
Package ‘schwabr’
November 3, 2025

Type Package

Title 'Schwab API' Interface

Version 0.1.4

Author Anthony Trevisan [aut, cre]

Maintainer Anthony Trevisan <anthonytrevisan@gmail.com>

URL https://altanalytics.github.io/schwabr/

BugReports https://github.com/altanalytics/schwabr/issues

Description
Use R to interface with the 'Charles Schwab Trade API' <https://developer.schwab.com/>.
Functions include authentication, trading, price requests, account information, and option
chains. A user will need a Schwab brokerage account and Schwab Individual Devel-
oper app. See README
for authentication process and examples.

License GPL-3

Encoding UTF-8

Imports httr, urltools (>= 1.7.3), base64enc, lubridate, dplyr,
jsonlite, magrittr, methods

RoxygenNote 7.3.2

Suggests testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2025-11-03 11:10:02 UTC

Contents
schwab_accountData . 2
schwab_act_hash . 3
schwab_auth1_loginURL . 4
schwab_auth2_refreshToken . 5
schwab_auth3_accessToken . 6

1

https://altanalytics.github.io/schwabr/
https://github.com/altanalytics/schwabr/issues
https://developer.schwab.com/

2 schwab_accountData

schwab_cancelOrder . 8
schwab_marketHours . 8
schwab_optionChain . 9
schwab_optionExpiration . 11
schwab_orderDetail . 12
schwab_orderSearch . 13
schwab_placeOrder . 14
schwab_priceHistory . 17
schwab_priceQuote . 18
schwab_replaceOrder . 19
schwab_symbolDetail . 21
schwab_transactSearch . 22
schwab_userPreferences . 23

Index 25

schwab_accountData Get account balances, positions, and account numbers returned as a
list

Description

Retrieves account data for all accounts linked to the Access Token or a specific account

Usage

schwab_accountData(
output = "df",
account_number = "",
value_pull = c("all", "bal", "pos", "acts"),
accessTokenList = NULL

)

Arguments

output Use ’df’ for a list of 3 data frames containing balances, positions, and orders.
Otherwise the data will be returned as a list of lists

account_number The account number as shown on the Schwab website

value_pull Can be one of ’all’,’bal’,’pos’,’acts’ depending on what you want to pull back

accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

schwab_act_hash 3

Details

The output will be either a list of three data frames or a list of three lists that contain balances,
positions, and account numbers for Schwab accounts linked to the access token or specified. For
historical orders, see schwab_orderSearch. The default is for a data frame output which is much
cleaner.

Value

a list of requested account details

Examples

Not run:

Get stored refresh token
refreshToken = readRDS('/secure/location/')

Generate a new access token
accessTokenList = schwab_auth3_accessToken(appKey, appSecret, refreshToken)

Passing the accessTokenList is optional. The default will return balances
asDF = schwab_accountData()
asList = schwab_accountData('list',account_number = '', accessTokenList)

End(Not run)

schwab_act_hash Get account hashed value

Description

Retrieves the Hashed account value for a specific account

Usage

schwab_act_hash(account_number = "", accessTokenList = NULL)

Arguments

account_number A Standard Schwab Account number
accessTokenList

A valid Access Token must be set using schwab_auth3_accessToken. The
most recent Access Token will be used by default unless one is manually passed
into the function.

Value

A hashed account number

4 schwab_auth1_loginURL

Examples

Not run:

Get stored refresh token
refreshToken = readRDS('/secure/location/')

Generate a new access token
accessTokenList = schwab_auth3_accessToken(appKey, appSecret, refreshToken)

Passing the accessTokenList is optional. The default will return balances
act_hash = schwab_act_hash(account_number = '123456789')

End(Not run)

schwab_auth1_loginURL Auth Step 1: Generate LogIn URL

Description

Create URL to grant App access to Charles Schwab accounts

Usage

schwab_auth1_loginURL(appKey, callbackURL)

