Package ‘medfateland’

October 22, 2025
Type Package

Title Mediterranean Landscape Simulation
Version 2.8.1
Date 2025-10-22

Description Simulate forest hydrology, forest function and dynamics over landscapes [De Cac-
eres et al. (2015) <doi:10.1016/j.agrformet.2015.06.012>]. Parallelization is allowed in sev-
eral simulation functions and simulations may be conducted including spatial pro-
cesses such as lateral water transfer and seed dispersal.

License GPL (>=2)

URL https://emf-creaf.github.io/medfateland/,
https://github.com/emf-creaf/medfateland

BugReports https://github.com/emf-creaf/medfateland/issues
LazyLoad yes
Depends R (>=4.1.0), medfate (>=4.8.3)

Imports cli, ggplot2, dplyr, httr, jsonlite, lifecycle, methods,
meteoland (>=2.0.2), rlang, Rcpp (>= 0.12.12), parallel, sf,
shiny, stars, terra, tidyterra, tidyr, tibble, stats

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
LinkingTo Rcpp, meteoland, medfate
Encoding UTF-8

NeedsCompilation yes

LazyData true

Config/testthat/edition 3

RoxygenNote 7.3.3

Author Miquel De Céceres [aut, cre],
Aitor Améztegui [aut] (ORCID: <https://orcid.org/0000-0003-2006-1559>),
Maria Gonzalez [aut] (ORCID: <https://orcid.org/0000-0002-2227-8404>),
Nuria Aquilué [aut],
Daniel Caviedes-Voullieme [aut],

https://doi.org/10.1016/j.agrformet.2015.06.012
https://emf-creaf.github.io/medfateland/
https://github.com/emf-creaf/medfateland
https://github.com/emf-creaf/medfateland/issues
https://orcid.org/0000-0003-2006-1559
https://orcid.org/0000-0002-2227-8404

2 Contents
Mario Morales-Hernandez [aut],
Mario Beltran [ctb],
Rodrigo Balaguer-Romano [ctb] (ORCID:
<https://orcid.org/0000-0003-2808-6777>),
Roberto Molowny-Horas [ctb] (ORCID:
<https://orcid.org/0000-0003-2626-6379>)
Maintainer Miquel De Caceres <miquelcaceres@gmail.com>
Repository CRAN
Date/Publication 2025-10-22 11:00:02 UTC
Contents
add_forests s 3
add_topography 5
check_inputs e 7
create_fire_regime L. e e e e 9
create_management_SCenario e e 10
defaultPrescriptionsBySpecies 12
default_dispersal_control 12
default_volume_function 13
default_watershed_control 14
dispersal e e 15
example_ifn L 17
example_watershed 18
extract_variables e 19
fire_regime_instance e e e e e 21
fordyn_scenario 22
forest_parametrization 26
initialize_landscape 29
landscape_summary L. e e 31
optimization_rock 32
overland_routing L 34
parse_forestable 36
plotspwb_land 37
plot_summary L e e 38
shinyplot.sf L e e 39
shinyplot.spwb_land 40
simulation_Summary e e e e 41
soil_parametrization 42
spwb_land L e 44
spwb_land_day 51
spwb_spatial 54
spwb_spatial_day e 58
update_landscape L e e 60
Index 61

https://orcid.org/0000-0003-2808-6777
https://orcid.org/0000-0003-2626-6379

add_forests 3
add_forests Add forests
Description
Creates and adds forest data to an sf object by reading from tree and shrub data tables
Usage
add_forests(
X y
tree_table = NULL,
tree_mapping = NULL,
shrub_table = NULL,
shrub_mapping = NULL,
merge_trees = TRUE,
merge_shrubs = TRUE,
SpParams = NULL,
progress = FALSE
)
Arguments
X An object of class sf with a valid CRS definition, and a column called ’id’.
tree_table A data frame with tree records in rows and attributes in columns. Tree records

can correspond to individual trees or groups of trees with an associated density.

tree_mapping A named character vector to specify mappings of columns in tree_table into
attributes of treeData. Accepted names (and the corresponding specifications
for the columns in tree_table) are:

"id": Forest stand id.
"Species": Species code (should follow codes in SpParams).

"Species.name": Species name. In this case, the species code will be drawn
by matching names with species names in SpParams.

"N": Tree density (in ind./ha).

"DBH": Diameter at breast height (in cm).

"Height": Tree height (in cm).

"plot.size": Plot size (in m2) to which each record refers to. This is used to
calculate tree density (stems per hectare) when not supplied.

"Z50": Depth (in mm) corresponding to 50 percent of fine roots.

