
CONTRIBUTED RESEARCH ARTICLE 1

Converting Between Value Oriented and
Code Capturing Interfaces in R
by John Mount and Nina Zumel

Abstract

A number of popular R packages promote the use of non-standard or code-capturing function
interfaces. The use of non-standard evaluation can produce concise and elegant code, especially in
interactive situations. However, code produced in this style is difficult to parameterize or program
over.

To address this issue, we describe R meta-programming tools from the wrapr package that easily
convert between non-standard and standard interfaces. Our goal is to support popular programming
paradigms in a more value oriented ”R like” manner, supplying more good options for both interactive
R users and package developers.

Introduction

Programming in R involves both interactive tasks where variable names and column names are known
at the time of coding, and re-usable or parametric scripting, where variable names and column names
are not known at the time of coding.

A typical interactive task might be printing a column from a data frame:

> d <- data.frame(x = 1:3, y = 11:13, z = 21:23)
> print(d$x)

[1] 1 2 3

A re-usable task may involve taking the name of the column to be printed from a variable:

> colname <- "x" # The value "x" may not be known until later.
> print(d[[colname]])

[1] 1 2 3

For this paper we will call code of the form “d$x” the “code capturing,” “name capturing,” or
“non-standard” (Wickham, 2014) interface style. And we will call code of the form “d[[colname]]” the
“value oriented,” “parametric,” or “standard semantics” interface style.

Code capturing interfaces are more concise, and are convenient in interactive situations. Value
oriented interfaces provide referential transparency (depend only on values, and return the same value
when variables are replaced with their referred values), are easier to reason about, and are much easier
to parameterize and program over. Value oriented interfaces are preferable when writing re-usable
functions or packages. Our usual example is: once you need to write a for-loop (or lapply) over a
function you will really come to wish it made a standard or value oriented interface available.

For many situations the distinction between code capturing and value oriented interfaces is not
an issue, as R typically supplies both interfaces. However, for some packages, for example dplyr
(Wickham et al., 2017), the non-standard interface style is dominant creating a need for additional
techniques and tooling.

The wrapr (Mount and Zumel, 2018) package provides tools for easily converting non-standard
interfaces into value oriented interfaces. We will describe wrapr::let(), a function for re-adapting
non-standard evaluation interfaces so one can script or program over them. With let() a package’s
preferred interface style becomes an inessential issue, as the conversion tools make either interface
readily available.

Converting between conventions

An important code capturing interface in R is "formula". When variables are known, creating and
using a formula is straightforward, as in this linear regression example.

> d <- data.frame(x = 1:3, y = 11:13, z = 21:23)
> lm(z ~ x + y, data = d)

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=wrapr

CONTRIBUTED RESEARCH ARTICLE 2

Call:
lm(formula = z ~ x + y, data = d)

Coefficients:
(Intercept) x y

20 1 NA

When variable names are parameterized, creating formulas is less concise, but still relatively
straightforward.

> OUTCOMEVAR <- 'z'
> INDEPENDENT_VARS <- c('x', 'y')
> frm <- as.formula(paste(OUTCOMEVAR, '~',
+ paste(INDEPENDENT_VARS, collapse = ' + ')))
> print(frm)

z ~ x + y

> lm(frm, data = d)

Call:
lm(formula = frm, data = d)

Coefficients:
(Intercept) x y

20 1 NA

R formulas are already easy to construct either through the name capturing interface “ ”, or in
a value oriented way via paste() and as.formula() so “let()” substitution was not required in the
above example.1 Other R commands, such as library() and help(), directly implement both code
capturing and value oriented interfaces.

For programming situations that are less straightforward, R supplies meta-programming facilities
to assist with code capture, examination, and evaluation. These include as.name(), bquote(), quote(),
with(), substitute(), eval(), and do.call(). Various R packages also supply additional meta-
programming tools:

gtools Warnes et al. (2015) a package of tools to assist with R programming, including macro creation.
A nice introduction to macros in R can be found here Lumley (2001).

lazyeval Wickham (2017) a non-standard evaluation package.

wrapr Mount and Zumel (2018) the meta-programming solutions we will explain in this note.2

rlang Henry and Wickham (2017) a meta-programming system supplying “tidyeval” parsing and
interpretation semantics, which are different than R semantics.3

nseval Meilstrup (2018) a meta-programming system attempting to correctly expose correct R quotation
and evaluation handlers, without routing through mismatching S syntax and semantics.

