Package ‘piar’

September 17, 2025
Title Price Index Aggregation
Version 0.8.3

Description Most price indexes are made with a two-step procedure, where
period-over-period elementary indexes are first calculated for a collection
of elementary aggregates at each point in time, and then aggregated according
to a price index aggregation structure. These indexes can then be chained
together to form a time series that gives the evolution of prices with
respect to a fixed base period. This package contains a collection of
functions that revolve around this work flow, making it easy to build
standard price indexes, and implement the methods described by
Balk (2008, <doi:10.1017/CB09780511720758>), von der Lippe (2007,
<doi:10.3726/978-3-653-01120-3>), and the CPI manual (2020,
<doi:10.5089/9781484354841.069>) for bilateral price indexes.

Depends R (>=4.1)
Imports stats, utils, gpindex (>= 0.6.2), Matrix (>= 1.5-0)

Suggests data.tree, knitr, rmarkdown, sps, testthat (>= 3.0.0),
treemap

License MIT + file LICENSE
Encoding UTF-8

URL https://marberts.github.io/piar/, https://github.com/marberts/piar

BugReports https://github.com/marberts/piar/issues
LazyData true

VignetteBuilder knitr

Config/testthat/edition 3

RoxygenNote 7.3.2

NeedsCompilation no

Author Steve Martin [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-2544-9480>)

Maintainer Steve Martin <marberts@protonmail.com>
Repository CRAN
Date/Publication 2025-09-17 04:10:02 UTC

https://doi.org/10.1017/CBO9780511720758
https://doi.org/10.3726/978-3-653-01120-3
https://doi.org/10.5089/9781484354841.069
https://marberts.github.io/piar/
https://github.com/marberts/piar
https://github.com/marberts/piar/issues
https://orcid.org/0000-0003-2544-9480

2 aggregate.piar_index

Contents
aggregate.piar_indexX e e e e 2
agEregation_SrUCTUIC v v v v bttt e e e e e e e 6
as.data.frame.piar_index 7
as.matrix.piar_aggregation_StrucCturet b u e e e e e 9
asds.piar_index e 10
as_aggregation_StruCture i i e 11
as_index e e 13
chain. L 14
contrib L L e e e e 16
cut.piar_aggregation_StruCture v v v v i e e e e e e e e e 18
elementary_index 20
expand_classification L 23
head.piar_index e e e 25
IMPULE_PIICES o v o o ittt e e e e e e e e 26
isnapiar_index e 28
1S_aggregation_StruCtUre v v v v i e e e e e e e e e e e e 29
IS INdEX s 30
levels.piar_aggregation_structure e e 30
levels.piar_index e 31
mean.piar_indeX L. e 32
merge.piar_indeX e e e e e e 34
plar_index 35
price_data e e e 35
price_relative L e e e e e 36
split.piar_index 37
split_classification. L e 38
stack.piar_index L. e e e e e 39
time.piar_index e e e 40
update.piar_aggregation_StruCture o vt bt e e e e e 41
weights.piar_aggregation_structureo e 43
window.piar_index 44
[.plar_index L e 45

Index 47

aggregate.piar_index Aggregate elementary price indexes
Description

Aggregate elementary price indexes with a price index aggregation structure.

aggregate.piar_index 3

Usage
S3 method for class 'chainable_piar_index'
aggregate(
X,
pias,
pias2 = NULL,
na.rm = FALSE,
contrib = TRUE,
r=1,
include_ea = TRUE,
duplicate_contrib = c("make.unique”, "sum”

)

S3 method for class 'direct_piar_index'

aggregate(

X)
pias,
pias2 = NULL,
na.rm = FALSE,
contrib = TRUE,
r=1,
include_ea = TRUE,
duplicate_contrib = c("make.unique”, "sum")
)
Arguments

X A price index, usually made by elementary_index().

pias A price index aggregation structure or something that can be coerced into one.
This can be made with aggregation_structure().

Not currently used.

pias2 An optional secondary aggregation structure, usually with current-period weights,
to make a superlative index. See details.

na.rm Should missing values be removed? By default, missing values are not removed.
Setting na. rm = TRUE is equivalent to overall mean imputation.

contrib Aggregate percent-change contributions in x (if any)?

r Order of the generalized mean to aggregate index values. 0 for a geometric in-
dex (the default for making elementary indexes), 1 for an arithmetic index (the
default for aggregating elementary indexes and averaging indexes over subpe-
riods), or -1 for a harmonic index (usually for a Paasche index). Other values
are possible; see gpindex: :generalized_mean() for details. If pias2 is given
then the index is aggregated with a quadratic mean of order 2*r.

include_ea Should indexes for the elementary aggregates be included along with the aggre-

gated indexes? By default, all index values are returned.

4 aggregate.piar_index

duplicate_contrib
The method to deal with duplicate product contributions. Either make.unique’
to treat duplicate products as distinct products and make their names unique with
make.unique() or ’sum’ to add contributions for each product.

Details

The aggregate () method loops over each time period in x and

1. aggregates the elementary indexes with gpindex: :generalized_mean(r) () for each level
of pias;

2. aggregates percent-change contributions for each level of pias (if there are any and contrib
= TRUE);

3. price updates the weights in pias with gpindex: :factor_weights(r) () (only for period-
over-period elementary indexes).

The result is a collection of aggregated period-over-period indexes that can be chained together to
get a fixed-base index when x are period-over-period elementary indexes. Otherwise, when x are
fixed-base elementary indexes, the result is a collection of aggregated fixed-base (direct) indexes.

By default, missing elementary indexes will propagate when aggregating the index. Missing ele-
mentary indexes can be due to both missingness of these values in x, and the presence of elementary
aggregates in pias that are not part of x. Setting na.rm = TRUE ignores missing values, and is equiv-
alent to parental (or overall mean) imputation. As an aggregated price index generally cannot have
missing values (for otherwise it can’t be chained over time and weights can’t be price updated),
any missing values for a level of pias are removed and recursively replaced by the value of its
immediate parent.

In most cases aggregation is done with an arithmetic mean (the default), and this is detailed in
chapter 8 (pp. 190-198) of the CPI manual (2020), with analogous details in chapter 9 of the PPI
manual (2004). Aggregating with a non-arithmetic mean follows the same steps, except that the
elementary indexes are aggregated with a mean of a different order (e.g., harmonic for a Paasche
index), and the method for price updating the weights is slightly different. Note that, because
aggregation is done with a generalized mean, the resulting index is consistent-in-aggregation at
each point in time.

Aggregating percent-change contributions uses the method in chapter 9 of the CPI manual (equa-
tions 9.26 and 9.28) when aggregating with an arithmetic mean. With a non-arithmetic mean, arith-
metic weights are constructed using gpindex: : transmute_weights(r, 1) () in order to apply this
method.

There may not be contributions for all prices relatives in an elementary aggregate if the elementary
indexes are built from several sources (as with merge()). In this case the contribution for a price
relative in the aggregated index will be correct, but the sum of all contributions will not equal the
change in the value of the index. This can also happen when aggregating an already aggregated
index in which missing index values have been imputed (i.e., when na.rm = TRUE and contrib =
FALSE).

If two aggregation structures are given then the steps above are done for each aggregation structure,
with the aggregation for pias done with a generalized mean of order r the aggregation for pias2
done with a generalized mean of order -r. The resulting indexes are combined with a geometric
mean to make a superlative quadratic mean of order 2*r index. Percent-change contributions are

aggregate.piar_index 5

combined using a generalized van IJzeren decomposition; see gpindex: :nested_transmute() for
details.

Value

An aggregate price index that inherits from the class of x.

Note

For large indexes it can be much faster to turn the aggregation structure into an aggregation matrix
with as.matrix(), then aggregate elementary indexes as a matrix operation when there are no
missing values. See the examples for details.

References

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

ILO, IMF, UNECE, OECD, and World Bank. (2004). Producer Price Index Manual: Theory and
Practice. International Monetary Fund.

IMF, ILO, OECD, Eurostat, UNECE, and World Bank. (2020). Consumer Price Index Manual:
Concepts and Methods. International Monetary Fund.

von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang.