"795": Depth (in mm) corresponding to 95 percent of fine roots.

shrub_table A data frame with shrub records in rows and attributes in columns. Records can
correspond to individual shrubs (with crown dimensions and height) or groups
of shrubs with an associated cover estimate.

add_forests

shrub_mapping A named character vector to specify mappings of columns in shrub_table into
attributes of shrubData. Accepted names (and the corresponding specifications
for the columns in shrub_table) are:

"id": Forest stand id.
"Species": Species code (should follow codes in SpParams).

"Species.name": Species name. In this case, the species code will be drawn
by matching names with species names in SpParams.

"Cover": Shrub cover (in percent).

"D1": Shrub largest crown diameter (in cm).

"D2": Shrub crown diameter orthogonal to the largest one (in cm).
"Height": Shrub height (in cm).

"plot.size": Plot size (in m2) to which each record refers to. This is used to
calculate shrub cover when shrub data is given at the individual level.
"7250": Depth (in mm) corresponding to 50 percent of fine roots.

"Z95": Depth (in mm) corresponding to 95 percent of fine roots.

merge_trees A logical flag to simplify tree cohorts by merging tree records in DBH classes
(see forest_mergeTrees).

merge_shrubs A logical flag to simplify shrub cohorts by merging shrub records in height
classes (see forest_mergeShrubs).

SpParams A data frame with species parameters (see SpParamsMED) from which valid
species names are drawn.
progress A logical flag to include a progress bar while processing the data.
Details

The current implementation will replace existing forests of the indicated ’id’ values.

Value

A modified object of class sf with column ’forest’.

Author(s)

Miquel De Caceres Ainsa, CREAF

See Also

impute_forests(), forest_mapWoodyTables, forest_mergeTrees

Examples

Load tree data
data(poblet_trees)

Load species parameters

data(SpParamsMED)

add_topography 5

Define sf with three stands
cc <- rbind(c(1.0215, 41.3432),

c(1.0219, 41.3443),

c(1.0219, 41.3443))
d <- data.frame(lon = cc[,1], lat = cc[,2],

id = c("POBL_CTL"”, "POBL_THI_BEF”, "POBL_THI_AFT"))

x <- sf::st_as_sf(d, coords = c("lon”, "lat"), crs = 4326)
X

Define tree mapping
mapping <- c("id" = "Plot.Code"”, "Species.name"” = "Species”, "DBH" = "Diameter.cm")

Read tree data (warnings are raised)
y_1 <- add_forests(x, tree_table = poblet_trees, tree_mapping = mapping, SpParams = SpParamsMED)

Correct scientific name for downy oak and repeat to avoid losing tree records
poblet_trees$Species[poblet_trees$Species=="Quercus humilis”] <- "Quercus pubescens”
y_1 <- add_forests(x, tree_table = poblet_trees, tree_mapping = mapping, SpParams = SpParamsMED)

Display summary of first forest
summary (y_1$forest[[1]1], SpParamsMED)

Add sampled plot surface and repeat reading to correct tree density
poblet_trees$PlotSurface <- 706.86
mapping <- c(mapping, "plot.size" = "PlotSurface")

y_2 <- add_forests(x, tree_table = poblet_trees, tree_mapping = mapping, SpParams = SpParamsMED)
summary (y_2$forest[[1]1], SpParamsMED)

Check forests (height is missing!)
check_forests(y_2)

Estimate tree height using general allometric
poblet_trees$Height.cm <- 100 * 1.806*poblet_trees$Diameter.cm*@.518

#Modify mapping to include height and repeat
mapping <- c(mapping, "Height"” = "Height.cm")

y_3 <- add_forests(x, tree_table = poblet_trees, tree_mapping = mapping, SpParams = SpParamsMED)
summary (y_3$forest[[1]], SpParamsMED)

Final check
check_forests(y_3)

add_topography Add topography and land cover

Description

Initializes topography and land cover type for a set of target locations

6 add_topography

Usage

add_topography(x, dem, progress = TRUE)

add_land_cover(
X,
land_cover_map,
wildland = NULL,
agriculture = NULL,

rock = NULL,
artificial = NULL,
water = NULL,
progress = TRUE
)
Arguments
X An object of class sf
dem A digital elevation model (class SpatRaster) with meters as units
progress A logical flag to print console output

land_cover_map An object of class SpatRaster of land cover type. If missing, all locations are
considered *wildland’.

wildland, agriculture, rock, artificial, water
Strings indicating the mapping from the legend of land_cover_map.

Details
The user should manually define the mapping of land cover classes in 1and_cover_map to the land
cover types used in medfateland.

Value
Function add_topography () returns a modified object of class sf with columns:

* id: Numeric location identifiers (if not existing).
e elevation: Elevation above sea level (in m).

* slope: Slope (in degrees).

