
Local and regional flood frequency analyses with BayesianMCMC

Karine Halbert

With this document, we illustrate the use of the functions BayesianMCMC and BayesianMCMCreg. In the first
section, flood frequency analysis is performed using the function BayesianMCMC with the data of the gauged
station Saint Martin d’Ardèche (south-east of France), for which a lot of information on historical extreme
floods is available (see Naulet, 2002). The methodology used for incorporation of historical information in
BayesianMCMC is described in Payrastre et al. (2011). In the second section, a regional flood frequency analysis
is performed using the function BayesianMCMCreg with data from several sites in the Ardèche region, which
is exposed to frequent and severe flash floods, thus having a lot of records of extreme flood observations at
different ungauged sites that were collected under the European Hydrate project (Borga et al., 2011; Gaume
et al., 2009). Methodological aspects of this regional flood frequency approach are developped in Gaume et al.
(2010); Nguyen et al. (2014).

1 Local flood frequency analysis with historical data
We use here systematic data and historical flood data as described respectively in Nguyen (2012) and Naulet
(2002). Load the data available in the nsRFA package:

> library(nsRFA)
> data(Ardechedata)
> ls()

[1] "Ardeche_areas" "Ardeche_ungauged_extremes"
[3] "Beauvene_cont" "Chambonas_cont"
[5] "SaintLaurent_cont" "SaintMartin_cont"
[7] "SaintMartin_hist" "Vogue_cont"

The systematic data, including the maximum annual flood peaks (m3/s) for the station Saint Martin
d’Ardèche is (Table A.10, page 180 in Nguyen, 2012, catchment size 2240 km2):

> str(SaintMartin_cont)

'data.frame': 43 obs. of 2 variables:
$ year: int 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 ...
$ peak: int 3160 1930 1300 540 1050 1220 1330 3250 1500 1540 ...

At this location, a lot of information on extreme historical floods have been collected and analysed in Naulet
(2002, Table 5.8, page 200; Fig. 5.30, page 208).

> str(SaintMartin_hist)

List of 2
$ peaks :'data.frame': 32 obs. of 2 variables:
..$ year: int [1:32] 1772 1827 1846 1853 1857 1859 1861 1878 1888 1890 ...
..$ peak: int [1:32] 6000 7400 6350 4000 4550 3950 3000 6350 3200 7550 ...

$ thresholds:'data.frame': 4 obs. of 4 variables:
..$ from.yr : num [1:4] 1645 1772 1827 1892
..$ to.yr : num [1:4] 1771 1826 1891 1962
..$ threshold: num [1:4] 7250 6000 5050 2400
..$ num.yr : num [1:4] 127 55 65 71
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The perception thresholds in SaintMartin_hist$thresholds indicate the dicharges that are assumed not to
have been exceeded in the indicated time periods except for the historical floods in SaintMartin_hist$peaks.
The historical period has been stopped here in 1962, i.e. before the beginning of the systematic series.

> plot(c(1640,2010), c(0, 8000), type="n", xlab="", ylab="discharge (m3/s)")
> points(SaintMartin_cont[,"year"], SaintMartin_cont[,"peak"], type="o", pch=21, bg="white")
> points(SaintMartin_hist$peaks[,"year"], SaintMartin_hist$peaks[,"peak"], pch=16)
> points(SaintMartin_hist$peaks[,"year"], SaintMartin_hist$peaks[,"peak"], type="h")
> segments(x0=SaintMartin_hist$thresholds[,"from.yr"],
+ x1=SaintMartin_hist$thresholds[,"to.yr"],
+ y0=SaintMartin_hist$thresholds[,"threshold"], lty=2)
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With the function BayesianMCMC we fit a flood frequency model to the flood data using a Bayesian Markov
Chain Monte Carlo algorithm. The particularity of this function is that it takes into account historical infor-
mation (see e.g. Payrastre et al., 2011), and that several perception thresholds can be specified. In order to do
so, we have to organise the historical data into 3 vectors of equal length:

• xhist containing the historical flood peak values;

• seuil containing the perception thresholds associated with each historical flood in xhist ;

• nbans containing the number of years covered by the percception thresholds in seuil (number of years
during with the thresholds have not been exceeded except for the floods listed in xhist).

