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.stash_last_result Save most recent results to search path

Description

Save most recent results to search path

Usage

.stash_last_result(x)
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Arguments

x An object.

Details

The function will assign x to .Last.tune.result and put it in the search path.

Value

NULL, invisibly.

.use_case_weights_with_yardstick

Determine if case weights should be passed on to yardstick

Description

This S3 method defines the logic for deciding when a case weight vector should be passed to yard-
stick metric functions and used to measure model performance. The current logic is that frequency
weights (i.e. hardhat::frequency_weights()) are the only situation where this should occur.

Usage

.use_case_weights_with_yardstick(x)

## S3 method for class 'hardhat_importance_weights'
.use_case_weights_with_yardstick(x)

## S3 method for class 'hardhat_frequency_weights'
.use_case_weights_with_yardstick(x)

Arguments

x A vector

Value

A single TRUE or FALSE.

Examples

library(parsnip)
library(dplyr)

frequency_weights(1:10) |>
.use_case_weights_with_yardstick()

importance_weights(seq(1, 10, by = .1))|>
.use_case_weights_with_yardstick()
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augment.tune_results Augment data with holdout predictions

Description

For tune objects that use resampling, these augment() methods will add one or more columns for
the hold-out predictions (i.e. from the assessment set(s)).

Usage

## S3 method for class 'tune_results'
augment(x, ..., parameters = NULL)

## S3 method for class 'resample_results'
augment(x, ...)

## S3 method for class 'last_fit'
augment(x, ...)

Arguments

x An object resulting from one of the tune_*() functions, fit_resamples(), or
last_fit(). The control specifications for these objects should have used the
option save_pred = TRUE.

... Not currently used.

parameters A data frame with a single row that indicates what tuning parameters should be
used to generate the predictions (for tune_*() objects only). If NULL, select_best(x)
will be used with the first metric and, if applicable, the first evaluation time point,
used to create x.

Details

For some resampling methods where rows may be replicated in multiple assessment sets, the pre-
diction columns will be averages of the holdout results. Also, for these methods, it is possible that
all rows of the original data do not have holdout predictions (like a single bootstrap resample). In
this case, all rows are return and a warning is issued.

For objects created by last_fit(), the test set data and predictions are returned.

Unlike other augment() methods, the predicted values for regression models are in a column called
.pred instead of .fitted (to be consistent with other tidymodels conventions).

For regression problems, an additional .resid column is added to the results.

Value

A data frame with one or more additional columns for model predictions.
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autoplot.tune_results Plot tuning search results

Description

Plot tuning search results

Usage

## S3 method for class 'tune_results'
autoplot(
object,
type = c("marginals", "parameters", "performance"),
metric = NULL,
eval_time = NULL,
width = NULL,
call = rlang::current_env(),
...

)

Arguments

object A tibble of results from tune_grid() or tune_bayes().

type A single character value. Choices are "marginals" (for a plot of each predictor
versus performance; see Details below), "parameters" (each parameter versus
search iteration), or "performance" (performance versus iteration). The latter
two choices are only used for tune_bayes().

metric A character vector or NULL for which metric to plot. By default, all metrics
will be shown via facets. Possible options are the entries in .metric column of
collect_metrics(object).

eval_time A numeric vector of time points where dynamic event time metrics should be
chosen (e.g. the time-dependent ROC curve, etc). The values should be consis-
tent with the values used to create object.

width A number for the width of the confidence interval bars when type = "performance".
A value of zero prevents them from being shown.

call The call to be displayed in warnings or errors.

... For plots with a regular grid, this is passed to format() and is applied to a
parameter used to color points. Otherwise, it is not used.

Details

When the results of tune_grid() are used with autoplot(), it tries to determine whether a regular
grid was used.
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Regular grids:
For regular grids with one or more numeric tuning parameters, the parameter with the most unique
values is used on the x-axis. If there are categorical parameters, the first is used to color the
geometries. All other parameters are used in column faceting.
The plot has the performance metric(s) on the y-axis. If there are multiple metrics, these are
row-faceted.
If there are more than five tuning parameters, the "marginal effects" plots are used instead.

Irregular grids:
For space-filling or random grids, a marginal effect plot is created. A panel is made for each
numeric parameter so that each parameter is on the x-axis and performance is on the y-xis. If
there are multiple metrics, these are row-faceted.
A single categorical parameter is shown as colors. If there are two or more non-numeric pa-
rameters, an error is given. A similar result occurs is only non-numeric parameters are in the
grid. In these cases, we suggest using collect_metrics() and ggplot() to create a plot that is
appropriate for the data.
If a parameter has an associated transformation associated with it (as determined by the parameter
object used to create it), the plot shows the values in the transformed units (and is labeled with the
transformation type).
Parameters are labeled using the labels found in the parameter object except when an identifier
was used (e.g. neighbors = tune("K")).

Value

A ggplot2 object.

See Also

tune_grid(), tune_bayes()

Examples

# For grid search:
data("example_ames_knn")

# Plot the tuning parameter values versus performance
autoplot(ames_grid_search, metric = "rmse")

# For iterative search:
# Plot the tuning parameter values versus performance
autoplot(ames_iter_search, metric = "rmse", type = "marginals")

# Plot tuning parameters versus iterations
autoplot(ames_iter_search, metric = "rmse", type = "parameters")

# Plot performance over iterations
autoplot(ames_iter_search, metric = "rmse", type = "performance")
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collect_predictions Obtain and format results produced by tuning functions

Description

Obtain and format results produced by tuning functions

Usage

collect_predictions(x, ...)

## Default S3 method:
collect_predictions(x, ...)

## S3 method for class 'tune_results'
collect_predictions(x, ..., summarize = FALSE, parameters = NULL)

collect_metrics(x, ...)

## S3 method for class 'tune_results'
collect_metrics(x, ..., summarize = TRUE, type = c("long", "wide"))

collect_notes(x, ...)

## S3 method for class 'tune_results'
collect_notes(x, ...)

collect_extracts(x, ...)

## S3 method for class 'tune_results'
collect_extracts(x, ...)

Arguments

x The results of tune_grid(), tune_bayes(), fit_resamples(), or last_fit().
For collect_predictions(), the control option save_pred = TRUE should have
been used.

... Not currently used.

summarize A logical; should metrics be summarized over resamples (TRUE) or return the
values for each individual resample. Note that, if x is created by last_fit(),
summarize has no effect. For the other object types, the method of summarizing
predictions is detailed below.

parameters An optional tibble of tuning parameter values that can be used to filter the pre-
dicted values before processing. This tibble should only have columns for each
tuning parameter identifier (e.g. "my_param" if tune("my_param") was used).
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type One of "long" (the default) or "wide". When type = "long", output has columns
.metric and one of .estimate or mean. .estimate/mean gives the values for
the .metric. When type = "wide", each metric has its own column and the n
and std_err columns are removed, if they exist.

Value

A tibble. The column names depend on the results and the mode of the model.

For collect_metrics() and collect_predictions(), when unsummarized, there are columns
for each tuning parameter (using the id from tune(), if any).

collect_metrics() also has columns .metric, and .estimator by default. For collect_metrics()
methods that have a type argument, supplying type = "wide" will pivot the output such that each
metric has its own column. When the results are summarized, there are columns for mean, n,
and std_err. When not summarized, the additional columns for the resampling identifier(s) and
.estimate.

For collect_predictions(), there are additional columns for the resampling identifier(s), columns
for the predicted values (e.g., .pred, .pred_class, etc.), and a column for the outcome(s) using
the original column name(s) in the data.

collect_predictions() can summarize the various results over replicate out-of-sample predic-
tions. For example, when using the bootstrap, each row in the original training set has multiple
holdout predictions (across assessment sets). To convert these results to a format where every train-
ing set same has a single predicted value, the results are averaged over replicate predictions.

For regression cases, the numeric predictions are simply averaged.

For classification models, the problem is more complex. When class probabilities are used, these
are averaged and then re-normalized to make sure that they add to one. If hard class predictions
also exist in the data, then these are determined from the summarized probability estimates (so that
they match). If only hard class predictions are in the results, then the mode is used to summarize.

With censored outcome models, the predicted survival probabilities (if any) are averaged while the
static predicted event times are summarized using the median.

collect_notes() returns a tibble with columns for the resampling indicators, the location (pre-
processor, model, etc.), type (error or warning), and the notes.

collect_extracts() collects objects extracted from fitted workflows via the extract argument
to control functions. The function returns a tibble with columns for the resampling indicators, the
location (preprocessor, model, etc.), and extracted objects.

Hyperparameters and extracted objects

When making use of submodels, tune can generate predictions and calculate metrics for multiple
model .configurations using only one model fit. However, this means that if a function was sup-
plied to a control function’s extract argument, tune can only execute that extraction on the one
model that was fitted. As a result, in the collect_extracts() output, tune opts to associate the
extracted objects with the hyperparameter combination used to fit that one model workflow, rather
than the hyperparameter combination of a submodel. In the output, this appears like a hyperparam-
eter entry is recycled across many .config entries—this is intentional.

See https://parsnip.tidymodels.org/articles/Submodels.html to learn more about sub-
models.

https://parsnip.tidymodels.org/articles/Submodels.html
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Examples

data("example_ames_knn")
# The parameters for the model:
extract_parameter_set_dials(ames_wflow)

# Summarized over resamples
collect_metrics(ames_grid_search)

# Per-resample values
collect_metrics(ames_grid_search, summarize = FALSE)

# ---------------------------------------------------------------------------

library(parsnip)
library(rsample)
library(dplyr)
library(recipes)
library(tibble)

lm_mod <- linear_reg() |> set_engine("lm")
set.seed(93599150)
car_folds <- vfold_cv(mtcars, v = 2, repeats = 3)
ctrl <- control_resamples(save_pred = TRUE, extract = extract_fit_engine)

spline_rec <-
recipe(mpg ~ ., data = mtcars) |>
step_spline_natural(disp, deg_free = tune("df"))

grid <- tibble(df = 3:6)

resampled <-
lm_mod |>
tune_grid(spline_rec, resamples = car_folds, control = ctrl, grid = grid)

collect_predictions(resampled) |> arrange(.row)
collect_predictions(resampled, summarize = TRUE) |> arrange(.row)
collect_predictions(

resampled,
summarize = TRUE,
parameters = grid[1, ]

) |> arrange(.row)

collect_extracts(resampled)

compute_metrics Calculate and format metrics from tuning functions
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Description

This function computes metrics from tuning results. The arguments and output formats are closely
related to those from collect_metrics(), but this function additionally takes a metrics argument
with a metric set for new metrics to compute. This allows for computing new performance metrics
without requiring users to re-evaluate models against resamples.

