. The first step
of instruction scheduling is region formation;
the size and characteristics of the region play
an important role in determine the amount of
available ILP. In this work the status of the
implementation of an architecture-independent,
aggressive global instruction scheduler based
on Treegions is presented. A Treegion is a
a tree-shaped subgraph of the control-flow-
graph (CFG). Unlike other region formation
algorithms, such as Traces or Superblocks,
Treegions take into account multiple execution
paths, producing more opportunities for paral-
lelism. Unlike Hyperblocks, Treegions do not
require predicates. Treegion formation can use
tail duplication. To limit the possible negative
side effects of code expansion, our Treegion
scheduler uses the Instantaneous Code Size Ef-
ficiency (ICSE) heuristic of Zhou for conserva-
tive tail duplication. Experimental results show
that Treegion formation dramatically increases
the average region size as compared to the cur-
rent region formation code. The implemen-
tation currently resides on the sched-treegion-
branch.

1 Introduction

High performance microprocessors use com-
plex hardware techniques (e.g., out-of-order ex-
ecution, branch prediction, prefetching) to ex-
ploit parallelism within a program. Alterna-
tively, instruction scheduling is a compile-time
technique for extracting instruction-level paral-
lelism (ILP). For wide-issue statically sched-
uled processors (e.g., EPIC, VLIW), instruction
scheduling plays an exceedingly important role
in improving performance.

During global instruction scheduling the com-
piler divides a program’s control flow graph
(CFG) into multiple regions and then sched-
ules each region separately. The scope of a re-
gion may be limited to a basic block (i.e., ba-
sic block scheduling) or encompass the entire
CFG. Past work has predominantly focused on
linear regions, i.e., regions containing a sin-
gle control path, which often limits specula-
tion, resulting in an under utilization of proces-
sor resources. These types of global instruction
scheduling techniques include Trace schedul-
ing [1], Superblocks [2], and Hyperblocks [3].
Trace scheduling forms linear regions, called
traces, of basic blocks that execute sequentially.
Loop-unrolling is commonly used as a trace en-
larging optimization. Similar to Trace schedul-
ing, Superblocks form single-entry, (possibly)

200 • Treegion Instruction Scheduling in GCC

multiple-exit linear regions. After Superblock
formation side entrances are removed via tail
duplication. Finally, Hyperblocks extend upon
Superblocks by using hardware predication to
reduce the need for tail duplication. These tech-
niques suffer from a number of pitfalls. First,
formation is based on profile information. Of-
ten when scheduling for the more probable path
the less likely path suffers. Variation in input
sets or lack of profile information can result in a
significant performance penalty. Furthermore,
the linearity of these regions limit the opportu-
nity for speculation.

A Treegion is a non-linear, single-entry,
multiple-exit region of code containing ba-
sic blocks that constitute a tree-shaped sub-
graph of the control-flow-graph (CFG). Build-
ing large regions is a critical aspect of instruc-
tion scheduling that enables the compiler to ex-
tract parallelism. Unlike other region formation
algorithms, such as Traces and Superblocks,
Treegions include multiple paths of execution,
producing larger regions and more opportuni-
ties for speculation. In addition, Treegions do
not require special architectural features for re-
gion formation.

GCC currently supports both linear and non-
linear regions. Linear regions are supported in
the form of Superblocks (tracer.c) and Ex-
tended Basic Blocks (EBB) (sched-ebb.c).
Meanwhile, support for non-linear regions
(sched-rgn.c) are limited to loop-free pro-
cedures and reducible inner loops. Treegions
have the advantage that unlike Superblocks and
EBB, their formation includes multiple paths of
execution and do not require profile informa-
tion. Generally, Treegions can realize signifi-
cantly larger regions than other region forma-
tion techniques.

The remainder of this paper is organized as
follows. Section 2 describes the current GCC
global instruction scheduler. Section 3 de-
scribes natural treegion formation, or treegion

formation without tail duplication. Section 4
describes an efficient technique for the tail du-
plication of treegions. Sections 5 and 6 discuss
Treegion scheduling and experimental results,
respectively. Finally, section 7 gives a brief
conclusion.

2 GCC Instruction Scheduling

The GCC instruction scheduler is a list-based
instruction scheduler derived from work orig-
inally developed at IBM Haifa Labs. The
generic parts of the scheduler are found
in haifa-sched.c. The goal of list-
scheduling is to minimizing the length of the
critical path while maximizing the opportunity
for parallelism. The steps to list scheduling are
as follows:

1. Build the data dependence graph.

2. Calculate priorities for each instruction.

3. Iteratively schedule ready instructions.

The scheduler is invoked before and after reg-
ister allocation. Treegion scheduling extends
upon the interblock scheduling pass, found
in sched-rgn.c, performed prior to regis-
ter allocation. Instructions may be specula-
tively scheduled during the first pass with much
greater ease than during the second pass. Af-
ter register allocation each pseudo-register has
been assigned a physical register, introducing
anti- and output-dependencies. These depen-
dencies greatly restrict scheduling.

Region formation is the first step of interblock
scheduling. In this work, treegions are the cho-
sen region type. Treegion formation is a two
step process involving natural treegion forma-
tion and tail duplication, which are discussed
in sections 3 and 4, respectively.

GCC Developers’ Summit 2006 • 201

Prior to scheduling, dependencies between in-
structions are found for each basic block within
the region. Such dependencies include those
between registers (i.e., true-, anti-, and output-
dependencies), memory dependencies, depen-
dencies to maintain function call ordering, and
the dependence between a conditional branch
and the setting of the condition code. Rou-
tines for building the data dependence graph are
found in sched-dep.c.

Next, instruction priorities are calculated. The
priority of an instruction dictates the order in
which it may reside on the ready list, or the list
of instructions whos dependencies have been
resolved and are available for scheduling. Pri-
orities are calculated in reverse order beginning
with a basic block’s tail instruction and end-
ing with the head instruction. The priority of
an instruction is found by summing the latency
of the instruction and the maximum priority of
any dependent successor instruction. This has
the effect of exposing the longest dependency
chain, giving those instruction along the criti-
cal path highest priority.

Finally, after finding dependencies and cal-
culating priorities, schedule_block() is
called for each basic block within the region
to perform list-scheduling. During the schedul-
ing process instructions are added to the ready
list when their dependencies are resolved. De-
pendent instructions that become ready, but do
not reside in the current block, may be added
to the ready list if the current block dominates
the block in which the potentially speculative
instruction resides. The flow probability of a
speculative instruction is an important factor to
consider when performing interblock motion.
Over speculation may delay the critical path or
increase contention for resources, while under
speculation may result in missed opportunities
for increasing parallelism.

The ordering of the ready list is an important
factor to consider when list-scheduling. If mul-

tiple instructions share the same priority, at-
tributes of these instructions, such as regis-
ter pressure, affect later scheduling decisions.
Choosing between these instructions plays a
critical role in finding the optimal schedule.
The algorithm for sorting instruction in the
ready list is as follows:

1. select the instruction with the highest pri-
ority, ties broken by

2. select the instruction which least con-
tributes to register pressure, ties broken by

3. prefer in-block upon interblock motion,
ties broken by

4. prefer useful upon speculative motion, ties
broken by

5. choose the instruction with the highest
flow probability, ties broken by

6. choose the instruction which is least de-
pendent upon the previously scheduled in-
struction, ties broken by

7. choose the instruction which has the most
instructions dependent upon it, or finally

8. choose the instruction with the lowest
UID.

Sorting instructions based on this algorithm
maximizes the opportunity for parallelism
while minimizing the length of the critical path.

3 Treegion Formation

This section describes the two step process
of treegion formation. First, natural treegions
based on the original CFG are formed. Then,
the ICSE heuristic is applied to perform tail du-
plication.

202 • Treegion Instruction Scheduling in GCC

3.1 Natural Treegion Formation

Natural treegion formation begins at the entry
block of a procedure, which forms the root of
a new treegion. Starting at this root, the CFG
is traversed and successor basic blocks are ab-
sorbed into the treegion if they are not a merge
point (i.e., have multiple predecessor edges).
Eventually all successor blocks that do not con-
tain merge points are consumed by the tree-
gion and only leaf nodes remain. These leaf
nodes, referred to as saplings, are then added
to a saplings list. Saplings form the roots of
new treegions. For each sapling the same pro-
cess is applied until all basic blocks in the CFG
have been consumed.

Figure 1 shows pseudo-code for finding natu-
ral treegions. Initially the saplings list includes
only the successor to the ENTRY_BLOCK of
the current procedure. This basic block is
then removed from the saplings list to form
the root of a new treegion. Next, all succes-
sors of the root node are added to the suc-
cessor edge list. Each edge in the edge list
is then traversed in breadth first order to ab-
sorb successor blocks into the newly formed
treegion. Backedges are not traversed to pre-
vent the forming of cyclic regions. Traversal
also ends at the EXIT_BLOCK. If the cur-
rent basic block has multiple predecessor edges
(i.e., EDGE_COUNT(edge->preds) > 1)
the node is added to the saplings list and its
successor basic blocks are not considered for
inclusion in the current treegion. Finally, if the
current node is absorbed into the treegion all its
successor edges are added to the successor edge
list.

Figure 2 shows an example CFG after treegion
formation. The size and number of treegions is
based on the layout of the CFG, not profile in-
formation. From figure 2 it can be seen that for
any block in a treegion all predecessor blocks

find_treegions (void)
{
add ENTRY_BLOCK->succs to saplings;
while(more saplings)
{
node = first set bit (saplings);
treegion += node;
edge_list += node->succs;

while(more edges)
{
curr_edges = edge_list[];
curr_node = curr_edges[]->dest;

while(more succ in curr_edges[])
{
/* Dont traverse backedges */
if(edge->flags & BACK_EDGE)
continue;

/* Skip Exit Block */
if(curr_node == EXIT_BLOCK)
continue;

/* Add merge to saplings */
if(EDGE_COUNT(edge preds) > 1)
{
SET_BIT (saplings, curr_node);
continue;

}

/* Add node to treegion */
treegion += curr_node;

/* Add succs to edge list */
edge_list += curr_node->succs;

}
}

}
}

Figure 1: Pseudo-code for natural treegion for-
mation

GCC Developers’ Summit 2006 • 203

BB0

BB1 BB2

BB3 BB4

BB5

BB7BB6

BB8

Treegion 0

Treegion 1

Treegion 2

Figure 2: CFG after treegion formation

dominate it. In section 5.2 further optimiza-
tions based on dominator parallelism are dis-
cussed. It is also important to note that specu-
latively scheduled instructions are never dupli-
cated because treegions do not contain merge
points. For our chosen benchmark suite the av-
erage natural treegion contains 2.65 blocks and
20.89 instructions. For these regions, on aver-
age 3.65 instructions are speculatively sched-
uled.

4 Tail Duplication

Tail duplication is performed in order to in-
crease region size providing more opportunity
for speculation. However, overly aggressive
duplication has the potential to negatively im-
pact the performance of the instruction cache
and TLB. This section begins by presenting the
tail duplication implementation, with treegions
being the unit of duplication. Then an efficient
technique for deciding upon when to apply tail
duplication is presented. This metric, referred
to as the Instantaneous Code Size Efficiency
(ICSE), is defined as the change in IPC relative
to the change in code size after tail duplication.

For each edge between a pair of treegions the
ICSE is calculated to determine if the duplica-
tion of the child treegion will be beneficial.

4.1 Tail Duplication Example

The tail duplication process begins by calculat-
ing the ICSE of each candidate, discussed in
subsection 4.2. Each control edge between a
parent and child treegion is a potential candi-
date with the child treegion being the target for
duplication. After calculating all ICSEs, the
best candidate is selected for duplication if it
is above the ICSE threshold. If no more can-
didates are available for duplication then the
scheduling process may begin.

BB0

BB1/
BB5'

BB2

BB3 BB4

BB5

BB7BB6

BB8

Treegion 0

Treegion 1

Treegion 2

BB7'BB6'

Figure 3: Duplication of candidate edge be-
tween BB1 and BB5

Continuing with the example in Figure 2, Fig-
ure 3 depicts the result of selecting the candi-
date edge between basic blocks 1 and 5. Blocks
5, 6, and 7 in the child treegion, treegion 1, are
duplicated. These duplicated blocks, denoted
with tick marks, are then absorbed into tree-
gion 0. After calling cleanup_cfg() basic
blocks BB5’ and BB1 are merged into a sin-
gle block. Tail duplication continues until ei-
ther no more candidates exist or no more can-

204 • Treegion Instruction Scheduling in GCC

didates are above the ICSE threshold. Under
code size or compile time constraints, treegion
size may also be limited by the number of basic
blocks and/or the number of instructions con-
tained with in the treegion. Compilation flags
for constraining tail duplication and region for-
mation are discussed in subsection 4.4.

4.2 Instantaneous Code Size Efficiency

In previous work Zhou et al. [4] have shown
that for a minimal code size increase (~2%)
a significant speedup can be obtained. Fur-
thermore, duplication beyond that of the initial
code size increase produces only small addi-
tional gains in performance. Due to these facts
the ICSE equation was developed and is as fol-
lows:

E f f iciency =

IPCa f ter_td − IPCbe f ore_td

code_sizea f ter_td − code_sizebe f ore_td
(1)

In equation 1, IPCbe f ore_td and IPCa f ter_td re-
fer to the instruction-per-cycle (IPC) ratio of a
treegion before and after the application of tail
duplication, respectively. code_sizea f ter_td −
code_sizebe f ore_td refers to the change in code
size due to tail duplication. Equation 1 requires
the IPC of a region to be known at compile
time. Since this information is not available, a
heuristic is used to estimate the execution time
of a treegion, defined as follows:

Exec_Time =

∑
pathi

[Max(ddbpathi,rbpathi)∗ f reqpathi] (2)

The estimated execution time of a multi-path
treegion is defined as the sum of the expected
execution time of each path through a tree-
gion biased by the execution frequeny of each

path. The execution frequency of each path,
f reqpathi , is determined through profiling. If
profile information is not available, GCC uses a
number of heuristics to approximate the execu-
tion frequencies. The expected execution time
of any path is the maximum of the data depen-
dence bound, ddbpathi , and the resource bound,
rbpathi .

The data dependence and resource bounds are
found using similar techniques as those used
during modulo scheduling [5] to find the mini-
mum initiation interval (MII). For a given tree-
gion, the data dependence bound is calculated
as the height of the longest true-dependency
chain in the DDG. The resource bound is com-
puted as the number of instructions in the tree-
gion divided by the issue width of the target
machine.

4.3 Tail Duplication Implementation

Figure 4 shows a partial call graph for the main
tail duplication function, td_treegions().
The td_init_candidates() function is
first called to calculate the ICSE for all possi-
ble tail duplication candidates. Prior to calling
td_add_candidate(), candidates that ex-
ceed user defined parameters (e.g., maximum
number of basic blocks per region) are elim-
inated to restrict the formation of excessively
large regions. This prevents compile time from
becoming exceedingly long.

