
Package ‘openmetrics’
October 14, 2022

Title A 'Prometheus' Client for R Using the 'OpenMetrics' Format

Version 0.3.0

Description Provides a client for the open-source monitoring and alerting
toolkit, 'Prometheus', that emits metrics in the 'OpenMetrics' format. Allows
users to automatically instrument 'Plumber' and 'Shiny' applications, collect
standard process metrics, as well as define custom counter, gauge, and
histogram metrics of their own.

License MIT + file LICENSE

URL https://github.com/atheriel/openmetrics

BugReports https://github.com/atheriel/openmetrics/issues

Imports R6

Suggests httr, plumber, shiny, testthat (>= 2.1.0)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Author Aaron Jacobs [aut, cre],
Crescendo Technology Ltd. [cph]

Maintainer Aaron Jacobs <atheriel@gmail.com>

Repository CRAN

Date/Publication 2020-11-09 21:20:02 UTC

R topics documented:
metrics . 2
push_to_gateway . 4
register_default_metrics . 5
register_plumber_metrics . 5
register_shiny_metrics . 6
registry . 7

Index 8

1

https://github.com/atheriel/openmetrics
https://github.com/atheriel/openmetrics/issues

2 metrics

metrics Metrics

Description

A metric is a measure which can be aggregated into a time series, and comes in one of three types:
counters, gauges, and histograms.

Metrics must have a unique name.

Usage

counter_metric(
name,
help,
labels = character(),
...,
unit = NULL,
registry = global_registry()

)

gauge_metric(
name,
help,
labels = character(),
...,
unit = NULL,
registry = global_registry()

)

histogram_metric(
name,
help,
buckets = c(0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10),
labels = character(),
...,
unit = NULL,
registry = global_registry()

)

Arguments

name The name of the metric.

help A brief, one-sentence explanation of the metric’s meaning.

labels A vector of label names for the metric.

... For backward compatibility, otherwise ignored.

unit An optional unit for the metric, e.g. "seconds". Must match the metric name.

metrics 3

registry Where to register the metric for later retrieval.

buckets A sequence of buckets to bin observations into. Defaults to Prometheus’s sug-
gested buckets, which are a good fit for measuring user-visible latency in sec-
onds (e.g. for web services).

Details

All metric objects have a reset() method that reverts the underlying value (or values) to zero, an
unregister() method that removes them from the registry they were created in, and a render()
method that writes a representation of the metric in the text-based OpenMetrics format. Normally,
render_metrics() is used instead.

In addition, various metrics have their own methods:

• inc(by = 1, ...): Increments the metric by some positive number, defaulting to 1. Further
parameters are interpreted as labels. Available for counters and gauges.

• dec(by = 1, ...): Decrements the metric by some number, defaulting to 1. Further parame-
ters are interpreted as labels. Available for gauges.

• set(value, ...): Sets the metric to some number. Further parameters are interpreted as
labels. Available for gauges.

• set_to_current_time(...): Sets the metric to the current time, in seconds from the Unix
epoch. Further parameters are interpreted as labels. Available for gauges.

• observe(value, ...): Records an observation of some number. Further parameters are in-
terpreted as labels. Available for histograms.

• time(expr, ...): Records an observation for the time elapsed evaluating expr, in seconds.
Further parameters are interpreted as labels. Available for histograms.

Value

An object with methods to manipulate the metric. See details.

See Also

The official documentation on Metric Types.

Examples

meows <- counter_metric("meows", "Heard around the house.", labels = "cat")
meows$inc(cat = "Shamus") # Count one meow from Shamus.
meows$inc(3, cat = "Unknown") # Count three meows of unknown origin.
meows$render()

thermostat <- gauge_metric("thermostat", "Thermostat display.")
thermostat$set(21.3) # Read from the display...
thermostat$dec(2) # ... and then turn it down 2 degrees.
thermostat$render()

temperature <- histogram_metric(
"temperature", "Ambient room temperature measurements.",
buckets = c(10, 15, 20, 22, 25), labels = "room"

https://prometheus.io/docs/instrumenting/exposition_formats/#text-based-format
https://prometheus.io/docs/concepts/metric_types/

4 push_to_gateway

)
set.seed(9090)
Simulate taking ambient temperature samples.
for (measure in rnorm(20, mean = 21.5)) {

temperature$observe(measure, room = sample(c("kitchen", "bathroom"), 1))
}
temperature$render()

push_to_gateway Pushgateway Integration

Description

Some workloads may not want to run an HTTP server to expose metrics, especially in the case
of short-lived batch jobs. For these cases metrics can also be manually "pushed" to a Prometheus
Pushgateway instance, though there are drawbacks.

push_to_gateway() is used to push metrics, and delete_from_gateway() is used to clean them
up when the workload is finished.