See Also

Other index methods: [.piar_index(), as.data.frame.piar_index(), as.ts.piar_index(),
chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index,
merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(),window.piar_index()

Examples

prices <- data.frame(
rel = 1:8,
period = rep(1:2, each = 4),
ea = rep(letters[1:2], 4)

)

A two-level aggregation structure
pias <- aggregation_structure(
list(c("top”, "top”, "top"), c("a", "b", "c")),

weights = 1:3
)

Calculate Jevons elementary indexes
(elementary <- elementary_index(prices, rel ~ period + ea))
Aggregate (note the imputation for elementary index 'c')

(index <- aggregate(elementary, pias, na.rm = TRUE))

6 aggregation_structure

Aggregation can equivalently be done as matrix multiplication

as.matrix(pias) %*% as.matrix(chain(index[letters[1:31]))

aggregation_structure Make a price index aggregation structure

Description

Create a price index aggregation structure from a hierarchical classification and aggregation weights
that can be used to aggregate elementary indexes.

Usage

aggregation_structure(x, weights = NULL)

Arguments

X A list of character vectors that give the codes/labels for each level of the classi-
fication, ordered so that moving down the list goes down the hierarchy. The last
vector gives the elementary aggregates, which should have no duplicates. All
vectors should be the same length, without NAs, and there should be no dupli-
cates across different levels of x. Names for x are used as level names; otherwise,

b} bl

levels are named ’levell’, ’level2’, ..., ’ea’.

weights A numeric vector of aggregation weights for the elementary aggregates (i.e., the
last vector in x), or something that can be coerced into one. The default is to
give each elementary aggregate the same weight.

Value

A price index aggregation structure of class piar_aggregation_structure. This is a list-S3 class
with the following components.

child A nested list that gives the positions of the immediate children for each node in
each level of the aggregation structure above the terminal nodes.
parent A list that gives the position of the immediate parent for each node of the aggre-
gation structure below the initial nodes.
levels A named list of character vectors that give the levels of x.
weights A vector giving the weight for each elementary aggregate.
Warning

The aggregation_structure() function does its best to check its arguments, but there should
be no expectation that the result of aggregation_structure() will make any sense if x does not
represent a nested hierarchy.

as.data.frame.piar_index 7

See Also

aggregate() to aggregate price indexes made with elementary_index().

expand_classification() to make x from a character representation of a hierarchical aggregation
structure.

as_aggregation_structure() to coerce tabular data into an aggregation structure.
as.data.frame() and as.matrix() to coerce an aggregation structure into a tabular form.
weights() to get the weights for an aggregation structure.

update() for updating a price index aggregation structure with an aggregated index.

Examples

A simple aggregation structure

od o o

M (3 “

aggregation_weights <- data.frame(
levell = c("1", "1", "1"),
level2 = c("11", "11", "12"),
ea = c("111", "112", "121"),
weight = c(1, 3, 4)

)

aggregation_structure(
aggregation_weights[1:3],
weights = aggregation_weights[[4]]
)

The aggregation structure can also be made by expanding the
elementary aggregates

with(
aggregation_weights,
aggregation_structure(expand_classification(ea), weight)

)

as.data.frame.piar_index
Coerce an index into a tabular form

Description

Turn an index into a data frame or a matrix.

8 as.data.frame.piar_index

Usage

S3 method for class 'piar_index'
as.data.frame(

X,

row.names = NULL,

optional = FALSE,

contrib = FALSE,

stringsAsFactors = FALSE

)
S3 method for class 'piar_index'
as.matrix(x, ...)
Arguments
X A price index, as made by, e.g., elementary_index().

row.names, stringsAsFactors
See as.data.frame().

optional Not currently used.
Not currently used.

contrib Include percent-change contributions (the default does not include them).

Value

as.data.frame() returns the index values in x as a data frame with three columns: period, level,
and value. If contrib = TRUE then there is a fourth (list) column contrib containing percent-
change contributions.

as.matrix() returns the index values in x as a matrix with a row for each level and a column for
each time period in x.

See Also

as_index() to coerce a matrix/data frame of index values into an index object.

Other index methods: [.piar_index(), aggregate.piar_index, as.ts.piar_index(), chain(),
contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(),mean.piar_index,
merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(),window.piar_index()

Examples
index <- as_index(matrix(1:6, 2))
as.data.frame(index)

as.matrix(index)

as.matrix.piar_aggregation_structure 9

as.matrix.piar_aggregation_structure
Coerce an aggregation structure into a tabular form

Description

Coerce a price index aggregation structure into an aggregation matrix, or a data frame.

Usage

S3 method for class 'piar_aggregation_structure'
as.matrix(x, ..., sparse = FALSE)

S3 method for class 'piar_aggregation_structure'

as.data.frame(x, row.names = NULL, optional = FALSE, ...)
Arguments
X A price index aggregation structure, as made by aggregation_structure().

Not currently used for the matrix method. Extra arguments to as.data.frame.list()
for the data frame method.

sparse Should the result be a sparse matrix from Matrix? This is faster for large aggre-
gation structures. The default returns an ordinary dense matrix.

row.names See as.data.frame().
optional Not currently used.
Value

as.matrix() represents an aggregation structure as a matrix, such that multiplying with a (column)
vector of elementary indexes gives the aggregated index.

as.data. frame() takes an aggregation structure and returns a data frame that could have generated
it.

See Also

as_aggregation_structure() for coercing into an aggregation structure.
treemap: :treemap() and data. tree: :as.Node() for visualizing an aggregation structure.

Other aggregation structure methods: cut.piar_aggregation_structure(), levels.piar_aggregation_structure(),
update.piar_aggregation_structure(), weights.piar_aggregation_structure()

10 as.ts.piar_index

Examples

A simple aggregation structure

1

I e

11 12
#o | mmmee] !

1M 112 121
e @

aggregation_weights <- data.frame(
level1 = C(H1”, M-III’ II‘III)’
level2 = c("11", "11", "12"),
ea c("111", "12", "121"),
weight = c(1, 3, 4)

)

pias <- as_aggregation_structure(aggregation_weights)
as.matrix(pias)
all.equal(as.data.frame(pias), aggregation_weights)

Not run:
Visualize as a treemap.
treemap: : treemap(
aggregation_weights,
index = names(aggregation_weights)[-4],
vSize = "weight”,
title = "aggregation structure”

)

Or turn into a more genereal tree object and plot.
aggregation_weights$pathString <- do.call(
\(...) paste(..., sep = "/"),
aggregation_weights[-4]
)
plot(data.tree::as.Node(aggregation_weights))

End(Not run)

as.ts.piar_index Coerce an index into a time series

Description

Turn an index into a regular time series, represented as a ts object.

as_aggregation_structure 11

Usage
S3 method for class 'piar_index'
as.ts(x, ...)
Arguments
X A price index, as made by, e.g., elementary_index().
Additional arguments passed to ts().
Value

A time series object.

See Also

Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),
chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index,
merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(),window.piar_index()

Examples

as.ts(as_index(matrix(1:9, 3)))

as_aggregation_structure
Coerce to an aggregation structure

Description

Coerce an object into an aggregation structure object.

Usage

as_aggregation_structure(x, ...)

Default S3 method:
as_aggregation_structure(x, ..., weights = NULL)

S3 method for class 'data.frame'
as_aggregation_structure(x, ...)

S3 method for class 'matrix'
as_aggregation_structure(x, ...)

12 as_aggregation_structure

Arguments
X An object to coerce into an aggregation structure.
Further arguments passed to or used by methods.
weights A numeric vector of aggregation weights for the elementary aggregates. The
default is to give each elementary aggregate the same weight.
Details

The default method attempts to coerce x into a list prior to calling aggregation_structure().

The data frame and matrix methods treat x as a table with a row for each elementary aggregate,
a column of labels for each level in the aggregation structure, and a column of weights for the
elementary aggregates.

Value

A price index aggregation structure that inherits from piar_aggregation_structure.

See Also

as.matrix() and as.data.frame() for coercing an aggregation structure into a tabular form.