Next, td_classify_candidate() is
called to classify the candidate into one of four
possible types. The classification is based on
two factors: (1) the number of predecessor
edges entering the child treegion and (2) the
number of parent treegions the child possesses.
These two factors strongly influence efficiency.
For example, assume there exists two edges
between a parent treegion A and a child tree-
gion B. No additional predecessor edges are

GCC Developers’ Summit 2006 • 205

td_treegions ()

td_init_candidates ()

td_add_candidate ()

td_classify_candidate () td_candidate_efficiency ()

td_treegion (best)

td_reform_treegions ()

td_update_candidates () td_free_candidates ()

td_add_candidate ()

td_classify_candidate () td_candidate_efficiency ()

td_treegion_exec_time ()

td_build_DDG () td_free_DDG ()td_path_res_bound ()td_path_dd_bound ()

Figure 4: Partial call graph for tail duplication code

entering treegion B. This implies treegion A is
the lone parent of treegion B. After duplicating
the child treegion, denoted B’, both treegion B
and treegion B’ can be merged into the parent
treegion A. This type of duplication produces
much larger regions relative to a small code
size increase. Alternatively, if three edges are
shared between the parent and child only the
duplicated treegion B’ can be merged into the
parent treegion A.

After classifying the candidate,
td_candidate_efficiency() is called
to calculated ICSE. Based on the type of
candidate the estimated execution time,
as defined in Equation 2, is calculated by
td_treegion_exec_time(). The esti-
mated execution time is used to approximate
the change in IPC before and after tail du-
plication. To find the resource and data
dependence bounds of a treegion the DDG
must first be built. This is done using the
routines found in sched-dep.c. The
treegion is then traversed in depth-first
order. For each unique path through the
treegion the td_path_res_bound() and
td_path_dd_bound() functions are called
to find the maximum bound.

Once all ICSEs have been calculated the best
candidate is selected for duplication. Af-
ter duplication, td_reform_treegions() is
called to incrementally update the data struc-
ture of each effected treegion. td_update_

candidates is then called to recalculate the
ICSE for each effected treegion. This incre-
mental updating process is critical for min-
imizing compile time. After all possible
candidates have been duplicated, td_free_

candidates() is called to free all tail du-
plication related data structures. Finally,
cleanup_cfg() is called to optimize the CFG
and merge basic blocks. Scheduling then be-
gins after calling find_treegions() again
due to the fact the calling of cleanup_cfg()
invalidates all region related data structures.

4.4 Compilation Parameters

Compile time is an important consideration for
a production level compiler. Various compila-
tion parameters can be used to limit compile
time as well as fine tune the performance of the
application being compiled. These parameters
are as follows:

1. max-sched-region-blocks - limit the size of

206 • Treegion Instruction Scheduling in GCC

the region based on the number of basic
blocks.

2. max-sched-region-insns - limit the size of
the region based on the number of instruc-
tions.

3. treegion-max-code-growth - limits tail du-
plication based on a maximum amount of
code growth.

4. treegion-icse-threshold - sets the ICSE
threshold. Prior work [4] has shown the
optimal range to be between 0.268 and
0.577. A higher threshold results in less
duplication.

5. min-spec-prob - the minimum probability
of reaching a source block for interblock
speculative scheduling.

5 Treegion Scheduling

Due to the acyclic nature of treegions, the Haifa
scheduler does not require any modifications to
accomodate treegions. However, in this section
various modifications are proposed to enhance
the performance of the scheduler.

5.1 Tree Traversal Scheduling

The goal of Tree Traversal Scheduling
(TTS) [6] is to speedup every execution path
through the treegion. This is accomplished
by prioritizing speculative instructions from
different paths which compete for limited
resources. Profile information is used to
prioritize the scheduling of basic blocks within
a treegion.

The algorithm for tree traversal scheduling is as
follows:

1. For a treegion, sort the basic blocks ac-
cording to a depth-first traversal order with
the child block selected with the highest
execution frequency.

2. Begin list scheduling blocks at the root ba-
sic block.

3. During the scheduling of a basic block,
consider speculation for instructions dom-
inated by this basic block.

4. Repeat step 3 until all basic blocks in the
treegion have been scheduled.

The primary strength of Tree Traversal
Scheduling is that the frequently executing
path is given highest priority, while the less
frequently executing paths are not severly
penalized.

5.2 Operation Combining (Future Work)

The application of tail duplication enables the
removal of merge point between treegions, pro-
ducing larger regions. However, despite the
benefits, tail duplication has the potential to de-
crease the performance of the instruction cache
and TLB due to the creation of many redun-
dant instructions. In some instances the instruc-
tion scheduler can take advantage of dominator
parallelism to remove redundant operations at
schedule time.

Dominator parallelism [7] presents itself when
an instruction is speculatively scheduled into
a predecessor block that dominates blocks
containing redundant copies of the scheduled
instruction. In these instances, a form of
schedule-time partial redundancy elimination
(PRE), also referred to as operation combining,
may be applied to remove all but the specula-
tively scheduled copy of the instruction. The

GCC Developers’ Summit 2006 • 207

single remaining instruction performs the op-
eration for all paths. If the instruction is re-
dundant in every control path below the tar-
get block the instruction can be made non-
speculative.

 r1 = ld[A]
 r2 = r1 + 10
 if(r2 > 100)
 goto bb1

R3 = 1
R4 = 5

R3 = 6
R4 = 9

 r5 = 10
 if(r4 == r2)
 goto bb4

 r5 = 10
 if(r4 == r2)
 goto bb4

bb0

bb1 bb2

bb3'bb3

Figure 5: Example of operation combining
within a treegion

Figure 5 depicts an example treegion after the
duplication of basic block bb3, denoted bb3’.
During the scheduling of bb0, the instruction
r5 = 10 can be speculatively moved from
both blocks bb3 and bb3’ into basic block
bb0. Assuming r5 = 10 has already been
hoisted from bb3, the redundant copy from
bb3’ may be safely eliminated. The scheduler
can easily detect this optimization due to the
characteristic that any basic block within a tree-
gion dominates all its successor blocks. Any
instruction speculated upward is always moved
into a dominator. Therefore, if an instruction is
speculated into a block where a redundant copy
of the instruction has already been scheduled,
one copy can be removed.

6 Experimental Results

Experiments were performed to evaluate the
performance of the Treegion instruction sched-
uler. All tests were conducted on an Itanium 2
processor. The benchmark suite consisted of a
subset of benchmarks from the SPEC2K suite

including: gzip, mcf, crafty, parser, gap, bzip2,
twolf, wupwise, swim, mgrid, applu, equake,
ammp, sixtrack, and apsi. Profile information
was generated using the -fprofile-arcs
flag and all benchmarks were compiled using
the -O3 and -fbranch-probabilities
flags. Flags set to control speculation include
-fsched-interblock, -fsched-spec,
and -fsched-spec-load.

Table 1 presents various region related statistics
for the original region formation code, natu-
ral treegion formation, treegion formation with
tail duplication bounded by an ICSE threshold
of 0.577, and treegion formation bounded by
a maximum of 100 instructions per region, re-
spectively. The current region formation code
produces and average region size of 1.10 basic
blocks, containing 8.66 instructions of which
0.09 were speculatively scheduled. Due to
the limited scope of the region the opportu-
nity for speculation is limited. Natural tree-
gions, i.e., treegions without tail duplication,
produce an average region size of 2.65 basic
blocks, containing 20.89 instructions of which
3.65 were speculatively scheduled. Even with-
out the application of tail duplication natural
treegions provide greater opportunity for paral-
lelism. Limiting duplication to a ICSE thresh-
old of 0.577 produces only slightly larger re-
gions beyond that of natural treegions. Finally,
applying unlimited tail duplication while limit-
ing region size to a maximum of 100 instruc-
tions produces an average regions size of 5.70
basic block, containing 35.95 instructions of
which 6.00 were speculatively scheduled.

Table 2 shows the speedups for the various re-
gion formation techniques. Speedups are rel-
ative to basic block scheduling. The execu-
tion time of each SPEC benchmark was found
by averaging five runs using the ref input set.
The speedup results vary across benchmarks.
The original region code produces speedup
for parser, twolf, and ammp while gap and

208 • Treegion Instruction Scheduling in GCC

Region Natural Treegion Treegion (k = 0.577) Treegion (100 insns)
Basic Blocks 1.10 2.65 2.79 5.70
Instructions 8.66 20.89 21.70 35.95
Interblock 0.09 3.65 3.81 6.00

Table 1: Region statistics

Region Natural Treegion Treegion (k = 0.577) Treegion (100 insns)
gzip 1.00 0.96 0.96 1.03
mcf 1.00 1.00 1.00 1.00
crafty 1.00 0.99 1.00 1.00
parser 1.01 1.01 1.01 1.01
gap 0.99 1.01 1.00 1.00
bzip2 0.99 1.06 1.06 1.06
twolf 1.03 1.01 1.01 1.03
wupwise 1.00 0.99 1.02 1.01
swim 1.00 1.02 1.04 1.01
mgrid 1.00 0.99 0.99 1.00
applu 1.00 1.00 1.00 1.00
equake 1.00 1.00 1.01 1.00
ammp 1.01 1.01 1.00 1.00
sixtrack 1.00 0.98 0.98 0.98
apsi 1.00 1.01 1.01 1.01
average 1.00 1.00 1.01 1.01

Table 2: Speedup results

bzip slowdown. Natural treegions produce a
speedup for seven of the fifteen benchmarks,
slowdowns for five of the benchmarks, while
three benchmarks remain uneffected. The most
significant speedup (6%) is for bzip2. For wup-
wise, swim, and equake the best performance
gain is realized using the ICSE threshold. Ap-
plying unlimited tail duplication while limit-
ing region size to 100 instructions produce a
speedup for seven of the fifteen benchmarks,
slowdown for only sixtrack, while seven bench-
marks remain uneffected. On average the orig-
inal region formation code and natural tree-
gion formation provide no speedup, while tree-
gion formation with tail duplication bounded

by ICSE and treegion formation bounded by in-
struction count produce and average speedup of
1%.

7 Conclusions

This paper presents the status of the imple-
mentation of an architecture-independent, ag-
gressive global instruction scheduler based on
Treegions. Natural Treegion formation and
tail duplication have been completed and are
currently maintained on the sched-tree-branch.
The ICSE heuristic has also be implemented as

GCC Developers’ Summit 2006 • 209

a means of judiciously applying tail duplica-
tion. To ensure compile time does not become
exceedingly long fine tuning of this code is an
ongoing process. Also, while tail duplication
has the benefit of increasing region size, it does
introduce redundant instructions. Finally, oper-
ation combining is presented as future work for
eliminating redundant instructions as schedule
time.

Our results show that treegion formation dra-
matically increases the average region size as
compared to the current region formation code.
This in turn results in a significant increase
in the number of speculatively scheduled in-
structions. Our results show performance ben-
efits for a few benchmarks (i.e., parser, bzip2,
wupwise, twolf, swim, and apsi) while others
show little improvement because of architec-
tural features such as memory latencies that
hide scheduling improvements. Techniques
such as software prefetching should be able to
alleviate such issues resulting in future perfor-
mance gains from Treegion scheduling.

8 Acknowledgments

Thanks go to Diego Novillo and Gerald Pfeifer
for their assistance during the opening of the
Treegion scheduling branch. Thanks also to
TINKER members Balaji Iyer, Paul Bryan,
Jesse Beu, and Saurabh Sharma, for their help-
ful insight.

References

[1] J. Fisher, “Trace Scheduling: A Technique
for Global Microcode Compaction,” in
IEEE Transactions on Computers,
pp. 478–490, 1981.

[2] W. W. Hwu, S. A. Mahlke, W. Y. Chen,
P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery, “The Superblock: An
Effective Technique for VLIW and
Superscalar Compilation,” Journal of
Supercomputing, 1993.

[3] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E.
Hank, and R. A. Bringmann, “Effective
Compiler Support for Predicated
Execution using the Hyperblock,” in 25th
Annual International Symposium on
Microarchitecture, 1992.

[4] H. Zhou and T. M. Conte, “Code Size
Efficiency in Global Scheduling for ILP
Processors,” in Proceedings of the 6th
Annual Workshop on the Interaction
between Compilers and Computer
Architectures (INTERACT-6) held in
conjunction with the 8th International
Symposium on High Performance
Computer Architecture (HPCA-8),
(Cambridge, MA), February 2002.

[5] M. Hagog and A. Zaks, “Swing Modulo
Scheduling for GCC,” in The 2004 GCC
Developers’ Summit, (Ottawa, Canada),
June 2004.

[6] H. Zhou, M. D. Jennings, and T. M. Conte,
“Tree Traversal Scheduling: A Global
Scheduling Technique for VLIW/EPIC
Processors,” in Proceedings of the 14th
Annual Workshop on Languages and
Compilers for Parallel Computing
(LCPC’01), (Cumberland Falls, KY),
August 2001.

[7] A. V. Aho, R. Sethi, and J. D. Ullman,
Compilers: Principles, Techniques, and
Tools. Addison–Wesley, 1986.

210 • Treegion Instruction Scheduling in GCC

Improving Software Floating Point Support

Nathan Sidwell
CodeSourcery Inc

nathan@codesourcery.com

Joseph Myers
CodeSourcery Inc

joseph@codesourcery.com

Abstract

GCC’s runtime library contains a set of soft-
ware floating point routines, to be used when
the required operation is not available in hard-
ware. These routines have not been signifi-
cantly optimized, and software floating point
performs more poorly than it could. We discuss
various pitfalls in their implementation. The
GNU C library, glibc, also contains software
floating point routines, and those have been op-
timized reasonably well. We show performance
numbers obtained from portions of the EEMBC
benchmark running on two PowerPC systems
comparing the routines from the two libraries.
We discuss the incorporation of the glibc
routines into GCC’s runtime library, and show
how to convert other backends to use the new
glibc routines.

1 Benchmarks

Our initial goal was to improve the perfor-
mance of a subset of EEMBC[1] benchmarks
running on PowerPC 405 and 440 hardware
without using floating point instructions. The
EEMBC benchmarks consist of a few sets of
tests targeted at particular application areas—
automotive, office, networking, consumer, etc.
We used a subset of the automotive, networking
and consumer sections. The automotive suite is

particularly floating point intensive. After ob-
taining baseline benchmark numbers, we pro-
filed the suite and examined each test’s profile.
Nearly all of the automotive tests spent some
time in floating point routines. Five of the 16
automotive benchmarks spent significant time
in a few floating point routines. Table 1 tabu-
lates the time spent by those benchmarks in the
floating point routines. It tabulates every rou-
tine accounting for more than 2% of the total
processor usage. As can be seen, the bench-
marks that use floating point spent considerable
time in the floating point library. The final col-
umn is the geometric mean of the of the frac-
tion of execution time for those benchmarks
that showed usage. Mathematically, that is not
a robust calculation because of the arbitrary 2%
cutoff. However, it does give a guideline as to
which routines are important.

2 Floating Point Libraries

GCC contains an implementation of software
floating point in fp-bit.c and associated
files. These implement the regular IEEE 754[2]
operations of addition, subtraction, multipli-
cation, division, comparison and conversions.
Through the use of macros, fp-bit.c is
used to generate float, double, and long
double routines. In this paper, fpbit refers
to the combined float and double routines

212 • Improving Software Floating Point Support

Testcase basefp01 matrix01 a2time01 tblook01 iirflt01 Geometric
Routine Mean
__floatsidf 63.1% 18.1% 55.6% 39.9%
__muldf3 29.0% 32.42% 6.4% 13.3% 16.8%
__divdf3 12.7% 12.7%
__pack_d 16.3% 19.70% 7.4% 16.8% 4.7% 11.3%
__unpack_d 12.4% 15.74% 6.6% 9.6% 3.5% 8.5%
_fpadd_parts 22.1% 20.52% 3.9% 7.7%
__pack_f 5.8% 5.8%
__subdf3 4.45% 4.5%
__extendsfdf2 2.9% 2.9%
__adddf3 2.4% 2.4%
__divsf3 2.2% 2.2%
Total 94.9% 92.83% 83.5% 72.6% 63.8%

Table 1: Benchmark Profiles

of these files. In addition, libgcc2.c con-
tains some conversion routines which are used
in certain circumstances.