Arguments

appKey ’Schwab API’ generated App Key for the registered app.

callbackURL Users Callback URL for the registered app

Details

To use the ’Schwab API’, both an account and a registered developer app are required. The de-
veloper app functions as a middle layer between the brokerage account and the API. A developer
app should be registered on the Schwab Developer site. Once logged in to the developer site, use
My Apps to register an application. An App will have a key and secret provided. The Key/Secret
is auto generated and can be found under Dashboard > View Details at the bottom. The user must
also create a Callback URL. The Callback URL must be a valid URL. The example below assumes
the Callback URL is https://127.0.0.1. The Application should be in a "Ready to Use" state before
attempting to login.

This function will use these inputs to generate a URL where the user can log in to their standard
Charles Schwab Access Page and grant the application access to the specific accounts, enabling
the API. The URL Authorization Code generated at the end of the log in process will feed into
schwab_auth2_refreshToken. For questions, please reference the Schwab Docs or see the exam-
ples in the ’schwabr’ readme.

https://developer.schwab.com
https://developer.schwab.com/products/trader-api--individual/details/documentation/

schwab_auth2_refreshToken 5

Value

login url to grant app permission to Schwab accounts

Examples

Visit the URL generated from the function below to log in accept terms and
select the accounts you want to have API permissions.

This assumes you set the callback to 'https://127.0.0.1'
appKey = 'ALPHANUM1234KEY'
loginURL = schwab_auth1_loginURL(appKey, 'https://127.0.0.1')

schwab_auth2_refreshToken

Auth Step 2: Obtain Refresh Token

Description

Get a Refresh Token using the Authorization Code

Usage

schwab_auth2_refreshToken(appKey, appSecret, callbackURL, codeToken)

Arguments

appKey ’Schwab API’ generated App Key for the registered app.

appSecret ’Schwab API’ generated Secret for the registered app.

callbackURL Users Callback URL for the registered app

codeToken Will be the URL at the end of Auth Step 1. Somewhere in the URL you should
see code=CO.xxx. Paste the entire URL into the function.

Details

Once a URL has been generated using schwab_auth1_loginURL, a user can visit that URL to grant
access to Schwab accounts. Once the button "Done" at the end of the process is pressed, the user
will be redirected, potentially to "This site can’t be reached". This indicates a successful log in. The
URL of this page contains the Authorization Code. Paste the entire URL, not just the Authorization
Code, into schwab_auth2_refreshToken. The authorization code will be a long alpha numeric string
starting with ’https’ and having ’code=’ embedded.

The output of schwab_auth2_refreshToken will be a Refresh Token which will be used to gain
access to the Schwab account(s) going forward. The Refresh Token will be valid for 7 days. Be
sure to save the Refresh Token to a safe location.

The Refresh Token is needed to generate an Access Token using schwab_auth3_accessToken,
which is used for general account access. The Access Token expires after 30 minutes but the

6 schwab_auth3_accessToken

Refresh Token remains active for 7 days. You want to store your refresh token somewhere safe
so that you can reference it later to regenerate an authorization token. After 7 days you have to
manually log in again. The ’Schwab API’ team indicated this might change in the future, but no set
timeline.

Value

Refresh Token that is valid for 7 days

See Also

schwab_auth1_loginURL to generate a login url which leads to an authorization code, and more im-
portantly generated a Refresh Token, you can feed the refresh token into schwab_auth3_accessToken
to generate a new Access Token

Examples

Not run:

Initial access will require manually logging in to the URL from schwab_auth1_loginURL
After a successful log in, the URL authorization code can be fed with a callbackURL
tok = schwab_auth2_refreshToken(appKey = 'schwab_APP_KEY',

appSecret = 'schwab_SECRET',
callbackURL = 'https://127.0.0.1',
codeToken = 'https://127.0.0.1?code=Auhtorizationcode')

Save the Refresh Token somewhere safe where it can be retrieved
saveRDS(tok$refresh_token,'/secure/location/')