lazyeval and rlang are both meta-programming systems to allow value oriented programming
over the highly popular dplyr and related packages. These packages all strongly depend on code
capturing interfaces, and use either rlang or tidyeval to capture and reprocess arguments. Because
this is an “inside the package” operation, users cannot activate this effect on packages not built using
rlang or tidyeval. For more on the relative capabilities and priority of these packages please see our
own note Mount (2018).

wrapr::let() completes all substitutions before further code evaluation. Hence, users can apply
let() without any prearrangement with package developers. The wrapr package tries to be “R-like”:
it adheres as much as possible to standard R tools, R semantics, and R conventions. wrapr is also a
pure-R package in that it include no C/C++/FORTRAN code and uses only public R methods and
interfaces.

1Note that this paste() strategy obscures the content of the actual formula in print.lm() and summary.lm().
We will address this point again later.

2let() was originally publicly announced and shared December 3rd, 2016, http://www.win-vector.
com/blog/2016/12/parametric-variable-names-and-dplyr/, https://github.com/WinVector/replyr/commit/
f6a51f8b21af29aede4aad4f7bb9b682c6147992 it was made further available through CRAN December 9th, 2016
https://cran.r-project.org/src/contrib/Archive/replyr/.

3rlang was released to CRAN May 5th, 2017; well after let() (https://cran.r-project.org/src/contrib/
Archive/rlang/).

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=gtools
https://CRAN.R-project.org/package=lazyeval
https://CRAN.R-project.org/package=wrapr
https://CRAN.R-project.org/package=rlang
https://CRAN.R-project.org/package=nseval
http://www.win-vector.com/blog/2016/12/parametric-variable-names-and-dplyr/
http://www.win-vector.com/blog/2016/12/parametric-variable-names-and-dplyr/
https://github.com/WinVector/replyr/commit/f6a51f8b21af29aede4aad4f7bb9b682c6147992
https://github.com/WinVector/replyr/commit/f6a51f8b21af29aede4aad4f7bb9b682c6147992
https://cran.r-project.org/src/contrib/Archive/replyr/
https://cran.r-project.org/src/contrib/Archive/rlang/
https://cran.r-project.org/src/contrib/Archive/rlang/

CONTRIBUTED RESEARCH ARTICLE 3

Using wrapr::let() to convert code capturing interfaces to value oriented
interfaces

The inspiration for wrapr::let() comes from the Lisp let() facility (Landin, 1965; Steele, 1984;
Culpepper and Felleisen, 2010). wrapr::let() takes two arguments:

1. A mapping from the stand-in or target names to the actual names representing the final variable
references. The mnemonic is: substitution targets are replaced by actuals. The mapping is specified
by a named character vector with targets as keys, and actuals as values.

2. The expression or expression block to be transformed and executed.

This is best shown with an example. Let us start with the following dplyr pipeline:

> library("dplyr")
> data.frame(x = 1, y = 5) %>% mutate(x = x + 1)

x y
1 2 5

Suppose we want to replace the hard-coded column x with a column name coming from a variable.
With wrapr::let() we write this as follows:

> library("wrapr")
> z <- "x"
> let(c(COLNAME = z),
+ data.frame(x = 1, y = 5) %>% mutate(COLNAME = COLNAME + 1)
+)

x y
1 2 5

In the above code all uses of the stand-in “COLNAME” are replaced with the actual (“x”) stored in the
variable “z” prior to execution. This is a bit clearer if we show the new code instead of executing it:

> z <- "x"
> let(c(COLNAME = z),
+ data.frame(x = 1, y = 5) %>% mutate(COLNAME = COLNAME + 1),
+ eval = FALSE
+)

data.frame(x = 1, y = 5) %>% mutate(x = x + 1)

let() is particularly useful when building functions by pasting existing ad-hoc code into a function
block, requiring few edits and little clean-up. In the below example we show how the original ad-hoc
pipeline “data.frame(x = 1,y = 5) %>% mutate(x = x + 1)” can be quickly abstracted to a re-usable
parameterized function.

> f <- function(d, z) {
+ let(c(x = z),
+ d %>% mutate(x = x + 1))
+ }
> f(data.frame(x = 1, y = 5), "y")

x y
1 1 6

Notice the function correctly added one to “y” even though the target name was coincidentally
“x”. We will discuss how to manage potential name collisions and environments later in this note.