Examples

A simple aggregation structure

#
#
#
|t |
11 112 121
(D 3)
aggregation_weights <- data.frame(
levell = c("1", "1", "1"),
level2 = c("11", "11", "12"),
ea = c("111", "112", "121"),
weight = c(1, 3, 4)

pias <- aggregation_structure(
aggregation_weights[1:3],
weights = aggregation_weights[[4]]
)

all.equal(
pias,
as_aggregation_structure(aggregation_weights)

)

all.equal(
pias,

as_index

13

as_aggregation_structure(as.matrix(aggregation_weights))

)

as_index

Coerce to a price index

Description

Coerce pre-computed index values into an index object.

Usage

as_index(x,

L)

Default S3 method:

as_index(x,

)

S3 method for class 'matrix'

as_index(x,

., chainable = TRUE, contrib = FALSE)

S3 method for class 'data.frame'

as_index(x,

., contrib = FALSE)

S3 method for class 'chainable_piar_index'

as_index(x,

., chainable = TRUE)

S3 method for class 'direct_piar_index'

as_index(x,

., chainable = FALSE)

S3 method for class 'mts'

as_index(x,

Arguments

X

chainable

contrib

D)

An object to coerce into a price index.
Further arguments passed to or used by methods.

Are the index values in x period-over-period indexes, suitable for a chained cal-
culation (the default)? This should be FALSE when x contains fixed-base (direct)
index values.

Should the index values in x be used to construct percent-change contributions?
The default does not make contributions.

14 chain

Details

Numeric matrices are coerced into an index object by treating each column as a separate time period,
and each row as a separate level of the index (e.g., an elementary aggregate). Column names are
used to denote time periods, and row names are used to denote levels (so they must be unique). This
essentially reverses calling as.matrix() on an index object. If a dimension is unnamed, then it is
given a sequential label from 1 to the size of that dimension. The default and multiple time series
methods coerces x to a matrix prior to using the matrix method.

The data frame method for as_index () is best understood as reversing the effect of as.data. frame()
on an index object. It constructs a matrix by taking the levels of x[[1]] as columns and the levels
of x[[2]1] as rows (coercing to a factor if necessary). It then populates this matrix with the corre-
sponding values in x[[3]1], and uses the matrix method for as_index(). If contrib = TRUE and
there is a fourth list column of product contributions then these are also included in the resulting
index.

If x is a period-over-period index then it is returned unchanged when chainable = TRUE and chained
otherwise. Similarly, if x is a fixed-base index then it is returned unchanged when chainable =
FALSE and unchain otherwise.

Value

A price index that inherits from piar_index. If chainable = TRUE then this is a period-over-period
price index that also inherits from chainable_piar_index; otherwise, it is a fixed-base index that
inherits from direct_piar_index.

See Also

as.matrix() and as.data.frame() for coercing an index into a tabular form.

Examples

prices <- data.frame(
rel = 1:8,
period = rep(1:2, each = 4),
ea = rep(letters[1:2], 4)

)

index <- elementary_index(prices, rel ~ period + ea)

all.equal(as_index(as.data.frame(index)), index)
all.equal(as_index(as.matrix(index)), index)

chain Chain and rebase a price index

chain 15

Description

Chain a period-over-period index by taking the cumulative product of its values to turn it into a
fixed-base (direct) index.

Unchain a fixed-base index by dividing its values for successive periods to get a period-over-period
index.

Rebase a fixed-base index by dividing its values with the value of the index in the new base period.
Usage
chain(x, ...)

Default S3 method:
chain(x, ...)

S3 method for class 'chainable_piar_index'
chain(x, link = rep(1, nlevels(x)), ...)

unchain(x, ...)

Default S3 method:
unchain(x, ...)

S3 method for class 'direct_piar_index'
unchain(x, base = rep(1, nlevels(x)), ...)

rebase(x, ...)

Default S3 method:
rebase(x, ...)

S3 method for class 'direct_piar_index'

rebase(x, base = rep(1, nlevels(x)), ...)
Arguments
X A price index, as made by, e.g., elementary_index().

Further arguments passed to or used by methods.

link A numeric vector, or something that can coerced into one, of link values for each
level in x. The default is a vector of 1s so that no linking is done.

base A numeric vector, or something that can coerced into one, of base-period index
values for each level in x. The default is a vector of 1s so that the base period
remains the same. If base is a length-one character vector giving a time period
of x then the index values for this time period are used as the base-period values.

Details

The default methods attempt to coerce x into an index with as_index () prior to chaining/unchaining/rebasing.

16 contrib

Chaining an index takes the cumulative product of the index values for each level; this is roughly
the same as t(apply(as.matrix(x), 1, cumprod)) * link. Unchaining does the opposite, so
these are inverse operations. Note that unchaining a period-over-period index does nothing, as does
chaining a fixed-base index.

Rebasing a fixed-base index divides the values for each level of this index by the corresponding
values for each level in the new base period. It’s roughly the same as as.matrix(x) / base. Like
unchaining, rebasing a period-over-period index does nothing.

Percent-change contributions are removed when chaining/unchaining/rebasing an index as it’s not
usually possible to update them correctly.

Value

chain() and rebase() return a fixed-base index that inherits from direct_piar_index.

unchain() returns a period-over-period index that inherits from chainable_piar_index.

See Also

Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),
as.ts.piar_index(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(),
mean.piar_index, merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(),
window.piar_index()

Examples

index <- as_index(matrix(1:9, 3))

Make period @ the fixed base period
chain(index)

Chaining and unchaining reverse each other
all.equal(index, unchain(chain(index)))

Change the base period to period 2 (note the
loss of information for period 0)

index <- chain(index)
rebase(index, index[, 2])

contrib Extract percent-change contributions

Description

Extract a matrix or data frame of percent-change contributions from a price index.

contrib 17
Usage
contrib(x, ...)

S3 method for class 'piar_index'
contrib(x, level = levels(x)[1L], period = time(x), ..., pad = 0)

contrib2DF(x, ...)

S3 method for class 'piar_index'
contrib2DF(x, level = levels(x)[1L], period = time(x), ...)

contrib(x, ...) <- value

S3 replacement method for class 'piar_index'
contrib(x, level = levels(x)[1L], period = time(x), ...) <- value

set_contrib(x, ..., value)

set_contrib_from_index(x)

Arguments
X A price index, as made by, e.g., elementary_index().
Further arguments passed to or used by methods.
level The level of an index for which percent-change contributions are desired, de-
faulting to the first level (usually the top-level for an aggregate index). contrib2DF ()
can accept multiple levels.
period The time periods for which percent-change contributions are desired, defaulting
to all time periods.
pad A numeric value to pad contributions so that they fit into a rectangular array
when products differ over time. The default is O.
value A numeric matrix of replacement contributions with a row for each product and
a column for each time period. Recycling occurs along time periods.
Value

contrib() returns a matrix of percent-change contributions with a column for each period and a
row for each product (sorted) for which there are contributions in level. Contributions are padded
with pad to fit into a rectangular array when products differ over time. The replacement methods
returns a copy of x with contributions given by the matrix value. (set_contrib() is an alias that’s
easier to use with pipes.) set_contrib_from_index() is a helper to return a copy of x with all
contributions set to the corresponding index value minus 1.

contrib2DF () returns a data frame of contributions with four columns: period, level, product,
and value.

18 cut.piar_aggregation_structure

See Also

Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),
as.ts.piar_index(), chain(), head.piar_index(), is.na.piar_index(), levels.piar_index(),
mean.piar_index, merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(),
window.piar_index()

Examples
prices <- data.frame(
rel = 1:8,
period = rep(1:2, each = 4),
ea = rep(letters[1:2], 4)
)

index <- elementary_index(prices, rel ~ period + ea, contrib = TRUE)

pias <- aggregation_structure(
list(c("top”, "top”, "top"), c("a", "b", "c")),
weights = 1:3

)

index <- aggregate(index, pias, na.rm = TRUE)

Percent-change contributions for the top-level index

contrib(index)

contrib2DF (index)

Calculate EA contributions for the chained index

library(gpindex)

arithmetic_contributions(
as.matrix(chain(index))[c("a", "b", "c"), 21,

weights(pias)
)

cut.piar_aggregation_structure
Cut an aggregation structure

Description

Keep only the part of an aggregation structure above or below a certain level.

cut.piar_aggregation_structure 19

Usage
S3 method for class 'piar_aggregation_structure'
cut(x, level, ..., na.rm = FALSE, upper = TRUE)
Arguments
X A price index aggregation structure, as made by aggregation_structure().
level A positive integer, or something that can be coerced into one, giving the level at

which to cut x.
Not currently used.

na.rm Should missing values be removed when aggregating the weights? By default,
missing values are not removed.

upper Keep only the part of x above level (the default); otherwise, return the part of
x below level.
Value

A price index aggregation structure.