End(Not run)

schwab_auth3_accessToken

Auth Step 3: Get Access Token

Description

Get a new Access Token using a valid Refresh Token

Usage

schwab_auth3_accessToken(appKey, appSecret, refreshToken)

schwab_auth3_accessToken 7

Arguments

appKey ’Schwab API’ generated App Key for the registered app.

appSecret ’Schwab API’ generated Secret for the registered app.

refreshToken An existing Refresh Token generated using schwab_auth2_refreshToken. Only
pass the refresh_token, not the entire list

Details

An Access Token is required for the functions within ’schwabr’ It serves as a user login to your
accounts. The token is valid for 30 minutes and allows the user to place trades, get account infor-
mation, get order history, pull historical stock prices, etc. A Refresh Token is required to generate
an Access Token. schwab_auth2_refreshToken can be used to generate a Refresh Token which
stays valid for 7 days. The appKey is generated automatically when an App is registered on the
Schwab Developer site. By default, the Access Token is stored into options and will automatically
be passed to downstream functions. However, the user can also submit an Access Token manually
if multiple tokens are in use (for example: when managing more than one log in.)

DISCLOSURE: This software is in no way affiliated, endorsed, or approved by Charles Schwab or
any of its affiliates. It comes with absolutely no warranty and should not be used in actual trading
unless the user can read and understand the source code. The functions within this package have
been tested under basic scenarios. There may be bugs or issues that could prevent a user from
executing trades or canceling trades. It is also possible trades could be submitted in error. The user
will use this package at their own risk.

Value

Access Token that is valid for 30 minutes. By default it is stored in options.This is a list of objects
that also shows when the access token expires

See Also

schwab_auth1_loginURL to generate a login url which leads to an authorization code, then use
schwab_auth2_refreshToken to generate Refresh Token with the authorization code

Examples

Not run:

A valid Refresh Token can be fed into the function below for a new Access Token
refreshToken = readRDS('/secure/location/')
accessTokenList = schwab_auth3_refreshToken('schwab_APPKey', 'schwab_AppSecret', refreshToken)

End(Not run)

https://developer.schwab.com

8 schwab_marketHours

schwab_cancelOrder Cancel an Open Order

Description

Pass an Order ID and Account number to cancel an existing open order

Usage

schwab_cancelOrder(orderId, account_number, accessTokenList = NULL)

Arguments

orderId A valid Schwab Order ID

account_number A Schwab account number associated with the Access Token
accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

Value

order API URL. Message confirming cancellation

Examples

Not run:

schwab_cancelOrder(orderId = 123456789, account_number = 987654321)

End(Not run)

schwab_marketHours Get Market Hours

Description

Returns a list output for current day and specified market that details the trading window

Usage

schwab_marketHours(
marketType = c("EQUITY", "OPTION", "BOND", "FUTURE", "FOREX"),
date = Sys.Date(),
accessTokenList = NULL

)

schwab_optionChain 9

Arguments

marketType The asset class to pull: ’EQUITY’,’OPTION’,’BOND’,’FUTURE’,’FOREX’.
Default is EQUITY

date Current or future date to check hours
accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

Value

List output of times and if the current date is a trading day

Examples

Not run:

Access Token must be set using schwab_auth3_accessToken
Market hours for the current date
schwab_marketHours()
schwab_marketHours('2020-06-24', 'OPTION')

End(Not run)

schwab_optionChain Get Options Chain

Description

Search an Option Chain for a specific ticker

Usage

schwab_optionChain(
ticker,
strikes,
inclQuote = TRUE,
startDate = Sys.Date() + 1,
endDate = Sys.Date() + 360,
contractType = c("ALL", "CALL", "PUT"),
accessTokenList = NULL,
range = NULL

)

