Package 'networktree'

October 13, 2022

Title Recursive Partitioning of Network Models

Version 1.0.1

Date 2021-2-4

Description Network trees recursively partition the data with respect to covariates. Two network tree algorithms are available: model-based trees based on a multivariate normal model and nonparametric trees based on covariance structures. After partitioning, correlation-based networks (psychometric networks) can be fit on the partitioned data. For details see Jones, Mair, Simon, & Zeileis (2020) <doi:10.1007/s11336-020-09731-4>.

Depends R (>= 3.5.0)

License GPL-2 | GPL-3

Encoding UTF-8

LazyData true

Imports partykit, qgraph, stats, utils, Matrix, mvtnorm, Formula, grid, graphics, gridBase, reshape2

RoxygenNote 7.1.1

Suggests R.rsp, knitr, rmarkdown, fxregime, zoo

URL https://paytonjjones.github.io/networktree/

BugReports https://github.com/paytonjjones/networktree/issues

NeedsCompilation no

Author Payton Jones [aut, cre] (<https://orcid.org/0000-0001-6513-8498>), Thorsten Simon [aut] (<https://orcid.org/0000-0002-3778-7738>), Achim Zeileis [aut] (<https://orcid.org/0000-0003-0918-3766>)

Maintainer Payton Jones <paytonjjones@gmail.com>

Repository CRAN

Date/Publication 2021-02-04 15:30:06 UTC

R topics documented:

comparetree		
cortrafo	 	 3
dass	 	 4
getnetwork	 	 5
mvnfit	 	 6
networktree	 	 7
plot.networktree		
predict.networktree		
print.networktree		
tipi	 	 11
workaholic	 	 12
		10
		13

Index

comparetree comparetree

Description

Quickly compares two partitions of a networktree object

Usage

```
comparetree(
  tree,
  id1 = 2L,
  id2 = 3L,
  transform = "detect",
  highlights = 5,
  plot = FALSE,
  plot.type = c("compare", "subtract"),
  layout = "constrained",
  ...
)
```

tree	a networktree object
id1	the first partition
id2	the second partition
transform	should stored correlation matrices be transformed to partial correlations or graph- ical lasso? Can be set to "cor", "pcor", or "glasso". Defaults to automatic detec- tion
highlights	the number of comparisons to highlight
plot	plot a comparison of the two partitions?

cortrafo

plot.type	"compare" or "subtract". "compare" plots the two networks side by side. "sub-
	tract" subtracts network 2 from network 1, and plots a network where edge
	weights indicate the difference
layout	layout for the plots. The default "constrained" uses a FR layout from the full dataset
	additional arguments passed to qgraph

Examples

```
set.seed(1)
d <- data.frame(trend = 1:200, foo = runif(200, -1, 1))</pre>
d <- cbind(d, rbind(</pre>
  mvtnorm::rmvnorm(100, mean = c(0, 0, 0),
          sigma = matrix(c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), ncol = 3)),
  mvtnorm::rmvnorm(100, mean = c(0, 0, 0),
          sigma = matrix(c(1, 0, 0.5, 0, 1, 0.5, 0.5, 0.5, 1), ncol = 3))
))
colnames(d)[3:5] <- paste0("y", 1:3)</pre>
## Generate a networktree
tree1 <- networktree(nodevars=d[,3:5], splitvars=d[,1:2])</pre>
## Print out the structure
tree1
## Compare any two partitions
comparetree(tree1, id1=2, id2=3, highlights=3)
## Add a comparison plot
comparetree(tree1, id1=2, id2=3, plot=TRUE)
```

cortrafo

cortrafo

Description

An influence function that transforms the response variables (y1, y2, y3...) into scores relevant to the correlations, means, and/or variances.

For example, in the case of correlations the variables are transformed into a matrix of $(n^2-n)/2$ columns (e.g., the number of total correlations), and i rows, where i is the # of observations of y1, where the mean of each vector is equal to the correlation between y1 and y2, y1 and y3, etc.

Used internally in when method="ctree".