For this example a similar effect can be accomplished using the rlang, though the notation and
semantics are different.

> f2 <- function(d, z) {
+ x <- rlang::sym(z)
+ d %>% mutate(!!x := !!x + 1)
+ }
> f2(data.frame(x = 1, y = 5), "y")

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 4

x y
1 1 6

The amount of boiler plate code required by wrapr::let() is only proportional to the number of
stand-ins targeted for replacement, and often independent of the size of the code being managed. In
simple cases wrapr::let() requires little to no change to the code being parameterized. The boilerplate
can also be made shorter by using the wrapr-supplied helper function :=4. Let’s demonstrate this
using the earlier lm() example.

> d <- data.frame(x = 1:3, y = 11:13, z = 21:23)
> symnames <- c("Y", "V1", "V2")
> colnames <- c("z", "x", "y")
> print(symnames := colnames)

Y V1 V2
"z" "x" "y"

> let(symnames := colnames,
+ lm(Y ~ V1 + V2, data = d))

Call:
lm(formula = z ~ x + y, data = d)

Coefficients:
(Intercept) x y

20 1 NA

Notice we have the additional benefit that the formula is completely legible in the above print.lm().
Note also that one cannot use rlang to directly perform the same substitution, as the stats package
does not work with rlang:

> Y <- rlang::sym("z")
> V1 <- rlang::sym("x")
> V2 <- rlang::sym("y")
> lm(!!Y ~ (!!V1) + (!!V2), data = d)
Error in !Y : invalid argument type

Mixed case convention

To further improve code legibility, we recommend what we call the mixed case convention. In mixed
case convention we use uppercase for stand-ins and lower case for variables containing the actuals.

> colname <- "x"
> let(c(COLNAME = colname),
+ d %>% mutate(COLNAME = COLNAME + 1)
+)

x y z
1 2 11 21
2 3 12 22
3 4 13 23

This convention allows the reader to distinguish the stand-ins from the actuals. This is particularly
important when adapting code that is already using a mixture of code capturing and value oriented
notation. Confusion between symbols and variables (and even values) is not just a problem for users,
but part of the history of Lisp derived programming languages Harper (2012, 32.3 Notes, p. 268). A
good history of FEXPR semantics (a core part of R and S function evaluation) can be found in Shutt
(2010).

data.table (Dowle and Srinivasan, 2017) is, in our opinion, the most powerful package for in-
memory data manipulation in R.5 We mention data.table here as it uses a mixture of code capture and
value oriented interfaces, giving as a useful new example. For example:

4wrapr::‘:=‘ is an assignment operator implemented in the wrapr package. Due to package scoping rules the
wrapr implementation will not interfere with other packages that use := such as dplyr and data.table (Dowle and
Srinivasan, 2017). data.table’s definition of := can obscure wrapr’s implementation, so we suggest when using
data.table to either load wrapr last or manually restore wrapr’s definition, as we show in a later example. Again,
this will not interfere with data.table operation as data.table expressions are evaluated in the data.table package
context.

5And it even has some important out of core extensions.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table

CONTRIBUTED RESEARCH ARTICLE 5

> library("data.table")
> f <- function(d, old_name, new_name) {
+ let(c(OLD_NAME = old_name,
+ NEW_NAME = new_name),
+ {
+ dT <- data.table::data.table(d)
+ setnames(dT, old_name, new_name) # this step uses values
+ dT[, NEW_NAME := NEW_NAME + 1] # this step uses names
+ dT
+ })}
> print(f(d, "x", "new_x")[])

new_x y z
1: 2 11 21
2: 3 12 22
3: 4 13 23

It was useful to have both the stand-in “NEW_NAME” and the variable “new_name” that holds the
actual simultaneously available. Notice code sections that are longer than a single statement are placed
in “{ }”.

Using wrapr::let() in functions

wrapr::let()’s design is based on a theory of unbound variables, that is variable names that may not
have an associated value at the time or in the environment they are declared. The most common
example of this is specifying the a column name that is to be interpreted with respect to a not yet
available data.frame. This theory is different than concentrating on bound variables (which caries
environments with variables). It is our principle that if one has a bound variable (i.e. a name and an
environment that it is to be evaluated with respect to) then it makes sense to treat that as a value.6.