10 schwab_optionChain

Arguments

ticker underlying ticker for the options chain

strikes the number of strikes above and below the current strike

inclQuote set TRUE to include pricing details (will be delayed if account is set for delayed
quotes)

startDate the start date for expiration (should be greater than or equal to today). Format:
yyyy-mm-dd

endDate the end date for expiration (should be greater than or equal to today). Format:
yyyy-mm-dd

contractType can be ’ALL’, ’CALL’, or ’PUT’

accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

range Also known as moneyness. Popular choices are: ’OTM’, ’ITM’, ’NTM’, or
’ALL’. CAVEAT: the ’strikes’ parameter must be left out otherwise the Schwab
API will take the ’strikes’ parameter and override the range parameter There’s
also ’SAK’, ’SBK’, and ’SNK’ for strikes above/below/near market

Details

Return a list containing two data frames. The first is the underlying data for the symbol. The second
item in the list is a data frame that contains the options chain for the specified ticker.

Value

a list of 2 data frames - underlying and options chain

Examples

Not run:

Pull all option contracts expiring over the next 6 months
with 5 strikes above and below the at-the-money price
schwab_optionChain(ticker = 'SPY',

strikes = 5,
endDate = Sys.Date() + 180)

End(Not run)

schwab_optionExpiration 11

schwab_optionExpiration

Get Options Expiration Chain

Description

Search an Option Chain for a specific ticker

Usage

schwab_optionExpiration(ticker, accessTokenList = NULL)

Arguments

ticker underlying ticker for the options chain

accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

Details

Return a list containing two data frames. The first is the underlying data for the symbol. The second
item in the list is a data frame that contains the options chain for the specified ticker.

Value

a list of 2 data frames - underlying and options chain

Examples

Not run:

Pull all option contracts expiring over the next 6 months
with 5 strikes above and below the at-the-money price
schwab_optionChain(ticker = 'SPY',

strikes = 5,
endDate = Sys.Date() + 180)

End(Not run)

12 schwab_orderDetail

schwab_orderDetail Get Details for a Single Order

Description

Pass an order ID and Account number to get details such as status, quantity, ticker, executions (if
applicable), account, etc.

Usage

schwab_orderDetail(orderId, account_number, accessTokenList = NULL)

Arguments

orderId A valid Schwab Order ID

account_number A Schwab account number associated with the Access Token
accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

Value

list of order details

Examples

Not run:

Get stored refresh token
refreshToken = readRDS('/secure/location/')

generate a new access token
accessTokenList = schwab_auth3_accessToken('AppKey', 'AppSecret', refreshToken)

Get order details for a single order
Passing Access Token is optional once it's been set
schwab_orderDetail(orderId = 123456789, account_number = 987654321)

End(Not run)

schwab_orderSearch 13

schwab_orderSearch Search for orders by date

Description

Search for orders associated with a Schwab account over the previous 60 days. The result is a list
of three objects:

1. jsonlite formatted extract of all orders

2. all entered orders with details

3. a data frame of all executed orders with the executions

Usage

schwab_orderSearch(
account_number,
startDate = Sys.Date() - 30,
endDate = Sys.Date(),
maxResults = 50,
orderStatus = "",
accessTokenList = NULL

)

Arguments

account_number A Schwab account number associated with the Access Token

startDate Orders from a certain date with. Format yyyy-mm-dd.

endDate Filter orders that occurred before a certain date. Format yyyy-mm-dd

maxResults the max results to return in the query

orderStatus search by order status (ACCEPTED, FILLED, EXPIRED, CANCELED, RE-
JECTED, etc). This can be left blank for all orders. See documentation for full
list

accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

Value

a list of three objects: a jsonlite formatted extract of all orders, all entered orders with details, a data
frame of all executed orders with the executions

14 schwab_placeOrder

Examples

Not run:

Get all orders run over the last 50 days (up to 500)
schwab_orderSearch(account_number = account_number,

startDate = Sys.Date()-50,
maxResults = 500, orderStatus = '')