Our initial plan involved optimizing fpbit it-
self. There are a number of improvements that
can be made, and we estimated they would
probably give a factor of 2 speedup on some
of the routines. However, it came to our at-
tention that an alternative library had already
been proposed. Torbjorn Granlund submitted
ieeelib[3] some time ago, but it had never
been integrated. ieeelib implements many
of the ideas we had for fpbit. We exper-
imented by using it for the benchmarks and
found that it gave a speedup of around 25%
on EEMBC. Integrating ieeelib would be
a better way forwards than improving fpbit
itself.

Following this, we realised that glibc[4]
also contained software floating point rou-
tines. Again we experimented with a version
of GCC containing those routines and found it
gave an improvement of around 20%. Clearly
ieeelib and glibc were both candidates
for integration. There were a number of advan-

tages of each library:

• ieeelib has a smaller footprint than
glibc.

• glibc contains support for different
rounding modes, including runtime selec-
tion of the rounding mode. (The bench-
marks we performed hardwired the round-
ing mode, so the comparison was compar-
ing like for like features.)

• glibc has support for floating point ex-
ceptions, even integrating these into the
hardware, when that is feasible. (Again,
we made the above measurements with
this disabled.)

• Using glibc routines would reduce the
number of different software floating point
implementations in GNU software.

This last point was very attractive. Reduc-
ing the number of implementations of software
floating point would reduce maintenance. As
we discovered, by uncovering some bugs both
latent and otherwise, writing correct floating

GCC Developers’ Summit 2006 • 213

point code is tricky. Therefore, having a com-
mon implementation would improve software
quality, because if a bug was found in either
glibc or GCC, the patch could be applied to
both.

The size difference between ieeelib and
glibc seemed disadvantageous to glibc.
Table 2 shows the sizes of fpbit, ieeelib
and glibc routines. As can be seen, the
first two are in the same ballpark, whereas the
glibc routines are much larger.

Analysis showed there to be two causes of this.
Firstly glibc has separate addition and sub-
traction routines, and secondly its multiplica-
tion and division routines are larger. Both of
these turn out to have the same cause, namely
correct support for NaNs, rounding modes and
exceptions. Even though we had disabled as
many additional features as possible, their ef-
fects were still present. We thought that it
would be possible to improve the glibc code
size somewhat, but were not sure how far the
tendrils of the optional features could be re-
moved. In the worst case, we felt that on a
modern system an additional 6–7K bytes is not
as significant as it used to be.

Additional advantages of glibc are its con-
trol of rounding mode and support for excep-
tions. Indeed, it could provide dynamic con-
trol of the rounding mode, which is desirable in
some contexts. Although we were not imme-
diately concerned with this, we were sure that
others would be.

We decided that merging the glibc routines
would be a technically better solution, and
chose to pursue it.

However, there was a license issue; glibc is
licensed under the LGPL[5], whereas the com-
piler’s floating point emulation routines need
to be licensed with runtime exception. That
is, although the implementation of the routines

can be licensed under the LGPL, merely link-
ing them into a program as part of GCC’s run-
time support should not bring that program un-
der the requirements of the LGPL (of course,
this would not invalidate any other reason why
the (L)GPL might apply). As the FSF[6] is
the copyright holder of both glibc and GCC,
only they could make the decision to allow
the runtime exception for the glibc routines.
We presented the technical arguments to the
FSF, and persuaded Richard Stallman to allow
a change of license. The FSF approved the use
of LGPL plus runtime exception for the copies
in both glibc and GCC. This means that the
source files can be identical in both places,
rather than having to add the runtime exception
license wording to only the GCC copies.

3 Unpacking IEEE Numbers

The primary failing of fpbit is in its pack-
ing and unpacking of floating point numbers.
Nearly all its deficiencies are artifacts of how
this is done.

All fpbit routines commence by fully un-
packing the floating point number’s mantissa,
exponent and sign into separate fields of a
structure. In addition they determine the num-
ber’s category as one of zero, denormal, sig-
nalling NaN, quiet NaN, infinity or regular
number. The unpacked exponent is unbiased
and the unpacked mantissa has the implicit 1
bit inserted. Denormals are scaled to be con-
sistent with the regular representation of−1S×
M×2E . Apart from clearly taking time, this un-
packing has an immediate deficiency. Firstly it
means the floating point routines use structures,
and pass them by address, thereby forcing these
parameters to be passed in memory with all the
slowdown that entails.1 A second deficiency

1GCC’s structure splitting optimization is inapplica-

214 • Improving Software Floating Point Support

Library fpbit ieeelib glibc
Text size (bytes) 10688 9284 16940

Table 2: Library Sizes on PowerPC 440

is more subtle. The complete categorization
makes the floating point routines begin with
several separate checks for the rare categories.
For instance the code of _fpmul_parts (the
core of the multiplication routine) begins with:

if (isnan (a)) ...
if (isnan (b)) ...
if (isinf (a)) ...
if (isinf (b)) ...
if (iszero (a)) ...
if (iszero (b)) ...

This is actually more checks than is immedi-
ately apparent, because isnan checks for both
quiet and signalling NaN categories. Naturally
these checks have to be done, but the IEEE
encoding uses only two special exponent val-
ues (zero and all ones) to encode all of the
non-normal numbers. Thus it would be possi-
ble to have an early check for the two special
encodings, and then determine which specific
non-normal encoding has occurred out of the
mainline of the routine. In fact, in the case of
_fpmul_parts, this separation of all the dis-
tinct special cases is not necessary because all
the separate if bodies are identical, or nearly
so! This is a classic case of optimizing for the
rare condition.2 Before we started investigating
ieeelib and glibc we made a 0.4% im-
provement by adding __builtin_expect
calls to the various isnan and isinf macros
so the compiler can optimize the expected code
path.

ble here, as the packing and unpacking routines are not
inlined.

2Implementers of networking stacks have discovered
that early and complete unpacking of packet headers is a
pessimization for the same reasons.

4 Improvements to glibc

We made a number of improvements to glibc
in order to bring its performance, where it was
deficient, up to that of ieeelib.

4.1 Unpacking

Some glibc routines do partial unpacking to
obtain an exponent, sign and mantissa, thereby
not having the pessimization described in Sec-
tion 3. The exponent encodes the special val-
ues of interest. Most do further classification,
but using macros and separate local variables
instead of functions and structures, and using
switch statements to reduce the number of
checks. Depending on the operation being per-
formed, ieeelib is even more specialized; it
might do a minimal unpacking. It also never
bothers adding in the implicit one bit in its
expanded form. This turns out to be signif-
icant for float conversion operations and ad-
dition and subtraction where ieeelib was
much faster than glibc. We patched glibc
to perform minimal unpacking in these cases
and improved its performance to be similar to
that of ieeelib.

4.2 Addition and Subtraction

As mentioned, glibc has separate addition
and subtraction routines. Naively it would
seem that they could be trivially combined.
Unfortunately this turns out to be difficult to
achieve, because of the need to generate the
correct NaN value in certain circumstances. A

GCC Developers’ Summit 2006 • 215

set of lower level macros, which provide target
specific features, are used to construct glibc’s
routines. In the case of addition and subtrac-
tion, the macros of interest are _FP_ADD_
INTERNAL and _FP_CHOOSENAN. The sub-
traction routine inverts the sign of the subtra-
hend unless it is a NaN. Then it calls _FP_
ADD_INTERNAL. Addition simply invokes
_FP_ADD_INTERNAL. This would suggest a
simple merging scenario, but unfortunately:

• There is an excess of state to simply call
an underlying routine efficiently.

• _FP_ADD_INTERNAL takes an opera-
tion parameter so that target specific code
can return a different NaN for each opera-
tion, in the case of an exception.

Removing the excess state could be achieved
by not bothering to detect a NaN subtrahend,
and simply inverting its sign in all cases.
This would change the behaviour of ‘F −
NaN’; rather than returning ‘NaN’, it would re-
turn ‘−NaN’. For GCC’s purposes, the oper-
ation parameter is unimportant, but removing
it would probably break our requirement that
the GCC copy be readily updateable from the
glibc sources. It also appears that glibc it-
self only uses this operation parameter for the
x86 and x86_64 targets, where the software
floating-point code is not actually used. How-
ever, the same glibc code is used in the Linux
kernel math emulation, where consistency with
hardware choice of NaN is required. It is unfor-
tunate that this single target family causes such
difficulty. It is possible that the distinction is
unnecessary in even these two cases, in which
case the operation parameter could be removed,
and much simplification achieved. We decided
to leave this as an open issue, keeping the addi-
tion and subtraction routines separate.

4.3 Bit Shifting

One significant change we made to fpbit
before we started porting glibc was to use
__builtin_clz to find the most significant
set bit in integer to floating point conversion
routines. This yielded a 7% performance im-
provement on EEMBC. We made the same
changes to glibc where we replaced hand
coded asm inserts with __builtin_clz,
leaving it to the compiler to determine the most
efficient code sequence.3

4.4 Other Patches

As part of preparing the glibc code for in-
tegration into GCC, support was added for the
new floating point functions that had been in-
serted into fpbit since 1999. Functions were
changed to use typedefs, such as SFtype in-
stead of float. Additionally many changes
were made to reduce the number of compiler
warnings generated by the code. Some of these
resulted from the heavy use of macros in the
glibc code where unreachable code caused
unwanted warnings.

4.5 Bug Fixing

In addition to improving glibc’s perfor-
mance, we uncovered a number of implemen-
tation bugs. This bolstered our thesis that soft-
ware floating point can be tricky, and using the
same implementation in both glibc and GCC

3In general glibc contains a large number of assem-
bly inserts for ‘optimized’ code sequences. These might
have produced better code than GCC in the past, but
we now find the compiler producing better sequences.
Worse, we have discovered that an assembly insert might
be subtly wrong in that it does not describe the side ef-
fects or constraints correctly, leading to incorrect code
generation with GCC’s better optimizers.

216 • Improving Software Floating Point Support

would improve both. We found these bugs both
through code inspection and the use of test-
suites. Firstly, the GCC testsuite found some
problems with the glibc routines. Secondly,
we used the ucbtest[7] testsuite, which is
designed for checking awkward IEEE cases.
The bugs found and fixed in glibc include the
following:

• Undefined behavior involving signed inte-
ger overflow.

• Undefined behavior involving shifting in-
tegers by the width of their type.

• Conversion of float to long long
could left shift by a negative amount.

• Conversion of long long to float
used a macro on long long values that
only worked correctly on values of size
_FP_W_TYPE_SIZE (typically sizeof
long).

• An off-by-one-error in integer to floating
point conversion when the integer value
had exactly one more bit than the number
of floating point mantissa and guard bits.
For example, converting 3×226 to float
yielded 228.

• Incorrect exceptions were set in various
cases.

We also found and fixed bugs outside of
glibc:

• In EEMBC—reliance on undefined behav-
ior of out-of-range floating point to un-
signed integer conversions.

• In fpbit—a latent bug in a previously
unused function causing incorrect round-
ing.

• In libgcc2—conversions of TImode
(128-bit) integers to floating-point values
had fundamental bugs.

5 Results

The EEMBC benchmarks report a number of
values for each test. The value we used to
measure improvement was the number of iter-
ations per second. Because EEMBC reports
iteration times as an integral number of mi-
croseconds, precision is lost with that more ob-
vious measure of speed. As all the different
tests have not been weighted against each other,
we used the geometric mean in order to give
each test equal weighting.4 As stated earlier,
we restricted our measurements to the automo-
tive, networking and consumer subsections of
the EEMBC suite. For the 405 benchmarks
we used -mcpu=405 -O2 and for the 440
benchmarks we used the -mcpu=440 -O2
optimization flags. In addition to the float-
ing point changes, we improved strlen and
16 bit multiplication by adding support for ad-
ditional instructions. These particular bench-
marks do not appear to make use of those fea-
tures, and we believe the entire performance
improvement shown here is due to the soft-
ware float changes. Table 3 enumerates the be-
fore and after iteration counts and the speedup
achieved. Note, these are not official EEMBC
benchmark results, and may be used as a
speedup guide only. As can be seen, the most
improved test case’s performance increased by
nearly 360%.

6 Using the glibc Routines

We have imported the glibc routines into
GCC. The primary source for these routines re-
mains glibc, and any fixes to GCC’s copy

4Using an arithmetic mean would unfairly bias the
work to improving the speed of the longer benchmarks.
There is no evidence that the longer iteration times are
anything other than an artifact of the particular test being
performed.

GCC Developers’ Summit 2006 • 217

405 440 softfp
Benchmark Tests Before After Speedup Before After Speedup
basefp01 1 3226.5 8762.2 2.72 13205.7 35550.5 2.69
matrix01 1 20.1 44.5 2.21 78.2 183.8 2.35
a2time01 1 26264.0 115293.7 4.39 97561.0 448129.1 4.59
tblook01 1 11009.2 23158.3 2.10 40566.3 97924.0 2.41
iirflt01 1 19656.4 60975.6 3.10 73432.2 234521.6 3.19
Automotive 16 13361.2 18445.2 1.38 52301.0 73497.2 1.41
Consumer 5 29.7 29.8 1.00 106.7 108.7 1.02
Network 6 802.9 806.3 1.00 2390.7 2386.9 1.00
Combined 27 2308.1 2797.2 1.21 8366.4 10266.2 1.23

Table 3: Benchmark Numbers

needs to be sent upstream to glibc. Fortu-
nately the sources are identical in both GCC
and glibc, because of the identical license
change in both places.

The integration of the glibc routines into
GCC has been designed to make it easy to
start using these routines for new targets.
Whereas fpbit uses special case code in
mklibgcc.in, glibc uses the existing tar-
get makefile fragment mechanism. GNU Make
features are used in t-softfp to select the
functions required on a given target. In addition
to defining the variables used by t-softfp,
a file called sfp-machine.h must be pro-
vided for each target. Initial versions of this file
for many targets are already located in the ap-
propriate sysdeps/ARCH/soft-fp direc-
tory of glibc.

A target may specify the floating point and
integer modes for which functions are to be
compiled. The conversions between floating
point modes to support may also be specified.
This allows for targets with some hard-float and
some soft-float modes. For those, glibc code
will be used for conversions between the hard-
float and soft-float modes. In such a case, the
sfp-machine.h file may define how to raise
exceptions and determine the rounding mode
for the soft-float modes in a manner consistent

with the exception flags and rounding modes
provided by the hardware. A case where this
might be useful in future is to support the op-
tional __float128 type in the x86_64 ABI.

7 Future Work

The glibc routines offer the possibility of fur-
ther improvements. As has been already men-
tioned, the dynamic control of rounding mode
is possible, along with integrating the excep-
tion mechanism with that provided by the sys-
tem’s glibc fenv.h interface. The routines
could be extended to support the float128
type present in the x86_64 ABI.

Further investigation of the issues involved in
merging the addition and subtraction routines
could be done, thereby reducing the code foot-
print.