Note that the control option save_pred = TRUE must have been supplied when generating x.

Usage

compute_metrics(x, metrics, summarize, event_level, ...)

## Default S3 method:
compute_metrics(x, metrics, summarize = TRUE, event_level = "first", ...)

## S3 method for class 'tune_results'
compute_metrics(x, metrics, ..., summarize = TRUE, event_level = "first")

Arguments

x The results of a tuning function like tune_grid() or fit_resamples(), gener-
ated with the control option save_pred = TRUE.

metrics A metric set of new metrics to compute. See the "Details" section below for
more information.

summarize A single logical value indicating whether metrics should be summarized over re-
samples (TRUE) or return the values for each individual resample. See collect_metrics()
for more details on how metrics are summarized.

event_level A single string containing either "first" or "second". This argument is passed
on to yardstick metric functions when any type of class prediction is made, and
specifies which level of the outcome is considered the "event".

... Not currently used.

Details

Each metric in the set supplied to the metrics argument must have a metric type (usually "numeric",
"class", or "prob") that matches some metric evaluated when generating x. e.g. For example, if
x was generated with only hard "class" metrics, this function can’t compute metrics that take in
class probabilities ("prob".) By default, the tuning functions used to generate x compute metrics
of all needed types.

Value

A tibble. See collect_metrics() for more details on the return value.

Examples

# load needed packages:
library(parsnip)
library(rsample)
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library(yardstick)

# evaluate a linear regression against resamples.
# note that we pass `save_pred = TRUE`:
res <-

fit_resamples(
linear_reg(),
mpg ~ cyl + hp,
bootstraps(mtcars, 5),
control = control_grid(save_pred = TRUE)

)

# to return the metrics supplied to `fit_resamples()`:
collect_metrics(res)

# to compute new metrics:
compute_metrics(res, metric_set(mae))

# if `metrics` is the same as that passed to `fit_resamples()`,
# then `collect_metrics()` and `compute_metrics()` give the same
# output, though `compute_metrics()` is quite a bit slower:
all.equal(

collect_metrics(res),
compute_metrics(res, metric_set(rmse, rsq))

)

conf_mat_resampled Compute average confusion matrix across resamples

Description

For classification problems, conf_mat_resampled() computes a separate confusion matrix for
each resample then averages the cell counts.

Usage

conf_mat_resampled(x, ..., parameters = NULL, tidy = TRUE)

Arguments

x An object with class tune_results that was used with a classification model
that was run with control_*(save_pred = TRUE).

... Currently unused, must be empty.

parameters A tibble with a single tuning parameter combination. Only one tuning parameter
combination (if any were used) is allowed here.

tidy Should the results come back in a tibble (TRUE) or a conf_mat object like
yardstick::conf_mat() (FALSE)?
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Value

A tibble or conf_mat with the average cell count across resamples.

Examples

# example code

library(parsnip)
library(rsample)
library(dplyr)

data(two_class_dat, package = "modeldata")

set.seed(2393)
res <-

logistic_reg() |>
set_engine("glm") |>
fit_resamples(
Class ~ .,
resamples = vfold_cv(two_class_dat, v = 3),
control = control_resamples(save_pred = TRUE)

)

conf_mat_resampled(res)
conf_mat_resampled(res, tidy = FALSE)

control_bayes Control aspects of the Bayesian search process

Description

Control aspects of the Bayesian search process

Usage

control_bayes(
verbose = FALSE,
verbose_iter = FALSE,
no_improve = 10L,
uncertain = Inf,
seed = sample.int(10^5, 1),
extract = NULL,
save_pred = FALSE,
time_limit = NA,
pkgs = NULL,
save_workflow = FALSE,
save_gp_scoring = FALSE,
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event_level = "first",
parallel_over = NULL,
backend_options = NULL,
allow_par = TRUE

)

Arguments

verbose A logical for logging results (other than warnings and errors, which are always
shown) as they are generated during training in a single R process. When using
most parallel backends, this argument typically will not result in any logging.
If using a dark IDE theme, some logging messages might be hard to see; try
setting the tidymodels.dark option with options(tidymodels.dark = TRUE)
to print lighter colors.

verbose_iter A logical for logging results of the Bayesian search process. Defaults to FALSE.
If using a dark IDE theme, some logging messages might be hard to see; try
setting the tidymodels.dark option with options(tidymodels.dark = TRUE)
to print lighter colors.

no_improve The integer cutoff for the number of iterations without better results.

uncertain The number of iterations with no improvement before an uncertainty sample is
created where a sample with high predicted variance is chosen (i.e., in a region
that has not yet been explored). The iteration counter is reset after each uncer-
tainty sample. For example, if uncertain = 10, this condition is triggered every
10 samples with no improvement.

seed An integer for controlling the random number stream. Tuning functions are sen-
sitive to both the state of RNG set outside of tuning functions with set.seed()
as well as the value set here. The value of the former determines RNG for
the higher-level tuning process, like grid generation and setting the value of
this argument if left as default. The value of this argument determines RNG
state in workers for each iteration of model fitting, determined by the value of
parallel_over.

extract An optional function with at least one argument (or NULL) that can be used to
retain arbitrary objects from the model fit object, recipe, or other elements of the
workflow.

save_pred A logical for whether the out-of-sample predictions should be saved for each
model evaluated.

time_limit A number for the minimum number of minutes (elapsed) that the function should
execute. The elapsed time is evaluated at internal checkpoints and, if over
time, the results at that time are returned (with a warning). This means that
the time_limit is not an exact limit, but a minimum time limit.
Note that timing begins immediately on execution. Thus, if the initial argu-
ment to tune_bayes() is supplied as a number, the elapsed time will include
the time needed to generate initialization results.

pkgs An optional character string of R package names that should be loaded (by
namespace) during parallel processing.
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save_workflow A logical for whether the workflow should be appended to the output as an
attribute.

save_gp_scoring

A logical to save the intermediate Gaussian process models for each iteration of
the search. These are saved to tempdir() with names gp_candidates_{i}.RData
where i is the iteration. These results are deleted when the R session ends. This
option is only useful for teaching purposes.

event_level A single string containing either "first" or "second". This argument is passed
on to yardstick metric functions when any type of class prediction is made, and
specifies which level of the outcome is considered the "event".

parallel_over A single string containing either "resamples" or "everything" describing how
to use parallel processing. Alternatively, NULL is allowed, which chooses be-
tween "resamples" and "everything" automatically.
If "resamples", then tuning will be performed in parallel over resamples alone.
Within each resample, the preprocessor (i.e. recipe or formula) is processed
once, and is then reused across all models that need to be fit.
If "everything", then tuning will be performed in parallel at two levels. An
outer parallel loop will iterate over resamples. Additionally, an inner parallel
loop will iterate over all unique combinations of preprocessor and model tuning
parameters for that specific resample. This will result in the preprocessor being
re-processed multiple times, but can be faster if that processing is extremely fast.
If NULL, chooses "resamples" if there are more than one resample, otherwise
chooses "everything" to attempt to maximize core utilization.
Note that switching between parallel_over strategies is not guaranteed to use
the same random number generation schemes. However, re-tuning a model us-
ing the same parallel_over strategy is guaranteed to be reproducible between
runs.

backend_options

An object of class "tune_backend_options" as created by tune::new_backend_options(),
used to pass arguments to specific tuning backend. Defaults to NULL for default
backend options.

allow_par A logical to allow parallel processing (if a parallel backend is registered).

Details

For extract, this function can be used to output the model object, the recipe (if used), or some
components of either or both. When evaluated, the function’s sole argument has a fitted workflow
If the formula method is used, the recipe element will be NULL.

The results of the extract function are added to a list column in the output called .extracts.
Each element of this list is a tibble with tuning parameter column and a list column (also called
.extracts) that contains the results of the function. If no extraction function is used, there is no
.extracts column in the resulting object. See tune_bayes() for more specific details.

Note that for collect_predictions(), it is possible that each row of the original data point might
be represented multiple times per tuning parameter. For example, if the bootstrap or repeated cross-
validation are used, there will be multiple rows since the sample data point has been evaluated
multiple times. This may cause issues when merging the predictions with the original data.
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Hyperparameters and extracted objects

When making use of submodels, tune can generate predictions and calculate metrics for multiple
model .configurations using only one model fit. However, this means that if a function was sup-
plied to a control function’s extract argument, tune can only execute that extraction on the one
model that was fitted. As a result, in the collect_extracts() output, tune opts to associate the
extracted objects with the hyperparameter combination used to fit that one model workflow, rather
than the hyperparameter combination of a submodel. In the output, this appears like a hyperparam-
eter entry is recycled across many .config entries—this is intentional.

See https://parsnip.tidymodels.org/articles/Submodels.html to learn more about sub-
models.

control_last_fit Control aspects of the last fit process

Description

Control aspects of the last fit process

Usage

control_last_fit(verbose = FALSE, event_level = "first", allow_par = FALSE)

Arguments

verbose A logical for logging results (other than warnings and errors, which are always
shown) as they are generated during training in a single R process. When using
most parallel backends, this argument typically will not result in any logging.
If using a dark IDE theme, some logging messages might be hard to see; try
setting the tidymodels.dark option with options(tidymodels.dark = TRUE)
to print lighter colors.

event_level A single string containing either "first" or "second". This argument is passed
on to yardstick metric functions when any type of class prediction is made, and
specifies which level of the outcome is considered the "event".

allow_par A logical to allow parallel processing (if a parallel backend is registered).