Usage

push_to_gateway(url, job, instance = NA, registry = global_registry(), ...)

delete_from_gateway(url, job, instance = NA, ...)

Arguments

url The URL of the Pushgateway

job A value for the job label applied to all pushed metrics.

instance A value for the instance label applied to all pushed metrics, or NA to leave it
unset.

registry A Registry object, defaulting to the shared global one.

... Additional named string arguments converted to labels. Beware that these are
not yet checked for URL safety.

Value

NULL, invisibly.

Examples

Not run:
register_default_metrics()
push_to_gateway("localhost:9091", job = "batch-job-1")
Some time later...
delete_from_gateway("localhost:9091", job = "batch-job-1")

https://prometheus.io/docs/practices/pushing/

register_default_metrics 5

End(Not run)

register_default_metrics

Default Metrics for R Processes

Description

Registers the standard process metrics for Prometheus clients. Not all metrics are supported on all
operating systems.

Usage

register_default_metrics(registry = global_registry())

Arguments

registry A Registry object. See registry().

Value

Called for side effects only.

Examples

register_default_metrics()
render_metrics()

register_plumber_metrics

Metrics for Plumber APIs

Description

Automatically wrap a Plumber API app, adding metrics for HTTP request count and duration, and
then expose them on a /metrics endpoint.

The endpoint will check the METRICS_HTTP_AUTHORIZATION environment variable, and if present
will use it as the expected Authorization header of the request to the /metrics endpoint. This
can be used to implement basic HTTP authentication for access to runtime metrics.

Usage

register_plumber_metrics(app, registry = global_registry())

https://prometheus.io/docs/instrumenting/writing_clientlibs/#process-metrics
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

6 register_shiny_metrics

Arguments

app A Plumber router object.

registry A Registry object. See registry().

Value

A modified Plumber router.

Examples

if (requireNamespace("plumber", quietly = TRUE)) {
app <- plumber::plumber$new() # Normally this is plumber::plumb().
app <- register_plumber_metrics(app)

Not run:
app$run()

End(Not run)
}

register_shiny_metrics

Metrics for Shiny Applications

Description

Automatically wrap a Shiny app, adding metrics for the current session count and the duration of
reactive flushes, and then expose them on a /metrics endpoint.

The endpoint will check the METRICS_HTTP_AUTHORIZATION environment variable, and if present
will use it as the expected Authorization header of the request to the /metrics endpoint. This
can be used to implement basic HTTP authentication for access to runtime metrics.

Usage

register_shiny_metrics(app, registry = openmetrics::global_registry())

Arguments

app An object created with shiny::shinyApp().

registry A Registry object. See registry().

Value

A modified Shiny app object.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

registry 7

registry Metric Registries

Description

A registry is a collection of one or more metrics. By default, metrics are added to the object
returned by global_registry(), but new registries can also be created with registry(). Use
collect_metrics() to return all metrics that a registry is aware of, or render_metrics() to
render all of them in aggregate.

Usage

registry()

global_registry()

collect_metrics(registry = global_registry())

render_metrics(registry = global_registry())

Arguments

registry A Registry object, defaulting to the shared global one.

Details

Registry objects have methods, but they are not intended to be called by users and have no stable
API.

Value

registry() and global_registry() return Registry objects (see Details), while collect_metrics()
returns a list of metrics and render_metrics() returns a string.

Index

collect_metrics (registry), 7
counter_metric (metrics), 2

delete_from_gateway (push_to_gateway), 4

gauge_metric (metrics), 2
global_registry (registry), 7

histogram_metric (metrics), 2

metrics, 2, 7

push_to_gateway, 4

register_default_metrics, 5
register_plumber_metrics, 5
register_shiny_metrics, 6
registry, 7
registry(), 5, 6
render_metrics (registry), 7
render_metrics(), 3

shiny::shinyApp(), 6

8

	metrics
	push_to_gateway
	register_default_metrics
	register_plumber_metrics
	register_shiny_metrics
	registry
	Index