* aspect: Aspect (in degrees).

* land_cover_type: Land cover type.

Function add_land_cover () returns a modified object of class sf with new column:

* id: Numeric location identifiers (if not existing).

e land_cover_type: Land cover type.

See Also

check_topography (), check_land_cover()

check_inputs

Examples

See package vignettes 'Preparing inputs'

check_inputs

Check spatial inputs

Description

Functions to check and

Usage

check_topography (
X,
missing_action =
default_values =
verbose = TRUE

)

check_land_cover(
X,
missing_action =
default_values =
verbose = TRUE

)

check_forests(
X,
SpParams = NULL,
missing_action
default_forest =
progress = FALSE,
verbose = TRUE

)

check_soils(
X7

correct spatial inputs for simulations

"no_action”,
c(elevation = @, slope = NA, aspect = NA),

"no_action”,
"wildland”,

"no_action”,
NULL,

check_equal_layers = FALSE,

missing_action =
default_values =
progress = FALSE,
verbose = TRUE

"no_action”,
c(clay = 25, sand = 25, bd = 1.5, rfc = 25),

8 check_inputs

Arguments

X An object of class sf to be checked.

missing_action Action to perform for missing values, either "no_action" (for checks), "filter"
(filter missing data), "default" (impute default values)

default_values Vector of default values for locations with missing data.
verbose Logical flag to indicate extra console output.
SpParams A data frame with species parameters (see SpParamsMED).

default_forest Default forest object to fill locations where missing (e.g. default_forest =
medfate: :emptyforest()).

progress A logical flag to print information about progress.

check_equal_layers
Logical flag to test whether soils have the same number of layers.

Details

n o n

Function check_topography () checks that columns "elevation”, "slope” and "aspect” do not
contain missing values.

Function check_land_cover () checks that column "land_cover_type"” does not contain missing
values.

Function check_forests() checks first that forest objects are defined in "wildland" locations.
Then, it looks for missing data in tree or shrub attributes required for simulations. If SpParams
is provided, the function also checks whether species names are within the taxa represented in
SpParams. If default_forest is provided, the function will use it to fill locations with missing
forests objects.

Function check_soils() checks first that "wildland" and "agriculture" locations have a defined soil
object. Then it looks for missing data in required soil physical parameters.

Value

All functions return a modified sf object if missing_action is either "filter” or "default”.
Otherwise, they return an invisible tibble with logical columns indicating where missing informa-
tionis. In check_forests() the function will return a modified object if parameter default_forest
is provided.

Examples

data(example_ifn)

check_topography(example_ifn)
check_land_cover (example_ifn)
check_forests(example_ifn)
check_soils(example_ifn)

create_fire_regime 9

create_fire_regime Create fire regime

Description

Defines an object containing fire regime parameters for simulations of forest dynamics.

Usage

create_fire_regime(annual_burned_area, sd_burned_area = NULL, doy = NULL)

Arguments

annual_burned_area
A named vector of burned area in hectares for simulation years.

sd_burned_area A named vector of standard deviation (in log scale) of burned area. If specified,
annual target to burn will be determined using a log-normal distribution with
mean values given by annual_burned_area.

doy A named integer vector with the day of the year (i.e. between 1 and 366) when
fires will be simulated for each simulation year in annual_burned_area. If
NULL fires will be simulated on the driest day (i.e. when vapor pressure deficit
is largest).
Details
Names of annual_burned_area should be simulation years. If provided, sd_burned_area should
be a vector of the same size as annual_burned_area and have the same names.

Value

A list with the supplied parameters

Author(s)
Miquel De Caceres Ainsa, CREAF

See Also

fire_regime_instance, fordyn_scenario, fordyn_spatial

Examples

Fire regime with pre-defined burned area values
regl <- create_fire_regime(annual_burned_area = c("2002" = 1000, "2003" = 5000))

Fire regime with log-normal distribution for burned area
reg2 <- create_fire_regime(annual_burned_area = c("2002" = 1000, "2003" = 5000),
sd_burned_area = c("2002" = 0.9, "2003" = 0.8))

10 create_management_scenario

create_management_scenario
Create management scenario

Description

Defines a management scenario for simulations of forest dynamics

Usage

create_management_scenario(
units,
annual_demand_by_species = NULL,
extraction_rate_by_year = NULL,
default_management_arguments = NULL

)

Arguments

units Number of management units. Alternatively, a data frame with management
options (in columns) for a set of units (in rows). Options not specified witl be
taken from defaults.

annual_demand_by_species
A vector or matrix of annual wood demand (m3) by medfate species names (or
groups of species names). If empty, the scenario is *bottom-up’ (not based on
demand). If a vector is supplied, the same wood demand is applied for all sim-
ulated years. If a matrix is supplied, each row should correspond to a different
year.

extraction_rate_by_year
A vector of extraction rates (%) per year of the simulation, starting at the second
year. If specified, the annual demand by species will be applied for the first year
of the simulation, but it will be rescaled for the remaining years according to the
growth observed and the desired extraction rates.

default_management_arguments
A list of arguments to be passed to the managementFunction. These arguments
will be taken as defaults copied for all management units and can later be mod-
ified. If NULL, the result of calling function defaultManagementArguments
will be taken.