Details

control_last_fit() is a wrapper around control_resamples() and is meant to be used with
last_fit().

https://parsnip.tidymodels.org/articles/Submodels.html
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coord_obs_pred Use same scale for plots of observed vs predicted values

Description

For regression models, coord_obs_pred() can be used in a ggplot to make the x- and y-axes have
the same exact scale along with an aspect ratio of one.

Usage

coord_obs_pred(ratio = 1, xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")

Arguments

ratio Aspect ratio, expressed as y / x. Defaults to 1.0.

xlim, ylim Limits for the x and y axes.

expand Not currently used.

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

Value

A ggproto object.

Examples

# example code
data(solubility_test, package = "modeldata")

library(ggplot2)
p <- ggplot(solubility_test, aes(x = solubility, y = prediction)) +

geom_abline(lty = 2) +
geom_point(alpha = 0.5)

p

p + coord_fixed()

p + coord_obs_pred()
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example_ames_knn Example Analysis of Ames Housing Data

Description

Example Analysis of Ames Housing Data

Details

These objects are the results of an analysis of the Ames housing data. A K-nearest neighbors model
was used with a small predictor set that included natural spline transformations of the Longitude
and Latitude predictors. The code used to generate these examples was:

library(tidymodels)
library(tune)
library(AmesHousing)

# ------------------------------------------------------------------------------

ames <- make_ames()

set.seed(4595)
data_split <- initial_split(ames, strata = "Sale_Price")

ames_train <- training(data_split)

set.seed(2453)
rs_splits <- vfold_cv(ames_train, strata = "Sale_Price")

# ------------------------------------------------------------------------------

ames_rec <-
recipe(Sale_Price ~ ., data = ames_train) |>
step_log(Sale_Price, base = 10) |>
step_YeoJohnson(Lot_Area, Gr_Liv_Area) |>
step_other(Neighborhood, threshold = .1) |>
step_dummy(all_nominal()) |>
step_zv(all_predictors()) |>
step_spline_natural(Longitude, deg_free = tune("lon")) |>
step_spline_natural(Latitude, deg_free = tune("lat"))

knn_model <-
nearest_neighbor(
mode = "regression",
neighbors = tune("K"),
weight_func = tune(),
dist_power = tune()
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) |>
set_engine("kknn")

ames_wflow <-
workflow() |>
add_recipe(ames_rec) |>
add_model(knn_model)

ames_set <-
extract_parameter_set_dials(ames_wflow) |>
update(K = neighbors(c(1, 50)))

set.seed(7014)
ames_grid <-
ames_set |>
grid_max_entropy(size = 10)

ames_grid_search <-
tune_grid(
ames_wflow,
resamples = rs_splits,
grid = ames_grid

)

set.seed(2082)
ames_iter_search <-
tune_bayes(
ames_wflow,
resamples = rs_splits,
param_info = ames_set,
initial = ames_grid_search,
iter = 15

)

important note: Since the rsample split columns contain a reference to the same data, saving them
to disk can results in large object sizes when the object is later used. In essence, R replaces all of
those references with the actual data. For this reason, we saved zero-row tibbles in their place.
This doesn’t affect how we use these objects in examples but be advised that using some rsample
functions on them will cause issues.

Value

ames_wflow A workflow object
ames_grid_search, ames_iter_search

Results of model tuning.

Examples

library(tune)
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ames_grid_search
ames_iter_search

expo_decay Exponential decay function

Description

expo_decay() can be used to increase or decrease a function exponentially over iterations. This
can be used to dynamically set parameters for acquisition functions as iterations of Bayesian opti-
mization proceed.

Usage

expo_decay(iter, start_val, limit_val, slope = 1/5)

Arguments

iter An integer for the current iteration number.

start_val The number returned for the first iteration.

limit_val The number that the process converges to over iterations.

slope A coefficient for the exponent to control the rate of decay. The sign of the slope
controls the direction of decay.

Details

Note that, when used with the acquisition functions in tune(), a wrapper would be required since
only the first argument would be evaluated during tuning.

Value

A single numeric value.

Examples

library(tibble)
library(purrr)
library(ggplot2)
library(dplyr)
tibble(

iter = 1:40,
value = map_dbl(
1:40,
expo_decay,
start_val = .1,
limit_val = 0,
slope = 1 / 5



20 extract-tune

)
) |>

ggplot(aes(x = iter, y = value)) +
geom_path()

extract-tune Extract elements of tune objects

Description

These functions extract various elements from a tune object. If they do not exist yet, an error is
thrown.

• extract_preprocessor() returns the formula, recipe, or variable expressions used for pre-
processing.

• extract_spec_parsnip() returns the parsnip model specification.

• extract_fit_parsnip() returns the parsnip model fit object.

• extract_fit_engine() returns the engine specific fit embedded within a parsnip model fit.
For example, when using parsnip::linear_reg() with the "lm" engine, this returns the
underlying lm object.

• extract_mold() returns the preprocessed "mold" object returned from hardhat::mold(). It
contains information about the preprocessing, including either the prepped recipe, the formula
terms object, or variable selectors.

• extract_recipe() returns the recipe. The estimated argument specifies whether the fitted
or original recipe is returned.

• extract_workflow() returns the workflow object if the control option save_workflow =
TRUE was used. The workflow will only have been estimated for objects produced by last_fit().

Usage

## S3 method for class 'last_fit'
extract_workflow(x, ...)

## S3 method for class 'tune_results'
extract_workflow(x, ...)

## S3 method for class 'tune_results'
extract_spec_parsnip(x, ...)

## S3 method for class 'tune_results'
extract_recipe(x, ..., estimated = TRUE)

## S3 method for class 'tune_results'
extract_fit_parsnip(x, ...)
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## S3 method for class 'tune_results'
extract_fit_engine(x, ...)

## S3 method for class 'tune_results'
extract_mold(x, ...)

## S3 method for class 'tune_results'
extract_preprocessor(x, ...)

Arguments

x A tune_results object.

... Not currently used.

estimated A logical for whether the original (unfit) recipe or the fitted recipe should be
returned.

Details

These functions supersede extract_model().

Value

The extracted value from the tune tune_results, x, as described in the description section.

Examples

# example code

library(recipes)
library(rsample)
library(parsnip)

set.seed(6735)
tr_te_split <- initial_split(mtcars)

spline_rec <- recipe(mpg ~ ., data = mtcars) |>
step_spline_natural(disp)

lin_mod <- linear_reg() |>
set_engine("lm")

spline_res <- last_fit(lin_mod, spline_rec, split = tr_te_split)

extract_preprocessor(spline_res)

# The `spec` is the parsnip spec before it has been fit.
# The `fit` is the fitted parsnip model.
extract_spec_parsnip(spline_res)
extract_fit_parsnip(spline_res)
extract_fit_engine(spline_res)
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# The mold is returned from `hardhat::mold()`, and contains the
# predictors, outcomes, and information about the preprocessing
# for use on new data at `predict()` time.
extract_mold(spline_res)

# A useful shortcut is to extract the fitted recipe from the workflow
extract_recipe(spline_res)

# That is identical to
identical(

extract_mold(spline_res)$blueprint$recipe,
extract_recipe(spline_res)

)

filter_parameters Remove some tuning parameter results

Description

For objects produced by the tune_*() functions, there may only be a subset of tuning parameter
combinations of interest. For large data sets, it might be helpful to be able to remove some results.
This function trims the .metrics column of unwanted results as well as columns .predictions
and .extracts (if they were requested).

Usage

filter_parameters(x, ..., parameters = NULL)

Arguments

x An object of class tune_results that has multiple tuning parameters.

... Expressions that return a logical value, and are defined in terms of the tuning
parameter values. If multiple expressions are included, they are combined with
the & operator. Only rows for which all conditions evaluate to TRUE are kept.

parameters A tibble of tuning parameter values that can be used to filter the predicted values
before processing. This tibble should only have columns for tuning parameter
identifiers (e.g. "my_param" if tune("my_param") was used). There can be
multiple rows and one or more columns. If used, this parameter must be
named.

Details

Removing some parameter combinations might affect the results of autoplot() for the object.

Value

A version of x where the lists columns only retain the parameter combinations in parameters or
satisfied by the filtering logic.
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Examples

library(dplyr)
library(tibble)

# For grid search:
data("example_ames_knn")

## -----------------------------------------------------------------------------
# select all combinations using the 'rank' weighting scheme

ames_grid_search |>
collect_metrics()

filter_parameters(ames_grid_search, weight_func == "rank") |>
collect_metrics()

rank_only <- tibble::tibble(weight_func = "rank")
filter_parameters(ames_grid_search, parameters = rank_only) |>

collect_metrics()

## -----------------------------------------------------------------------------
# Keep only the results from the numerically best combination

ames_iter_search |>
collect_metrics()

best_param <- select_best(ames_iter_search, metric = "rmse")
ames_iter_search |>

filter_parameters(parameters = best_param) |>
collect_metrics()

finalize_model Splice final parameters into objects

Description

The finalize_* functions take a list or tibble of tuning parameter values and update objects with
those values.

Usage

finalize_model(x, parameters)

finalize_recipe(x, parameters)

finalize_workflow(x, parameters)

finalize_tailor(x, parameters)
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Arguments

x A recipe, parsnip model specification, tailor postprocessor, or workflow.

parameters A list or 1-row tibble of parameter values. Note that the column names of the
tibble should be the id fields attached to tune(). For example, in the Examples
section below, the model has tune("K"). In this case, the parameter tibble
should be "K" and not "neighbors".

Value

An updated version of x.