End(Not run)

schwab_placeOrder Place Order for a specific account

Description

Place trades through the SchwabAPI using a range of parameters

Usage

schwab_placeOrder(
account_number,
ticker,
quantity,
instruction,
orderType = "MARKET",
limitPrice = NULL,
stopPrice = NULL,
assetType = c("EQUITY", "OPTION"),
session = "NORMAL",
duration = "DAY",
stopPriceBasis = NULL,
stopPriceType = NULL,
stopPriceOffset = NULL,
accessTokenList = NULL

)

Arguments

account_number A Schwab account number associated with the Access Token

ticker a valid Equity/ETF or option. If needed, use schwab_symbolDetail to confirm.
This should be a ticker/symbol, not a CUSIP

quantity the number of shares to be bought or sold. Must be an integer.

instruction Equity instructions include ’BUY’, ’SELL’, ’BUY_TO_COVER’, or ’SELL_SHORT’.
Options instructions include ’BUY_TO_OPEN’, ’BUY_TO_CLOSE’, ’SELL_TO_OPEN’,
or ’SELL_TO_CLOSE’

schwab_placeOrder 15

orderType MARKET, LIMIT (requiring limitPrice), STOP (requiring stopPrice), STOP_LIMIT,
TRAILING_STOP (requiring stopPriceBasis, stopPriceType, stopPriceOffset)

limitPrice the limit price for a LIMIT or STOP_LIMIT order

stopPrice the stop price for a STOP or STOP_LIMIT order

assetType EQUITY or OPTION. No other asset types are available at this time. EQUITY
is the default.

session NORMAL for normal market hours, AM or PM for extended market hours

duration how long will the trade stay open without a fill: DAY, GOOD_TILL_CANCEL,
FILL_OR_KILL

stopPriceBasis LAST, BID, or ASK which is the basis for a STOP, STOP_LIMIT, or TRAIL-
ING_STOP

stopPriceType the link to the stopPriceBasis. VALUE for dollar difference or PERCENT for a
percentage offset from the price basis

stopPriceOffset

an integer that indicates the offset used for the stopPriceType, 10 and PERCENT
is a 10 percent offset from the current price basis. 5 and VALUE is a 5 dollar
offset from the current price basis

accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

Details

A valid account and access token must be passed. An access token will be passed by default when
schwab_auth3_accessToken is executed successfully and the token has not expired, which occurs
after 30 minutes. Only simple orders using equities and options can be traded at through this
function at this time. This function is built to allow a single trade submission. More complex trades
can be executed through the API, but a custom function or submission will need to be constructed.
To build more custom trading strategies, reference the ’Schwab API’ examples. A full list of the
input parameters and details can be found in the documentation. TEST ALL ORDERS FIRST
WITH SMALL DOLLAR AMOUNTS!!!

A minimum of four parameters are required for submission: ticker, instruction, quantity, and ac-
count number associated with the Access Token. The following parameters default: session - NOR-
MAL, duration - DAY, asset type - EQUITY, and order type - MARKET

Value

the trade id, account id, and other order details

Warning

TRADES THAT ARE SUCCESSFULLY ENTERED WILL BE SUBMITTED IMMEDIATELY
THERE IS NO REVIEW PROCESS. THIS FUNCTION HAS HUNDREDS OF POTENTIAL
COMBINATIONS AND ONLY A HANDFUL HAVE BEEN TESTED. IT IS STRONGLY REC-
OMMENDED TO TEST THE DESIRED ORDER ON A VERY SMALL QUANTITY WITH

16 schwab_placeOrder

LITTLE MONEY AT STAKE. ANOTHER OPTION IS TO USE LIMIT ORDERS FAR FROM
THE CURRENT PRICE. TD AMERITRADE HAS THEIR OWN ERROR HANDLING BUT IF
A SUCCESSFUL COMBINATION IS ENTERED IT COULD BE EXECUTED IMMEDIATELY.
DOUBLE CHECK ALL ENTRIES BEFORE SUBMITTING.