> xhistSM <- c(-1,SaintMartin_hist$peaks[,"peak"])
> seuilSM <- c(7250, 6000, rep(5050, 10), rep(2400, 21))
> nbansSM <- c(127, 55, 65, rep(0,9), 71, rep(0, 20))
> data.frame(xhistSM, seuilSM, nbansSM)

xhistSM seuilSM nbansSM
1 -1 7250 127
2 6000 6000 55
3 7400 5050 65
4 6350 5050 0
5 4000 5050 0
6 4550 5050 0
7 3950 5050 0
8 3000 5050 0
9 6350 5050 0
10 3200 5050 0
11 7550 5050 0
12 4650 5050 0
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13 3950 2400 71
14 5750 2400 0
15 2750 2400 0
16 4800 2400 0
17 3400 2400 0
18 2700 2400 0
19 3400 2400 0
20 2700 2400 0
21 2800 2400 0
22 3200 2400 0
23 3700 2400 0
24 2500 2400 0
25 2850 2400 0
26 2450 2400 0
27 2700 2400 0
28 3700 2400 0
29 3200 2400 0
30 3400 2400 0
31 4800 2400 0
32 2400 2400 0
33 3400 2400 0

This presentation of the dataset gives directly the correpondance between each historical flood and the associated
perception threshold. Since the same threshold value is repeated several times (once for each historical flood),
the application period of each threshold has to be parted in nbansSM: the only requirement is that for each
threshold, when you sum up the nbansSM values next to it, the sum is the total number of years covered by the
threshold. For simplicity reasons, here we just put once in nbansSM the total number of years covered by each
threshold, the other values being set to 0. Finally, in this step you just have to repeat in seuilSM the value
of each perception threshold as many times as peak discharge information is available during the application
period of the threshold, and then indicate once in nbansSM the duration of the application period for each
threshold, the other values being set to zero.

You can also notice that the first value in xhistSM is equal to -1: this is because the perception threshold
defined in seuilSM has never been exceeded and no information is available on floods that did not exceed the
threshold (see help).

The Bayesian MCMC algorithm is applied as follows:

> fit <- BayesianMCMC(xcont=SaintMartin_cont[,"peak"],
+ xhist=xhistSM,
+ seuil=seuilSM,
+ nbans=nbansSM,
+ nbpas=1000, nbchaines=3, confint=c(0.05, 0.95), dist="GEV",
+ varparameters0=c(NA, NA, 0.5))

Here we choose a generalized extreme value (GEV) distribution as model, with 3 Markov chains, and a confidence
interval of 90% (from 5% to 95%). Note that, to have better convergence, higher values of nbpas should be
used (e.g., 10000).

Usually you need to run it a second time to make sure the Bayesian MCMC algorithm has converged, that
is what the BayesianMCMCcont function is for:

> fit <- BayesianMCMCcont(fit)

The results of the fitting and some diagnostic graphs can be plotted with the command:

> plot(fit, which=1:4, ask=TRUE)

The first plot which can be seen is the plotting position of the data, as well as the fitted distribution (with
the maximum likelihood) and the confidence intervals:
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Note that the crosses are standing for the systematic data and the points for the historical data.
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The second plot allows a diagnostic of the MCMC simulation by looking at the parameters:
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The third plot is also for a diagnostic of the MCMC simulation but looking at the likelihood and MCMC
acceptance rate:
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Finally, the fourth plot is showing as cloud plots the posterior distribution of parameters obtained with the
MCMC simulation:
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2 Regional flood frequency analysis with extreme floods in ungauged
catchments

We use here data from 5 streamgauges in the Ardèche region as described in Nguyen (2012, pages 180-184).

> SaintMartin_cont
> Vogue_cont
> SaintLaurent_cont
> Beauvene_cont
> Chambonas_cont

> plot(SaintMartin_cont[,"year"], SaintMartin_cont[,"peak"], type="o", pch=21, bg="white",
+ xlab="", ylab="discharge (m3/s)", main=" Saint Martin on the Ardeche River (2240 km2)")
> plot(Vogue_cont[,"year"], Vogue_cont[,"peak"], type="o", pch=21, bg="white",
+ xlab="", ylab="discharge (m3/s)", main="Vogue on the Ardeche River (636 km2)")
> plot(SaintLaurent_cont[,"year"], SaintLaurent_cont[,"peak"], type="o", pch=21, bg="white",
+ xlab="", ylab="discharge (m3/s)", main="Saint Laurent on the Borne River (63 km2)")
> plot(Beauvene_cont[,"year"], Beauvene_cont[,"peak"], type="o", pch=21, bg="white",
+ xlab="", ylab="discharge (m3/s)", main="Beauvene on the Eyrieux River (392 km2)")
> plot(Chambonas_cont[,"year"], Chambonas_cont[,"peak"], type="o", pch=21, bg="white",
+ xlab="", ylab="discharge (m3/s)", main="Chambonas on the Chassezac River (507 km2)")
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On top of that, extreme flood events have been reconstructed for several ungauged catchments, or for periods
preceeding the systematic records in gauged catchments (see Table 4.2, page 127, in Nguyen, 2012).