Examples

data("example_ames_knn")

library(parsnip)
knn_model <-

nearest_neighbor(
mode = "regression",
neighbors = tune("K"),
weight_func = tune(),
dist_power = tune()

) |>
set_engine("kknn")

lowest_rmse <- select_best(ames_grid_search, metric = "rmse")
lowest_rmse

knn_model
finalize_model(knn_model, lowest_rmse)

fit_best Fit a model to the numerically optimal configuration

Description

fit_best() takes the results from model tuning and fits it to the training set using tuning parameters
associated with the best performance.

Usage

fit_best(x, ...)

## Default S3 method:
fit_best(x, ...)

## S3 method for class 'tune_results'
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fit_best(
x,
...,
metric = NULL,
eval_time = NULL,
parameters = NULL,
verbose = FALSE,
add_validation_set = NULL

)

Arguments

x The results of class tune_results (coming from functions such as tune_grid(),
tune_bayes(), etc). The control option save_workflow = TRUE should have
been used.

... Not currently used, must be empty.

metric A character string (or NULL) for which metric to optimize. If NULL, the first
metric is used.

eval_time A single numeric time point where dynamic event time metrics should be chosen
(e.g., the time-dependent ROC curve, etc). The values should be consistent with
the values used to create x. The NULL default will automatically use the first
evaluation time used by x.

parameters An optional 1-row tibble of tuning parameter settings, with a column for each
tuning parameter. This tibble should have columns for each tuning param-
eter identifier (e.g. "my_param" if tune("my_param") was used). If NULL,
this argument will be set to select_best(metric, eval_time). If not NULL,
parameters overwrites the specification via metric, and eval_time.

verbose A logical for printing logging.
add_validation_set

When the resamples embedded in x are a split into training set and validation
set, should the validation set be included in the data set used to train the model?
If not, only the training set is used. If NULL, the validation set is not used for
resamples originating from rsample::validation_set() while it is used for
resamples originating from rsample::validation_split().

Details

This function is a shortcut for the manual steps of:

best_param <- select_best(tune_results, metric) # or other `select_*()`
wflow <- finalize_workflow(wflow, best_param) # or just `finalize_model()`
wflow_fit <- fit(wflow, data_set)

Value

A fitted workflow.
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Case Weights

Some models can utilize case weights during training. tidymodels currently supports two types of
case weights: importance weights (doubles) and frequency weights (integers). Frequency weights
are used during model fitting and evaluation, whereas importance weights are only used during
fitting.

To know if your model is capable of using case weights, create a model spec and test it using
parsnip::case_weights_allowed().

To use them, you will need a numeric column in your data set that has been passed through either
hardhat:: importance_weights() or hardhat::frequency_weights().

For functions such as fit_resamples() and the tune_*() functions, the model must be contained
inside of a workflows::workflow(). To declare that case weights are used, invoke workflows::add_case_weights()
with the corresponding (unquoted) column name.

From there, the packages will appropriately handle the weights during model fitting and (if appro-
priate) performance estimation.

See also

last_fit() is closely related to fit_best(). They both give you access to a workflow fitted on the
training data but are situated somewhat differently in the modeling workflow. fit_best() picks
up after a tuning function like tune_grid() to take you from tuning results to fitted workflow,
ready for you to predict and assess further. last_fit() assumes you have made your choice of
hyperparameters and finalized your workflow to then take you from finalized workflow to fitted
workflow and further to performance assessment on the test data. While fit_best() gives a fitted
workflow, last_fit() gives you the performance results. If you want the fitted workflow, you can
extract it from the result of last_fit() via extract_workflow().

Examples

library(recipes)
library(rsample)
library(parsnip)
library(dplyr)

data(meats, package = "modeldata")
meats <- meats |> select(-water, -fat)

set.seed(1)
meat_split <- initial_split(meats)
meat_train <- training(meat_split)
meat_test <- testing(meat_split)

set.seed(2)
meat_rs <- vfold_cv(meat_train, v = 10)

pca_rec <-
recipe(protein ~ ., data = meat_train) |>
step_normalize(all_numeric_predictors()) |>
step_pca(all_numeric_predictors(), num_comp = tune())
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knn_mod <- nearest_neighbor(neighbors = tune()) |> set_mode("regression")

ctrl <- control_grid(save_workflow = TRUE)

set.seed(128)
knn_pca_res <-

tune_grid(knn_mod, pca_rec, resamples = meat_rs, grid = 10, control = ctrl)

knn_fit <- fit_best(knn_pca_res, verbose = TRUE)
predict(knn_fit, meat_test)

fit_resamples Fit multiple models via resampling

Description

fit_resamples() computes a set of performance metrics across one or more resamples. It does not
perform any tuning (see tune_grid() and tune_bayes() for that), and is instead used for fitting a
single model+recipe or model+formula combination across many resamples.

Usage

fit_resamples(object, ...)

## S3 method for class 'model_spec'
fit_resamples(
object,
preprocessor,
resamples,
...,
metrics = NULL,
eval_time = NULL,
control = control_resamples()

)

## S3 method for class 'workflow'
fit_resamples(
object,
resamples,
...,
metrics = NULL,
eval_time = NULL,
control = control_resamples()

)
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Arguments

object A parsnip model specification or an unfitted workflow(). No tuning parameters
are allowed; if arguments have been marked with tune(), their values must be
finalized.

... Currently unused.

preprocessor A traditional model formula or a recipe created using recipes::recipe().

resamples An rset resampling object created from an rsample function, such as rsample::vfold_cv().

metrics A yardstick::metric_set(), or NULL to compute a standard set of metrics.

eval_time A numeric vector of time points where dynamic event time metrics should be
computed (e.g. the time-dependent ROC curve, etc). The values must be non-
negative and should probably be no greater than the largest event time in the
training set (See Details below).

control A control_resamples() object used to fine tune the resampling process.

Case Weights

Some models can utilize case weights during training. tidymodels currently supports two types of
case weights: importance weights (doubles) and frequency weights (integers). Frequency weights
are used during model fitting and evaluation, whereas importance weights are only used during
fitting.

To know if your model is capable of using case weights, create a model spec and test it using
parsnip::case_weights_allowed().

To use them, you will need a numeric column in your data set that has been passed through either
hardhat:: importance_weights() or hardhat::frequency_weights().

For functions such as fit_resamples() and the tune_*() functions, the model must be contained
inside of a workflows::workflow(). To declare that case weights are used, invoke workflows::add_case_weights()
with the corresponding (unquoted) column name.

From there, the packages will appropriately handle the weights during model fitting and (if appro-
priate) performance estimation.

Censored Regression Models

Three types of metrics can be used to assess the quality of censored regression models:

• static: the prediction is independent of time.

• dynamic: the prediction is a time-specific probability (e.g., survival probability) and is mea-
sured at one or more particular times.

• integrated: same as the dynamic metric but returns the integral of the different metrics from
each time point.

Which metrics are chosen by the user affects how many evaluation times should be specified. For
example:

# Needs no `eval_time` value
metric_set(concordance_survival)
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# Needs at least one `eval_time`
metric_set(brier_survival)
metric_set(brier_survival, concordance_survival)

# Needs at least two eval_time` values
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival, brier_survival)

Values of eval_time should be less than the largest observed event time in the training data. For
many non-parametric models, the results beyond the largest time corresponding to an event are
constant (or NA).

Performance Metrics

To use your own performance metrics, the yardstick::metric_set() function can be used to pick
what should be measured for each model. If multiple metrics are desired, they can be bundled. For
example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under
the typical probability cutoff of 0.50), the metrics argument could be given:

metrics = metric_set(roc_auc, sens, spec)

Each metric is calculated for each candidate model.
If no metric set is provided, one is created:

• For regression models, the root mean squared error and coefficient of determination are com-
puted.

• For classification, the area under the ROC curve and overall accuracy are computed.

Note that the metrics also determine what type of predictions are estimated during tuning. For
example, in a classification problem, if metrics are used that are all associated with hard class
predictions, the classification probabilities are not created.
The out-of-sample estimates of these metrics are contained in a list column called .metrics. This
tibble contains a row for each metric and columns for the value, the estimator type, and so on.
collect_metrics() can be used for these objects to collapse the results over the resampled (to
obtain the final resampling estimates per tuning parameter combination).

Obtaining Predictions

When control_grid(save_pred = TRUE), the output tibble contains a list column called .predictions
that has the out-of-sample predictions for each parameter combination in the grid and each fold
(which can be very large).
The elements of the tibble are tibbles with columns for the tuning parameters, the row number
from the original data object (.row), the outcome data (with the same name(s) of the original data),
and any columns created by the predictions. For example, for simple regression problems, this
function generates a column called .pred and so on. As noted above, the prediction columns that
are returned are determined by the type of metric(s) requested.
This list column can be unnested using tidyr::unnest() or using the convenience function
collect_predictions().
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Extracting Information

The extract control option will result in an additional function to be returned called .extracts.
This is a list column that has tibbles containing the results of the user’s function for each tuning
parameter combination. This can enable returning each model and/or recipe object that is created
during resampling. Note that this could result in a large return object, depending on what is returned.

The control function contains an option (extract) that can be used to retain any model or recipe
that was created within the resamples. This argument should be a function with a single ar-
gument. The value of the argument that is given to the function in each resample is a work-
flow object (see workflows::workflow() for more information). Several helper functions can
be used to easily pull out the preprocessing and/or model information from the workflow, such as
extract_preprocessor() and extract_fit_parsnip().

As an example, if there is interest in getting each parsnip model fit back, one could use:

extract = function (x) extract_fit_parsnip(x)

Note that the function given to the extract argument is evaluated on every model that is fit (as
opposed to every model that is evaluated). As noted above, in some cases, model predictions can
be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a
separate R object associated with it.

Finally, it is a good idea to include calls to require() for packages that are used in the function.
This helps prevent failures when using parallel processing.