Details

Three kinds of management scenarios are allowed:

1. 'bottom-up' represents a scenario where forest stands belong to different management units,
each of them having possibly distinct management prescriptions. However, there is no demand
and the amount of extracted wood emerges from the interplay between forest dynamics and
management prescriptions.

create_management_scenario 11

2. 'input_demand' represents a scenario where a certain amount of wood extraction is targeted
for some species and each year. This requires deciding which stands will actually undergo
thinning operations to fulfill the demand (stands managed following prescriptions that indicate
final regeneration cuts are managed irrespective of demand).

3. 'input_rate' represents a scenario similar to the previous one but where total amount of
wood targeted depends on (i.e. is a proportion of) the growth observed in previous year.

The kind of management scenario depends on the arguments supplied by the user when calling
create_management_scenario (see examples). In all cases, management units need to be de-
fined. Each management unit represents a group of forest stands following the same management
prescriptions. Although the create_management_scenario function allows specifying the man-
agement arguments of each unit, the simulation of management scenarios also requires specifying,
for each forest stand, to which management unit it belongs (see fordyn_scenario).

Value

A list with the following structure:
* scenario_type: Either ’bottom-up’ (no demand is specified), ’input_demand’ (annual species
demand is specified), or “input_rate’ when extraction rates are also supplied.

* annual_demand_by_species: A vector of annual wood demand (m3) by species (or species
groups) (for scenario_type *bottom-up’ or “input_demand’).

* extraction_rate_by_year: A vector of extraction rate values per year.

* units: A data frame with as many rows as units and management arguments as columns.

Author(s)

Miquel De Ciceres Ainsa, CREAF
Aitor Améztegui, UdL

See Also

fordyn_scenario, defaultManagementFunction, defaultPrescriptionsBySpecies, create_fire_regime

Examples

A scenario with three management units and annual demand for two species
scen_1 <- create_management_scenario(3, c("Quercus ilex"” = 1000, "Pinus nigra"” = 2000))

A scenario like the former, but with total annual demand changing as a function of
prescribed extraction rates (second and third years)
scen_2 <- create_management_scenario(3,

c("Quercus ilex” = 1000, "Pinus nigra" = 2000),

c("2002" = 30, "2003" = 50))

A scenario with as many management units as rows in 'defaultPrescriptionsBySpecies'
and not based on demand

data("defaultPrescriptionsBySpecies”)

scen_3 <- create_management_scenario(defaultPrescriptionsBySpecies)

12 default_dispersal_control

A scenario with three management units and annual demand for one species group

and a third species

scen_4 <- create_management_scenario(3, c¢("Quercus ilex/Quercus pubescens” = 1000,
"Pinus nigra" = 2000))

defaultPrescriptionsBySpecies
Default prescriptions by species

Description

Default management prescriptions by species, defined according current practices in Catalonia (NE
Spain)

Details

A data frame with 27 species (or species groups) in rows and management parameters in columns
(defined in defaul tManagementArguments)

Source

Mario Beltran & Miriam Piqué. Forest Science and Technology Centre of Catalonia (CTFC)

See Also

create_management_scenario, defaultManagementArguments, fordyn_scenario

default_dispersal_control
Default control parameters for dispersal

Description

Defines default control parameters for dispersal process

Usage

default_dispersal_control()

Value
A list with the following items:

» distance_step [= 25]: Distance step in meters.
* maximum_dispersal_distance [=3000]: Maximum dispersal distance in meters.

* min_percent [=1]: A minimum percent of seed bank to retain entry in seedBank element of
forest.

* stochastic_resampling [= FALSE]: A flag to indicate that stochastic resampling of stands
is performed.

default_volume_function 13

Author(s)

Miquel De Céceres Ainsa, CREAF

See Also

spwb_land, fordyn_scenario dispersal

Examples

default_dispersal_control()

default_volume_function
Default volume function

Description

Example function for estimating wood volume (in m3/ha) from a tree table or forest object.

Usage

default_volume_function(x, SpParams = NULL)

Arguments
X A data frame with columns "’DBH’, "Height’ and "N’ or a forest object
SpParams A data frame with species parameters (not used in the default function but will
be called)
Details

Users should define their own functions taking into account that:

* Input should be named ’x’ and consist of a tree table with tree records as rows and columns
’DBH’ (cm), *Height’ (cm), and N’ (ind./ha).