> Ardeche_areas # km2

station area
1 Rosieres 210
2 Joyeuse 100
3 Vans 6
4 PontRolandy 150
5 Dorne 78
6 Meyras 130
7 Meysee 56
8 Rieutord 62
9 Burzet 47
10 Lamastre 242
11 Pouzin 140
12 Chambon 11
13 Saliouse 61
14 PontCezar 635
15 Chambonas 507
16 Aubenas 480
17 BarrageCollanges 343
18 SaintMartin 2240
19 Vogue 636
20 SaintLaurent 63
21 Beauvene 392

> Ardeche_ungauged_extremes # m3/s

station peak associated.period
1 Rosieres 1820 50
2 Joyeuse 1000 50
3 Vans 130 50
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4 PontRolandy 1150 50
5 Dorne 630 50
6 Meyras 900 50
7 Meysee 500 50
8 Rieutord 444 50
9 Burzet 350 50
10 Lamastre 970 50
11 Pouzin 700 50
12 Chambon 100 50
13 Saliouse 300 50
14 PontCezar 1500 50
15 Chambonas 3360 50
16 Aubenas 2200 50
17 BarrageCollanges 1685 50
18 SaintMartin 4500 50

> Ardeche_ungauged_extremes_new <- merge(Ardeche_ungauged_extremes, Ardeche_areas)

In the following, the usage of the function BayesianMCMCreg is illustrated to provide a regional flood fre-
quency analysis including both systematic and extreme flood data (see Gaume et al., 2010). This function uses
the catchment areas to draw an index flood relationship on the form µ = Sβ . Therefore, the datasets have first
to be organised in the following way:

• one vector xcont including all the systematic series;

• one vector scont including the catchment surfaces for each record in xcont;

• one vector xhist including the peak discharges of extreme floods;

• one vector shist including the catchment surfaces for each extreme flood in xhist;

• one vector seuil including the perception thresholds associated with each extreme flood in xhist;

• one vector nbans including the period of application of each perception threshold, i.e. the period during
which the threshold has been exceeded only by the extreme flood in xhist

> xcont <- c(SaintMartin_cont[,2],
+ Vogue_cont[,2],
+ SaintLaurent_cont[,2],
+ Beauvene_cont[,2], Chambonas_cont[,2])
> scont <- c(rep(2240, length(SaintMartin_cont[,2])),
+ rep(636, length(Vogue_cont[,2])),
+ rep(63, length(SaintLaurent_cont[,2])),
+ rep(392, length(Beauvene_cont[,2])),
+ rep(507, length(Chambonas_cont[,2])))
> xhist <- Ardeche_ungauged_extremes_new[,"peak"]
> xhist[Ardeche_ungauged_extremes_new[,"station"]=="Chambonas"] <- -1
> shist <- Ardeche_ungauged_extremes_new[,"area"]
> nbans <- Ardeche_ungauged_extremes_new[,"associated.period"]
> seuil <- Ardeche_ungauged_extremes_new[,"peak"]

BayesianMCMCreg can then be applied in the following way:

> fitreg <- BayesianMCMCreg(xcont=xcont,
+ scont=scont,
+ xhist=xhist,
+ shist=shist,
+ nbans=nbans,
+ seuil=seuil,
+ nbpas=1000, nbchaines=3, confint=c(0.05,0.95), dist="GEV",
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+ varparameters0=c(NA, NA, NA, 0.5))
> fitreg <- BayesianMCMCregcont(fitreg)
> fitreg <- BayesianMCMCregcont(fitreg)

Note that, to have better convergence, higher values of nbpas should be used (e.g., 10000).
The method assumes that, once the data are scaled by the catchment area (to the power of β), the peaks can

be pooled into a single sample and the regional growth curve can be estimated using it. Several assumptions
are therefore made: that the scaled samples are homogeneous, identically distributed and independent.