See Also

control_resamples(), collect_predictions(), collect_metrics()

Examples

library(recipes)
library(rsample)
library(parsnip)
library(workflows)

set.seed(6735)
folds <- vfold_cv(mtcars, v = 5)

spline_rec <- recipe(mpg ~ ., data = mtcars) |>
step_spline_natural(disp) |>
step_spline_natural(wt)

lin_mod <- linear_reg() |>
set_engine("lm")

control <- control_resamples(save_pred = TRUE)

spline_res <- fit_resamples(lin_mod, spline_rec, folds, control = control)

spline_res
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show_best(spline_res, metric = "rmse")

# You can also wrap up a preprocessor and a model into a workflow, and
# supply that to `fit_resamples()` instead. Here, a workflows "variables"
# preprocessor is used, which lets you supply terms using dplyr selectors.
# The variables are used as-is, no preprocessing is done to them.
wf <- workflow() |>

add_variables(outcomes = mpg, predictors = everything()) |>
add_model(lin_mod)

wf_res <- fit_resamples(wf, folds)

int_pctl.tune_results Bootstrap confidence intervals for performance metrics

Description

Using out-of-sample predictions, the bootstrap is used to create percentile confidence intervals.

Usage

## S3 method for class 'tune_results'
int_pctl(
.data,
metrics = NULL,
eval_time = NULL,
times = 1001,
parameters = NULL,
alpha = 0.05,
allow_par = TRUE,
event_level = "first",
keep_replicates = FALSE,
...

)

Arguments

.data A object with class tune_results where the save_pred = TRUE option was
used in the control function.

metrics A yardstick::metric_set(). By default, it uses the same metrics as the orig-
inal object.

eval_time A vector of evaluation times for censored regression models. NULL is appropriate
otherwise. If NULL is used with censored models, a evaluation time is selected,
and a warning is issued.

times The number of bootstrap samples.
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parameters An optional tibble of tuning parameter values that can be used to filter the pre-
dicted values before processing. This tibble should only have columns for each
tuning parameter identifier (e.g. "my_param" if tune("my_param") was used).

alpha Level of significance.

allow_par A logical to allow parallel processing (if a parallel backend is registered).

event_level A single string. Either "first" or "second" to specify which level of truth to
consider as the "event".

keep_replicates

A logic for saving the individual estimates from each bootstrap sample (as a list
column called .values).

... Not currently used.

Details

For each model configuration (if any), this function takes bootstrap samples of the out-of-sample
predicted values. For each bootstrap sample, the metrics are computed and these are used to com-
pute confidence intervals. See rsample::int_pctl() and the references therein for more details.

Note that the .estimate column is likely to be different from the results given by collect_metrics()
since a different estimator is used. Since random numbers are used in sampling, set the random
number seed prior to running this function.

The number of bootstrap samples should be large to have reliable intervals. The defaults reflect the
fewest samples that should be used.

The computations for each configuration can be extensive. To increase computational efficiency
parallel processing can be used. The future package is used here. To execute the resampling
iterations in parallel, specify a plan with future first. The allow_par argument can be used to avoid
parallelism.

Also, if a censored regression model used numerous evaluation times, the computations can take a
long time unless the times are filtered with the eval_time argument.

Value

A tibble of metrics with additional columns for .lower and .upper (and potentially, .values).

References

Davison, A., & Hinkley, D. (1997). Bootstrap Methods and their Application. Cambridge: Cam-
bridge University Press. doi:10.1017/CBO9780511802843

See Also

rsample::int_pctl()

Examples

if (rlang::is_installed("modeldata")) {
data(Sacramento, package = "modeldata")
library(rsample)
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library(parsnip)

set.seed(13)
sac_rs <- vfold_cv(Sacramento)

lm_res <-
linear_reg() |>
fit_resamples(

log10(price) ~ beds + baths + sqft + type + latitude + longitude,
resamples = sac_rs,
control = control_resamples(save_pred = TRUE)

)

set.seed(31)
int_pctl(lm_res)

}

last_fit Fit the final best model to the training set and evaluate the test set

Description

last_fit() emulates the process where, after determining the best model, the final fit on the entire
training set is needed and is then evaluated on the test set.

Usage

last_fit(object, ...)

## S3 method for class 'model_spec'
last_fit(
object,
preprocessor,
split,
...,
metrics = NULL,
eval_time = NULL,
control = control_last_fit(),
add_validation_set = FALSE

)

## S3 method for class 'workflow'
last_fit(
object,
split,
...,
metrics = NULL,
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eval_time = NULL,
control = control_last_fit(),
add_validation_set = FALSE

)

Arguments

object A parsnip model specification or an unfitted workflow(). No tuning parameters
are allowed; if arguments have been marked with tune(), their values must be
finalized.

... Currently unused.

preprocessor A traditional model formula or a recipe created using recipes::recipe().

split An rsplit object created from rsample::initial_split() or rsample::initial_validation_split().

metrics A yardstick::metric_set(), or NULL to compute a standard set of metrics.

eval_time A numeric vector of time points where dynamic event time metrics should be
computed (e.g. the time-dependent ROC curve, etc). The values must be non-
negative and should probably be no greater than the largest event time in the
training set (See Details below).

control A control_last_fit() object used to fine tune the last fit process.
add_validation_set

For 3-way splits into training, validation, and test set via rsample::initial_validation_split(),
should the validation set be included in the data set used to train the model. If
not, only the training set is used.

Details

This function is intended to be used after fitting a variety of models and the final tuning parameters
(if any) have been finalized. The next step would be to fit using the entire training set and verify
performance using the test data.

Value

A single row tibble that emulates the structure of fit_resamples(). However, a list column called
.workflow is also attached with the fitted model (and recipe, if any) that used the training set.
Helper functions for formatting tuning results like collect_metrics() and collect_predictions()
can be used with last_fit() output.

Case Weights

Some models can utilize case weights during training. tidymodels currently supports two types of
case weights: importance weights (doubles) and frequency weights (integers). Frequency weights
are used during model fitting and evaluation, whereas importance weights are only used during
fitting.

To know if your model is capable of using case weights, create a model spec and test it using
parsnip::case_weights_allowed().

To use them, you will need a numeric column in your data set that has been passed through either
hardhat:: importance_weights() or hardhat::frequency_weights().
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For functions such as fit_resamples() and the tune_*() functions, the model must be contained
inside of a workflows::workflow(). To declare that case weights are used, invoke workflows::add_case_weights()
with the corresponding (unquoted) column name.

From there, the packages will appropriately handle the weights during model fitting and (if appro-
priate) performance estimation.

Censored Regression Models

Three types of metrics can be used to assess the quality of censored regression models:

• static: the prediction is independent of time.

• dynamic: the prediction is a time-specific probability (e.g., survival probability) and is mea-
sured at one or more particular times.

• integrated: same as the dynamic metric but returns the integral of the different metrics from
each time point.

Which metrics are chosen by the user affects how many evaluation times should be specified. For
example:

# Needs no `eval_time` value
metric_set(concordance_survival)

# Needs at least one `eval_time`
metric_set(brier_survival)
metric_set(brier_survival, concordance_survival)

# Needs at least two eval_time` values
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival, brier_survival)

Values of eval_time should be less than the largest observed event time in the training data. For
many non-parametric models, the results beyond the largest time corresponding to an event are
constant (or NA).

See also

last_fit() is closely related to fit_best(). They both give you access to a workflow fitted on the
training data but are situated somewhat differently in the modeling workflow. fit_best() picks
up after a tuning function like tune_grid() to take you from tuning results to fitted workflow,
ready for you to predict and assess further. last_fit() assumes you have made your choice of
hyperparameters and finalized your workflow to then take you from finalized workflow to fitted
workflow and further to performance assessment on the test data. While fit_best() gives a fitted
workflow, last_fit() gives you the performance results. If you want the fitted workflow, you can
extract it from the result of last_fit() via extract_workflow().
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Examples

library(recipes)
library(rsample)
library(parsnip)

set.seed(6735)
tr_te_split <- initial_split(mtcars)

spline_rec <- recipe(mpg ~ ., data = mtcars) |>
step_spline_natural(disp)

lin_mod <- linear_reg() |>
set_engine("lm")

spline_res <- last_fit(lin_mod, spline_rec, split = tr_te_split)
spline_res

# test set metrics
collect_metrics(spline_res)

# test set predictions
collect_predictions(spline_res)

# or use a workflow

library(workflows)
spline_wfl <-

workflow() |>
add_recipe(spline_rec) |>
add_model(lin_mod)

last_fit(spline_wfl, split = tr_te_split)

message_wrap Write a message that respects the line width

Description

Write a message that respects the line width

Usage

message_wrap(
x,
width = options()$width - 2,
prefix = "",
color_text = NULL,
color_prefix = color_text

)
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Arguments

x A character string of the message text.

width An integer for the width.

prefix An optional string to go on the first line of the message.
color_text, color_prefix

A function (or NULL) that is used to color the text and/or prefix.

Value

The processed text is returned (invisibly) but a message is written.

Examples

library(cli)
Gaiman <-

paste(
'"Good point." Bod was pleased with himself, and glad he had thought of',
"asking the poet for advice. Really, he thought, if you couldn't trust a",
"poet to offer sensible advice, who could you trust?",
collapse = ""

)
message_wrap(Gaiman)
message_wrap(Gaiman, width = 20, prefix = "-")
message_wrap(Gaiman,

width = 30, prefix = "-",
color_text = cli::col_silver

)
message_wrap(Gaiman,

width = 30, prefix = "-",
color_text = cli::style_underline,
color_prefix = cli::col_green

)

parallelism Support for parallel processing in tune

Description

tune can enable simultaneous parallel computations. Tierney (2008) defined different classes of
parallel processing techniques:

• Implicit is when a function uses low-level tools to perform a calculation that is small in scope
in parallel. Examples are using multithreaded linear algebra libraries (e.g., BLAS) or basic R
vectorization functions.