* Output should be a numeric vector of length equal to the number of tree records in "x’

Value

A function amenable for wood volume estimation.

14

default_watershed_control

default_watershed_control

Default control parameters for watershed processes

Description

Defines default control parameters for watershed processes

Usage

default_watershed_control (watershed_model = "tetis"”)

Arguments

watershed_model

Value

Hydrological model for watershed processes. Only "tetis" or "serghei" are ac-
cepted.

A list with the following items:

* watershed_model: A string with the watershed model.

* weather_aggregation_factor [=1]: An integer specifying the spatial aggregation for in-
terpolated weather.

* tetis_parameters: A list of TETIS parameters with the following elements:

R_localflow [=1.0]: Correction factor for soil hydraulic saturated conductivity (local
vertical flows).

interflow [= TRUE]: A boolean flag to include interflow.

R_interflow [=50@.0]: Correction factor for soil hydraulic saturated conductivity (sub-
surface flow between grid cells).

n_interflow [= 1.0]: Exponent for the determination of interflow.
baseflow [= TRUE]: A boolean flag to include baseflow.

R_baseflow [=5.0]: Correction factor for bedrock hydraulic conductivity (groundwa-
terflow between grid cells).

n_baseflow [=1.0]: Exponent for the determination of baseflow.

free_drainage_outlets [= TRUE]: A boolean flag to prevent water table effects into
local soil water balance of outlet/channel cells (included for numerical stability).

num_daily_substeps [= 1]: Number of daily sub-steps for interflow and baseflow cal-
culations.

subwatersheds [= FALSE]: A boolean flag to define watershed subunits.

max_overlap [= @.2]: Maximum proportion of overlapping cells for watershed subunits
to be considered independent. Lower values will normally produce larger subunits.

rock_max_infiltration [= 10]: Maximum infiltration rate (mm-day-1) for rock cells.

dispersal

15

— deep_aquifer_loss [=@]: Daily loss rate from watershed aquifer towards a deeper

aquifer not connected to outlets (mm-day-1).
— n_manning [= @.035]: Manning’s roughness coefficient.

* serghei_parameters: A list of SERGHEI parameters with the following elements:

— input_dir [=""1]: Path to SERGHEI input files.
— output_dir [=""]: Path to SERGHEI output files.

— force_equal_layer_widths [= FALSE]: A boolean flag to force equal layer widths (taken

from the first soil element) in all soils.

Author(s)

Miquel De Céaceres Ainsa, CREAF

See Also

spwb_land

Examples

default_watershed_control()

dispersal Seed production, dispersal and seed bank dynamics

Description

Simulates seed bank mortality, seed production and dispersal among stands

Usage

dispersal(
sf,
SpParams,
local_control = medfate::defaultControl(),
distance_step = 25,
maximum_dispersal_distance = 3000,
min_percent = 1,
stochastic_resampling = FALSE,
progress = TRUE

16 dispersal

Arguments
sf An object of class sf using a UTM projection (to measure distances in m) and
with the following columns:
* geometry: Spatial geometry.
* forest: Objects of class forest.
SpParams A data frame with species parameters (see SpParamsMED).

local_control A list of control parameters (see defaultControl)

distance_step Distance step in meters.

maximum_dispersal_distance
Maximum dispersal distance in meters.

min_percent A minimum percent of seed bank to retain entry in seedBank element of forest.

stochastic_resampling
A flag to indicate that stochastic resampling of stands is performed.

progress Boolean flag to display progress information.

Details

The input ’sf” object has to be in a Universal Transverse Mercator (UTM) coordinate system (or
any other projection using meters as length unit) for appropriate function behavior.

Dispersal kernel follows Clark et al. (1999) and potential seed donors (neighbors) are defined up to
a given grid distance order. A maximum value of 100% seed bank refill is attained for species with
seed production in all seed donors and the local cell.

Value

A list with forest objects (for wildland cover type) containing a modified seed bank

Author(s)

Miquel De Céaceres Ainsa, CREAF.
Roberto Molowny-Horas, CREAF.

References
Clark et al. (1999). Seed dispersal near and far: Patterns across temperate and tropical forests.
Ecology 80(5):1475-1494

See Also

fordyn_land

example_ifn 17

Examples

data(example_watershed)
data(SpParamsMED)

Transform to UTM31
example_watershed_utm31 <- sf::st_transform(example_watershed, crs = 32631)

Estimate seed production and dispersal over the watershed
seedbank_list <- dispersal(example_watershed_utm31, SpParamsMED)

seedbank_list[[1]]

Transform to UTM31
example_ifn_utm31 <- sf::st_transform(example_ifn, crs = 32631)

Estimate seed production and dispersal over the set of forest inventory plots
seedbank_list <- dispersal(example_ifn_utm31, SpParamsMED)

seedbank_list[[1]]

example_ifn Example of distributed forest inventory stands

Description

An example of an coordinates, topography, forest and soil data corresponding to 30 forest inventory
plots.