See Also

Other aggregation structure methods: as.matrix.piar_aggregation_structure(), levels.piar_aggregation_struct
update.piar_aggregation_structure(), weights.piar_aggregation_structure()

Examples

A simple aggregation structure

#
#
#
|| I
#
(M 3) 4

aggregation_weights <- data.frame(
levell = c("1", "1", "1"),
level2 = c("11", "11", "12"),
ea = c("111", "112", "121"),
weight = c(1, 3, 4)

)

pias <- aggregation_structure(
aggregation_weights[1:3],
weights = aggregation_weights[[4]]

)

Turn it into

1

R

11 12

20

“®

cut(pias, 2)

4

elementary_index

elementary_index

Make elementary/elemental price indexes

Description

Compute period-over-period (chainable) or fixed-base (direct) elementary price indexes, with op-
tional percent-change contributions for each product.

Usage

elementary_index(x,

Default S3 method:

elementary_index(x,

)

.0

S3 method for class 'numeric'

elementary_index(

X’

L

period = gl(1, length(x)),
ea = gl(1, length(x)),

weights = NULL,
product = NULL,

chainable = TRUE,

na.rm = FALSE,

contrib = FALSE,

r=2=0

)

S3 method for class 'data.frame'

elementary_index(x, formula,

elemental_index(x,

Arguments

X

.2

Further arguments passed to or used by methods.

period

., weights = NULL, product = NULL)

Period-over-period or fixed-base price relatives. Currently there are methods for
numeric vectors (which can be made with price_relative()) and data frames.

A factor, or something that can be coerced into one, giving the time period

associated with each price relative in x. The ordering of time periods follows of

the levels of period, to agree with cut(). The default makes an index for one
time period.

elementary_index 21

ea A factor, or something that can be coerced into one, giving the elementary ag-
gregate associated with each price relative in x. The default makes an index for
one elementary aggregate.

weights A numeric vector of weights for the price relatives in x, or something that can
be coerced into one. The default is equal weights. This is evaluated in x for the
data frame method.

product A character vector of product names, or something that can be coerced into one,
for each price relative in x when making percent-change contributions. The
default uses the names of x, if any; otherwise, elements of x are given sequential
names within each elementary aggregate. This is evaluated in x for the data
frame method.

chainable Are the price relatives in x period-over-period relatives that are suitable for a
chained calculation (the default)? This should be FALSE when x contains fixed-
base relatives.

na.rm Should missing values be removed? By default, missing values are not removed.
Setting na.rm = TRUE is equivalent to overall mean imputation.

contrib Should percent-change contributions be calculated? The default does not calcu-
late contributions.

r Order of the generalized mean to aggregate price relatives. O for a geometric in-
dex (the default for making elementary indexes), 1 for an arithmetic index (the
default for aggregating elementary indexes and averaging indexes over subperi-
ods), or -1 for a harmonic index (usually for a Paasche index). Other values are
possible; see gpindex: :generalized_mean() for details.

formula A two-sided formula with price relatives on the left-hand side, and time periods
and elementary aggregates (in that order) on the right-hand side.

Details

When supplied with a numeric vector, elementary_index() is a simple wrapper that applies
gpindex: :generalized_mean(r) () and gpindex: :contributions(r) () (if contrib = TRUE) to
x and weights grouped by ea and period. That is, for every combination of elementary aggregate
and time period, elementary_index() calculates an index based on a generalized mean of order
r and, optionally, percent-change contributions. Product names should be unique within each time
period when making contributions, and, if not, are passed to make.unique () with a warning. The
default (r = @ and no weights) makes Jevons elementary indexes. See chapter 8 (pp. 175-190) of
the CPI manual (2020) for more detail about making elementary indexes, or chapter 9 of the PPI
manual (2004), and chapter 5 of Balk (2008).

The default method simply coerces x to a numeric vector prior to calling the method above. The
data frame method provides a formula interface to specify columns of price relatives, time periods,
and elementary aggregates and call the method above.

The interpretation of the index depends on how the price relatives in x are made. If these are period-
over-period relatives, then the result is a collection of period-over-period (chainable) elementary
indexes; if these are fixed-base relatives, then the result is a collection of fixed-base (direct) ele-
mentary indexes. For the latter, chainable should be set to FALSE so that no subsequent methods
assume that a chained calculation should be used.

22 elementary_index

By default, missing price relatives in x will propagate throughout the index calculation. Ignoring
missing values with na.rm = TRUE is the same as overall mean (parental) imputation, and needs to
be explicitly set in the call to elementary_index(). Explicit imputation of missing relatives, and
especially imputation of missing prices, should be done prior to calling elementary_index().

Indexes based on nested generalized means, like the Fisher index (and superlative quadratic mean

indexes more generally), can be calculated by supplying the appropriate weights with gpindex: :nested_transmute();
see the example below. It is important to note that there are several ways to make these weights,

and this affects how percent-change contributions are calculated.

elemental_index() is an alias for elementary_index().

Value

A price index that inherits from piar_index. If chainable = TRUE then this is a period-over-period
index that also inherits from chainable_piar_index; otherwise, it is a fixed-based index that
inherits from direct_piar_index.

References

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

ILO, IMF, UNECE, OECD, and World Bank. (2004). Producer Price Index Manual: Theory and
Practice. International Monetary Fund.

IMF, ILO, OECD, Eurostat, UNECE, and World Bank. (2020). Consumer Price Index Manual:
Concepts and Methods. International Monetary Fund.

von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang.

See Also

price_relative() for making price relatives for the same products over time, and carry_forward()
and shadow_price() for imputation of missing prices.

as_index() to turn pre-computed (elementary) index values into an index object.
chain() for chaining period-over-period indexes, and rebase () for rebasing an index.
aggregate() to aggregate elementary indexes according to an aggregation structure.

as.matrix() and as.data.frame() for coercing an index into a tabular form.

Examples

library(gpindex)

prices <- data.frame(
rel = 1:8,
period = rep(1:2, each = 4),
ea = rep(letters[1:2], 4)

)

Calculate Jevons elementary indexes

elementary_index(prices, rel ~ period + ea)

expand_classification 23

Same as using Im() or tapply()
exp(coef(1lm(log(rel) ~ ea:factor(period) - 1, prices)))

with(

prices,

t(tapply(rel, list(period, ea), geometric_mean, na.rm = TRUE))
)

A general function to calculate weights to turn the geometric
mean of the arithmetic and harmonic mean (i.e., Fisher mean)
into an arithmetic mean

fw <- grouped(nested_transmute(@, c(1, -1), 1))

Calculate a CSWD index (same as the Jevons in this example)
as an arithmetic index by using the appropriate weights

elementary_index(
prices,
rel ~ period + ea,
weights = fw(rel, group = interaction(period, ea)),
r=1

expand_classification Expand a hierarchical classification

Description

Expand a character representation of a hierarchical classification to make a price index aggregation
structure. Expanded classifications be interacted together to get all combinations of aggregation
structures.

Usage

expand_classification(x, width = 1L, pad = NA)

interact_classifications(..., sep = ":")
Arguments
X A character vector, or something that can be coerced into one, of codes/labels for

a specific level in a classification (e.g., 5-digit COICOP, 5-digit NAICS, 4-digit
SIC).

24 expand_classification

width An integer vector that gives the width of each digit in x. A single value is re-
cycled to span the longest element in x. This cannot contain NAs. The default
assumes each digit has a width of 1, as in the NAICS, NAPCS, and SIC classi-
fications.

pad A string used to pad the shorter labels for an unbalanced classification. The
default pads with NA.