There currently remains some overlap between
the operations provided in the glibc routines
and those provided by libgcc2. The glibc
routines replace the libgcc2 routines. For
a pure soft-float target, this is exactly what is
desired, but for a target with hardware floating
point, but supporting a variant soft-float ABI,

218 • Improving Software Floating Point Support

the glibc routines would be used in both sets
of multilibs. The libgcc2 routines will po-
tentially handle rounding and exceptions con-
sistent with the hardware floating point. This
can be solved by implementing the above men-
tioned rounding and exception control to the
glibc routines, and expunging the libgcc2
routines from GCC. This would continue the
reduction in the number of different floating
point routines.

Further details of the glibc routines and sug-
gested further work are available on the GCC
Wiki at http://gcc.gnu.org/wiki/
Software%20floating%20point.

8 Acknowledgements

This work was sponsored by the PowerPC Li-
censing Team at IBM. We are grateful for the
opportunity afforded to speed up this part of
GCC’s support across all architectures.

References

[1] The Embedded Microprocessor
Benchmark Consortium,
http://www.eembc.org.

[2] Standard for Binary Floating Point
Arithmetic, ANSI/IEEE Standard
754–1985.

[3] New IEEE P854 emulation library,
Torbjorn Granlund (tege@swox.com),
http://gcc.gnu.org/ml/gcc/
1999-07n/msg00553.html

[4] The GNU C Library, http:
//www.gnu.org/software/libc

[5] GNU Lesser General Public License,
http://www.gnu.org/
copyleft/lesser.html

[6] The Free Software Foundation,
http:www.fsf.org

[7] Testing difficult cases of IEEE 754
floating point arithmetic, David G.
Hough (dgh@validgh.com) et al.,
http://www.netlib.org/fp/
ucbtest.tgz

Low-Level Performance Analysis
Identifying opportunities for improving compiler code generation.

Steven Munroe
IBM Corporation

munroesj@us.ibm.com

Peter Steinmetz
IBM Corporation

steinmtz@us.ibm.com

Abstract

As the clock speeds of modern processors
approach the limits of today’s manufacturing
technologies, current and future performance
improvements will rely more on instruction
parallelism and compiler exploitation. The
designs of these processors include complex
trade-offs between maximal clock speed and
circuit complexity; assumptions about instruc-
tion usage and timing are included in these
trade-offs and result in processor stalls if not
met. These design points must be considered
by compilers to ensure optimal machine perfor-
mance.

This paper will present methods that compiler
writers/performance analysts can use to iden-
tify non-optimal code generation sequences,
including hazard-prone code streams. These
strategies are applied to specific examples on
a PowerPC POWER5TM processor to illustrate
their effectiveness.

Introduction

The highly competitive market in today’s lead-
ing edge technology sector forces vendors to
continually find ways to improve their prod-
ucts. While many factors can play into a cus-
tomer’s decision to purchase one product over

another, a key item that drives many decisions
is the product’s performance.

Numerous industry standard benchmarks ex-
ist which allow customers to compare the per-
formance of products from multiple vendors
[1]. Thus, it becomes a key marketing focus
for technology companies to present optimal
benchmark results for their products.

The underlying hardware plays a large role in
the benchmarking results for a machine. As
modern processors become more complex and
approach the physical limitations of the tech-
nologies upon which they are built, chip de-
signers are forced to make assumptions and in-
clude complex trade-offs during the processor
design cycle. Code streams which diverge from
these assumptions may contain hazards that re-
sult in poor performance. As a result, highly
optimized software becomes increasingly im-
portant.

Thus, optimizing compilers become a key com-
ponent to the overall performance of the prod-
uct. Benchmarks, and applications alike, de-
pend on the compiler to generate code which
takes advantage of the hardware characteristics
of the machine.

This paper will present methods that a com-
piler writer or performance analyst can use to
identify opportunities for improving the perfor-

220 • Low-Level Performance Analysis

mance of an application. It covers well known
techniques, but goes a step further by demon-
strating how more subtle problems can be iden-
tified.

1 Traditional Techniques

1.1 Profiling

Typically, the greatest opportunities for im-
proving the performance of an application lie
within the most heavily used, or “hot,” sections
of code. Profiling tools [2, 4] can be used to
identify these hot sections within an applica-
tion. Once identified, there are various meth-
ods of recognizing opportunities for improving
them.

For example, an analyst looking to improve the
performance of gzip [5] could use gprof [2] to
generate a report similar to the following:

Each sample counts as 0.01 seconds.
% cumulative self

time seconds seconds .. name
55.62 6.63 6.63 .. deflate
15.60 8.49 1.86 .. send_bits
12.33 9.96 1.47 .. ct_tally
11.83 11.37 1.41 .. compress_blo
2.77 11.70 0.33 .. updcrc
1.43 11.87 0.17 .. build_tree
0.25 11.90 0.03 .. send_tree
0.17 11.92 0.02 .. bi_reverse
0.00 11.92 0.00 .. flush_outbuf
0.00 11.92 0.00 .. file_read
0.00 11.92 0.00 .. flush_block

Over 55% of the application’s run time is spent
within a function named “deflate” making it an
ideal candidate for additional focus.

Using the same tool, one can drill down deeper
and locate the source instructions which are
most heavily executed. Using gprof with the
-l option yields a line-by-line analysis looking
something like this:

Each sample counts as 0.01 seconds.
%
time .. name
8.81 .. deflate (deflate.c:477)
5.96 .. deflate (deflate.c:679)
3.61 .. compress_block (trees.c:1052)
3.61 .. deflate (deflate.c:548)
3.52 .. send_bits (bits.c:141)
3.44 .. compress_block (trees.c:1052)
3.10 .. send_bits (bits.c:122)
3.10 .. deflate (deflate.c:544)
3.10 .. deflate (deflate.c:437)
3.02 .. deflate (deflate.c:758)
2.94 .. deflate (deflate.c:741)
2.77 .. deflate (deflate.c:738)
2.77 .. updcrc (util.c:73)
2.60 .. deflate (deflate.c:686)
2.52 .. ct_tally (trees.c:987)
2.43 .. ct_tally (trees.c:965)
2.35 .. deflate (deflate.c:732)
1.85 .. deflate (deflate.c:543)
1.68 .. deflate (deflate.c:675)
1.68 .. deflate (deflate.c:679)

The analyst can now focus his or her atten-
tion on very specific sections of the code. The
source code and associated assembler code can
be examined for weaknesses such as missed
loop unrolling or code inlining opportunities.

1.2 Compiler Benchmarking

On machines where more than one compiler
is available, generated code sequences can be
cross referenced and compared. This aids the
analyst in identifying the strengths and weak-
nesses of each compiler and often leads to op-
portunities for improvement.

Optimizations performed by default in one
compiler, may be disabled by default in an-
other. Comparing the generated code helps the
analyst to identify these cases. Tuning the com-
piler invocation to include optimizations which
are beneficial to the code of interest, and dis-
able those that might be harmful can lead to
improved code performance.

Again, using gzip as an example, the appli-
cation is compiled using IBM’s VisualAge C
compiler using optimization level three (-O3).

GCC Developers’ Summit 2006 • 221

Its performance is compared against the same
code compiled with gcc-4.1 [7] at optimization
level three (-O3). It’s observed that the gcc
compiled code runs slower than the code com-
piled with the VisualAge compiler. Using the
methods described above, one can determine
that a key loop was unrolled by the VisualAge
compiler, but not by gcc. By simply adding
the -funroll-loops option to the gcc compiler
invocation, the key loop is now unrolled and
the performance of the compared applications
is roughly equal.

Many compiler optimizations, especially those
which are machine independent, are driven by
various assumptions or heuristics. For exam-
ple, the number of times a loop is unrolled will
depend on the size of the loop, or the number
of iterations it is expected to perform. These
heuristics are set based on averages which re-
sult in good code generation for most cases.
Here again, comparing the output of multiple
compilers can identify cases where heuristics
are set differently. The analyst or compiler
writer can then adjust the heuristics to more ef-
fective levels for their application.

1.3 Hand Tuning

An experienced performance analyst may reach
a point where adjusting compiler options and
heuristics results in code with remaining op-
portunities for improvement. Reasons may in-
clude a missing optimization phase in the sub-
ject compiler; alternatively, the application may
contain a specific “corner case” not previously
considered by the optimization’s developer.

Missed opportunities are of interest to those
looking to improve code generated by a com-
piler. However, proposed improvements are
more readily accepted if empirical evidence is
included to support the request.

In cases such as this, the analyst may be re-
quired to manually manipulate the code gen-
erated by the compiler in order to demonstrate
that proposed changes have a measurable effect
on the performance of the application.

2 Modern Processor Design

The tools and strategies covered thus far are
well known in the industry and do a reasonable
job of improving the performance of an appli-
cation. However, as the clock speeds of modern
processors approach the limits of today’s tech-
nologies, compiler writers need to go a step fur-
ther to ensure that high degrees of instruction
parallelism exist within generated code.

Understanding and identifying the low-level
details of the processor design is required in or-
der to fully exploit its capabilities. These de-
tails are usually complex and can be challeng-
ing for compilers to deal with.

Modern processor designs involve complex
trade-offs between the maximum clock speed
and circuit complexity. These trade-offs in-
volve assumptions about average instruction
usage and timing which can cause delays (ex-
ecution hazards) if not met.

To support a higher clock rate, execution
pipelines are often designed to contain multi-
ple, simple stages. This can mean that even ba-
sic instructions require multiple cycles to exe-
cute.

The potential for high throughput (i.e. more
than one instruction per cycle) exists when
multiple independent instructions can be dis-
patched in parallel. In practice, however, code
sequences generally contain instructions that
depend on the results computed by previous in-
structions. If an instruction requires a value

222 • Low-Level Performance Analysis

from a prior instruction, the hardware may have
to delay the second instruction to insure that its
input values are available when needed. This
delay or latency should be familiar to most as a
pipeline stall or bubble.

Latencies are small, well defined constants for
most instruction combinations. It is important
for a compiler to know these latencies in order
to schedule (rearrange) instructions into an or-
der that minimizes pipeline stalls. Streams of
independent code sequences can be overlapped
such that instructions from one stream fill the
bubbles from the other.

As processor designers push the limits of tech-
nology, a higher degree of variance in these la-
tencies becomes prevalent. For example sign
extension for sub-word loads, setting the condi-
tion code for arithmetic results, or updating the
address for auto increment can add one or more
cycles to the nominal latency. This complicates
the compiler’s back end as there is now a com-
plex matrix of instruction latencies to deal with.
Furthermore, it complicates the task of identi-
fying places where these latencies are causing
performance problems. These types of prob-
lems are difficult to locate using the traditional
methods described earlier.

Chip circuit densities appear to be increasing
as fast or faster than clock frequencies. The
trend is to use this circuit density for instruc-
tion parallelism with multiple pipelines and the
ability to dispatch multiple instructions per cy-
cle. The micro-architecture (the type and num-
ber of pipelines) determines which instructions
and how many can be dispatched in any cy-
cle. This obviously impacts the compiler which
now needs to model parallel executions in the
scheduler.

2.1 The POWER5TM Processor

In order to illustrate methods a performance
analyst or compiler writer might use to iden-
tify more advanced performance issues, we
now take a closer look at IBM’s PowerPC
POWER5TM processor. Tools used to identify
execution hazards are also discussed as well as
strategies for avoiding these hazards.

IBM’s POWER5 processor can dispatch up
to five instructions per cycle into six sepa-
rate issue queues. The microprocessor core
contains eight pipelines which select instruc-
tions in an out-of-order fashion from the issue
queues. The pipelines are dedicated into func-
tional categories; load/store x 2, fixed point x 2,
floating-point x 2, branch, and condition regis-
ter/logical. The core tracks the dispatch groups
through execution such that it can complete in-
structions in an in-order fashion.

The rules for forming dispatch groups are too
complex to describe here but it is fair to say
that sustaining multiple instructions per cycle
is a non-trivial exercise. For example: some in-
structions are “cracked” by the core into two
simpler instructions, each of which may be
issued to a different pipeline. Cracked in-
structions take two slots in a dispatch group.
Other instructions have additional restrictions
and must be dispatched singly. Still others must
be dispatched from specific slots (first or last)
within a dispatch group. The instruction fetch
mechanism interacts with the underlying first
level instruction cache which further restricts
dispatch group formation. Finally, dependent
instructions are allowed to dispatch within the
same group.

This puts additional pressure on the compiler.
Dependent instructions need to be separated by
independent instructions to force them into dis-
patch positions where execution latencies will
be minimized. This is often difficult, however,

GCC Developers’ Summit 2006 • 223

as filling in a two cycle bubble between depen-
dent instructions could require up to fourteen
instructions on the POWER5.

These dispatch restrictions, along with vary-
ing instruction latencies, create numerous non-
obvious performance issues.

2.2 OProfile, ITrace, and Sim_ppc

This complexity makes it difficult to get an ac-
curate picture of the performance of any code
sequence. Visual examination is challenging
for even small sequences as upstream code de-
pendencies can delay data sources and impact
timing for the target sequence in unexpected
ways.

Micro benchmarks can measure the perfor-
mance of a sequence for comparison to others.
Benchmarks can tell which sequence executes
in the fewest number of machine cycles, but not
why. In this environment, a shorter (fewer in-
structions) “optimized” sequence may measure
slower than the “non-optimized” sequence.

More advanced tools are required to identify
these low-level hazards. Examples include cy-
cle accurate timing simulators and profiling
based on hardware performance counters.

Sim_ppc [3] is an example of a “cycle accurate
timing model” for PowerPCTM. A cycle accu-
rate timer is a simulator that precisely models
the micro-architecture and memory hierarchy
for a specific processor design. As a software
simulator, it can log details useful for visual-
ization tools and accumulate statistics for detail
reports.

Sim_ppc is a “trace driven timer” and does not
execute the target code directly. Instead an-
other tool like Performance Inspector’s ITrace
[6] (Instruction Trace) is used to generate trace
data for input to sim_ppc.

Hardware event counters can be programmed
to count specific events including hazards spe-
cific to the processor’s micro-architecture. The
counters can also be programmed to interrupt
after a specific number of events. A profiling
tool like OProfile [4] can use these interrupts
to build histograms of the code associated with
the events.

Each platform and processor design has unique
micro-architectural features and event counters.
OProfile supports hardware event counters; see
the OProfile documentation for the complete
list of supported processors and processor spe-
cific events.

Tools with similar function and capability are
available on other hardware platforms as well.
[9]

3 Drilling Deeper

We now illustrate how the advanced tools pre-
viously described can be used to identify non-
obvious opportunities for code improvement.

We cover a scenario which illustrates the im-
portance of hot branch target alignment on
POWER5. We follow that with a discussion
on branch prediction. And finally, we take an
in depth look at several instances where per-
formance was affected by “load-hit-store” haz-
ards. Each of these cases is non-trivial to rec-
ognize by simply examining code, yet can have
a dramatic impact on its performance.

3.1 Branch Target Alignment

On POWER5, all branch instructions terminate
a dispatch group. The instructions at the branch
target will then form the beginning of a new
group. POWER5 always fetches an oct-word

224 • Low-Level Performance Analysis

(32-byte) aligned block of eight instructions.
When the branch target is near the end of the
block (and the branch is taken) the next dis-
patch group is limited to the instructions re-
maining in the fetched block. If there are not
enough instructions remaining to fill an entire
dispatch group, the group is prematurely termi-
nated.

This means that the alignment of code follow-
ing a taken branch matters and impacts down
stream dispatch group formation. In general,
instruction schedulers will schedule code as-
suming a new dispatch group starts at a block
boundary or branch target. If the code is
scheduled with this assumption, but the instruc-
tions fetched for the branch target don’t in-
clude all instructions in the first dispatch group,
the schedule for the entire block may be non-
optimal.