Examples

Not run:

Get stored refresh token
refreshToken = readRDS('/secure/location/')

generate a new access token
accessTokenList = schwab_auth3_accessToken('AppKey', 'AppSecret', refreshToken)

Set Account Number
account_number = 1234567890

Standard market buy order
Every order must have at least these 4 paramters
schwab_placeOrder(account_number = account_number,

ticker = 'AAPL',
quantity = 1,
instruction = 'buy')

Stop limit order - good until canceled
schwab_placeOrder(account_number = account_number,

ticker = 'AAPL',
quantity = 1,
instruction = 'sell',
duration = 'good_till_cancel',
orderType = 'stop_limit',
limitPrice = 98,
stopPrice = 100)

Trailing Stop Order
schwab_placeOrder(account_number = account_number,

ticker='AAPL',
quantity = 1,
instruction='sell',
orderType = 'trailing_stop',
stopPriceBasis = 'BID',
stopPriceType = 'percent',
stopPriceOffset = 10)

Option Order with a limit price
quotes = schwab_optionChain(ticker = 'SPY',

strikes = 5,
endDate = Sys.Date() + 180)

sym = quotes$fullChain$symbol[1]
schwab_placeOrder(account_number = account_number,

ticker = sym,

schwab_priceHistory 17

quantity = 1,
instruction = 'BUY_TO_OPEN',
duration = 'Day',
orderType = 'LIMIT',
limitPrice = .02,
assetType = 'OPTION')

End(Not run)

schwab_priceHistory Get price history for a multiple securities

Description

Open, Close, High, Low, and Volume for one or more securities

Usage

schwab_priceHistory(
tickers = c("AAPL", "MSFT"),
startDate = Sys.Date() - 30,
endDate = Sys.Date(),
freq = c("daily", "1min", "5min", "10min", "15min", "30min"),
accessTokenList = NULL

)

Arguments

tickers a vector of tickers - no more than 15 will be pulled. for bigger requests, split
up the request or use the ’Tiingo API’, ’FMP Cloud API’, or other free data
providers

startDate the Starting point of the data
endDate the Ending point of the data
freq the frequency of the interval. Can be daily, 1min, 5min, 10min, 15min, or 30min
accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

Details

Pulls price history for a list of security based on the parameters that include a date range and
frequency of the interval. Depending on the frequency interval, data can only be pulled back to
a certain date. For example, at a one minute interval, data can only be pulled for 30-35 days. Prices
are adjusted for splits but not dividends.
PLEASE NOTE: Large data requests will take time to pull back because of the looping nature. The
’Schwab API’ does not allow bulk ticker request, so this is simply running each ticker individually.
For faster and better historical data pulls, try the ’Tiingo API’ or ’FMP Cloud API’

18 schwab_priceQuote

Value

a tibble of historical price data

Examples

Not run:

Set the access token and a provide a vector of one or more tickers
refreshToken = readRDS('/secure/location/')
accessToken = schwab_auth_accessToken(refreshToken, 'consumerKey')
tickHist5min = schwab_priceHistory(c('TSLA','AAPL'), freq='5min')

The default is daily. Access token is optional once it's been set
tickHistDay = schwab_priceHistory(c('SPY','IWM'), startDate = '1990-01-01')

End(Not run)

schwab_priceQuote Get Quotes for specified tickers in List form

Description

Enter tickers for real time or delayed quotes returned as a list

Usage

schwab_priceQuote(
tickers = c("AAPL", "MSFT"),
output = "df",
accessTokenList = NULL

)

Arguments

tickers One or more tickers

output indication on whether the data should be returned as a list or df. The default is
’df’ for data frame, anything else would be a list.

accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

Details

Quotes may be delayed depending on agreement with Schwab. If the account is set up for real-time
quotes then this will return real-time. Otherwise the quotes will be delayed.

schwab_replaceOrder 19

Value

a list or data frame with quote details for each valid ticker submitted

Examples

Not run:

Get stored refresh token
refreshToken = readRDS('/secure/location/')

generate a new access token
accessToken = schwab_auth_accessToken('consumerKey', refreshToken)