Lists of character vectors that give the codes/labels for each level of the classifi-
cation, ordered so that moving down the list goes down the hierarchy (as made
by expand_classification()).

sep A character used to combine codes/labels across elements of The default
uses ;.

Value

expand_classification() returns a list with a entry for each level in x giving the "digits" that
represent each level in the hierarchy.

interact_classfications() returns a list of lists with the same structure as expand_classification().

See Also

aggregation_structure() to make a price-index aggregation structure.
split_classification() to expand a classification by splitting along a delimiter.

csh_from_digits() in the accumulate package for different handling of unbalanced classifica-
tions.

Examples

A simple classification structure
1

R

11 12

|| |

111 112 121

expand_classification(c(”111", "112", "121"))

Expanding more complex classifications
... if last 'digit' is either TA or TS

expand_classification(
c("111TA", "112TA", "121TS"),
width = c(1, 1, 1, 2)

)

... if first 'digit' is either 11 or 12
expand_classification(c(”111", "112", "121"), width = c(2, 1))

...if there are delimiters in the classification (like COICOP)

head.piar_index

expand_classification(c(”01.1.1", "@1.1.2", "01.2.1"), width = 2)

25

head.piar_index Return the first/last parts of an index

Description

Extract the first/last parts of an index as if it were a matrix.

Usage

S3 method for class 'piar_index'
head(x, n = 6L, ...)

S3 method for class 'piar_index'

tail(x, n = 6L, ...)
Arguments
X A price index, as made by, e.g., elementary_index().
n See head()/tail(). The default takes the first/last 6 levels of x.

Not currently used.

Value

A price index that inherits from the same class as x.

See Also

Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),

as.ts.piar_index(), chain(), contrib(),is.na.piar_index(), levels.piar_index(), mean.piar_index,
merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(),window.piar_index()

Examples

index <- as_index(matrix(1:9, 3))
head(index, 1)

tail(index, 1)

26

impute_prices

impute_prices Impute missing prices

Description

Impute missing prices using the carry forward or shadow price method.

Usage

shadow_price(x, ...)

Default S3 method:
shadow_price(
X,
period,
product,
ea,
pias = NULL,
weights = NULL,
ri =0,
r2 =1
)

S3 method for class 'data.frame'
shadow_price(x, formula, ..., weights = NULL)

carry_forward(x, ...)

Default S3 method:
carry_forward(x, ..., period, product)

S3 method for class 'data.frame'
carry_forward(x, formula, ...)

carry_backward(x, ...)

Default S3 method:
carry_backward(x, ..., period, product)

S3 method for class 'data.frame'

carry_backward(x, formula, ...)
Arguments
X Either a numeric vector (or something that can be coerced into one) or data

frame of prices.

impute_prices 27

Further arguments passed to or used by methods.

period A factor, or something that can be coerced into one, giving the time period
associated with each price in x. The ordering of time periods follows of the
levels of period, to agree with cut().

product A factor, or something that can be coerced into one, giving the product associ-
ated with each price in x.

ea A factor, or something that can be coerced into one, giving the elementary ag-
gregate associated with each price in x.

pias A price index aggregation structure, or something that can be coerced into one,
as made with aggregation_structure(). The default imputes from elemen-
tary indexes only (i.e., not recursively).

weights A numeric vector of weights for the prices in x (i.e., product weights), or some-
thing that can be coerced into one. The default is to give each price equal weight.
This is evaluated in x for the data frame method.

ri Order of the generalized-mean price index used to calculate the elementary price
indexes: 0 for a geometric index (the default), 1 for an arithmetic index, or -1 for
a harmonic index. Other values are possible; see gpindex: :generalized_mean()
for details.

r2 Order of the generalized-mean price index used to aggregate the elementary
price indexes: 0 for a geometric index, 1 for an arithmetic index (the default), or -
1 for a harmonic index. Other values are possible; see gpindex: :generalized_mean()
for details.

formula A two-sided formula with prices on the left-hand side. For carry_forward()
and carry_backward(), the right-hand side should have time periods and prod-
ucts (in that order); for shadow_price(), the right-hand side should have time
period, products, and elementary aggregates (in that order).

Details

The carry forward method replaces a missing price for a product by the price for the same product in
the previous period. It tends to push an index value towards 1, and is usually avoided; see paragraph
6.61 in the CPI manual (2020). The carry backwards method does the opposite, but this is rarely
used in practice.

The shadow price method recursively imputes a missing price by the value of the price for the
same product in the previous period multiplied by the value of the period-over-period elementary
index for the elementary aggregate to which that product belongs. This requires computing and
aggregating an index (according to pias, unless pias is not supplied) for each period, and so these
imputations can take a while. The index values used to do the imputations are not returned because
the index needs to be recalculated to get correct percent-change contributions.

Shadow price imputation is referred to as self-correcting overall mean imputation in chapter 6 of
the CPI manual (2020). It is identical to simply excluding missing price relatives in the index
calculation, except in the period that a missing product returns. For this reason care is needed when
using this method. It is sensitive to the assumption that a product does not change over time, and
in some cases it is safer to simply omit the missing price relatives instead of imputing the missing
prices.

28 is.na.piar_index

Value

A numeric vector of prices with missing values replaced (where possible).

References

IMF, ILO, OECD, Eurostat, UNECE, and World Bank. (2020). Consumer Price Index Manual:
Concepts and Methods. International Monetary Fund.

See Also

price_relative() for making price relatives for the same products over time.

Examples

prices <- data.frame(
price = c(1:7, NA),
period = rep(1:2, each = 4),
product = 1:4,
ea = rep(letters[1:2], 4)
)

carry_forward(prices, price ~ period + product)

shadow_price(prices, price ~ period + product + ea)

is.na.piar_index Missing values in a price index

Description

Identify missing values in a price index.

Usage

S3 method for class 'piar_index'
is.na(x)

S3 method for class 'piar_index'
anyNA(x, recursive = FALSE)

Arguments
X A price index, as made by, e.g., elementary_index().
recursive Check if x also has missing percent-change contributions. By default only index

values are checked for missingness.

is_aggregation_structure 29

Value

is.na() returns a logical matrix, with a row for each level of x and a columns for each time period,
that indicates which index values are missing.

anyNA () returns TRUE if any index values are missing, or percent-change contributions (if recursive
= TRUE).
See Also

Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),
as.ts.piar_index(), chain(), contrib(), head.piar_index(), levels.piar_index(), mean.piar_index,
merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(),window.piar_index()

Examples

index <- as_index(matrix(c(1, 2, 3, NA, 5, NA), 2))

anyNA(index)
is.na(index)

Carry forward imputation

index[is.na(index)] <- 1
index

is_aggregation_structure
Test if an object is an aggregation structure

Description

Test if an object is a price index aggregation structure.

Usage

is_aggregation_structure(x)

Arguments

X An object to test.

Value

Returns TRUE if x inherits from piar_aggregation_structure.

30 levels.piar_aggregation_structure

is_index Test if an object is a price index

Description

Test if an object is a index object or a subclass of an index object.

Usage

is_index(x)
is_chainable_index(x)

is_direct_index(x)

Arguments

X An object to test.

Value

is_index() returns TRUE if x inherits from piar_index.
is_chainable_index() returns TRUE if x inherits from chainable_piar_index.

is_direct_index() returns TRUE if x inherits from direct_piar_index.

levels.piar_aggregation_structure
Get the levels for an aggregation structure

Description

Get the hierarchical list of levels for an aggregation structure. It is an error to try and replace these
values.

Usage
S3 method for class 'piar_aggregation_structure'
levels(x)

Arguments

X A price index aggregation structure, as made by aggregation_structure().

Value

A list of character vectors giving the levels for each position in the aggregation structure.

levels.piar_index 31

See Also

Other aggregation structure methods: as.matrix.piar_aggregation_structure(),cut.piar_aggregation_structure
update.piar_aggregation_structure(), weights.piar_aggregation_structure()

levels.piar_index Get the levels for a price index

Description

Methods to get and set the levels for a price index.