This scenario was observed in glibc functions
like memcmp when compiled with gcc-3.x.
Memcmp shows up as a hot function in cer-
tain large benchmarks but inconsistent results
were obtained when running with micro bench-
marks.

Using Sim_ppc it was observed that memcmp
was very sensitive to the starting alignment
of the function. Gcc-3.x only enforced word
alignment for functions so memcmp could start
at any word within the block. This in turn im-
pacted the alignments of internal branch targets
and how instructions were assigned to dispatch
groups.

For memcmp, the dispatch groups determined
how many instructions where executed in par-
allel for the inner loop. This was especially true
for rotate/shift/compare instructions required
for the unaligned case. Where the alignment al-
lowed more independent instructions to be dis-
patched and execute in parallel, memcmp ran
30% faster on POWER5.

For gcc-4.x the default function alignment was
changed to quad-word (16-byte). Nops were
also inserted to align hot branch targets to quad-
word within the function (top of loops would be
a prime example). This also impacts dispatch
group formation for down stream code and can
impact the performance of the outer loop by in-
creasing its path length. However this creates
smaller ranges with more predictable dispatch
group formation which in turn simplifies the
scheduling problem. See Figure 1.

The performance of memcmp using gcc-4.x
gives results that are midway between the best
and the worst case for gcc-3.x. However,
these results are consistent and don’t suddenly
change after adding another “if” or “printf”
to the test case. This change also increases
the program/library size slightly which also in-
creases the icache footprint, but the overall im-
pact was positive as verified by SPEC results.

3.2 Branch Prediction

For most programs with if-then-else sequences,
there is a limited opportunity to move instruc-
tions into the latency bubble between setting
the condition code and the branch instruction.
Most processors implement branch prediction
circuitry to allow the processor to proceed past
the branch before the condition code is ready.

This improves performance significantly as
long as the prediction is correct. However,
a misprediction requires that any instructions
speculatively executed are aborted (a pipeline
flush) and the instructions refetched from the
correct path. This takes a minimum of twelve
cycles on POWER5.

The POWER5 processor implements a branch
prediction scheme that will scan an icache line
of up to eight fetched instructions, predicting
up to two of them per cycle (assuming the first

GCC Developers’ Summit 2006 • 225

Figure 1: memcmp() compiled with gcc-3.x with different alignments. This scrollpipe view shows
the same memcmp object code executing at different starting addresses side by side. On the left,
memcmp() starts at offset 0x824 while on the right memcmp() starts at offset 0x84c. The version
on the right runs 30% faster because the dispatch groups and fixed point issue queue slots line up
to allow more instructions to execute in parallel. Note the instruction sequence on the left starting
at offset 0x934, three rotate instructions are dispatched in a single group, the first rotate is sent to
Fixed Point Pipe 0 (“I0”) while the second and third rotates are sent to Fixed Point Pipe 1 (“I1”).
This is unfortunate because the second and third instructions are independent and could execute
in parallel if dispatched to different Fixed Point Pipes. Looking at the scrollpipe on the right we
see that the same sequence starts at offset 0x95c (which is the end of an oct-word following a
branch taken) so the first rotate is dispatched separately and the second and third are dispatched
together with the following subtract immediate and compare immediate instructions. This sends
the rotate pair to different Fixed Point Pipes (“I0”, “I1”) to execute in parallel, similarly with the
independent subtract/compare pair that follows. There is a two cycle delay delivering the rotate
result R30 as input to the subtract immediate. The POWER5 fills the pipe bubble (in “I1”) with
another (out-of-order) rotate from offset 0x974. These are small differences individually but over
the length of memcmp they add up.

226 • Low-Level Performance Analysis

is predicted to fall through). Branch history ta-
bles are maintained and updated with the be-
havior of branches as they execute. These ta-
bles are then used on subsequent predictions of
a branch.

On the first visit to a branch, there is no data in
the branch history tables, likewise for branch
intensive code, the finite size of the branch
history tables may mean that the data for a
branch has been flushed. This can result in the
hardware incorrectly predicting the outcome of
the branch and fetching instructions from the
wrong path. When the branch ultimately exe-
cutes, the resulting flush and refetch occurs.

Here again, sim_ppc can be used to recognize
cases where branch misprediction is occurring.
Techniques such as static branch prediction,
where the compiler flags a branch as predom-
inantly taken or not taken, can be employed to
alleviate pressure from the branch history ta-
bles. POWER5 supplies the means for a com-
piler to statically predict a branch through the
use of two bits on conditional branch instruc-
tions. When static branch prediction is em-
ployed, the branch does not occupy a position
in the branch history tables. Compilers can
use profile data to make educated decisions on
which branches should be statically predicted,
and which should be left for the hardware to
predict. See Figure 2 for an example.

As hardware branch prediction becomes in-
creasingly sophisticated, the need for static
branch prediction decreases. Yet, there remain
opportunities where a programmer’s knowl-
edge of the expected behavior of a piece of
code can provide performance improvements
through strategic use of static branch predic-
tion.

3.3 Load-Hit-Store

On POWER5, instructions within the same dis-
patch group can execute out-of-order. The
group of instructions is tracked by the core until
all operations have finished at which point the
entire group is completed in an in-order fash-
ion.

For store instructions, cache updates must be
non-speculative, and therefore cannot occur un-
til the instruction reaches the completion stage.

As mentioned earlier, dependent instructions
can be dispatched together on POWER5. This
leads to an interesting problem when a store
instruction is followed by a load from the
same memory location within the same dis-
patch group. The store cannot update the cache
until all other instructions are finished, but the
load cannot finish until the store has updated
the cache! This results in the entire dispatch
group being flushed and re-dispatched with
each instruction in a separate group.

A similar scenario can occur even if the load
is in a separate dispatch group. If the load re-
quires the data before the store has completed,
the load is rejected causing a pipeline stall.

Figure 3 is a screen shot which illustrates a load
reject caused by a load-hit-store scenario. An
analyst inspecting this trace may notice the “j”
indicating the reject, followed by the re-issue
of the load. If this sequence happens to be in a
hot section of code, then it may be worth inves-
tigating if compiler changes can be made to use
other instructions to add more distance between
the store and subsequent load. Alternatively, it
may be possible to avoid the situation by avoid-
ing the load altogether and simply reusing the
value which is already in the register used on
the store.

For the case where the store and load end up
within the same dispatch group because there

GCC Developers’ Summit 2006 • 227

Figure 2: Branch prediction missed. The branch in the cross hairs (Iop Id 1009680) was mis-
predicted as branch taken. This branch is dependent on the previous compare logical (cmpl) in-
struction which was dependent on the previous add immediate shifted (addis). All were dispatched
in the same cyle, but due to data dependencies, the condition code was set 21 cycles later. this
example also shows the impact of code alignment. Note that the load double (ld) (Iop Id 1009685)
is dispatched by itself because it is the last word in the oct-word fetched following the branch.

Figure 3: This illustrates a case where a Load-Hit-Store hazard is encountered between code that
could be far apart in the code stream. The load word zero (lwz) at the cross hairs is the first
instruction at the target of the unconditional branch. It loads from the same address stored to just
prior to the branch. Since the store has not yet completed, the load is rejected. This illustrates an
opportunity where the compiler might be able to eliminate the load and reuse the value in R30, or
schedule additional instructions prior to the load.

228 • Low-Level Performance Analysis

are no independent instructions available to
separate them, “nop” instructions can be in-
serted by the compiler to force the instructions
into separate groups. This averts the problem of
the entire dispatch group being flushed to reis-
sue the instructions in separate groups.

You may think that the load-hit-store scenario
would be rare, but it is quite common in the
GLIBC [8] math library. For example the
generic IEEE754 implementation of the finite
function (s_finite.c):

typedef union
{

double value;
struct
{

u_int32_t msw;
u_int32_t lsw;

} parts;
} ieee_double_shape_type;

int
__finite (double x)
{

int32_t hx;

do/* GET_HIGH_WORD (hx, x) */
{

ieee_double_shape_type u;
u.value = (x);
(hx) = u.parts.msw;

}
while (0);
return (int)

(((hx & 0x7fffffff) -
0x7ff00000) >> 31);

}

The finite function uses a union to transfer
the double float value to an integer so it can
use fixed point/logical operations to extract the
exponent and check for infinity/NAN pattern.
This generates the following powerpc64 assem-
bler:

.__finite:
stfd 1,-16(1)
ld 3,-16(1)
rldicl 3,3,32,33
addis 3,3,0x8010
srwi 3,3,31
extsw 3,3
blr

The double parameter in FPR1 is stored (as
a temporary) on the stack then immediately
loaded into GPR3. This creates the classic
load-hit-store scenario since the store float dou-
ble/load double are the first two instructions
of the function and normal (quadword) func-
tion alignment will guarantee that both are dis-
patched in the same cycle.

The POWER5 processor will try to dispatch the
first four instructions of __finite() before
it detects the load-hit-store condition. In this
case the processor must flush all instructions,
from store float double forward, then refetch
the instruction stream starting from the store.
This allows the processor to redispatch those
same four instructions individually (each in a
different cycle) and guarantees that the store
enters its execution phase before the load. It
also causes a delay of at least fourteen cycles
on POWER5. See Figure 4 for an example.

The _finite() function is small with no real
opportunity for scheduling. The only real op-
tion here is for the compiler to insert nops be-
tween the store and the load as described ear-
lier. The gcc compiler inserts these nops by de-
fault when the -mtune=power5 option is speci-
fied. See Figure 5.

__finite:
stfd 1,-16(1)
nop
nop
nop
ld 0,-16(1)
rldicl 3,0,32,33
addis 3,3,0x8010
srwi 3,3,31
extsw 3,3
blr

The use of this union and coding style is per-
vasive in the GLIBC Math library. IBM has
provided alternative (powerpc specific) imple-
mentations for some of the simpler math func-
tions (ceil, floor, rint, round, trunc).

GCC Developers’ Summit 2006 • 229

Figure 4: __finite() compiled by gcc-4.1 without -mtune=power5, shows Load-Hit-Store that
requires a pipeline flush and refetch. The ’@’ at the cross hairs indicates the flush, followed by
[re]fetch (FV), branch prediction (B), decode (D), and dispatch (M) cycles. Note that even after
the flush/refetch the store does not complete in time, so the load incurs a load-reject (j) and retries
the execute (I2E) before it can catch the store-forward (c) and finally the store-forward-finish (s).
The completion of the store-forward allows the next instruction (rotate left double immediate then
clear left (rldicl)) to enter its execution state successfully after two ISU-rejects (S) due to a source
operand not being available.

Figure 5: __finite() with -mtune=power5, shows that inserting nops (ori r0,r0,r0) between
the store and the dependent load forces the load into a separate dispatch group. This eliminates the
pipeline flush and reduces the cycles to completion from 27 to 13.

230 • Low-Level Performance Analysis

The more complex functions provide better op-
portunities for scheduling to separate the store
from the load. Unfortunately the current ver-
sion of gcc shows a preference to schedule
loads as early a possible which defeats attempts
to separate loads from stores.

There are other cases where program struc-
ture creates the load-hit-store scenario. One
case was found in the Multiple Precision
Arithmetic functions (libc/math/mpa.c).
While investigating the poor performance of
the log(), exp(), and pow() functions us-
ing OProfile, it was found that the internal func-
tions _inv() and __mul() from mpa.c
were the main contributors:

CPU: ppc64 POWER5, speed 1656.4

MHz (estimated) Counted CYCLES

events (Processor cycles) with a

unit mask of 0x00 (No unit mask)

count 10000

samples % symbol name
2398 52.1304 __inv
1314 28.5652 __mul

312 6.7826 __dvd
264 5.7391 sub_magnitudes

57 1.2391 norm
56 1.2174 __add
35 0.7609 __dbl_mp
35 0.7609 __sub
31 0.6739 _wordcopy_fwd_aligned
28 0.6087 __mpexp
24 0.5217 memset
16 0.3478 __cpy
11 0.2391 __ieee754_pow

5 0.1087 __halfulp
5 0.1087 __mplog
2 0.0435 __exp1
2 0.0435 memcpy
1 0.0217 __ieee754_sqrt
1 0.0217 __slowpow
1 0.0217 _dl_init_paths
1 0.0217 _int_malloc
1 0.0217 strlen

By inspection, we see that __inv() is calling
__cpy(), __mul(), __sub() in the inner
loop and calls __mul() twice each iteration.

for (i = 0; i < np1[p]; i++)
{

__cpy (y, &w, p);
__mul (x, &w, y, p);
__sub (&mptwo, y, &z, p);
__mul (&w, &z, y, p);

}
return;

Since __mul() shows up much higher in the
histogram than either _cpy() or __sub(),
we should look at that first.

At first glance there is nothing unusual about
__mul(). Just a nested loop doing floating-
point multiplies and adds.

k2 = (p<3) ? p+p : p+3;
z->d[k2]=zero.d;
for (k=k2; k>1;) {

if (k > p) {i1=k-p; i2=p+1; }
else {i1=1; i2=k; }
for (i=i1,j=i2-1; i<i2; i++,j--)

z->d[k] += x->d[i]*y->d[j];

u = (z->d[k] + cutter.d)-cutter.d;
if (u > z->d[k]) u -= radix.d;
z->d[k] -= u;
z->d[--k] = u*radixi.d;

}

And in fact the code generated for the inner
loop uses fused multiply and add instructions
as appropriate.

for (i=i1,j=i2-1; i<i2; i++,j--)
z->d[k] += x->d[i]*y->d[j];
.p2align 4,,15
.L347:
lfd 13,0(11)
lfd 0,0(10)
addi 11,11,8
addi 10,10,-8
fmadd 12,13,0,12
stfd 12,0(8)
bdnz .L347

It is unfortunate that the store float double for
z->d[k] is part of this inner loop as “k” is
constant for this loop. In this case as x, y, and
z are pointer parameters and the compiler does
not know that they don’t overlap in storage, this

GCC Developers’ Summit 2006 • 231

store is required for correctness. At least gcc
hoisted the initial load for z->d[k] out of the
inner loop, which would have been an obvious
load-hit-store scenario.

So we still don’t have a clear picture of what the
problem is (other than too much computation).
Here we need to look for non-obvious hazards.
The previous OProfile histogram was the ba-
sic timer/cycle count based sampling. To dig
deeper we can use OProfile to sample based on
hardware specific events that represent various
execution hazards. When sampling for load-
hit-store events we see that __mul() shows
up with higher frequency than before (default
cycle-based sampling).

CPU: ppc64 POWER5, speed 1656.4

MHz Counted PM_LSU0_REJECT_SRQ_

LHS_G13 events (LSU0 reject due to

load hit store) with count 1000

samples % symbol name
4170 50.9905 __inv
3467 42.3942 __mul

429 5.2458 __dvd
53 0.6481 sub_magnitudes
16 0.1956 __add
12 0.1467 norm
11 0.1345 __dbl_mp

8 0.0978 __ieee754_pow
4 0.0489 __sub
2 0.0245 __cpy
2 0.0245 __exp1
1 0.0122 __halfulp
1 0.0122 __mpexp
1 0.0122 __mplog
1 0.0122 pow

It was found that the final store of the outer loop
z->d[--k] = u*radixi.d; was hit by
the initial load of z->d[k] in the next itera-
tion. This would not normally be a problem as
there are nine instructions and three branches
between the store at the bottom of the outer
loop and the corresponding load near the top.
However the correct but not strictly necessary
stores to z->d[k] and dependent calculations

delayed the completion of the final store suffi-
ciently to interfere with the next load. See Fig-
ure 6.