When using wrapr::let() in a function the programmer must take explicit care in naming argu-
ments and in specifying environments. Fortunately R already has good tools for these tasks. Let’s
make this concrete with a couple of examples.

Suppose we wish to create a function that returns the sum of two variables specified by name. We
could attempt this as follows.

> library("wrapr")
> x <- 1
> y <- 2
> a <- 3
> b <- 4
> adder <- function(x, y) {
+ let(c(x = x, y = y),
+ x + y)
+ }
> # works
> adder("a", "b")

[1] 7

> # fails
> tryCatch(
+ adder("x", "y"),
+ error = function(e) { cat(format(e)) }
+)

non-numeric argument to binary operator x + y

The above error is not due to any brittleness in let(), it is because we did not follow the following
important conventions in using let() in a function.

1 Design your function and let() blocks so there are no coincidences between variables (especially
function arguments) and let() stand-in substitution targets.

6In fact carrying environments around merely to delay de-references of values is a major source of reference
leaks in R: http://www.win-vector.com/blog/2014/05/trimming-the-fat-from-glm-models-in-r/

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://www.win-vector.com/blog/2014/05/trimming-the-fat-from-glm-models-in-r/

CONTRIBUTED RESEARCH ARTICLE 6

2 Separate calculations into meaningful sub-units.

3 Be explicit in specifying which environment you wish values to be taken from for each step.

What went wrong is the function’s execution environment the variable x contains the string "x",
which is not a suitable argument for standard numeric addition. We fix this by asking the expression
to be evaluated in the environment the function was called from, where the values the user expected
to be active are available.

In our case it is much better to write the function as follows.

> adder <- function(x, y, envir = parent.frame()) {
+ let(c(X = x, Y = y),
+ X + Y,
+ envir = envir)
+ }
> # works
> adder("a", "b")

[1] 7

> # works
> adder("x", "y")

[1] 3

Above we used the mixed-case convention discussed earlier. It is always easy to avoid having
substitution targets confused with other names in inner code, as both the stand-in target choices and
the inner code are specified the exact same place: inside the let() block (and hence completely under
the programmer’s control).

Environment specification can get a bit more involved, takes a bit more some care. For instance
suppose we have the following data.

> x <- 1:3
> y <- c(-1, -1, 3)
> d <- data.frame(x = 1:3, y = c(1, 1, 3))

Further suppose that we wish to build a function that controls elements of a lm() formula and also
what is returned. In our case we wish to parameterize an expression such as:

> summary(lm(y ~ x, data = d))[["coefficients"]]

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.3333333 1.2472191 -0.2672612 0.8337420
x 1.0000000 0.5773503 1.7320508 0.3333333

To do this we write our new function as follows.

> get_lm_prop <- function(x, y, df, property) {
+ let(c(X = x, Y = y),
+ summary(lm(Y ~ X, data = df))[[property]])
+ }
> get_lm_prop("x", "y", d, "coefficients")

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.3333333 1.2472191 -0.2672612 0.8337420
x 1.0000000 0.5773503 1.7320508 0.3333333

Notice we did not take control of the environment, which allows values such as “property” to be
taken from the function’s environment (the function arguments in particular). Also, we are assuming
(but not enforcing) that x and y are carrying column names of the data.frame df. If we wish to
production harden the code we could re-write it thusly.

> get_lm_prop <- function(x, y, df, property) {
+ if(length(setdiff(c(x, y), colnames(df)))>0) {
+ stop("get_lm_prop referred to non-columns")
+ }
+ let(c(X = x, Y = y),
+ summary(lm(Y ~ X, data = df))[[property]])
+ }

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 7

Or if we wished for some values to come from the calling environment and some from the function
environment we merely break up the steps allowing us to specify the distinctions.

> get_lm_prop <- function(x, y, df, property, envir = parent.frame()) {
+ let(c(X = x, Y = y),
+ form <- Y ~ X,
+ envir = envir
+)
+ summary(lm(form, data = df))[[property]]
+ }

The above isn’t a particularly useful refactoring (it is hard to imagine the formula construction
benefits form being evaluated in the parent environment in this case). However, it gives us a chance
to point out in this case the lm() portion of the task should not be in the environment controlled
let-block we want the lm() to take the value for df from what was specified as function argument
to get_lm_prop which means we want the lm() step evaluated in the function environment. For
complicated sequences of operations it may be the case that we wish different portions evaluated with
respect to different environments (some steps may want items from the function environment, and
some may want to be isolated from the function environment). However, we point out this isn’t a
problem unique to let(), it is central issue in designing reliable functions in R. We feel the conventions
we have just taught (unique target names, breaking up calculations into smaller units, and explicit
control of environments) are sufficient tools for these challenges.