Usage

```
cortrafo(data, weights, control, model, ...)
```

Arguments

data	a matrix or data
weights	not currently used
control	not currently used
model	can be any combination of c("correlation", "mean", "variance"). Scores are determined based on the specified characteristics
	not currently used

dass

Depression Anxiety and Stress Scale

Description

This dataset includes a randomly selected subsample of 5000 online participants who participated in a questionnaire available through the Open Source Psychometrics Project (https://openpsychometrics.org/), an organization that maintains an open website for the public to take psychometric tests for educational and entertainment purposes

Usage

dass

Format

a dataframe. Columns represent questionnaire items and rows represent individuals

Details

The Depression Anxiety and Stress Scale (DASS) is a self-report instrument for measuring depression, anxiety, and tension or stress. Each of 42 items falls into one of the three corresponding subscales.

Labels for DASS items in this dataset are denoted by the prefix "dass" and the suffix "_D", "_A", or "_S", indicating the depression, anxiety, or stress subscale.

Also includes demographics such as country, education level, rearing environment (urban/suburban/rural), gender, English as a native language, age, religion, sexual orientation, race, voting status, marriage status, and number of children in one's family during childhood.

The full dataset is publicly available at https://openpsychometrics.org/_rawdata/DASS_data_21.02.19.zip and can be cited as:

OpenPsychometrics (2019). Depression Anxiety and Stress Scale Survey. Retrieved from https://openpsychometrics.org/_rav

getnetwork

Examples

head(dass)

```
## Example networktree with DASS
data(dass)
## Select depression subscale
nodeVars <- colnames(dass)[(grep("_D", colnames(dass)))]
splitVars <- c("gender","orientation","race","married","engnat")
myTree<-networktree(dass[,nodeVars], dass[,splitVars])
myTree
plot(myTree)</pre>
```

getnetwork

getnetwork

Description

Easily extract a network from one of the nodes in a networktree object

Usage

```
getnetwork(tree, id = 1L, transform = "detect", verbose = FALSE, ...)
```

Arguments

tree	a networktree object
id	the node in the tree to extract. Use summary(tree) to see id numbers for each split
transform	should stored correlation matrices be transformed to partial correlations or graph- ical lasso? Can be set to "cor", "pcor", or "glasso". Defaults to automatic detec- tion
verbose	should warnings and messages from transformation functions (qgraph) be printed?
	arguments passed to qgraph (e.g., "tuning", "threshold")

Examples

mvnfit

```
sigma = matrix(c(1, 0, 0.5, 0, 1, 0.5, 0.5, 0.5, 1), ncol = 3))
))
colnames(d)[3:5] <- paste0("y", 1:3)
## Now use the function
tree1 <- networktree(nodevars=d[,3:5], splitvars=d[,1:2])
getnetwork(tree1, id=1)</pre>
```

mvnfit

Maximum Likelihood Estimation for Multivariate Normal Model

Description

Fit a multivariate normal model without covariates or covariance restrictions. In addition to the (straightforward) parameter estimates the fitted log-likelihood and corresponding score contributions are computed.

Usage

```
mvnfit(
   y,
   x = NULL,
   start = NULL,
   weights = NULL,
   offset = NULL,
   model = c("correlation", "mean", "variance"),
   ...,
   estfun = FALSE,
   object = FALSE
)
```

У	A matrix or data.frame where each row corresponds to a k-dim observation.
х	Not used yet
start	Not used yet
weights	Not used yet
offset	Not used yet
model	Vector of characters. Specifies which estimated parameters are returned.
	Not used yet
estfun	Logical. Should the matrix of score contributions (aka estimating functions) be returned?
object	Not used yet

networktree

Details

Used internally in when method="mob"

networktree networktree: Partitioning of network models

Description

Computes a tree model with networks at the end of branches. Can use model-based recursive partitioning or conditional inference.

Wraps the mob() and ctree() functions from the partykit package.