Usage

S3 method for class 'piar_index'
levels(x)

S3 replacement method for class 'piar_index'
levels(x) <- value

set_levels(x, value)

Arguments
X A price index, as made by, e.g., elementary_index().
value A character vector, or something that can be coerced into one, giving the re-
placement levels for x.
Value

levels() returns a character vector with the levels for a price index.

The replacement method returns a copy of x with the levels in value. (set_levels() is an alias
that’s easier to use with pipes.)

See Also

Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),
as.ts.piar_index(), chain(), contrib(), head.piar_index(), is.na.piar_index(), mean.piar_index,
merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(),window.piar_index()

32

mean.piar_index

mean.piar_index Aggregate a price index over subperiods

Description

Aggregate an index over subperiods by taking the (usually arithmetic) mean of index values over
consecutive windows of subperiods.

Usage

S3 method for class 'chainable_piar_index'
mean (

X7

weights = NULL,
window = ntime(x),
na.rm = FALSE,
contrib = TRUE,

r=1,

duplicate_contrib = c("make.unique”, "sum")
)
S3 method for class 'direct_piar_index'
mean (

X,

weights = NULL,
window = ntime(x),
na.rm = FALSE,
contrib = TRUE,

r=1,
duplicate_contrib = c("make.unique”, "sum")
)
Arguments
X A price index, as made by, e.g., elementary_index().
Not currently used.
weights A numeric vector of weights for the index values in x, or something that can be
coerced into one. The default is equal weights. It is usually easiest to specify
these weights as a matrix with a row for each index value in x and a column for
each time period.
window A positive integer giving the size of the window used to average index values

across subperiods. The default averages over all periods in x. Non-integers are
truncated towards 0.

mean.piar_index 33

na.rm Should missing values be removed? By default, missing values are not removed.
Setting na.rm = TRUE is equivalent to overall mean imputation.

contrib Aggregate percent-change contributions in x (if any)?

r Order of the generalized mean to aggregate index values. 0 for a geometric in-
dex (the default for making elementary indexes), 1 for an arithmetic index (the
default for aggregating elementary indexes and averaging indexes over subperi-
ods), or -1 for a harmonic index (usually for a Paasche index). Other values are
possible; see gpindex: :generalized_mean() for details.

duplicate_contrib
The method to deal with duplicate product contributions. Either make.unique’
to make duplicate product names unique with make.unique() or ’sum’ to add
contributions for the same products across subperiods.

Details

The mean() method constructs a set of non-overlapping windows of length window, starting in the
first period of the index, and takes the mean of each index value in these windows for each level of
the index. The last window is discarded if it is incomplete (with a warning), so that index values are
always averaged over window periods. The names for the first time period in each window form the
new names for the aggregated time periods.

Percent-change contributions are aggregated if contrib = TRUE following the same approach as
aggregate().

An optional vector of weights can be specified when aggregating index values over subperiods,
which is often useful when aggregating a Paasche index; see section 4.3 of Balk (2008) for details.
Value

A price index, averaged over subperiods, that inherits from the same class as x.

References

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

See Also

Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),
as.ts.piar_index(), chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(),
merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(),window.piar_index()

Examples
index <- as_index(matrix(c(1:12, 12:1), 2, byrow = TRUE), chainable = FALSE)

Turn a monthly index into a quarterly index
mean(index, window = 3)

34 merge.piar_index

merge.piar_index Merge price indexes

Description

Combine two price indexes with common time periods, merging together the index values and
percent-change contributions for each time period.

This is useful for building up an index when different elementary aggregates come from different
sources of data, or use different index-number formulas.

Usage

S3 method for class 'chainable_piar_index'
merge(x, Yy, ...)

S3 method for class 'direct_piar_index'

merge(X, y, ...)
Arguments
X A price index, as made by, e.g., elementary_index().
y A price index, or something that can coerced into one. If x is a period-over-

period index then y is coerced into a chainable index; otherwise, y is coerced
into a direct index.

Not currently used.

Value

A combined price index that inherits from the same class as x.

See Also

Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),
as.ts.piar_index(), chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(),
mean.piar_index, split.piar_index(), stack.piar_index(), time.piar_index(),window.piar_index()

Examples
index1 <- as_index(matrix(1:6, 2))

index2 <- index1
levels(index2) <- 3:4

merge(index1, index2)

piar_index 35

piar_index Price index objects

Description

There are several classes to represent price indexes.

¢ All indexes inherit from the piar_index virtual class.
¢ Period-over-period indexes that can be chained over time inherit from chainable_piar_index.

¢ Fixed-base indexes inherit from direct_piar_index.

Details

The piar_index object is a list-S3 class with the following components:
index A list with an entry for each period in time that gives a vector of index values for each level
in levels.

contrib A list with an entry for each period in time, which itself contains a list with an entry for
each level in levels with a named vector that gives the percent-change contribution for each
price relative.

levels A character vector giving the levels of the index.
time A character vector giving the time periods for the index.

The chainable_piar_index and direct_piar_index subclasses have the same structure as the
piar_index class, but differ in the methods used to manipulate the indexes.

price_data Price data

Description

Sample price and weight data for both a match sample and fixed sample type index.

36 price_relative

price_relative Calculate period-over-period price relatives

Description

Construct period-over-period price relatives from information on prices and products over time.

Usage

price_relative(x, ...)

Default S3 method:
price_relative(x, ..., period, product)

S3 method for class 'data.frame'

price_relative(x, formula, ...)
Arguments
X Either a numeric vector (or something that can be coerced into one) or data

frame of prices.
Further arguments passed to or used by methods.

period A factor, or something that can be coerced into one, that gives the corresponding
time period for each element in x. The ordering of time periods follows the levels
of period to agree with cut().

product A factor, or something that can be coerced into one, that gives the corresponding
product identifier for each element in x.

formula A two-sided formula with prices on the left-hand side, and time periods and
products (in that order) on the right-hand side.

Value

A numeric vector of price relatives, with product as names.

See Also

gpindex: :back_period() to get only the back price.
gpindex: :base_period() for making fixed-base price relatives.
carry_forward() and shadow_price() to impute missing prices.

gpindex: :outliers for methods to identify outliers with price relatives.

split.piar_index 37

Examples

price_relative(
1:6,
period = rep(1:2, each = 3),
product = rep(letters[1:3], 2)
)

split.piar_index Split an index into groups

Description
Split an index into groups of indexes according to a factor, along either the levels or time periods of
the index.

Usage

S3 method for class 'piar_index'
split(x, f, drop = FALSE, ..., margin = c("levels”, "time"))

S3 replacement method for class 'piar_index'

split(x, f, drop = FALSE, ..., margin = c("levels”, "time")) <- value
Arguments

X A price index, as made by, e.g., elementary_index().

f A factor or list of factors to group elements of x.

drop Should levels that do not occur in f be dropped? By default all levels are kept.

Further arguments passed to split.default().

margin Either ’levels’ to split over the levels of x (the default), or "time’ to split over the
time periods of x.

value A list of values compatible with the splitting of x, or something that can be
coerced into one, recycled if necessary.
Value
split() returns a list of index objects for each level in f. The replacement method replaces these
values with the corresponding element of value.
See Also

Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),
as.ts.piar_index(), chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(),
mean.piar_index, merge.piar_index(), stack.piar_index(), time.piar_index(),window.piar_index()

38 split_classification

Examples
index <- as_index(matrix(1:6, 2))
split(index, 1:2)

split(index, c(1, 1, 2), margin = "time")

split_classification Split a hierarchical classification

Description

Expand a character representation of a hierarchical classification to make a price index aggregation
structure by splitting along a delimiter.

Usage
split_classification(x, split, ..., sep = ".", pad = NA)
Arguments
X A character vector, or something that can be coerced into one, of codes/labels
for a specific level in a classification (e.g., 5-digit COICOP).
split A regular expression to delineate and split the levels in x. See strsplit().
Additional argument to pass to strsplit().
sep A character used to delineate levels in x in the result. The default separates
levels by °..
pad A string used to pad the shorter labels for an unbalanced classification. The
default pads with NA.
Value

A list with a entry for each level in x giving the "digits" that represent each level in the hierarchy.