• Explicit parallelization occurs when the user requests that some calculations should be run
by generating multiple new R (sub)processes. These calculations can be more complex than
those for implicit parallel processing.
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For example, some decision tree libraries can implicitly parallelize their search for the optimal
splitting routine using multiple threads.

Alternatively, if you are resampling a model B times, you can explicitly create B new R jobs to
train B boosted trees in parallel and return their resampling results to the main R process (e.g.,
fit_resamples()).

There are two frameworks that can be used to explicitly parallel process your work in tune: the
future package and the mirai package. Previously, you could use the foreach package, but this has
been deprecated as of version 1.2.1 of tune.

By default, no parallelism is used to process models in tune; you have to opt-in.

Using future:
You should install the package and choose your flavor of parallelism using the plan function. This
allows you to specify the number of worker processes and the specific technology to use.
For example, you can use:

library(future)
plan(multisession, workers = 4)

and work will be conducted simultaneously (unless there is an exception; see the section below).
If you had previously used foreach, this would replace your existing code that probably looked
like:

library(doBackend)
registerDoBackend(cores = 4)

See future::plan() for possible options other than multisession.
Note that tune resets the maximum limit of memory of global variables (e.g., attached pack-
ages) to be greater than the default when the package is loaded. This value can be altered using
options(future.globals.maxSize).
If you want future to use mirai parallel workers, you can install and load the future.mirai pack-
age.

Using mirai:
To set the specific for parallel processing with mirai, use the mirai::daemons() function. The
first argument, n, determines the number of parallel workers. Using daemons(0) reverts to se-
quential processing.
The arguments url and remote are used to set up and launch parallel processes over the network
for distributed computing. See mirai::daemons() documentation for more details.

Reverting to sequential processing:
There are a few times when you might specify that you wish to use parallel processing, but it will
revert to sequential execution:

• Many of the control functions (e.g. control_grid()) have an argument called allow_par.
If this is set to FALSE, parallel backends will always be ignored.

• Some packages, such as rJava and keras are not compatible with explicit parallelization. If
any of these packages are used, sequential processing occurs.

• If you specify fewer than two workers, or if there is only a single task, the computations will
occur sequentially.
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Expectations for reproducibility:
We advise that you always run set.seed() with a seed value just prior to using a function that
uses (or might use) random numbers. Given this:

• You should expect to get the same results if you run that section of code repeatedly, condi-
tional on using version 1.4.0 of tune.

• You should expect differences in results between version 1.4.0 of tune and previous versions.
• When using last_fit(), you should be able to get the same results as manually using
generics::fit() and predict() to do the same work.

• When running with or without parallel processing (using any backend package), you should
be able to achieve the same results from fit_resamples() and the various tuning functions.

Specific exceptions:
• For SVM classification models using the kernlab package, the random number generator is

independent of R, and there is no argument to control it. Unfortunately, it is likely to give
you different results from run-to-run.

• For some deep learning packages (e.g., tensorflow, keras, and torch), it is very difficult
to achieve reproducible results. This is especially true when using GPUs for computations.
Additionally, we have seen differences in computations (stochastic or non-random) between
platforms due to the packages’ use of different numerical tolerance constants across operating
systems.

Handling package dependencies:
tune knows what packages are required to fit a workflow object.
When computations are run sequentially, an initial check is made to see if they are installed. This
triggers the packages to be loaded but not visible in the search path.
In parallel, the required packages are fully loaded (i.e., loaded and seen in the search path), as
they were previously with foreach, in the worker processes (but not the main R session).

References

https://www.tmwr.org/grid-search#parallel-processing

Tierney, Luke. "Implicit and explicit parallel computing in R." COMPSTAT 2008: Proceedings in
Computational Statistics. Physica-Verlag HD, 2008.

prob_improve Acquisition function for scoring parameter combinations

Description

These functions can be used to score candidate tuning parameter combinations as a function of their
predicted mean and variation.

Usage

prob_improve(trade_off = 0, eps = .Machine$double.eps)

exp_improve(trade_off = 0, eps = .Machine$double.eps)

conf_bound(kappa = 0.1)

https://www.tmwr.org/grid-search#parallel-processing
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Arguments

trade_off A number or function that describes the trade-off between exploitation and ex-
ploration. Smaller values favor exploitation.

eps A small constant to avoid division by zero.

kappa A positive number (or function) that corresponds to the multiplier of the stan-
dard deviation in a confidence bound (e.g. 1.96 in normal-theory 95 percent
confidence intervals). Smaller values lean more towards exploitation.

Details

The acquisition functions often combine the mean and variance predictions from the Gaussian pro-
cess model into an objective to be optimized.

For this documentation, we assume that the metric in question is better when maximized (e.g. accu-
racy, the coefficient of determination, etc).

The expected improvement of a point x is based on the predicted mean and variation at that point
as well as the current best value (denoted here as x_b). The vignette linked below contains the
formulas for this acquisition function. When the trade_off parameter is greater than zero, the
acquisition function will down-play the effect of the mean prediction and give more weight to the
variation. This has the effect of searching for new parameter combinations that are in areas that
have yet to be sampled.

Note that for exp_improve() and prob_improve(), the trade_off value is in the units of the
outcome. The functions are parameterized so that the trade_off value should always be non-
negative.

The confidence bound function does not take into account the current best results in the data.

If a function is passed to exp_improve() or prob_improve(), the function can have multiple ar-
guments but only the first (the current iteration number) is given to the function. In other words,
the function argument should have defaults for all but the first argument. See expo_decay() as an
example of a function.

Value

An object of class prob_improve, exp_improve, or conf_bounds along with an extra class of
acquisition_function.

See Also

tune_bayes(), expo_decay()

Examples

prob_improve()
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show_best Investigate best tuning parameters

Description

show_best() displays the top sub-models and their performance estimates.

select_best() finds the tuning parameter combination with the best performance values.

select_by_one_std_err() uses the "one-standard error rule" (Breiman _el at, 1984) that selects
the most simple model that is within one standard error of the numerically optimal results.

select_by_pct_loss() selects the most simple model whose loss of performance is within some
acceptable limit.

Usage

show_best(x, ...)

## Default S3 method:
show_best(x, ...)

## S3 method for class 'tune_results'
show_best(
x,
...,
metric = NULL,
eval_time = NULL,
n = 5,
call = rlang::current_env()

)

select_best(x, ...)

## Default S3 method:
select_best(x, ...)

## S3 method for class 'tune_results'
select_best(x, ..., metric = NULL, eval_time = NULL)

select_by_pct_loss(x, ...)

## Default S3 method:
select_by_pct_loss(x, ...)

## S3 method for class 'tune_results'
select_by_pct_loss(x, ..., metric = NULL, eval_time = NULL, limit = 2)

select_by_one_std_err(x, ...)
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## Default S3 method:
select_by_one_std_err(x, ...)

## S3 method for class 'tune_results'
select_by_one_std_err(x, ..., metric = NULL, eval_time = NULL)

Arguments

x The results of tune_grid() or tune_bayes().

... For select_by_one_std_err() and select_by_pct_loss(), this argument
is passed directly to dplyr::arrange() so that the user can sort the models
from most simple to most complex. That is, for a parameter p, pass the unquoted
expression p if smaller values of p indicate a simpler model, or desc(p) if larger
values indicate a simpler model. At least one term is required for these two
functions. See the examples below.

metric A character value for the metric that will be used to sort the models. (See https:
//yardstick.tidymodels.org/articles/metric-types.html for more de-
tails). Not required if a single metric exists in x. If there are multiple metric and
none are given, the first in the metric set is used (and a warning is issued).

eval_time A single numeric time point where dynamic event time metrics should be chosen
(e.g., the time-dependent ROC curve, etc). The values should be consistent with
the values used to create x. The NULL default will automatically use the first
evaluation time used by x.

n An integer for the number of top results/rows to return.

call The call to be shown in errors and warnings.

limit The limit of loss of performance that is acceptable (in percent units). See details
below.

Details

For percent loss, suppose the best model has an RMSE of 0.75 and a simpler model has an RMSE of
1. The percent loss would be (1.00 - 0.75)/1.00 * 100, or 25 percent. Note that loss will always
be non-negative.

Value

A tibble with columns for the parameters. show_best() also includes columns for performance
metrics.

References

Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984). Classification and Regression
Trees. Monterey, CA: Wadsworth.

https://yardstick.tidymodels.org/articles/metric-types.html
https://yardstick.tidymodels.org/articles/metric-types.html
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Examples

data("example_ames_knn")

show_best(ames_iter_search, metric = "rmse")

select_best(ames_iter_search, metric = "rsq")

# To find the least complex model within one std error of the numerically
# optimal model, the number of nearest neighbors are sorted from the largest
# number of neighbors (the least complex class boundary) to the smallest
# (corresponding to the most complex model).

select_by_one_std_err(ames_grid_search, metric = "rmse", desc(K))

# Now find the least complex model that has no more than a 5% loss of RMSE:
select_by_pct_loss(

ames_grid_search,
metric = "rmse",
limit = 5, desc(K)

)

show_notes Display distinct errors from tune objects

Description

Display distinct errors from tune objects

Usage

show_notes(x, n = 10)

Arguments

x An object of class tune_results.

n An integer for how many unique notes to show.

Value

Invisibly, x. Function is called for side-effects and printing.
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tune_bayes Bayesian optimization of model parameters.

Description

tune_bayes() uses models to generate new candidate tuning parameter combinations based on
previous results.

Usage

tune_bayes(object, ...)

## S3 method for class 'model_spec'
tune_bayes(
object,
preprocessor,
resamples,
...,
iter = 10,
param_info = NULL,
metrics = NULL,
eval_time = NULL,
objective = exp_improve(),
initial = 5,
control = control_bayes()

)

## S3 method for class 'workflow'
tune_bayes(
object,
resamples,
...,
iter = 10,
param_info = NULL,
metrics = NULL,
eval_time = NULL,
objective = exp_improve(),
initial = 5,
control = control_bayes()

)

Arguments

object A parsnip model specification or an unfitted workflow(). No tuning parameters
are allowed; if arguments have been marked with tune(), their values must be
finalized.