Usage

```
networktree(...)
## Default S3 method:
networktree(
 nodevars,
  splitvars,
 method = c("mob", "ctree"),
 model = "correlation",
  transform = c("cor", "pcor", "glasso"),
 na.action = na.omit,
 weights = NULL,
  . . .
)
## S3 method for class 'formula'
networktree(
  formula,
  data,
  transform = c("cor", "pcor", "glasso"),
 method = c("mob", "ctree"),
 na.action = na.omit,
 model = "correlation",
  . . .
)
```

•••	additional arguments passed to mob_control (mob) or ctree_control (ctree)
nodevars	the variables with which to compute the network. Can be vector, matrix, or dataframe
splitvars	the variables with which to test split the network. Can be vector, matrix, or dataframe

method	"mob" or "ctree"
model	can be any combination of c("correlation", "mean", "variance") splits are determined based on the specified characteristics
transform	should stored correlation matrices be transformed to partial correlations or a graphical lasso for plotting? Can be set to "cor" (default), "pcor", or "glasso"
na.action	a function which indicates what should happen when the data contain missing values (NAs).
weights	weights
formula	A symbolic description of the model to be fit. This should either be of type $y_1 + y_2 + y_3 \sim x_1 + x_2$ with node vectors y_1 , y_2 , and y_3 or $y \sim x_1 + x_2$ with a matrix response y. x_1 and x_2 are used as partitioning variables.
data	a data frame containing the variables in the model

References

Jones, P.J., Mair, P., Simon, T., Zeileis, A. (2020). Network trees: A method for recursively partitioning covariance structures. Psychometrika, 85(4), 926-945. https://doi.org/10.1007/s11336-020-09731-4

Examples

```
set.seed(1)
d <- data.frame(trend = 1:200, foo = runif(200, -1, 1))</pre>
d <- cbind(d, rbind(</pre>
 mvtnorm::rmvnorm(100, mean = c(0, 0, 0),
          sigma = matrix(c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), ncol = 3)),
  mvtnorm::rmvnorm(100, mean = c(0, 0, 0),
          sigma = matrix(c(1, 0, 0.5, 0, 1, 0.5, 0.5, 0.5, 1), ncol = 3))
))
colnames(d)[3:5] <- paste0("y", 1:3)</pre>
## Now use the function
tree1 <- networktree(nodevars=d[,3:5], splitvars=d[,1:2])</pre>
## Formula interface
tree2 <- networktree(y1 + y2 + y3 ~ trend + foo, data=d)</pre>
## plot
plot(tree2)
plot(tree2, terminal_panel = "box")
plot(tree2, terminal_panel = "matrix")
## Conditional version
tree3 <- networktree(nodevars=d[,3:5], splitvars=d[,1:2],</pre>
                      method="ctree")
## Change control arguments
tree4 <- networktree(nodevars=d[,3:5], splitvars=d[,1:2],</pre>
```

alpha=0.01)

plot.networktree *Plotting 'networktree' objects*

Description

Wraps plot.party to plot a tree model with networks on the ends. Networks are plotted with qgraph, and additional arguments are passed there

Usage

```
## S3 method for class 'networktree'
plot(
    x,
    terminal_panel = NULL,
    transform = NULL,
    layout = "lock",
    sdbars = FALSE,
    tnex = 3,
    partyargs = list(),
    na.rm = TRUE,
    ...
)
```

x terminal_panel	an object of type 'networktree' an optional panel function of the form function(node) plotting the terminal nodes. Alternatively, a panel generating function of class "grapcon_generator" that is called with arguments x and tp_args to set up a panel function. Or, a character choosing one of the implemented standard plots "graph", "box", "matrix" or "bar". The default (NULL) chooses an appropriate panel function depending on the "model" argument.
transform	"cor", "pcor", or "glasso". If set to NULL, transform detected from x
layout	network layout, passed to qgraph. Default "lock" computes spring layout for the full sample and applies this to all graphs
sdbars	if using a barplot, should std deviation error bars be plotted?
tnex	terminal node extension (passed to plot.party). To make the terminal plots big- ger, increase this value.
partyargs	additional arguments (list format) passed to partykit::plot.party plotting function that takes partitioned data as input
na.rm	should NA values be removed prior to calculating relevant parameters?
	additional arguments passed to qgraph or barplot

predict.networktree Predict 'networktree' objects

Description

Wraps predict.party

Usage

```
## S3 method for class 'networktree'
predict(object, newdata = NULL, type = c("node", "parameter"), ...)
```