Format

The data format is that of an object sf

Source

* Soil data from SoilGrids global database (Hengl et al. 2017).
* Soil depth and depth to bedrock from Shangguan et al. (2017).

* Forest structure and composition from the Third Spanish Forest Inventory (IFN3).

See Also

spwb_spatial

18 example_watershed

example_watershed Example of watershed

Description

An example of an object of sf with data for a small catchment of 66 ha (0.66 km2) in Catalonia.
Object example_watershed_burnin is the result of three years of burn-in period.

Format

The data format is that of an object sf

Source

* Watershed limits and channel network from the spanish Ministerio de Transicién Ecolégica y
el Reto Demogrifico.

* Elevation data at 30 m resolution from catalan Institut Cartografic i Geologic de Catalunya.
* Soil data from SoilGrids global database (Hengl et al. 2017).

* Soil depth and depth to bedrock from Shangguan et al. (2017).

* Bedrock hydraulic properties from Huscroft et al. (2018).

* Land cover data from Mapa Forestal de Espafia 1:25000.

* Forest structure and composition from Mapa Forestal de Espafia 1:25000 and the Third Span-
ish Forest Inventory (IFN3).

References

Hengl, T., Mendes De Jesus, J., Heuvelink, G.B.M., Gonzalez, M.R., Kilibarda, M., Blagoti, A.,
Shangguan, W., Wright, M.N., Geng, X., Bauer-Marschallinger, B., Guevara, M.A., Vargas, R.,
Macmillan, R.A., Batjes, N.H., Leenaars, J.G.B., Ribeiro, E., Wheeler, 1., Mantel, S., Kempen, B.,
2017. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS One
12, e0169748. doi:10.1371/journal.pone.0169748

Huscroft, J., Gleeson, T., Hartmann, J., Borker, J., 2018. Compiling and Mapping Global Per-
meability of the Unconsolidated and Consolidated Earth: GLobal HYdrogeology MaPS 2.0 (GL-
HYMPS 2.0). Geophys. Res. Lett. 45, 1897-1904. doi:10.1002/2017GL075860

Shangguan, W., Hengl, T., Mendes de Jesus, J., Yuan, H., Dai, Y., 2017. Mapping the global depth to
bedrock for land surface modeling. J. Adv. Model. Earth Syst. 9, 65-88. doi:10.1002/2016MS000686

See Also

spwb_land

extract_variables 19

extract_variables Landscape variables

Description

Extract or estimate variables from landscape objects (class ’sf”).

Usage
extract_variables(x, vars = "land_cover_type"”, SpParams = NULL, ...)
plot_variable(x, variable = "land_cover_type", SpParams = NULL, r = NULL, ...)
Arguments
X An object of class sf with the appropriate columns.
vars A string vector with the name of the variables to extract (see details).
SpParams An optional data frame with species parameters (see SpParamsMED), required
for some forest stand variables.
Additional arguments (not used).
variable A string with the name of the variables to draw (see details).
r An optional object of class SpatRaster, defining the raster topology. If sup-
plied, values are shown as raster pixels. Otherwise, points are drawn.
Details

The following string values are available for vars.

Topography:

* "elevation”: Elevation in m.
* "slope”: Slope in degrees.
» "aspect”: Slope in degrees.

* "land_cover_type": Land cover type.
Snowpack and soil:

* "snowpack”: Snowpack water equivalent (mm). Requires snowpack’ to be defined in x.
e "soil_vol_extract”: Total water extractable volume (mm).

e "soil_vol_sat": Total water volume at saturation (mm).

* "soil_vol_fc": Total water volume at field capacity (mm).

* "soil_vol_wp": Total water volume at wilting point (mm).

e "soil_vol_curr": Current total water volume (mm).

e "soil_rwc_curr”: Current soil relative water content (%).

20 extract_variables

e "soil_rew_curr": Current soil relative extractable water (%).
e "soil_theta_curr"”: Current soil moisture content (% vol.)

e "soil_psi_curr”: Current soil water potential (MPa).
Hydrogeology:

* "depth_to_bedrock"”: Depth to bedrock (m).

"bedrock_porosity”: Bedrock porosity.
* "bedrock_conductivity”: Bedrock conductivity (m/day).