... Options to pass to GPfit::GP_fit() (mostly for the corr argument).
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preprocessor A traditional model formula or a recipe created using recipes::recipe().

resamples An rset resampling object created from an rsample function, such as rsample::vfold_cv().

iter The maximum number of search iterations.

param_info A dials::parameters() object or NULL. If none is given, a parameters set
is derived from other arguments. Passing this argument can be useful when
parameter ranges need to be customized.

metrics A yardstick::metric_set(), or NULL to compute a standard set of metrics.
The first metric in metrics is the one that will be optimized.

eval_time A numeric vector of time points where dynamic event time metrics should be
computed (e.g. the time-dependent ROC curve, etc). The values must be non-
negative and should probably be no greater than the largest event time in the
training set (See Details below).

objective A character string for what metric should be optimized or an acquisition function
object.

initial An initial set of results in a tidy format (as would result from tune_grid()) or a
positive integer. It is suggested that the number of initial results be greater than
the number of parameters being optimized.

control A control object created by control_bayes().

Details

The optimization starts with a set of initial results, such as those generated by tune_grid(). If
none exist, the function will create several combinations and obtain their performance estimates.

Using one of the performance estimates as the model outcome, a Gaussian process (GP) model is
created where the previous tuning parameter combinations are used as the predictors.

A large grid of potential hyperparameter combinations is predicted using the model and scored
using an acquisition function. These functions usually combine the predicted mean and variance
of the GP to decide the best parameter combination to try next. For more information, see the
documentation for exp_improve() and the corresponding package vignette.

The best combination is evaluated using resampling and the process continues.

Value

A tibble of results that mirror those generated by tune_grid(). However, these results contain
an .iter column and replicate the rset object multiple times over iterations (at limited additional
memory costs).

Parallel Processing

tune supports parallel processing with the future package. To execute the resampling iterations in
parallel, specify a plan with future first. The allow_par argument can be used to avoid parallelism.

For the most part, warnings generated during training are shown as they occur and are associated
with a specific resample when control_bayes(verbose = TRUE). They are (usually) not aggre-
gated until the end of processing.

For Bayesian optimization, parallel processing is used to estimate the resampled performance values
once a new candidate set of values are estimated.
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Initial Values

The results of tune_grid(), or a previous run of tune_bayes() can be used in the initial ar-
gument. initial can also be a positive integer. In this case, a space-filling design will be used to
populate a preliminary set of results. For good results, the number of initial values should be more
than the number of parameters being optimized.

The tuning parameter combinations that were tested are called candidates. Each candidate has a
unique .config value that, for the initial grid search, has the pattern pre{num}_mod{num}_post{num}.
The numbers include a zero when that element was static. For example, a value of pre0_mod3_post4
means no preprocessors were tuned and the model and postprocessor(s) had at least three and four
candidates, respectively. The iterative part of the search uses the pattern iter{num}. In each case,
the numbers are zero-padded to enable proper sorting.

Parameter Ranges and Values

In some cases, the tuning parameter values depend on the dimensions of the data (they are said
to contain unknown values). For example, mtry in random forest models depends on the number
of predictors. In such cases, the unknowns in the tuning parameter object must be determined
beforehand and passed to the function via the param_info argument. dials::finalize() can
be used to derive the data-dependent parameters. Otherwise, a parameter set can be created via
dials::parameters(), and the dials update() function can be used to specify the ranges or
values.

Performance Metrics

To use your own performance metrics, the yardstick::metric_set() function can be used to pick
what should be measured for each model. If multiple metrics are desired, they can be bundled. For
example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under
the typical probability cutoff of 0.50), the metrics argument could be given:

metrics = metric_set(roc_auc, sens, spec)

Each metric is calculated for each candidate model.

If no metric set is provided, one is created:

• For regression models, the root mean squared error and coefficient of determination are com-
puted.

• For classification, the area under the ROC curve and overall accuracy are computed.

Note that the metrics also determine what type of predictions are estimated during tuning. For
example, in a classification problem, if metrics are used that are all associated with hard class
predictions, the classification probabilities are not created.

The out-of-sample estimates of these metrics are contained in a list column called .metrics. This
tibble contains a row for each metric and columns for the value, the estimator type, and so on.

collect_metrics() can be used for these objects to collapse the results over the resampled (to
obtain the final resampling estimates per tuning parameter combination).
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Obtaining Predictions

When control_bayes(save_pred = TRUE), the output tibble contains a list column called .predictions
that has the out-of-sample predictions for each parameter combination in the grid and each fold
(which can be very large).

The elements of the tibble are tibbles with columns for the tuning parameters, the row number
from the original data object (.row), the outcome data (with the same name(s) of the original data),
and any columns created by the predictions. For example, for simple regression problems, this
function generates a column called .pred and so on. As noted above, the prediction columns that
are returned are determined by the type of metric(s) requested.

This list column can be unnested using tidyr::unnest() or using the convenience function
collect_predictions().

Case Weights

Some models can utilize case weights during training. tidymodels currently supports two types of
case weights: importance weights (doubles) and frequency weights (integers). Frequency weights
are used during model fitting and evaluation, whereas importance weights are only used during
fitting.

To know if your model is capable of using case weights, create a model spec and test it using
parsnip::case_weights_allowed().

To use them, you will need a numeric column in your data set that has been passed through either
hardhat:: importance_weights() or hardhat::frequency_weights().

For functions such as fit_resamples() and the tune_*() functions, the model must be contained
inside of a workflows::workflow(). To declare that case weights are used, invoke workflows::add_case_weights()
with the corresponding (unquoted) column name.

From there, the packages will appropriately handle the weights during model fitting and (if appro-
priate) performance estimation.

Censored Regression Models

Three types of metrics can be used to assess the quality of censored regression models:

• static: the prediction is independent of time.

• dynamic: the prediction is a time-specific probability (e.g., survival probability) and is mea-
sured at one or more particular times.

• integrated: same as the dynamic metric but returns the integral of the different metrics from
each time point.

Which metrics are chosen by the user affects how many evaluation times should be specified. For
example:

# Needs no `eval_time` value
metric_set(concordance_survival)

# Needs at least one `eval_time`
metric_set(brier_survival)
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metric_set(brier_survival, concordance_survival)

# Needs at least two eval_time` values
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival, brier_survival)

Values of eval_time should be less than the largest observed event time in the training data. For
many non-parametric models, the results beyond the largest time corresponding to an event are
constant (or NA).

Optimizing Censored Regression Models

With dynamic performance metrics (e.g. Brier or ROC curves), performance is calculated for every
value of eval_time but the first evaluation time given by the user (e.g., eval_time[1]) is used to
guide the optimization.

Extracting Information

The extract control option will result in an additional function to be returned called .extracts.
This is a list column that has tibbles containing the results of the user’s function for each tuning
parameter combination. This can enable returning each model and/or recipe object that is created
during resampling. Note that this could result in a large return object, depending on what is returned.

The control function contains an option (extract) that can be used to retain any model or recipe
that was created within the resamples. This argument should be a function with a single ar-
gument. The value of the argument that is given to the function in each resample is a work-
flow object (see workflows::workflow() for more information). Several helper functions can
be used to easily pull out the preprocessing and/or model information from the workflow, such as
extract_preprocessor() and extract_fit_parsnip().

As an example, if there is interest in getting each parsnip model fit back, one could use:

extract = function (x) extract_fit_parsnip(x)

Note that the function given to the extract argument is evaluated on every model that is fit (as
opposed to every model that is evaluated). As noted above, in some cases, model predictions can
be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a
separate R object associated with it.

Finally, it is a good idea to include calls to require() for packages that are used in the function.
This helps prevent failures when using parallel processing.

See Also

control_bayes(), tune(), autoplot.tune_results(), show_best(), select_best(), collect_predictions(),
collect_metrics(), prob_improve(), exp_improve(), conf_bound(), fit_resamples()
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Examples

library(recipes)
library(rsample)
library(parsnip)

# define resamples and minimal recipe on mtcars
set.seed(6735)
folds <- vfold_cv(mtcars, v = 5)

car_rec <-
recipe(mpg ~ ., data = mtcars) |>
step_normalize(all_predictors())

# define an svm with parameters to tune
svm_mod <-

svm_rbf(cost = tune(), rbf_sigma = tune()) |>
set_engine("kernlab") |>
set_mode("regression")

# use a space-filling design with 6 points
set.seed(3254)
svm_grid <- tune_grid(svm_mod, car_rec, folds, grid = 6)

show_best(svm_grid, metric = "rmse")

# use bayesian optimization to evaluate at 6 more points
set.seed(8241)
svm_bayes <- tune_bayes(svm_mod, car_rec, folds, initial = svm_grid, iter = 6)

# note that bayesian optimization evaluated parameterizations
# similar to those that previously decreased rmse in svm_grid
show_best(svm_bayes, metric = "rmse")

# specifying `initial` as a numeric rather than previous tuning results
# will result in `tune_bayes` initially evaluating an space-filling
# grid using `tune_grid` with `grid = initial`
set.seed(0239)
svm_init <- tune_bayes(svm_mod, car_rec, folds, initial = 6, iter = 6)

show_best(svm_init, metric = "rmse")

tune_grid Model tuning via grid search

Description

tune_grid() computes a set of performance metrics (e.g. accuracy or RMSE) for a pre-defined set
of tuning parameters that correspond to a model or recipe across one or more resamples of the data.
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Usage

tune_grid(object, ...)

## S3 method for class 'model_spec'
tune_grid(
object,
preprocessor,
resamples,
...,
param_info = NULL,
grid = 10,
metrics = NULL,
eval_time = NULL,
control = control_grid()

)

## S3 method for class 'workflow'
tune_grid(
object,
resamples,
...,
param_info = NULL,
grid = 10,
metrics = NULL,
eval_time = NULL,
control = control_grid()

)

Arguments

object A parsnip model specification or an unfitted workflow(). No tuning parameters
are allowed; if arguments have been marked with tune(), their values must be
finalized.