In this case we know that the array z does not
overlap with arrays x and y. So a simple re-
coding of __mul() eliminates the redundant
stores and the load-hit-store.

k2 = (p<3) ? p+p : p+3;
z->d[k2]=zero.d;
z_k = z->d[k2];
for (k=k2; k>1;) {

if (k > p) {i1=k-p; i2=p+1; }
else {i1=1; i2=k; }
for (i=i1,j=i2-1; i<i2; i++,j--)

z_k += x->d[i]*y->d[j];

u = (z_k + cutter.d)-cutter.d;
if (u > z_k) u -= radix.d;
z->d[k] -= u;
z_k = u*radixi.d;
--k;

}
z->d[k] = z_k;

See Figure 7 for a view of the updated
scrollpipe.

4 Additional Benefits

The focus of this paper has been on methods to
improve code generation sequences; the tools
presented here are equally useful when hunt-
ing down performance regressions between two
versions of the same compiler. A side by side
analysis of scroll pipe data from sim_ppc can
show areas where one code stream is behaving
differently than a different code stream. Sub-
tle variances in code generation or scheduling
can expose unexpected hazards that can be ob-
served using this method.

The examples presented here deal primarily
with hazards occurring within the processor’s
CPU. The same techniques, however, can be
used to identify problems triggered by compo-
nents such as the memory subsystem.

232 • Low-Level Performance Analysis

Figure 6: __mul() called from ieee754/slowpow. Current implementation compiled with gcc-
4.1. Notice that the inner loop (Iop Ids 114-121) is dispatched in two groups but completion
requires six cycles per iteration. This is paced by the floating-point multiply and add (fmadd) who’s
result is required input on the next iteration, plus one cycle for the dependent (unnecessary) store
floating-point double (stfd). Note that we have filled the FPU (12 entry) issue queue, and dispatch
has to be delayed until a previous FPU instruction completes (the repeated “f’s” preceding the “M”
dispatch on Iop Ids 110, 118, 122, . . .). Also note the “Load Refects” (“j’s”) for the load floating-
point double (lfd) on IopID 146 which hit the store floating-point double with update (stfdu) at Iop
Id 134. The multiple load rejects are caused by the dependent computations which delay the stfdu
by 30 cycles.

GCC Developers’ Summit 2006 • 233

Figure 7: __mul() called from ieee754/slowpow. With proposed changes, compiled with gcc-
4.1. Note that the inner loop is still paced by the floating-point multiply and add (fmadd), but
we don’t see any dispatch delays until later in the sequence because eliminating the (unnecessary)
store floating-point double (stfd) from the inner loop frees slots in the FPU issue queue. We have
also eliminated the load floating-point double (lfd) (z->d[k]) from the outer loop and eliminated
the load-hit-store as well.

234 • Low-Level Performance Analysis

In addition, sim_ppc, or equivalent simulation
tools can be invaluable to compiler developers
during early hardware development. As com-
pilers are tuned to generate code for new pro-
cessors, these tools can be used to measure their
effects well before actual hardware is available
for testing.

5 Conclusions

The design of modern processors is creating
an increasingly complex environment for com-
pilers; generating optimal code while avoid-
ing subtle hazards is becoming more and more
difficult. Compilers have to model instruction
latencies and dispatch group formation while
considering all the special cases involved. It
is very difficult to tell from just looking at the
code how it will perform.

In addition, representing the large variation of
rules can become problematic to a compiler.
The instruction scheduler in gcc is based on a
deterministic finite automaton (DFA). The in-
creasing complexity of machine descriptions
can result in prohibitively large DFAs. Building
them can become impossible due to the mem-
ory requirements posed by the massive number
of states that must be represented. While cre-
ative factoring of the DFA can be used in most
cases, these limitations can force a compiler to
pick and choose between those rules that are
deemed most important to represent.

This paper has covered several tools and strate-
gies for identifying the most critical of these
rules. Methods to identify and correct hazard
prone code streams were presented. Several de-
tailed examples were shown to illustrate how
their use can be effective in identifying oppor-
tunities for improving the code generated by a
compiler and in turn the performance of the ap-
plication and the machine in general.

6 Acknowledgements

The authors would like to thank Ryan Arnold
for his investigation into, and assistance with,
several of the examples used in this paper. We
would also like to thank Maynard Johnson for
support and assistance with ITrace and OPro-
file.

References

[1] Information on SPEC benchmarks can be
found at http://www.spec.org

[2] Information on gprof can be found at
http://www.gnu.org/
software/binutils

[3] Information on sim_ppc can be found at
http://www.alphaworks.ibm.
com/tech/simppc

[4] Information on oprofile can be found at
http://oprofile.
sourceforge.net/news

[5] Information on gzip can be found at
http://www.gzip.org

[6] Information on itrace can be found at
http:
//perfinsp.sourceforge.net/
itrace_ppc.html

[7] Information on gcc can be found at
http://www.gcc.org

[8] Information on glibc can be found at
http:
//www.gnu.org/software/libc

[9] Information on VTUNETM can be found
at http://www.intel.com/cd/
software/products/asmo-na/
eng/vtune/vlin/240665.html

Switch Statement Case Reordering FDO

Edmar Wienskoski
Freescale

edmar@freescale.com

Abstract

When gcc parses a switch statement, it uses
some criteria to decide between generating a
jump table or a binary search tree. The jump
table has a fixed significant cost, and for large
switch statements the sequence of compare-
branches from the root to the leaves can also
be costly.

The optimization described here collects a his-
togram of a switch statement condition expres-
sion and uses it to balance the binary search
tree. We also implement a default statement
promotion: Single values in the histogram that
maps to default in the switch statement, are
candidates to become a new node in the binary
search tree, which gives a chance to that partic-
ular value to have its path on the tree optimized.

1 Motivation

In looking at the perl benchmark in Spec2k for
optimization opportunities, it was noticed that
the basic blocks more often executed where
part of one big switch statement inside the main
interpreter loop.

From the switch condition expression evalua-
tion to those basic blocks, there were many in-
struction cycles. A feedback directed optimiza-
tion that moves the most often executed case

statements out of the switch statement could
improve the performance of this benchmark
considerably.

To test the effectiveness of pursuing this opti-
mization: I changed the original source code
of function regmatch on file regexec.c
such that the two case statements more often
executed were hoisted outside the switch state-
ment. Figure 1 illustrates the idea, where em
x and y represents the two case statements in
question. The result was a surprising 17% im-
provement.1

switch (c){
case a:

:
case x:

:
case y:

:
case b:

:

=>

if (x){
:

} else
if (y){

:
} else
switch (c){

case a:
:

case b:
:

Figure 1: Hoisting case statements out of the
switch

Gcc infrastructure has developed quite fast re-
1This was obtained with the Motorola research com-

piler and a G3 Linux PowerPC machine. The same
experiment with gcc development branch tree-profiling-
branch on a G5 Linux PowerPC machine yields 12.6%
improvement.

236 • Switch Statement Case Reordering FDO

cently: SSA based optimizations, auto vec-
torization, and feedback directed optimizations
among them. All that activity motivated us to
apply the above idea into gcc.

2 The implementation

Currently, gcc has two strategies to generate
code for a switch statement: a jump table, or
a binary search tree.

The jump table offers uniform access time for
all case statements, but that time is usually
much slower than a single compare-and-branch
sequence. On the other hand, the binary search
tree requires several compare-and-branch se-
quences to reach the leaves of the tree. As the
number of case statements increases, the length
of the compare-branches sequences from the
root of the binary search tree to their leaves also
increases.

Considering that in a binary search tree 50% of
all nodes are leaves,2 the chance of one of the
most executed case statements ending up either
in a leaf or in a node next to a leaf is quite high.
That of course, would be the worst possible per-
formance outcome. Thus, whenever the num-
ber of case statement is above some threshold,
gcc will give preference to generate the jump
table instead of the binary search tree in order
to avoid risking that performance penalty.

But in fact, the gcc infrastructure supports a
weight3 attribute to each node of binary search
tree. That effectively allows of the implemen-
tation of balanced binary search tree algorithm.

2Except for some odd shaped trees, the observation is
quite accurate for balanced or not trees as long as each
internal node has 2 siblings.

3Gcc sources name this attribute as cost. We will
now refer to weight or cost interchangeably.

Unfortunately, this feature is not used effec-
tively to avoid the performance penalty de-
scribed in the previous paragraph. Currently,
gcc attributes weights of 1 to all nodes that rep-
resents one single value of the switch statement
condition expression, and weight of 2 to nodes
that represents a range of values.4

Considering the infrastructure available in gcc
to balance a binary search tree, it is a better idea
to tweak the weight of the binary search tree
nodes, instead of implementing all the possi-
ble basic block manipulations and condition ex-
pression generations to achieve the code trans-
formation depicted in Figure 1.5 The result of
this strategy could be as effective as the pro-
posed solution, as Figure 2 illustrates.

Another consideration in the implementation of
this optimization is how gcc collects feedback
information.

Gcc can instrument basic blocks to measure ba-
sic block frequency, but can also instrument the
target application to compute a histogram of
run time values of any expression in the appli-
cation. That includes the computation of his-
tograms of switch statement condition expres-
sions.

The basic block counters could had be used to
weigh the binary search tree, but the histogram
gives us one extra optimization opportunity: To
promote values that map to the default state-
ment into individual nodes in the binary search
tree.

In general, all run time values of the condition
expression that maps to the default statement,
causes the execution of a sequence of compare-
branch instructions that goes from the root of

4Incidentally, the switch statement in function
regmatch on file regexec.c of Spec2k perl bench-
mark consists of single values only.

5It would also be much easier to debug and prove cor-
rectness of the optimization.

GCC Developers’ Summit 2006 • 237

1 3

2

5

6

7 9 11

10

13 15

14

12

8

4

X

Y

1 3

2

4

6

11

8

9

10

7

5 12

13 15

14

X

Y

Figure 2: A proper cost function can cause the
tree balancing algorithm to move the nodes X
and Y closer to the root

the binary search tree to one of its leaves, be-
fore it can be identified as one default value.
That means the execution of the default state-
ment will always incur in the highest perfor-
mance penalty. But what if the default state-
ment is among the ones with highest execution
frequency?

Default value promotion is the answer. The
idea is to identify one particular value in the
histogram that maps to the default statement,
and whose execution frequency is high, (This
can be easily done by inspection of the his-
togram and some heuristic to define “high exe-
cution frequency”), and then create a new node
in the binary search tree for that value. This is
semantically equivalent to the code transforma-
tion illustrated in Figure 3.

After balancing the tree, the path between the
root and the newly created node can be opti-

switch (c){
case a:

:
default:

:
}

=>

switch (c){
case a:

:
case x:
default:

:
}

Figure 3: The value x on the histogram of con-
dition expression c satisfies the “high execution
frequency” criteria.

mized, leaving the general performance penalty
of the default statement to the less frequent oc-
curring values.

Examples of heuristics that could be used are:
A fixed threshold (e.g.: 10% of execution fre-
quency); and a relative parameter (e.g.: Highest
five values in the histogram).

One last implementation detail concerns the
case when the case statement labels are too
sparse, and some case labels are below the his-
togram range and / or some are above it. If
that happens, the execution frequency of val-
ues below and / or above the histogram range
are equally distributed among the correspond-
ing labels.

3 Results

The optimization described in this paper was
implemented and tested on a snapshot of the
tree-profile-branch development branch from
May 24, 2005 [TPB].

All of Spec2k was validated on a G5 running
Linux PowerPC [YDL, YHPC]. Except for
perl, all other benchmarks had no variation in
performance and are omitted from this discus-
sion.

238 • Switch Statement Case Reordering FDO

Individual parts ∑ %
Original gcc 21.71 1.23 18.76 63.60 36.16 32.22 59.93 233.61 —
Case stmt hoisted 21.43 1.24 18.72 53.80 31.82 27.71 52.63 207.35 12.6
Balanced - train 18.99 1.19 17.94 56.20 32.77 28.71 54.32 210.12 11.2
Balanced - validation 19.29 1.23 17.95 51.51 30.42 26.44 50.30 197.04 18.5
Balanced & hoisted 18.74 1.20 17.84 52.21 31.03 26.96 51.57 198.35 17.7

Table 1: Spec2k perl benchmark execution times. Individual parts and total time shown in seconds.

On table 1 we show all Spec2k perl results.
The first line of data, was obtained with the
original compiler and is used as base reference
for relative comparison. The same level of op-
timization was used across all executions, in-
cluding other profile feedback optimizations.
The second line, was obtained with the bench-
mark manually optimized as depicted in Fig-
ure 1. The third and fourth lines, were obtained
with the switch statement case reordering en-
abled. On the third, the benchmark was trained
with the train data set. On the next one the val-
idation data set was used instead. Finally, the
last line has both manually hoisted case state-
ments and the switch statement case reordering.

Figure 5: Binary search tree of the switch
statement condition expression of function
regmove on file regexec.c obtained with
the train data set and validation data set respec-
tively

The reader should note that, in order to man-
ually apply the case statement hoisting as de-

scribed in Section 1 of this paper, one must
have the knowledge of which two case state-
ments were more often executed in the vali-
dation execution of the benchmark. But that
knowledge is not available when the Spec test
harness is used. Because the data set used
to train the application may not represent ade-
quately the data set used for validation, a direct
comparison of the second and third lines would
not be fair. That is the reason for having the
fourth line on Table 1. By training the applica-
tion with the same data set used for validation,
we ensure that both the switch statement case
reordering fdo and the manually applied case
hoisting have the same knowledge base. We
don’t claim any official Spec results, per Spec
rules.

For illustration, Figure 4 shows the histogram
of the switch statement condition expression of
function regmove on file regexec.c. The
left columns are the values of the histogram ob-
tained using the train data set, the right columns
are the values of the histogram obtained using
the validation data set. Figure 5 shows the ac-
tual binary search tree after balancing it. The
one in the top was obtained with the training
data set, the one on the bottom was obtained
with the validation data set.

On Section 2 it was argued that rebalancing the
binary search tree would be enough to obtain
the same results as hoisting case statements out
of the switch. The fifth line on Table 1 con-
firms that: in the presence of switch statement

GCC Developers’ Summit 2006 • 239

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60

ex
ec

ut
io

n
fr

eq
ue

nc
y

case labels

train set
validation set

Figure 4: Histograms of the switch statement condition expression of function regmove on file
regexec.c obtained with the train data set (left columns) and validation data set (right columns).

case reordering, hoisting the two most often ex-
ecuted case statements is ineffective.

Time %
train data set 202.42 —
validation data set 204.58 -1.0
Case stmt hoisted 193.52 4.6

Table 2: Spec2k perl benchmark execution time
in seconds, using xlc 7.0 compiler.

To contrast, on Table 2 we have a set of Spec2k
perl results for the IBM compiler [XLC] run-
ning in the same machine.6

On table 3 we show all Spec95 m88ksim re-
sults. Those results were obtained in the same
G5 Linux PowerPC machine. The first line of
data was obtained with the original compiler.

6The benchmark was compiled with flags -O5, and
-qpdf1 / -qpdf2.

The second and third lines, were obtained with
the switch statement case reordering enabled
and training with the train and validation data
set respectively.

This benchmark has a total of 66 switch state-
ments, 56 of them were never executed. Among
the other 10, the two largest switch statements
have 38 and 16 case labels respectively. Fig-
ure 6 shows the binary search tree for those two
switch statements after balancing them. Note
the heavy effect of the balancing in the symme-
try of the trees.