Pass one or more tickers as a vector
accessToken is optional once it is set
quoteSPY = schwab_priceQuote('SPY')
quoteList = schwab_priceQuote(c('GOOG','TSLA'), output = 'list', accessToken)

End(Not run)

schwab_replaceOrder Replace a Specific Order based on Account and OrderID

Description

Replace trades through the SchwabAPI using a range of parameters

Usage

schwab_replaceOrder(
account_number,
orderId,
ticker,
quantity,
instruction,
orderType = "MARKET",
limitPrice = NULL,
stopPrice = NULL,
assetType = c("EQUITY", "OPTION"),
session = "NORMAL",
duration = "DAY",
stopPriceBasis = NULL,
stopPriceType = NULL,
stopPriceOffset = NULL,
accessTokenList = NULL

)

20 schwab_replaceOrder

Arguments

account_number A Schwab account number associated with the Access Token

orderId The orderId of a currently open order

ticker a valid Equity/ETF or option. If needed, use schwab_symbolDetail to confirm.
This should be a ticker/symbol, not a CUSIP

quantity the number of shares to be bought or sold. Must be an integer.

instruction Equity instructions include ’BUY’, ’SELL’, ’BUY_TO_COVER’, or ’SELL_SHORT’.
Options instructions include ’BUY_TO_OPEN’, ’BUY_TO_CLOSE’, ’SELL_TO_OPEN’,
or ’SELL_TO_CLOSE’

orderType MARKET, LIMIT (requiring limitPrice), STOP (requiring stopPrice), STOP_LIMIT,
TRAILING_STOP (requiring stopPriceBasis, stopPriceType, stopPriceOffset)

limitPrice the limit price for a LIMIT or STOP_LIMIT order

stopPrice the stop price for a STOP or STOP_LIMIT order

assetType EQUITY or OPTION. No other asset types are available at this time. EQUITY
is the default.

session NORMAL for normal market hours, AM or PM for extended market hours

duration how long will the trade stay open without a fill: DAY, GOOD_TILL_CANCEL,
FILL_OR_KILL

stopPriceBasis LAST, BID, or ASK which is the basis for a STOP, STOP_LIMIT, or TRAIL-
ING_STOP

stopPriceType the link to the stopPriceBasis. VALUE for dollar difference or PERCENT for a
percentage offset from the price basis

stopPriceOffset

an integer that indicates the offset used for the stopPriceType, 10 and PERCENT
is a 10 percent offset from the current price basis. 5 and VALUE is a 5 dollar
offset from the current price basis

accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

Details

This function will have similar inputs as schwab_placeOrder. Please see that function for more
details.

The replace order function requires an open orderId as an input. This function requires the same
ticker and direction as the previous order. This function will generate a new orderId and cancel the
old orderId.

Value

the trade id, account id, and other order details

schwab_symbolDetail 21

Warning

TRADES THAT ARE SUCCESSFULLY ENTERED WILL BE SUBMITTED IMMEDIATELY
THERE IS NO REVIEW PROCESS. THIS FUNCTION HAS HUNDREDS OF POTENTIAL
COMBINATIONS AND ONLY A HANDFUL HAVE BEEN TESTED. IT IS STRONGLY REC-
OMMENDED TO TEST THE DESIRED ORDER ON A VERY SMALL QUANTITY WITH
LITTLE MONEY AT STAKE. ANOTHER OPTION IS TO USE LIMIT ORDERS FAR FROM
THE CURRENT PRICE. TD AMERITRADE HAS THEIR OWN ERROR HANDLING BUT IF
A SUCCESSFUL COMBINATION IS ENTERED IT COULD BE EXECUTED IMMEDIATELY.
DOUBLE CHECK ALL ENTRIES BEFORE SUBMITTING.