* "channel”: River channel network. Requires ’channel’ to be defined in x.
Agquifer (requires "aquifer’ to be defined in x):

e "aquifer_elevation”: Aquifer elevation over bedrock (m).
* "depth_to_aquifer"”: Depth to aquifer (m).

e "aquifer": Aquifer volume (mm).
Forest stand.:

e "basal_area”: Basal area (m2/ha).

* "tree_density": Tree density (ind/ha).

* "mean_tree_height": Mean tree height (cm).

* "dominant_tree_height": Dominant tree height (cm).

e "dominant_tree_diameter”: Dominant tree diameter (cm).

e "quadratic_mean_tree_diameter”: Quadratic mean tree diameter (cm).

* "hart_becking_index": Hart-Becking index.

* "leaf_area_index": Leaf area index (m2/m2). Requires SpParams to be supplied.
e "foliar_biomass": Foliar biomass (kg/m2). Requires SpParams to be supplied.

* "fuel_loading": Fine live fuel loading (kg/m?2). Requires SpParams to be supplied.

e "shrub_volume": Shrub volume (m3/m2). Requires SpParams to be supplied.

Value
Function extract_variables() returns an object of class sf with the desired variables. Function
plot_variables() returns a ggplot object.

Author(s)

Miquel De Céceres Ainsa, CREAF.

See Also

forest, soil, summary. forest, shinyplot.sf

fire_regime_instance 21

Examples

Load data and species parameters from medfate
data(example_ifn)
data(SpParamsMED)

Calculate basal area and leaf area index

for all forest stands

extract_variables(example_ifn, vars = c("basal_area”, "leaf_area_index"),
SpParams = SpParamsMED)

fire_regime_instance Fire regime instance

Description

Applies a fire regime object over a set of landscape units to determine a fire realization

Usage

fire_regime_instance(sf, fire_regime)

Arguments
sf An object of class sf with the following columns:
* geometry: Spatial geometry.
e id: Stand identifiers.
* represented_area_ha: Area represented by each stand (in hectares).
e ignition_weights: Relative weights to determine stands to be burned (op-
tional).
fire_regime A list of parameters defining the fire regime (see create_fire_regime).
Details

The function randomly determines the landscape units that will burn every year, depending on the
specifications of the fire regime object. Users can define their own fire regime instances from other

models (e.g. a fire landscape model) and then use those directly in functions fordyn_spatial or
fordyn_scenario.

Value

An integer matrix specifying the day of the year of burning of each landscape unit for every year in
the fire regime definition. Values are interpreted as follows:

* NA - No wildfire this year
* 0 - Wildfire will occur the driest day (i.e. the one with largest vapor pressure deficit).

* 1..366 - Day of the year when wildfire will occur

22 fordyn_scenario

Author(s)
Miquel De Céceres Ainsa, CREAF

See Also

create_fire_regime, fordyn_spatial, fordyn_scenario

Examples

Load example data
data("example_ifn")

Assume that each stand represents 1km2 = 100 ha
example_ifn$represented_area_ha <- 100

Define fire regime characteristics
regl <- create_fire_regime(c("2002" = 200, "2003" = 500))

Create a fire regime instance
ml <- fire_regime_instance(example_ifn, regl)

Check number of plots burned
colSums(!is.na(m1))

Define fire regime characteristics with stochastic area burned
reg2 <- create_fire_regime(annual_burned_area = c("2002" = 200, "2003" = 500),
sd_burned_area = c("2002" = 0.4, "2003" = 0.5))

Create a fire regime instance
m2 <- fire_regime_instance(example_ifn, reg2)

Check number of plots burned
colSums(!is.na(m2))

fordyn_scenario Scenario of forest dynamics

Description

Evaluates forest dynamics over a landscape including climate and management scenarios

Usage

fordyn_scenario(
sf,
SpParams,
meteo = NULL,
management_scenario,

fordyn_scenario 23

volume_function = NULL,
volume_arguments = NULL,
local_control = defaultControl(),
dispersal_control = default_dispersal_control(),
dates = NULL,

CO2ByYear = numeric(0),
fire_regime = NULL,
summary_function = NULL,
summary_arguments = NULL,
parallelize = FALSE,

num_cores = detectCores() - 1,
chunk_size = NULL,

progress = TRUE,

verbose = FALSE

Arguments

sf An object of class sf with the following columns:

* geometry: Spatial geometry.

* id: Stand identifiers.

¢ elevation: Elevation above sea level (in m).

* slope: Slope (in degrees).

* aspect: Aspect (in degrees).

* forest: Objects of class forest.

* soil: Objects of class soil.

* state: Objects of class spwbInput or growthInput (optional).

* meteo: Data frames with weather data (required if parameter meteo = NULL).