... Not currently used.

preprocessor A traditional model formula or a recipe created using recipes::recipe().

resamples An rset resampling object created from an rsample function, such as rsample::vfold_cv().

param_info A dials::parameters() object or NULL. If none is given, a parameters set
is derived from other arguments. Passing this argument can be useful when
parameter ranges need to be customized.

grid A data frame of tuning combinations or a positive integer. The data frame should
have columns for each parameter being tuned and rows for tuning parameter
candidates. An integer denotes the number of candidate parameter sets to be
created automatically.

metrics A yardstick::metric_set(), or NULL to compute a standard set of metrics.

eval_time A numeric vector of time points where dynamic event time metrics should be
computed (e.g. the time-dependent ROC curve, etc). The values must be non-
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negative and should probably be no greater than the largest event time in the
training set (See Details below).

control An object used to modify the tuning process, likely created by control_grid().

Details

Suppose there are m tuning parameter combinations. tune_grid() may not require all m model/recipe
fits across each resample. For example:

• In cases where a single model fit can be used to make predictions for different parameter
values in the grid, only one fit is used. For example, for some boosted trees, if 100 iterations
of boosting are requested, the model object for 100 iterations can be used to make predictions
on iterations less than 100 (if all other parameters are equal).

• When the model is being tuned in conjunction with pre-processing and/or post-processing
parameters, the minimum number of fits are used. For example, if the number of PCA compo-
nents in a recipe step are being tuned over three values (along with model tuning parameters),
only three recipes are trained. The alternative would be to re-train the same recipe multiple
times for each model tuning parameter.

tune supports parallel processing with the future package. To execute the resampling iterations in
parallel, specify a plan with future first. The allow_par argument can be used to avoid parallelism.

For the most part, warnings generated during training are shown as they occur and are associated
with a specific resample when control_grid(verbose = TRUE). They are (usually) not aggregated
until the end of processing.

Value

An updated version of resamples with extra list columns for .metrics and .notes (optional
columns are .predictions and .extracts). .notes contains warnings and errors that occur dur-
ing execution.

Parameter Grids

If no tuning grid is provided, a grid (via dials::grid_space_filling()) is created with 10 can-
didate parameter combinations.

When provided, the grid should have column names for each parameter and these should be named
by the parameter name or id. For example, if a parameter is marked for optimization using penalty
= tune(), there should be a column named penalty. If the optional identifier is used, such as
penalty = tune(id = 'lambda'), then the corresponding column name should be lambda.

In some cases, the tuning parameter values depend on the dimensions of the data. For example,
mtry in random forest models depends on the number of predictors. In this case, the default tuning
parameter object requires an upper range. dials::finalize() can be used to derive the data-
dependent parameters. Otherwise, a parameter set can be created (via dials::parameters()) and
the dials update() function can be used to change the values. This updated parameter set can be
passed to the function via the param_info argument.

The rows of the grid are called tuning parameter candidates. Each candidate has a unique .config
value that, for grid search, has the pattern pre{num}_mod{num}_post{num}. The numbers include
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a zero when that element was static. For example, a value of pre0_mod3_post4 means no pre-
processors were tuned and the model and postprocessor(s) had at least three and four candidates,
respectively. Also, the numbers are zero-padded to enable proper sorting.

Performance Metrics

To use your own performance metrics, the yardstick::metric_set() function can be used to pick
what should be measured for each model. If multiple metrics are desired, they can be bundled. For
example, to estimate the area under the ROC curve as well as the sensitivity and specificity (under
the typical probability cutoff of 0.50), the metrics argument could be given:

metrics = metric_set(roc_auc, sens, spec)

Each metric is calculated for each candidate model.

If no metric set is provided, one is created:

• For regression models, the root mean squared error and coefficient of determination are com-
puted.

• For classification, the area under the ROC curve and overall accuracy are computed.

Note that the metrics also determine what type of predictions are estimated during tuning. For
example, in a classification problem, if metrics are used that are all associated with hard class
predictions, the classification probabilities are not created.

The out-of-sample estimates of these metrics are contained in a list column called .metrics. This
tibble contains a row for each metric and columns for the value, the estimator type, and so on.

collect_metrics() can be used for these objects to collapse the results over the resampled (to
obtain the final resampling estimates per tuning parameter combination).

Obtaining Predictions

When control_grid(save_pred = TRUE), the output tibble contains a list column called .predictions
that has the out-of-sample predictions for each parameter combination in the grid and each fold
(which can be very large).

The elements of the tibble are tibbles with columns for the tuning parameters, the row number
from the original data object (.row), the outcome data (with the same name(s) of the original data),
and any columns created by the predictions. For example, for simple regression problems, this
function generates a column called .pred and so on. As noted above, the prediction columns that
are returned are determined by the type of metric(s) requested.

This list column can be unnested using tidyr::unnest() or using the convenience function
collect_predictions().

Extracting Information

The extract control option will result in an additional function to be returned called .extracts.
This is a list column that has tibbles containing the results of the user’s function for each tuning
parameter combination. This can enable returning each model and/or recipe object that is created
during resampling. Note that this could result in a large return object, depending on what is returned.
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The control function contains an option (extract) that can be used to retain any model or recipe
that was created within the resamples. This argument should be a function with a single ar-
gument. The value of the argument that is given to the function in each resample is a work-
flow object (see workflows::workflow() for more information). Several helper functions can
be used to easily pull out the preprocessing and/or model information from the workflow, such as
extract_preprocessor() and extract_fit_parsnip().

As an example, if there is interest in getting each parsnip model fit back, one could use:

extract = function (x) extract_fit_parsnip(x)

Note that the function given to the extract argument is evaluated on every model that is fit (as
opposed to every model that is evaluated). As noted above, in some cases, model predictions can
be derived for sub-models so that, in these cases, not every row in the tuning parameter grid has a
separate R object associated with it.

Finally, it is a good idea to include calls to require() for packages that are used in the function.
This helps prevent failures when using parallel processing.

Case Weights

Some models can utilize case weights during training. tidymodels currently supports two types of
case weights: importance weights (doubles) and frequency weights (integers). Frequency weights
are used during model fitting and evaluation, whereas importance weights are only used during
fitting.

To know if your model is capable of using case weights, create a model spec and test it using
parsnip::case_weights_allowed().

To use them, you will need a numeric column in your data set that has been passed through either
hardhat:: importance_weights() or hardhat::frequency_weights().

For functions such as fit_resamples() and the tune_*() functions, the model must be contained
inside of a workflows::workflow(). To declare that case weights are used, invoke workflows::add_case_weights()
with the corresponding (unquoted) column name.

From there, the packages will appropriately handle the weights during model fitting and (if appro-
priate) performance estimation.

Censored Regression Models

Three types of metrics can be used to assess the quality of censored regression models:

• static: the prediction is independent of time.

• dynamic: the prediction is a time-specific probability (e.g., survival probability) and is mea-
sured at one or more particular times.

• integrated: same as the dynamic metric but returns the integral of the different metrics from
each time point.

Which metrics are chosen by the user affects how many evaluation times should be specified. For
example:
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# Needs no `eval_time` value
metric_set(concordance_survival)

# Needs at least one `eval_time`
metric_set(brier_survival)
metric_set(brier_survival, concordance_survival)

# Needs at least two eval_time` values
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival)
metric_set(brier_survival_integrated, concordance_survival, brier_survival)

Values of eval_time should be less than the largest observed event time in the training data. For
many non-parametric models, the results beyond the largest time corresponding to an event are
constant (or NA).

See Also

control_grid(), tune(), fit_resamples(), autoplot.tune_results(), show_best(), select_best(),
collect_predictions(), collect_metrics()

Examples

library(recipes)
library(rsample)
library(parsnip)
library(workflows)
library(ggplot2)

# ---------------------------------------------------------------------------

set.seed(6735)
folds <- vfold_cv(mtcars, v = 5)

# ---------------------------------------------------------------------------

# tuning recipe parameters:

spline_rec <-
recipe(mpg ~ ., data = mtcars) |>
step_spline_natural(disp, deg_free = tune("disp")) |>
step_spline_natural(wt, deg_free = tune("wt"))

lin_mod <-
linear_reg() |>
set_engine("lm")

# manually create a grid
spline_grid <- expand.grid(disp = 2:5, wt = 2:5)

# Warnings will occur from making spline terms on the holdout data that are
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# extrapolations.
spline_res <-

tune_grid(lin_mod, spline_rec, resamples = folds, grid = spline_grid)
spline_res

show_best(spline_res, metric = "rmse")

# ---------------------------------------------------------------------------

# tune model parameters only (example requires the `kernlab` package)

car_rec <-
recipe(mpg ~ ., data = mtcars) |>
step_normalize(all_predictors())

svm_mod <-
svm_rbf(cost = tune(), rbf_sigma = tune()) |>
set_engine("kernlab") |>
set_mode("regression")

# Use a space-filling design with 7 points
set.seed(3254)
svm_res <- tune_grid(svm_mod, car_rec, resamples = folds, grid = 7)
svm_res

show_best(svm_res, metric = "rmse")

autoplot(svm_res, metric = "rmse") +
scale_x_log10()

# ---------------------------------------------------------------------------

# Using a variables preprocessor with a workflow

# Rather than supplying a preprocessor (like a recipe) and a model directly
# to `tune_grid()`, you can also wrap them up in a workflow and pass
# that along instead (note that this doesn't do any preprocessing to
# the variables, it passes them along as-is).
wf <- workflow() |>

add_variables(outcomes = mpg, predictors = everything()) |>
add_model(svm_mod)

set.seed(3254)
svm_res_wf <- tune_grid(wf, resamples = folds, grid = 7)
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