As discussed in Section 2, gcc makes a tradeoff
between generating a jump table and a binary
search tree. As the memory latency of the tar-
get architecture decreases, one can expect the
importance of this tradeoff to be less significant
or non-existing altogether. This trend is visible
on Table 4, it summarizes all perl and m88ksim
results for two other PowerPC parts that has re-

240 • Switch Statement Case Reordering FDO

Time %
Original gcc 30.25 —
Balanced - train 27.25 11.0
Balanced - validation 26.83 12.7

Table 3: Spec95 m88ksim benchmark execution time in seconds.

7450 8548
perl m88ksim perl m88ksim

Time % Time % Time % Time %
Original gcc 454.8 — 46.0 — 501.0 — 60.0 —
Balanced - train 443.2 2.6 46.0 0.0 505.3 -0.8 59.8 0.3
Balanced - validation 428.7 6.1 46.0 0.0 469.7 6.8 59.9 0.2

Table 4: Summary of results for two other PowerPC parts: the 7450 and the 8548.

Figure 6: Binary search trees of two large
switch statement on Spec95 m88ksim bench-
mark.

spectively smaller memory latencies: the 7450,
and the 8548.

4 Conclusion and Future work

We showed how feedback directed optimiza-
tion can be used to improve large switch state-
ments performance, for both explicit case state-
ments and default statements.

Futhermore, that this optimization can be im-
plemented in gcc by leveraging existing infras-
tructure, namely the capacity to generate bal-
anced binary search trees for switch statements,
and the capacity to create run time value his-
tograms of the switch statement condition ex-
pressions of the target application.

In conclusion, for such small code change in
gcc, the gain in performance of certain applica-
tions is quite significant.

Minor improvements to the current implemen-
tation are planned:

• At the present, all the histograms have the
same fixed range. We could use this range
as a minimum range, and have the com-
piler to scan the case labels and enlarge
the range if necessary. We could also pro-
vide command line parameters to override
the minimum range values, and establish
maximum range values.

• The default value promotion heuristic used
in this implementation was a fixed 10%
threshold. There should be a set of param-

GCC Developers’ Summit 2006 • 241

eters to change this to some other value, or
to some other heuristic.

Another idea, also related to switch statement
optimization, is to explore the application of
feedback directed information on the register
allocator. In the perl benchmark, there is one
long case statement that causes a large amount
of register pressure, but is seldom executed.
That could cause spill to be inserted elsewhere,
perhaps into the main path of execution. The
switch statement feedback information could
be used to guide the register allocator to spill
registers inside the seldom executed path in-
stead.

5 Acknowledgments

I would like to thank Kate Stewart for her un-
limited support during all the stages of this
project. Without her, this work would still be
forgotten in some cabinet.

I also want to thank Kristi Morton for her help-
ful comments and encouragement, Jan Hubicka
for his candid feedback on the first gcc patch,
and Freescale for making this work possible.

References

[TPB] FSF, http:
//gcc.gnu.org/projects/
tree-profiling.html

[YDL] Terra Soft Solutions, Yellow Dog
Linux Version 4.0 for PowerPC, 2005.

[YHPC] Terra Soft Solutions, Y-HPC User’s
Manual, January 13, 2005.

[XLC] Absoft, XL C/C++ IBM Compiler for
Y-HPC Linux 7.0, Reference
XLC4CSS70, 2005.

242 • Switch Statement Case Reordering FDO

Changes to RTL Dataflow Analysis

Danny Berlin
Google

dannyb@google.com

Kenneth Zadeck
Natural Bridge, Inc.

zadeck@naturalbridge.com

Abstract

Significant revisions have been made to DF,
the alternative RTL dataflow analysis mod-
ule for the dataflow branch, to make it suit-
able for everyday use as a provider of both
backend liveness information, as well as var-
ious other dataflow facts (use-def and def-use
chains, death notes and register information).
These changes include:

• Enhancement of the RTL scanning so that
it now encapsulates all of the hard register
special cases that were scattered through-
out the backend.

• Revision of the interfaces to better support
the solution of abstract dataflow problems.

• Replacement of the use-def and def-use
chain algorithms that speed up their com-
putation by up to three orders of magni-
tude.

• Removal of the non working incremental
dataflow interface.

Additionally several phases of the compiler,
such as the global register allocator, DCE, and
DSE have been modified to use the new DF
rather than FLOW. This change has provided
for better generated code as well as faster com-
pilation.

All of these will be discussed in the full paper.

1 Motivation

The back end of GCC uses flow.c to perform
the dataflow analysis.

• The flow analysis engine is archaic. The
generally accepted method for dataflow
analysis is to scan a basic block once
building a summary of the instructions that
occur within that block. Global analy-
sis then uses that summary as its input.
Flow.c rescans each block at each step
of the iteration. This is quite expensive.

• The iteration technology is primi-
tive. Significant improvements to iterative
dataflow were first developed by Hecht [5]
in 1975. The technology in flow is inferior
to this.

• Unrelated problems have been added to
the iteration. Many of the problems, like
finding auto inc instructions derive no ben-
efit from being done inside the main iter-
ative loop aside from being able to reuse
some intermediate structure.

• The current algorithm may not termi-
nate. This has been solved by only allow-
ing a certain number of iterations. How-
ever, when this limit is reached, flow is
currently left with incorrect answers.

• Flow does not get the best solution when
used incrementally. There are many

244 • Changes to RTL Dataflow Analysis

possible correct solutions to the dataflow
equations. However, only one solution is
minimal. This is the desired solution.

The back end of GCC uses FLOW to perform
the dataflow analysis.

2 Underlying Technology

Dataflow analysis is defined over a graph of
basic blocks, the control flow graph, (cfg).
Dataflow problems can be characterized in sev-
eral ways:

direction Dataflow problems are either for-
ward, information flows in the direction
of the cfg edges, backward information
flows against the edges in the cfg or bidi-
rectional information can flow in both di-
rections. The logical predecessors of a
block basic block b are the cfg predeces-
sors if the problem is forwards or bidirec-
tional and the cfg successors if the prob-
lem is backwards. The logical successors
are defined in a corresponding way.

In each basic block, two sets are defined,
an in and and out set. For forwards and
bidirectional problems the in set is at the
top of the block and the out set is at the
bottom of the block. This is reversed for
backwards problems.

domain The set of items to be analyzed: com-
monly used domains are the set of regis-
ters, the set uses, or the set of definitions.

confluence The operation to be executed at the
merge point in the cfg. Confluence oper-
ators are either simple or complex. The
simple operations are generally set union
where the or operator is used for bit vec-
tors, or set intersection where the operator
used at merge points is set intersection.

However complex operations may also be
used. In constant propagation, the con-
fluence operator is equality over values.
While DF is capable of solving dataflow
problems with complex merge operations,
the technology used in DF is generally not
the appropriate for this kind of problem.

A dataflow problem is a set of simultaneous
equations.

The in set of each basic block b is
defined to be the confluence operator
applied to the out set of each logical
predecessor of b.

The out set of each basic block b is
defined to be the transfer function ap-
plied to the in set of b.

There are many possible correct solutions to
these equations. The goal of the dataflow is
to find the best solution to the above system
of simultaneous equations. For a set union (in-
tersection) problem we want the smallest solu-
tion (largest solution), i.e. the solution with the
fewest (most) bits that is correct.

2.1 Solving Dataflow Equations

The dataflow equations can be solved in a va-
riety of ways. Most of the techniques fall into
two categories:

elimination algorithms The earliest elimina-
tion techniques tried was Gaussian elim-
ination. However it was realized very
quickly that the structure of the control
flow graph could be taken advantage of
yield faster solutions. There were many
techniques developed [1, 4, 7].

GCC Developers’ Summit 2006 • 245

Elimination algorithms are built on the
idea of divide and conquer. It is easy
to compute the solution to the data flow
equations for control flow graphs of cer-
tain forms. The idea is to parse the control
flow graph into a recursive tree that con-
tains only these forms. Then the dataflow
solution can be obtained by walking the
tree in a particular order.

While elimination algorithms are gener-
ally fast, they do not work if the con-
trol flow graph cannot be parsed into these
simple forms. In particular, any graph that
contains a multiple entry loop must use
other techniques.

iterative algorithms The earliest iterative al-
gorithms were simple worklist iteration,
described below and implemented in
FLOW. This has the advantage over the
elimination techniques that it works for all
control flow graphs. The disadvantage is
that it is slow.

Matthew Hecht [5] observed that if you
impose a certain structure onto the work-
list, the iteration will tend to converge very
quickly. Forward problems process the
blocks in reverse postorder and backwards
problems process the blocks in postorder.
Bidirectional problems can be solved by
alternating passes of postorder and reverse
postorder. For programs that have only
single entry loops, the number of passes is
never greater than one plus the maximum
loop nesting.

Atkinson and Griswold [2] made a small
modification where an additional depth
first search is added in certain conditions.
They showed that this modification im-
proved Hechts algorithm for many com-
mon cases. This is the technique imple-
mented in DF.

There are three steps to solving a dataflow
problem:

• The first step in solving a dataflow prob-
lem is typically building the transfer func-
tions for the basic blocks. The transfer
function for block b describes how the in-
struction within b can be used to compute
the out set of b from the in set of b.

While it is certainly correct rescan b each
time we wish to compute b’s out set, this is
too expensive since the out set may have to
be computed many times before the equa-
tions converge.

For most simple dataflow problems it is
possible to summarize the action of a ba-
sic block into something that is much sim-
pler than rescanning the block. This is al-
most always true for problem that repre-
sent their results as bit vectors. For these
problems, the summary for a block is typ-
ically represented as two bit vectors, kill
and gen where the kill bitvector knocks
bits out of the vector and the gen bitvec-
tor adds other bits back.

• The second step is to initialize the in and
out sets for each block. For set union
problems the sets can be initialized to the
empty set and for set intersection problems
the sets can be initialized to the universal
set. However it has been observed that
convergence is faster if the out set is ini-
tialized to the gen for set union problems
or kill for set intersection problems.

• The third step is to actually solve the equa-
tions. There are a wide variety of tech-
niques that have been proposed over the
years. Almost all compilers use some
form of fixed point iteration using a work-
list.

The technique implemented in FLOW is
based on the simple worklist iteration

246 • Changes to RTL Dataflow Analysis

worklist <- all blocks
until (worklist is empty) {
take b off the worklist
b->in = empty set
foreach logical preds p of b
b->in |= p->out

temp = trans_function(b, b->in)
if (temp != b->out) {
b->out = temp
foreach logical succ p of b
add p to worklist

}
}

above. However, no transfer functions are
ever computed. Instead the instructions in
a block are rescanned each time the block
is processed by the iteration.

3 Underlying Technology

3.1 Predefined Dataflow Problems

Unlike the analysis in FLOW which only solves
live variables, DF is capable of solving any
forwards or backwards dataflow problem1 Sev-
eral of these problems have been defined in
df-problems.c and are usable in any pass
in the backend that maintains a control flow
graph. There are nine predefined dataflow
problems that are packaged in a way that is easy
to use:

Scan (SCAN) DF works on an abstraction of
the RTL. The scanning phase builds that
abstraction. There are several options con-
trol the scanning. The most common op-
tion controls if hard registers are to be con-
sidered in addition to pseudo registers.

1With a small amount of work, bidirectional dataflow
problems could be accommodated.

For each instruction, the sets of registers
defined and of registers used are created
as well as the the set of multiword refer-
ences. For each basic block b there is also
the set of artificial uses and defs that oc-
cur at the bottom and top of b. Artificial
registers are implicit uses or definitions of
registers that cannot be attached to explicit
instructions. For instance, before instruc-
tion selection, the stack and frame pointers
are considered live everywhere. Exception
handling also give rise to artificial uses and
definitions.

Technically scanning is not a dataflow
problem in that there are not equations to
solve. What this problem does is com-
pute datastructure that make the computa-
tion of the transfer function for the other
problems efficient.

Live Registers (LR) The live registers prob-
lem answers the question “what registers
still contain values that are used later in
the program?”

At the end of computation, there is a
bitvector at the bottom of each basic block,
b, that contains the set of registers whose
value may be used on some path reachable
from b to the exit of the program. Live
variables is a backwards, set union, prob-
lem where each slot in the bit vector rep-
resents one register. Gen is the set of reg-
isters that are used in the block. Kill is the
set of assignments to whole registers. The
bitvector at the top of b is the union of the
bitvectors at the bottom of the preds of b.

Uninitialized Registers (UR) The unini-
tialized registers problem answers the
question “what registers are used before
they are defined?”

At the end of computation, there is a
bitvector at the top of each basic block,
b, that contains the set of registers which

GCC Developers’ Summit 2006 • 247

may provide values on some path from
the beginning of the function to b. Unini-
tialized registers is a forwards, set union,
problem where each slot in the bit vector
represents one register. Gen is the set of
registers that are set in the block. Kill is
the set of clobbers to whole registers. The
bitvector at the bottom of b is simple the
union of the bitvectors at the bottom of the
preds of b.

UR with Early Clobber (UREC) This prob-
lem is a specialization of the uninitialized
registers problem that takes into account
“early clobber” instructions. This process-
ing is over conservative and should be in-
corporated directly into the interference
graph building. When this happens, this
problem will go away.

Reaching Uses (RU) The reaching-uses prob-
lem answers the uses analogue of the
Reaching definitions problem, “which
uses of a register may reach this definition
site?” If a use site reaches some point in
the program, it means not every path in the
program redefines that register.

This is a very expensive problem to com-
pute because there are a large number of
uses in a large function and each use re-
quires one slot in all of the bitvectors.
Thus, the use of this problem should be
discouraged. Currently it is only used in
modulo scheduling. Getting rid of the use
of this problem would most likely speed
up that phase2.

Reaching Definitions (RD) The reaching def-
initions problem answers the question
“which definitions of a register may reach

2In the original version of DF, use-def chains were
built using this problem. Since modulo scheduling used
use-def chains, this problem was available for free. The
current implementation of DF builds both use-def and
def-use chains from reaching definitions so using this
problem is expensive.

this point in the program?” If a definition
site reaches some point in the program, it
means not every path to that point in the
program kills the definition.

Chain Building (CHAIN) Def-Use and Use-
Def chains provide explicit chains formed
from either the reaching uses, or reaching
definitions problems. In particular, given
a use of a register, the use-def chains will
provide links to all definitions of that reg-
ister that may reach that use. Given a def
of a register, the def-use chains will pro-
vide links to all uses of the register the def-
inition reaches.

Building chains is also not technically a
dataflow problem because the construction
of either type of chain is based on the so-
lution of the reaching definitions problem.

Register Information (RI) Register informa-
tion is a collection of information about
registers used by passes such as the regis-
ter allocator. This includes the number of
references made to the register, how many
calls the register lives across, and other
miscellaneous information used in regis-
ter allocation heuristics. This is the same
information about how it builds this infor-
mation so the information that was com-
puted in FLOW with the PROP_REG_
INFO parameter however the information
produced here is more precise that that
computed in FLOW.