Using wrapr::let() in packages

Novel names such as NEW_NAME (from the data.table example in the section prior) superficially appear
to be free or unbound symbols in the let() block. This can trigger warnings during package checks
and inspections. This problem is not unique to wrapr; it also is seen with code capturing packages
such as ggplot2 and dplyr.

We suggest the following convention for working around this issue: assign a (not used) value to
the free symbols prior to working with them. For example the “package hardened” version of the
data.table example would be written as follows:

> f <- function(d, old_name, new_name) {
+ OLD_NAME <- NULL # Indicate this is not an unbound symbol.
+ NEW_NAME <- NULL # Indicate this is not an unbound symbol.
+ let(c(OLD_NAME = old_name,
+ NEW_NAME = new_name),
+ {
+ dT <- data.table::data.table(d)
+ setnames(dT, old_name, new_name)
+ dT[, NEW_NAME := NEW_NAME + 1]
+ withVisible(dT)
+ })}

Alternatively, in some situations one can use what we call the “x = x” convention, where the
stand-ins and the variables holding the actuals deliberately share names:

> f <- function(d, x) {
+ let(c(x = x),
+ d %>% mutate(x = x + 1)
+)}
> f(d, "y")

x y
1 1 2
2 2 2
3 3 4

This convention has the advantages that there are no apparent unbound symbols to trigger package
check warnings, and ad-hoc code can often be reused without any alteration. However, the resulting
code is less explicit, and can be confusing to the novice. In addition, the “x = x” convention cannot
easily be used in situations where we need access to both the stand-ins and the variables carrying the
actuals, as in the data.table example above.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=dplyr

CONTRIBUTED RESEARCH ARTICLE 8

Implementation discussion and details

Ideally we would like wrapr::let(mapping,expression) to behave as syntactic sugar for
eval(substitute(expression,mapping)). In practice, we need different semantics, as we want to
treat strings as names and we also intend to re-map left hand sides of function argument bindings.
substitute() does not re-map left hand sides of function argument bindings, so it is not sufficient for
our needs.

Usually one does not need to re-map left hand sides of function argument bindings, as function
argument names are generally known at coding time (unlike argument values). However, some
popular methods use named “...” arguments as if both the left and right hand sides were user
controllable expressions. dplyr methods such as mutate(), summarize(), or rename() use such a
convention. For example, even though the second argument of mutate(d,y = x + z) behaves as a
column assignment, it is actually a function argument binding. For such code it is plausible a user
may wish to replace the left hand side column name.

In our design we use substitute() to capture the unevaluated R language tree, but not to perform
any substitution. We then walk the language tree recursively, replacing stand-ins with actuals.

The gtools strmacro() function is a text based macro generator that can also perform arbitrary
left hand side substitutions. The gtools authors clearly saw the need for additional effects, as they im-
plemented strmacro() after already implementing the substitute()-based defmacro(). strmacro()
was the inspiration for the original string-based let() implementation, although let() now uses the
more powerful and safer language based method described above.

Conclusion

We have demonstrated strategies for converting code capturing interfaces into standard value oriented
interfaces, and vice-versa. The wrapr implementations are pure R, with low dependencies and without
the use of external languages such as C or C++. The wrapr solutions are convenient, legible, and obey
R semantics and conventions. We feel these tools address under-met needs, and will be of great value
in writing maintainable R code for both R users and R package developers.

Bibliography

R. Culpepper and M. Felleisen. Fortifying macros. In Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’10, pages 235–246, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-794-3. doi: 10.1145/1863543.1863577. URL http://doi.acm.org/10.1145/
1863543.1863577. [p3]

M. Dowle and A. Srinivasan. data.table: Extension of ‘data.frame‘, 2017. URL https://CRAN.R-project.
org/package=data.table. R package version 1.10.4-3. [p4]

P. R. Harper. Practical Foundations for Programming Languages. Cambridge University Press, New York,
NY, USA, 2012. ISBN 1107029570, 9781107029576. doi: 10.1017/CBO9781316576892. [p4]