See Also

aggregation_structure() to make a price-index aggregation structure.

expand_classification() to expand a classification by the width of the levels.

stack.piar_index 39

Examples

1

#' # A simple classification structure
#

#

#

#

111 112 121

split_classification(c(”111", "112", "121"), "™")

Useful if there are delimiters in the classification (like COICOP)

split_classification(c(”01.1.1", "01.1.2", "@1.2.1"), ".", fixed = TRUE)
stack.piar_index Stack price indexes
Description

stack() combines two price indexes with common levels, stacking index values and percent-
change contributions for one index after the other.

unstack() breaks up a price index into a list of indexes for each time period.

These methods can be used in a map-reduce to make an index with multiple aggregation structures
(like a Paasche index).

Usage

S3 method for class 'chainable_piar_index'
stack(x, vy, ...)

S3 method for class 'direct_piar_index'
stack(x, vy, ...)

S3 method for class 'chainable_piar_index'
unstack(x, ...)

S3 method for class 'direct_piar_index'

unstack(x, ...)
Arguments
X A price index, as made by, e.g., elementary_index().
y A price index, or something that can coerced into one. If x is a period-over-

period index then y is coerced into a chainable index; otherwise, y is coerced
into a direct index.

Not currently used.

40 time.piar_index

Value

stack() returns a combined price index that inherits from the same class as x.

unstack() returns a list of price indexes with the same class as x.

Note

It may be necessary to use rebase () prior to stacking fixed-based price indexes to ensure they have
the same base period.

See Also

Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),
as.ts.piar_index(), chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(),
mean.piar_index, merge.piar_index(), split.piar_index(), time.piar_index(),window.piar_index()

Examples
index1 <- as_index(matrix(1:6, 2))

index2 <- index1
time(index2) <- 4:6

stack(index1, index2)
Unstack does the reverse
all.equal(
c(unstack(index1), unstack(index2)),

unstack(stack(index1, index2))

)

time.piar_index Get the time periods for a price index

Description

Methods to get and set the time periods for a price index.

Usage
S3 method for class 'piar_index'
time(x, ...)
time(x) <- value

[

S3 replacement method for class 'piar_index
time(x) <- value

update.piar_aggregation_structure 41

set_time(x, value)

S3 method for class 'piar_index'
start(x, ...)

S3 method for class 'piar_index

end(x, ...)
ntime(x)
Arguments
X A price index, as made by, e.g., elementary_index().
Not currently used.
value A character vector, or something that can be coerced into one, giving the re-
placement time periods for x.
Value

time () returns a character vector with the time periods for a price index. start() and end() return
the first and last time period.

ntime () returns the number of time periods, analogous to nlevels().

The replacement method returns a copy of x with the time periods in value. (set_time() is an
alias that’s easier to use with pipes.)

See Also

Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),
as.ts.piar_index(), chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(),
mean.piar_index, merge.piar_index(), split.piar_index(), stack.piar_index(),window.piar_index()

update.piar_aggregation_structure
Update an aggregation structure

Description

Price update the weights in a price index aggregation structure.

Usage

S3 method for class 'piar_aggregation_structure'
update(object, index, period = end(index), ..., r = 1)

42 update.piar_aggregation_structure

Arguments
object A price index aggregation structure, as made by aggregation_structure().
index A fixed-base (direct) price index, or something that can be coerced into one.
Usually an aggregate price index as made by aggregate().
period The time period used to price update the weights. The default uses the last period
in index.
Not currently used.
r Order of the generalized mean to update the weights. The default is 1 for an
arithmetic index.
Value

A copy of object with price-updated weights using the index values in index.

See Also

aggregate() to make an aggregated price index.

Other aggregation structure methods: as.matrix.piar_aggregation_structure(),cut.piar_aggregation_structure
levels.piar_aggregation_structure(), weights.piar_aggregation_structure()

Examples

A simple aggregation structure

#
#
#
A |
111 112 121
(D €)) (€))
aggregation_weights <- data.frame(
levell = c("1", "1", "1"),
level2 = c("11", "11", "12"),
ea c("111", "112", "121"),
weight = c(1, 3, 4)
)

pias <- as_aggregation_structure(aggregation_weights)
index <- as_index(

matrix(1:9, 3, dimnames = list(c("111", "112", "121"), NULL))
)

weights(pias, ea_only = FALSE)

weights(update(pias, index), ea_only = FALSE)

weights.piar_aggregation_structure 43

weights.piar_aggregation_structure
Get the weights for an aggregation structure

Description

Get and set the weights for a price index aggregation structure.

Usage

S3 method for class 'piar_aggregation_structure'
weights(object, ..., ea_only = TRUE, na.rm = FALSE)

weights(object) <- value

S3 replacement method for class 'piar_aggregation_structure'
weights(object) <- value

set_weights(object, value)

Arguments
object A price index aggregation structure, as made by aggregation_structure().
Not currently used.
ea_only Should weights be returned for only the elementary aggregates (the default)?
Setting to FALSE gives the weights for the entire aggregation structure.
na.rm Should missing values be removed when aggregating the weights (i.e., when
ea_only = FALSE)? By default, missing values are not removed.
value A numeric vector of weights for the elementary aggregates of object.
Value

weights() returns a named vector of weights for the elementary aggregates. The replacement
method replaces these values without changing the aggregation structure. (set_weights() is an
alias that’s easier to use with pipes.)

If ea_only = FALSE then the return value is a list with a named vector of weights for each level in
the aggregation structure.

See Also

Other aggregation structure methods: as.matrix.piar_aggregation_structure(),cut.piar_aggregation_structure
levels.piar_aggregation_structure(), update.piar_aggregation_structure()

44

Examples

window.piar_index

A simple aggregation structure

#
#
#
#
#
#

a

(3 “®

aggregation_weights <- data.frame(

levell

level2

ea

weight
)

c("17, 1", 1",
C(I’11I,, Il‘l‘lll, II‘IZII)’
c("111r, M2t "121),
c(1, 3, 4

pias <- as_aggregation_structure(aggregation_weights)

Extract the weights

weights(pias)

... or update them

weights(pias) <- 1:3
weights(pias)

window.piar_index Index window

Description

Extract and replace index values over a window of time periods.

Usage

S3 method for class 'piar_index'
window(x, start = NULL, end = NULL, ...)

S3 replacement method for class 'piar_index'

window(x, start = NULL, end = NULL, ...) <- value
Arguments
X A price index, as made by, e.g., elementary_index().
start The time period to start the window. The default in the first period of x.
end The time period to end the window. The default is the last period of x.

[.piar_index 45

Not currently used.

value A numeric vector or price index.

Value
window() extracts a price index over a window of time periods that inherits from the same class as
x. The replacement method replaces these with value.
See Also
Other index methods: [.piar_index(), aggregate.piar_index, as.data.frame.piar_index(),
as.ts.piar_index(), chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(),
mean.piar_index, merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index()
Examples
X <- as_index(matrix(1:9, 3))

window(x, "2")

window(x, "2") <- 1
X

[.piar_index Extract and replace index values

Description

Methods to extract and replace index values like a matrix.

Usage

S3 method for class 'piar_index'
x[i, j, ...]

S3 replacement method for class 'piar_index'

x[i, j, ...]1 <= value
Arguments
X A price index, as made by, e.g., elementary_index().
i, j Indices for the levels and time periods of a price index. See details.

Not currently used.

value A numeric vector or price index. See details.

46 [.piar_index

Details

The extraction method treats x like a matrix of index values with (named) rows for each level and
columns for each time period in x. Unlike a matrix, dimensions are never dropped as subscripting x
always returns an index object. This means that subscripting with a matrix is not possible, and only
a "submatrix" can be extracted. As x is not an atomic vector, subscripting with a single index like
x[1] extracts all time periods for that level.