Examples

Not run:

Get stored refresh token
refreshToken = readRDS('/secure/location/')

generate a new access token
accessTokenList = schwab_auth3_accessToken('AppKey', 'AppSecret', refreshToken)

Set Account Number
account_number = 1234567890

Place order
buy_order = schwab_placeOrder(account_number = account_number,

ticker = 'SPY',
quantity = 1,
orderType = 'LIMIT',
limitPrice = 500,
instruction = 'buy')

This will generate a new order ID
repl_order = schwab_replaceOrder(account_number = account_number,

orderId = buy_order$orderId[1],
ticker = 'SPY',
quantity = 1,
orderType = 'LIMIT',
limitPrice = 505,
instruction = 'buy')

End(Not run)

schwab_symbolDetail Get ticker details

Description

Get identifiers and fundamental data for a specific ticker

22 schwab_transactSearch

Usage

schwab_symbolDetail(tickers = c("AAPL", "SPY"), accessTokenList = NULL)

Arguments

tickers valid ticker(s) or symbol(s)

accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

Value

data frame of ticker details

Examples

Not run:

Details for Apple
schwab_symbolDetail('AAPL')

End(Not run)

schwab_transactSearch Search for all Transaction types

Description

Can pull trades as well as transfers, dividend reinvestment, interest, etc. Any activity associated
with the account.

Usage

schwab_transactSearch(
account_number,
startDate = Sys.Date() - 30,
endDate = Sys.Date(),
transType = "TRADE",
accessTokenList = NULL

)

schwab_userPreferences 23

Arguments

account_number A Schwab account number associated with the Access Token

startDate Transactions after a certain date. Will not pull back transactions older than 1
year. format yyyy-mm-dd

endDate Filter transactions that occurred before a certain date. format yyyy-mm-dd

transType Filter for a specific Transaction type. No entry will return all types. For ex-
ample: TRADE, CASH_IN_OR_CASH_OUT, CHECKING, DIVIDEND, IN-
TEREST, OTHER

accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

Value

a jsonlite data frame of transactions

Examples

Not run:

Access Token must be set using schwab_auth3_accessToken
Transactions for the last 5 days
schwab_transactSearch(account_number = 987654321,

startDate = Sys.Date()-days(5))

End(Not run)

schwab_userPreferences

Get User Preferences

Description

Returns a dataframe output for account preferences associated with user

Usage

schwab_userPreferences(accessTokenList = NULL)

Arguments

accessTokenList

A valid Access Token must be set using the output from schwab_auth3_accessToken.
The most recent Access Token will be used by default unless one is manually
passed into the function.

24 schwab_userPreferences

Value

Dataframe output of account details

Examples

Not run:

Access Token must be set using schwab_auth3_accessToken
Market hours for the current date
schwab_userPreferences()

End(Not run)

Index

schwab_accountData, 2
schwab_act_hash, 3
schwab_auth1_loginURL, 4, 5–7
schwab_auth2_refreshToken, 4, 5, 7
schwab_auth3_accessToken, 2, 3, 5, 6, 6,

8–13, 15, 17, 18, 20, 22, 23
schwab_cancelOrder, 8
schwab_marketHours, 8
schwab_optionChain, 9
schwab_optionExpiration, 11
schwab_orderDetail, 12
schwab_orderSearch, 3, 13
schwab_placeOrder, 14, 20
schwab_priceHistory, 17
schwab_priceQuote, 18
schwab_replaceOrder, 19
schwab_symbolDetail, 21
schwab_transactSearch, 22
schwab_userPreferences, 23

25

	schwab_accountData
	schwab_act_hash
	schwab_auth1_loginURL
	schwab_auth2_refreshToken
	schwab_auth3_accessToken
	schwab_cancelOrder
	schwab_marketHours
	schwab_optionChain
	schwab_optionExpiration
	schwab_orderDetail
	schwab_orderSearch
	schwab_placeOrder
	schwab_priceHistory
	schwab_priceQuote
	schwab_replaceOrder
	schwab_symbolDetail
	schwab_transactSearch
	schwab_userPreferences
	Index