L. Henry and H. Wickham. rlang: Functions for Base Types and Core R and ’Tidyverse’ Features, 2017. URL
https://CRAN.R-project.org/package=rlang. R package version 0.1.6. [p2]

P. J. Landin. Correspondence between algol 60 and church’s lambda-notation: Part i. Commun. ACM, 8
(2):89–101, Feb. 1965. ISSN 0001-0782. doi: 10.1145/363744.363749. URL http://doi.acm.org/10.
1145/363744.363749. [p3]

T. Lumley. Programmer’s Niche: Macros in R. R News, 1(3):11–13, September 2001. URL https:
//www.r-project.org/doc/Rnews/Rnews_2001-3.pdf. [p2]

P. Meilstrup. nseval: A Clean API for Lazy and Non-Standard Evaluation, 2018. URL https://CRAN.R-
project.org/package=nseval. R package version 0.4. [p2]

J. Mount. Macro substitution in R, 2018. URL https://github.com/WinVector/wrapr/blob/master/
extras/MacrosInR.md. [p2]

J. Mount and N. Zumel. wrapr: Wrap R Functions for Debugging and Parametric Programming, 2018. URL
https://CRAN.R-project.org/package=wrapr. [p1, 2]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://doi.acm.org/10.1145/1863543.1863577
http://doi.acm.org/10.1145/1863543.1863577
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=rlang
http://doi.acm.org/10.1145/363744.363749
http://doi.acm.org/10.1145/363744.363749
https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf
https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf
https://CRAN.R-project.org/package=nseval
https://CRAN.R-project.org/package=nseval
https://github.com/WinVector/wrapr/blob/master/extras/MacrosInR.md
https://github.com/WinVector/wrapr/blob/master/extras/MacrosInR.md
https://CRAN.R-project.org/package=wrapr

CONTRIBUTED RESEARCH ARTICLE 9

J. N. Shutt. Fexprs as the basis of Lisp function application or $vau: the ultimate abstraction. PhD thesis,
Worcester Polytechnic Institute, August 2010. URL https://web.wpi.edu/Pubs/ETD/Available/
etd-090110-124904/unrestricted/jshutt.pdf. [p4]

G. L. Steele. COMMON LISP: the language. 1984. ISBN 0-932376-41-X (paperback). With contributions
by Scott E. Fahlman and Richard P. Gabriel and David A. Moon and Daniel L. Weinreb. [p3]

G. R. Warnes, B. Bolker, and T. Lumley. gtools: Various R Programming Tools, 2015. URL https://CRAN.R-
project.org/package=gtools. R package version 3.5.0. [p2]

H. Wickham. Advanced R. Chapman & Hall/CRC The R Series. Taylor & Francis, 2014. ISBN
9781466586963. URL http://adv-r.had.co.nz. [p1]

H. Wickham. lazyeval: Lazy (Non-Standard) Evaluation, 2017. URL https://CRAN.R-project.org/
package=lazyeval. R package version 0.2.1. [p2]

H. Wickham, R. Francois, L. Henry, and K. Müller. dplyr: A Grammar of Data Manipulation, 2017. URL
https://CRAN.R-project.org/package=dplyr. R package version 0.7.4. [p1]

John Mount
Win-Vector LLC
552 Melrose Ave., San Francisco CA, 94127
USA
jmount@win-vector.com

Nina Zumel
Win-Vector LLC
552 Melrose Ave., San Francisco CA, 94127
USA
nzumel@win-vector.com

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://web.wpi.edu/Pubs/ETD/Available/etd-090110-124904/unrestricted/jshutt.pdf
https://web.wpi.edu/Pubs/ETD/Available/etd-090110-124904/unrestricted/jshutt.pdf
https://CRAN.R-project.org/package=gtools
https://CRAN.R-project.org/package=gtools
http://adv-r.had.co.nz
https://CRAN.R-project.org/package=lazyeval
https://CRAN.R-project.org/package=lazyeval
https://CRAN.R-project.org/package=dplyr
mailto:jmount@win-vector.com
mailto:nzumel@win-vector.com

	Converting Between Value Oriented and Code Capturing Interfaces in R
	Introduction
	Converting between conventions

	Using ````wrapr::let() to convert code capturing interfaces to value oriented interfaces
	Mixed case convention

	Using ````wrapr::let() in functions
	Using ````wrapr::let() in packages

	Implementation discussion and details
	Conclusion