One good thing is that the method uses the MCMC algorithm not only for the regional growth curve
parameters, but also to estimate β.

Also, the method allows to include historical data (associated with gauged series) as well as extreme discharge
events available at ungauged sites, as in this example, which are treated as the historical ones. In the example,
it is assumed that extreme floods observed have not been exceeded in the last 50 years (ungauged sites), or
during the 50 years before the beginning of the gauged series (historical floods). Therefore, here seuil=xhist).

Since one of the extreme floods recorded is already included in the systematic gauged series (1980 flood
at Chambonas), its value has been replaced here by -1 in xhist, and the corresponding lines in nbans and
seuil are kept unchanged to indicate that this extreme flood has not been exceeded during a 50-year period
preceeding the systematic series (see above).

Note that once again you may need to run the Bayesian MCMC algorithm a second time to make sure it
converged, this time with the function BayesianMCMCregcont.

The same graphics, as the ones plotted for the local analysis, can be plotted here.

> plot(fitreg, which=1:4, ask=TRUE)

The first one refers to the regional growth curve, valid for an ungauged site with area 1 km2:
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For graphs accounting for catchment areas, the function plotBayesianMCMCreg_surf can be used. Here we
will do it for every catchment surface of the gauged stations:

> plotBayesianMCMCreg_surf(fitreg, surf=unique(Ardeche_areas$area))
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The last graph produces means of the previous mean discharge and 90% confidence intervals as a function of
the surface. It efficiently shows how the surfaces of the chosen catchments have an influence on the algorithm.
For more information about how the regional version works, you can see the PhD thesis Nguyen (2012), and
Nguyen et al. (2014).

12



References
Borga, M., E.N. Anagnostou, Blöschl G., and Creutin, J.D. (2011). Flash flood forecasting, warn-

ing and risk management: the HYDRATE project, Environmental Science & Policy, 14(7):834–844,
doi:10.1016/j.envsci.2011.05.017.

Gaume, E., V. Bain, , P. Bernardara, O. Newinger, M. Barbuc, A. Bateman, L. Blaskovicova, G. Bloschl, M.
Borga, A. Dumitrescu, I. Daliakopoulos, J. Garcia, A. Irimescu, S. Kohnova, A. Koutroulis, L. Marchi, S.
Matreata, V. Medina, E. Preciso, D. Sempere-Torres, G. Stancalie, J. Szolgay, J. Tsanis, D. Velasco, and
A. Viglione, (2009). A compilation of data on European flash floods, Journal of Hydrology, 367:70–80,
doi:10.1016/j.jhydrol.2008.1012.1028.

Gaume, E., L. Gaál, A. Viglione, J. Szolgay, S. Kohnová, and G. Blöschl (2010). Bayesian MCMC approach to
regional flood frequency analyses involving extraordinary flood events at ungauged sites, Journal of Hydrology,
394:101–117, doi:10.1016/j.jhydrol.2010.01.008.

Naulet, R. (2002). Utilisation de l’information des crues historiques pour une meilleure prédétermination
du risque d’inondation. Application au bassin de l’Ardèche à Vallon Pont-d’Arc et St-Martin d’Ardèche.
PhD thesis at CEMAGREF, Lyon, and at the Université du Québec, pp. 322. http://www.lthe.fr/OHM-
CV/Documents/theses/these_naulet.pdf

Nguyen, C.C. (2012). Amélioration des approches Bayésiennes MCMC pour l’analyse régionale des crues (Im-
provement of BayesianMCMC approaches for regional flood frequency analyses). PhD thesis at the Univer-
sity of Nantes, pp. 192. (http://archive.bu.univ-nantes.fr/pollux/show.action?id=178da900-8dd8-491b-8720-
011608382b98)

Nguyen, C.C., E. Gaume, and O. Payrastre (2014). Regional flood frequency analyses involving extraordinary
flood events at ungauged sites: further developments and validations, Journal of Hydrology, 508:385–396,
doi:10.1016/j.jhydrol.2013.09.058.

Payrastre, O., E. Gaume, and H. Andrieu (2011). Usefulness of historical information for flood frequency
analyses: Developments based on a case study, Water resources research, 47, doi:10.1029/2010WR009812.

13