The replacement method similarly treat x like a matrix. If value is an index object with the same
number of time periods as x[i, j] and it inherits from the same class as x, then the index values
and percent-change contributions of x[i, j] are replaced with those for the corresponding levels of
value. If value is not an index, then it is coerced to a numeric vector and behaves the same as re-
placing values in a matrix. Note that replacing the values of an index will remove the corresponding
percent-change contributions (if any). Unlike extraction, it is possible to replace value in x using a
logical matrix or a two-column matrix of indices.
Value

A price index that inherits from the same class as x.

See Also

Other index methods: aggregate.piar_index, as.data.frame.piar_index(), as.ts.piar_index(),
chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index,
merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(),window.piar_index()

Examples
index <- as_index(matrix(1:6, 2))
index["1", 1]
index[, 2]
index[1, 1 <- 1 # can be useful for doing specific imputations

index

Index

* aggregation structure methods
as.matrix.piar_aggregation_structure
9
cut.piar_aggregation_structure, 18
levels.piar_aggregation_structure,

30
update.piar_aggregation_structure,
41
weights.piar_aggregation_structure,
43

* index methods
[.piar_index, 45
aggregate.piar_index, 2
as.data.frame.piar_index, 7
as.ts.piar_index, 10
chain, 14
contrib, 16
head.piar_index, 25
is.na.piar_index, 28
levels.piar_index, 31
mean.piar_index, 32
merge.piar_index, 34
split.piar_index, 37
stack.piar_index, 39
time.piar_index, 40
window.piar_index, 44

[.piar_index, 5,8, 11, 16, 18, 25, 29, 31, 33,

34,37,40, 41, 45, 45
[<-.piar_index ([.piar_index), 45

aggregate(), 7, 22, 33,42

aggregate.chainable_piar_index
(aggregate.piar_index), 2

aggregate.direct_piar_index
(aggregate.piar_index), 2

aggregate.piar_index, 2,8, 11, 16, 18, 25,
29,31, 33, 34,37,40, 41,45, 46

aggregation_structure, 6

aggregation_structure(), 3, 9, 12, 19, 24,
27,30, 38,42, 43

47

anyNA.piar_index (is.na.piar_index), 28
as.data.frame(), 7-9, 12, 14, 22
as.data.frame.list(), 9
as.data.frame.piar_aggregation_structure

(as.matrix.piar_aggregation_structure),

9
as.data.frame.piar_index, 5,7, 11, 16, 18,

25,29,31, 33,34, 37,40, 41, 45, 46
as.matrix(),5,7,12, 14,22
as.matrix.piar_aggregation_structure,

9,19,31,42, 43
as.matrix.piar_index

(as.data.frame.piar_index), 7
as.ts.piar_index, 5, 8, 10, 16, 18, 25, 29,

31, 33, 34, 37,40, 41, 45, 46
as_aggregation_structure, 11
as_aggregation_structure(), 7,9
as_index, 13
as_index(), 8, 15, 22

carry_backward (impute_prices), 26

carry_forward (impute_prices), 26

carry_forward(), 22, 36

chain, 5,8, 11, 14, 18, 25, 29, 31, 33, 34, 37,
40, 41, 45, 46

chain(), 22

chainable_piar_index, 14, 16, 22, 30

chainable_piar_index (piar_index), 35

contrib, 5,8, 11, 16, 16, 25, 29, 31, 33, 34,
37,40, 41, 45, 46

contrib2DF (contrib), 16

contrib<- (contrib), 16

cut(), 20, 27, 36

cut.piar_aggregation_structure, 9, 18,
31,42, 43

data.tree::as.Node(), 9
direct_piar_index, 14, 16, 22, 30
direct_piar_index (piar_index), 35

elemental_index (elementary_index), 20

48

elementary_index, 20
elementary_index(), 3,7, 8,11, 15,17, 25,
28,31, 32,34,37,39,41,44, 45
end.piar_index (time.piar_index), 40
expand_classification, 23
expand_classification(), 7, 38

fs_prices (price_data), 35
fs_weights (price_data), 35

gpindex: :back_period(), 36

gpindex: :base_period(), 36

gpindex: :contributions(r) (), 21

gpindex: :factor_weights(r)(), 4

gpindex: :generalized_mean(), 3, 21, 27,
33

gpindex: :generalized_mean(r) (), 4, 21

gpindex: :nested_transmute(), 5, 22

gpindex::outliers, 36

head(), 25
head.piar_index, 5, 8, 11, 16, 18, 25, 29, 31,
33, 34, 37,40, 41, 45, 46

impute_prices, 26
interact_classifications

(expand_classification), 23
is.na.piar_index, 5,8, 11, 16, 18, 25, 28,

31,33, 34, 37,40, 41, 45, 46
is_aggregation_structure, 29
is_chainable_index (is_index), 30
is_direct_index (is_index), 30
is_index, 30

levels.piar_aggregation_structure, 9,
19, 30,42, 43

levels.piar_index, 5, 8, 11, 16, 18, 25, 29,
31, 33, 34, 37,40, 41, 45, 46

levels<-.piar_index
(levels.piar_index), 31

make.unique(), 4, 21, 33
mean.chainable_piar_index
(mean.piar_index), 32
mean.direct_piar_index
(mean.piar_index), 32
mean.piar_index, 5,8, 11, 16, 18, 25, 29, 31,
32,34,37,40, 41,45, 46
merge(), 4

INDEX

merge.chainable_piar_index
(merge.piar_index), 34

merge.direct_piar_index
(merge.piar_index), 34

merge.piar_index, 5,8, 11, 16, 18, 25, 29,
31,33,34,37,40, 41, 45, 46

ms_prices (price_data), 35

ms_weights (price_data), 35

ntime (time.piar_index), 40

piar_aggregation_structure, 12, 29

piar_aggregation_structure
(aggregation_structure), 6

piar_index, 14, 22, 30, 35

price_data, 35

price_relative, 36

price_relative(), 20, 22, 28

rebase (chain), 14
rebase(), 22

set_contrib (contrib), 16
set_contrib_from_index (contrib), 16
set_levels (levels.piar_index), 31
set_time (time.piar_index), 40
set_weights
(weights.piar_aggregation_structure),
43
shadow_price (impute_prices), 26
shadow_price(), 22, 36
split.default(), 37
split.piar_index, 5,8, 11, 16, 18, 25, 29,
31, 33, 34,37, 40, 41, 45, 46
split<-.piar_index (split.piar_index),
37
split_classification, 38
split_classification(), 24
stack.chainable_piar_index
(stack.piar_index), 39
stack.direct_piar_index
(stack.piar_index), 39
stack.piar_index, 5, 8, 11, 16, 18, 25, 29,
31, 33, 34, 37,39, 41, 45, 46
start.piar_index (time.piar_index), 40
strsplit(), 38

tail(), 25
tail.piar_index (head.piar_index), 25

INDEX

time.piar_index, 5,8, 11, 16, 18, 25, 29, 31,
33, 34, 37,40, 40, 45, 46

time<- (time.piar_index), 40

treemap: : treemap(), 9

ts, 10

ts(), 11

unchain (chain), 14

unstack.chainable_piar_index
(stack.piar_index), 39

unstack.direct_piar_index
(stack.piar_index), 39

update(), 7
update.piar_aggregation_structure, 9,
19,31,41,43

weights(), 7
weights.piar_aggregation_structure, 9,
19,31,42,43
weights<-
(weights.piar_aggregation_structure),
43
window.piar_index, 5, 8, 11, 16, 18, 25, 29,
31,33, 34,37,40, 41, 44, 46
window<-.piar_index
(window.piar_index), 44

49

	aggregate.piar_index
	aggregation_structure
	as.data.frame.piar_index
	as.matrix.piar_aggregation_structure
	as.ts.piar_index
	as_aggregation_structure
	as_index
	chain
	contrib
	cut.piar_aggregation_structure
	elementary_index
	expand_classification
	head.piar_index
	impute_prices
	is.na.piar_index
	is_aggregation_structure
	is_index
	levels.piar_aggregation_structure
	levels.piar_index
	mean.piar_index
	merge.piar_index
	piar_index
	price_data
	price_relative
	split.piar_index
	split_classification
	stack.piar_index
	time.piar_index
	update.piar_aggregation_structure
	weights.piar_aggregation_structure
	window.piar_index
	[.piar_index
	Index