REG_DEAD and REG_UNUSED Notes REG_
DEAD and REG_UNUSED notes are simple
information that was previously provided
by FLOW. REG_DEAD notes represent
kills of registers. Anytime a register dies
in an instruction, a REG_DEAD note is
generated. REG_UNUSED notes represent
the last use of a register. If no further uses
of the register occur in the program, a
REG_UNUSED note is generated. This is

248 • Changes to RTL Dataflow Analysis

the same information about how it builds
this information so the information that
was computed in FLOW with the PROP_
DEATH_NOTES parameter however the
information produced here is more precise
that that computed in FLOW.3

3.2 Other Features of FLOW

FLOW has also become a catch basin for a
wide variety of transformation that have noth-
ing to do with dataflow analysis except that they
utilize some datastructure that was private to
FLOW. These include:

• Cleanup of conditional assignment state-
ments with a basic block.

• Combining memory references and incre-
ment/decrement instructions into pre and
post increment instructions.

• Discovery of functions that change the
stack pointer.

• Computation of register use statistics.

There is little synergy between these problems
and the rest of dataflow analysis. Thus, we have
decided to either make these separate passes or
make it a separate dataflow problem.

3.3 Dead Code Elimination

Dead code elimination (DCE) and dead store
elimination (DSE) are handled in dce.c.
There are two dead code elimination algorithms
and one dead store elimination algorithm.

3LOG_LINKS, which are now only used by combine
have been integrated into combine. The use of this
datastructure is discouraged but combine is difficult to
rewrite.

3.3.1 The First Dead Code Elimination
Algorithm

The first DCE was developed by Richard San-
diford of CodeSourcery. This algorithm is
based on the optimistic dead code elimination
in [3] but differs in two important ways: it uses
use-def chains rather than SSA form and it cur-
rently does not utilize the control dependence
graph to remove dead branches. The latter dif-
ference will be fixed when time permits.

The overall form of the algorithm is to

1. build use-def chains.

2. mark instructions that can never be dead as
live. Everything else is assumed dead.

3. iteratively mark any instructions as live if
it is used by something live.

4. delete everything marked live.

3.3.2 Dead Store Elimination

The dead store elimination was also developed
by David Sandiford. It deals with two forms of
dead stores: stores in the exit block that store to
into the stack frame and stores, whose value is
stored over before the value can be read.

To find the latter, a dataflow problem is solved
where each symbolic address is modeled with
position in the bit vector. The flow equations
track which stores may reach other instructions.

3.3.3 The Second Dead Code Elimination
Algorithm

The second dead code elimination algorithm
was implemented by Kenneth Zadeck and is

GCC Developers’ Summit 2006 • 249

similar in principle to the existing dead code
elimination in FLOW; i.e. it is based on live
variable analysis and processes the instructions
on a block by block basis.

This algorithm is inferior to the first dead code
elimination in that it cannot remove code that
only depends on itself (dead induction vari-
ables) and cannot be modified to remove con-
trol dependent dead code.4 However, this al-
gorithm is much faster than the first because
live variables is much less expensive to com-
pute than use-def chains. Also, this algorithm
is generally called as an almost free, side effect
of building live variables, which are used for
many other passes of the compiler.

The main difference between the algorithm in
DF and the one in FLOW is that the basic
blocks are processed in postorder. The initial
value for liveness that is used at the bottom of
the block is either value computed by DF if
none of the successors has changed or the union
of liveness at the top of the successors if any of
them has changed.

As each block is processed (from last to first in-
struction) the liveness is kept up to date. When
the top of the block is reached, this computed
liveness is compared with the value at the top of
the block computed by DF. If the values differ,
the locally computed value replaces the value
computed by DF and this block is marked as
changed.

The only time that it is necessary to actually
go back and re-solve the dataflow equations is
when the live variable bitvector changes at the
top of a block that is the destination of a cfg
back edge. This is quite rare, particularly since
DCE is called at the beginning of many passes
of the backend. In the DCE in FLOW the equa-
tions are resolved if any instruction is deleted.

4This difference will only be important when the first
dead code algorithm is enhanced with control depen-
dence information.

3.3.4 Status

Currently the first DCE algorithm not called di-
rectly but is used as a part of the dead store
elimination. When it is enhanced with the con-
trol dependence graph, it may be useful to call
this as a separate pass at higher optimization
levels.

It may also be possible to enhance the first DCE
so that it can be called as a side effect of build-
ing use-def and def-use chains. The perfor-
mance issues are not with the dead code part
of the algorithm but with the building of the
chains. However, in passes such as the modulo
scheduler which builds both use-def and def-
use chains, it may be possible to integrate the
first DCE algorithm and fix up the chains.

4 Abstractions and API

The abstractions used by the dataflow analysis
are meant to be both usable, and efficient, at the
same time.

There are several important structures provided
by the dataflow engine, the main ones being the
dataflow reference structure and the insn info
structure.

The dataflow reference structure is the heart of
dataflow information. It is generated by the
dataflow scanner, and represents a def or a use
of a register (IE a reference to a register). The
information it provides consists of:

• REG, the register this reference is referenc-
ing.

• BB, the basic block in which the instruc-
tion occurs.

• INSN, a pointer to the instruction contain-
ing the reference.

250 • Changes to RTL Dataflow Analysis

• LOC, a pointer to the place in the instruc-
tion containing the reference.

• CHAIN, a pointer to the chain of uses of
this reference if it is at def, or a chain of
defs of this reference if it is a use.

• ID, a unique id for this reference.

• TYPE, whether the reference is a use or a
def, and if it is a use, whether it is a reg-
ular use, or part of a memory addressing
operation.

• FLAGS, various informational flags about
the reference, such as whether it is a
clobber, whether the reference is artificial,
whether it occurs in a note, and other use-
ful pieces of information.

The dataflow insn info structure is the second
most used dataflow structure. It provides infor-
mation about each instruction in the program
consisting of:

• USES, the list of register uses in this in-
struction.

• DEFS, the list of register definitions in this
instruction.

• MWREGS, the list of multiword register
uses and defs in this instruction (this is
separated out for use by REG_DEAD and
REG_UNUSED note generation).

In addition to these structures, there are some
small and easily understood structures used by
various simpler problems, as well as various ta-
bles that contain pointers to the structures de-
fined above . An example of one of these ta-
ble is the the register-use and register-def table,
which is a table of all the def/use structures for
a given register.

4.1 Using predefined problems

Using the predefined problems is very simple.
An example:

struct df *df
= df_init (DF_HARD_REGS);

df_lr_add_problem (df, 0);
df_analyze (df);

bbinset
= DF_LR_BB_INFO(df, bb)->in;

bboutset
= DF_LR_BB_INFO(df, bb)->out;

df_finish (df);

The call to df_init initializes the dataflow
instance, and is passed flags that tell the
DF instance about the details of the info
you need. The current flags include DF_
SUBREGS, which includes information about
subregs, DF_HARD_REGS, which includes in-
formation about machine registers, and DF_
EQUIV_NOTES, which provides information
about references that occur in REG_EQUIV
notes.

Once initialized, adding problems to the
dataflow instance only requires calling the right
df_add_problem function. There is one for
each predefined problem. To add def-use or
use-def chains, df_chain_add_problem
should be called with either DF_UD_CHAIN,
DF_DU_CHAIN, or both of these flags or’ed to-
gether.

After adding all the problems you want to the
DF instance, calling df_analyze will cause
the dataflow engine to perform all the dataflow
and generate the info you have requested.

Once that is done, the info will be stored in var-
ious structures, depending on what you asked
for.

GCC Developers’ Summit 2006 • 251

Problems that generate IN and OUT sets usu-
ally have macros to access these sets, such as
DF_LIVE_IN and DF_LIVE_OUT.

Problems that generate register info, reg-defs,
reg-uses, or instruction info, generally have
macros to access the appropriate tables, like
DF_INSNS_GET.

The definitions of all of these macros and tables
can be found in the file df.h.

4.2 Defining Your Own Problem

DF can solve many dataflow problems in addi-
tion to the ones defined in Section 3.1. The full
harness that DF uses is somewhat complex and
is there to make it very easy to use the canned
problems. Only a small amount of the structure
is necessary to understand if you wish to define
your own problem.

The function df_simple_iterative_

dataflow has been defined to allow simple
dataflow problems defined over some part of
the control flow graph to be solved. There are
eight parameters to this function:

dir Either DF_FORWARD or DF_
BACKWARD. We do not currently do
bidirectional, but could add if there was a
need.

init_fun This function of type df_init_
function initializes the in and out sets be-
fore starting to solve the equations.

con_fun_0 This function of type df_
confluence_function_0 is the convolution
function if the block has no logical pre-
decessors. If the value of this parameter
is NULL, the in set remains at the value
it was initialized to. This is useful in
obscure cases to deal with no return

blocks in backwards problems. This case
can never happen in a forwards problem
because such a block would not appear
reachable.

con_fun_n This function of type df_
confluence_function_n is the convolution
function if the block has one or more
logical predecessors.

trans_fun This function of type df_
transfer_function is the transfer function
through the block.

blocks A bitmap that defines which blocks
are to be processed.

postorder An array of int that contains the
basic blocks in blocks in postorder.

n_blocks The number of blocks in pos-
torder.

5 Incremental Dataflow

Some of the api of FLOW and the original im-
plementation of DF is based on the assumption
that reasonable algorithms exist for performing
dataflow analysis incrementally.

The first algorithms for incremental dataflow
were the phd dissertations of Ryder [6] and one
of the authors of this paper, Zadeck [8]. This
was followed other for a period of about 15
years. In that time the community failed to de-
velop any algorithms that were clearly superior
to well engineered optimizations that did not
rely on being able to update dataflow results.

The problem can be best illustrated with in
the live variables problem (but correspondingly
similar problems exist for all dataflow prob-
lems). There are a large number of correct solu-
tions for the dataflow equations, there is only a

252 • Changes to RTL Dataflow Analysis

single minimal solution. For the live variables
problem, as is true for any set union bit vec-
tor problem, the minimal correct solution is the
one with the smallest total number of one bits
in the solution bit vectors.

update_life_info_in_dirty_blocks

will generally find a correct solution.5 How-
ever, for changes where uses are deleted,
defs are added and/or edges are moved, this
function will generally not find the minimal
solution: i.e., it finds solutions that contain
extra one bits in some vectors.

For illustration purposes, let us take the case
where there are several uses of a particular
pseudo register r and we wish to remove some
of these uses.

Finding the minimal solution is trivial if the
program has no loops. The problems in find-
ing a solution arise at join points (live variables
is a backwards problem: the join points are the
conditional branches in the control flow graph.)
Since the solution at the bottom of join point
b is the union of the solutions at the top of the
successor of b, the question that must be asked
when one of the difficult changes is made, is
what caused one bits in those successor blocks.
If any of the bits in the successors are derived
from the uses of r that remain, then the bit for
r at the bottom of b is set. However, if all of
the bits were derived from instances that were
deleted, the bit for r at the bottom of b must be
cleared.

There are two ways to approach designing an
algorithm to solve this problem: one can either
clear all of the bits in all of the blocks associ-
ated with r or one can build auxiliary datastruc-
tures to hold the information for where the bits
come from. The first approach means that one
is solving the offline algorithm whenever one
makes the change.

5Those cases where it fails to find a correct solution
are bugs that are generally easy to fix.

The second approach is the one that was pur-
sued by the incremental dataflow community in
various forms. For the live variables problem,
the information necessary to track changes is
equivalent to the information provided by the
more expensive reaching uses problem. How-
ever, to keep the information in the reaching
uses up to date when structural changes are
made to the flow graph requires even more ex-
pensive path information. While many interest-
ing datastructures were investigated, the over-
head involved in keeping these up to date was
rarely worth the trouble. This result, coupled
with the fact that most optimizations can be im-
plemented without the need for incremental up-
dates basically killed the area.

For these reasons, we decided that it was time
to face the fact that incremental dataflow was
not going to happen and have reimplemented
DF without a non working incremental API.
There are a few passes such as if conversion
that have required extensive revision, but for
most passes the changes have been simple and
mechanical.

6 Demand Driven Backend Passes

In addition to improving the quality of the
dataflow analysis of the backend, it has been
our goal to improve the modularity of the back-
end. It is highly desirable to be able to reorder
the passes in a compiler. We have addressed a
number of these issues in the dataflow rewrite.

There are two ways to achieve modularity in a
compiler: (1) implement a set of invariants that
must be true at the end of each pass or (2) make
sure that each pass that needs some invariant to
be true applies the steps to make it that way.

One of the reasons that the backend is difficult
to deal with is that many of the dependencies

GCC Developers’ Summit 2006 • 253

between the phases do not fall into either of
these categories. The components of FLOW
are at the core of many of these problems and as
we have replaced flow with DF, we have done
so in a manner that is consistent with one of the
above categories.

• At the beginning of any part of the back-
end that has a correct control flow graph,
any of the DF problems can be computed.
Furthermore, it is expected that each pass,
compute exactly the dataflow problems
that it needs for itself and at the end of that
pass, the flow information is discarded.6

• Dead code elimination is only performed
if the phase where the analysis is being
done, requires the program to be clear of
dead code. Any phase that my produce
dead code leaves that code.

There are, at higher optimization levels,
passes near the end that do a comprehen-
sive job of cleaning up the dead code.

• Like dce, CFG Cleanup now is only per-
formed if the phase before phases that
would be inhibited by having an untidy
control flow graph. The long term plan
with this is to change this from a phase
that eight different modes to one that has
two modes: a lightweight one that is part
of other passes, and a heavy weight one
that is powerful and not particularly inex-
pensive.

While this cleanup removes many of the inter-
pass dependencies, some remain, in particular
there are still many issues with the way register
information is built and maintained throughout
the pass stream.

6The only exception to this are REG_DEAD and
REG_UNUSED notes that are left until the next pass that
uses them cleans them up.

7 Status and Results

The work so far has concentrated on been re-
placing the use of flow.c with dataflow pro-
vided by df.c. Currently, the code for most of
our work is on the dataflow-branch in the
GCC SVN repository. On this branch, flow.c
is not used at all for global liveness calcula-
tion, or dead code elimination. All passes, ex-
cept combine, use dataflow instances to do their
work. This work should begin soon.

8 Acknowledgments

We would like to than everyone who has
helped with the dataflow branch. This in-
cludes, Steven Bosscher, David Edelsohn, Jan
Hubicka, Richard Sandiford, Ian Lance Taylor.

References

[1] F. E. Allen. Control flow analysis.
SIGPLAN Notices, 5, July 1970.

[2] D. C. Atkinson and W. G. Griswold.
Implementation techniques for efficient
data-flow analysis of large programs.
Proc. of the 2001 International Conf. on
Software Maintenance, November 2001.

[3] R. Cytron, J. Ferrante, B.K. Rosen, M.N.
Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form
and the control dependence graph. ACM
Trans. on Programming Languages and
Systems, 13(4):451–490, October 1991.

[4] S. L. Graham and M. N. Wegman. A fast
and usually linear algorithm for global
flow analysis. J. ACM, 23(1):172–202,
January 1976.

254 • Changes to RTL Dataflow Analysis

[5] M. S. Hecht and J. D. Ullman. A simple
algorithm for global data flow analysis
problems. SIAM J. Computing,
4(4):519–532, December 1975.

[6] B. G. Ryder. Incremental data flow
analysis. Conf. Rec. Tenth ACM Symp. on
Principles of Programming Languages,
pages 167–176, January 1983.

[7] R. E. Tarjan. Testing flow graph
reducibility. J. Computer and System
Sciences, 9:355–365, December 1974.

[8] F. K. Zadeck. Incremental data flow
analysis in a structure program editor.
Proc. SIGPLAN’84 Symp. on Compiler
Construction, pages 132–143, June 1984.
Published as SIGPLAN Notices Vol. 19,
No. 6.