Arguments

object	a fitted 'networktree'
newdata	An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
type	"node", or "parameter". Specifies whether to predict nodes (return value is a vector) or parameters (matrix).
	not used

print.networktree *Printing 'networktree' objects*

Description

Wraps print.modelparty to print a tree model with networks on the ends.

Usage

```
## S3 method for class 'networktree'
print(x, parameters = FALSE, FUN = NULL, ...)
```

х	an object of type 'networktree'
parameters	print parameters for each partition? See getnetwork function for extracting parameters conveniently
FUN	only evaluated if parameters=TRUE, passed to print.modelparty
	additional arguments passed print.modelparty

Description

This dataset includes 1899 online participants who participated in a questionnaire available through the Open Source Psychometrics Project (https://openpsychometrics.org/), an organization that maintains an open website for the public to take psychometric tests for educational and entertainment purposes

Usage

tipi

Format

a dataframe. Columns represent questionnaire items and rows represent individuals

Details

The Ten Item Personality Questionnaire (TIPI) is a brief inventory of the Big Five personality domains. Each personality domain is assessed with two items. One item measures the domain normally and the other item measures the domain in reverse (e.g., "reserved, quiet" for reverse extraversion).

Labels for TIPI items in this dataset correspond to the first letter of each Big Five personality domain (Extraversion, Neuroticism, Conscientiousness, Agreeableness, and Openness to experience), with the character "r" indicating items that measure the domain in reverse.

Also includes demographics such as education level, rearing environment (urban/suburban/rural), gender, English as a native language, age, religion, sexual orientation, race, voting status, marriage status, and number of children in one's family during childhood.

The dataset is publicly available at http://openpsychometrics.org/_rawdata/GCBS.zip and can be cited as:

OpenPsychometrics (2019). Generic Conspiracist Beliefs Scale Survey. Retrieved from http://openpsychometrics.org/_rawda

Examples

```
head(tipi)
```

```
## Example networktree with TIPI
data(tipi)
nodeVars <- c("E","A_r","C","N","O","E_r","A","C_r","N_r","O_r")
splitVars <- c("gender","education","engnat")
myTree<-networktree(tipi[,nodeVars], tipi[,splitVars])
myTree
plot(myTree)</pre>
```

tipi

workaholic

Workaholism and Psychiatric Symptoms

Description

This dataset includes 16,426 workers who were assessed on symptoms of psychiatric disorders (ADHD, OCD, anxiety, depression) and workaholism.

Usage

workaholic

Format

a dataframe. Columns represent symptoms and rows represent individuals

Details

Scales: Adult ADHD Self-Report Scale, Obsession-Compulsive Inventory-Revised, Hospital Anxiety and Depression Scale, and the Bergen Work Addiction Scale.

Also includes demographics such as age, gender, work status, position, sector, annual income.

The dataset is publicly available at https://doi.org/10.1371/journal.pone.0152978 and can be cited as:

Andreassen, C. S., Griffiths, M. D., Sinha, R., Hetland, J., & Pallesen, S. (2016). The relationships between workaholism and symptoms of psychiatric disorders: a large-scale cross-sectional study. PloS One, 11, e0152978.

Examples

head(workaholic)

```
## Example networktree with OCI-R scale
data(workaholic)
nodeVars <- paste("OCIR",1:18,sep="")
splitVars <- c("Workaholism_diagnosis","Gender")
myTree<-networktree(workaholic[,nodeVars], workaholic[,splitVars])
myTree
plot(myTree)
```

Index

plot.networktree, 9
predict.networktree, 10
print.networktree, 10

tipi, 11

workaholic, 12