* management_unit: Management unit corresponding to each stand.

* represented_area_ha: Area represented by each stand in hectares.

e ignition_weights: Relative weights to determine stands to be burned.
Optional, relevant when fire_regime is supplied only).

* local_control: A list of control parameters (optional). Used to override
function parameter local_control for specific stands (values can be NULL
for the remaining ones).

Alternatively, the user may supply the result of a previous call to fordyn_scenario,
where to continue simulations.

SpParams A data frame with species parameters (see SpParamsMED).

meteo Meteorology data (see fordyn_spatial).
management_scenario
A list defining the management scenario (see create_management_scenario)
volume_function
A function accepting a forest object or a tree data table, and a species parameter
table, as input and returning the wood volume (m3/ha) corresponding to each
tree cohort. The function may accept additional arguments. If NULL, the default
volume function is used (not recommended!).

24

fordyn_scenario

volume_arguments
List with additional arguments for the volume function.

local_control A list of local model control parameters (see defaultControl).

dispersal_control
A list of dispersal control parameters (see default_dispersal_control). If
NULL, then dispersal is not simulated.

dates A Date object with the days of the period to be simulated. If NULL, then the
whole period of meteo is used.

CO2ByYear A named numeric vector with years as names and atmospheric CO2 concentra-
tion (in ppm) as values. Used to specify annual changes in CO2 concentration
along the simulation (as an alternative to specifying daily values in meteo).

fire_regime A list of parameters defining the fire regime (see create_fire_regime) or a
matrix representing a fire regime instance (see fire_regime_instance). If
NULL, wildfires are not simulated. Details are given in fordyn_spatial.
summary_function
An appropriate function to calculate summaries from an object of class *fordyn’
(e.g., summary. fordyn).
summary_arguments
List with additional arguments for the summary function.

parallelize Boolean flag to try parallelization (will use all clusters minus one).
num_cores Integer with the number of cores to be used for parallel computation.
chunk_size Integer indicating the size of chunks to be sent to different processes (by default,

the number of spatial elements divided by the number of cores).

progress Boolean flag to display progress information for simulations.
verbose Boolean flag to display additional console output.
Details

This function allows coordinating the dynamics of simulated forest stands via a management sce-
nario defined at the landscape/regional level (see different kinds of scenarios and how to specify
them in create_management_scenario).

The input ’sf’ object has to be in a Universal Transverse Mercator (UTM) coordinate system (or
any other projection using meters as length unit) for appropriate behavior of dispersal sub-model.

For each year to be simulated, the function determines which forest stands will be managed, pos-
sibly depending on the demand, and then calls function fordyn_spatial for one year (normally
including parallelization). If the simulation of some stands results in an error, the function will try
to restore the previous state of the forest stand for the next year steps. Finally, the function evalu-
ates how much of the specified demand has been fulfilled and stores the results, including demand
offsets to be applied the year after.

Management is implemented using the defaultManagementFunction in medfate, meaning that
management parameters need to follow the structure of defaultManagementArguments

Details about the inclusion of fire regimes in simulations are explained in fordyn_spatial.

fordyn_scenario 25

Value

An list of class *fordyn_scenario’ with the following elements:

* result_sf: An object of class ’sf’ using a UTM projection and containing four elements:

geometry: Spatial geometry.

id: Stand id, taken from the input.

tree_table: A list of data frames for each simulated stand, containing the living trees at
each time step.

shrub_table: A list of data frames for each simulated stand, containing the living shrub
at each time step.

dead_tree_table: A list of data frames for each simulated stand, containing the dead
trees at each time step.

dead_shrub_table: A list of data frames for each simulated stand, containing the dead
shrub at each time step.

cut_tree_table: A list of data frames for each simulated stand, containing the cut trees
at each time step.

cut_shrub_table: A list of data frames for each simulated stand, containing the cut
shrub at each time step.

summary: A list of model output summaries for each simulated stand (if summary_function
was not NULL).

* result_volumes: A data frame with initial, growth, extracted and final volumes (m3) by year.
In demand-based scenarios volumes corresponding to species with demand are also included.

* result_volumes_spp: A data frame with growth and extracted volumes (m3) by species and
year.

* result_volumes_demand: In demand-based scenarios target volumes are also included, a
data frame with growth, target and extracted volumes (m3) by demand entity and year. .

* next_sf: Anobject of class ’sf’ to continue simulations in subsequent calls to fordyn_scenario.

* next_demand: In demand-based scenarios, a list with information (i.e. demand offset by
species and last volume growth) to modify demand in subsequent calls to fordyn_scenario.

Author(s)

Miquel De Céaceres Ainsa, CREAF
Aitor Améztegui, UdL

See Also

fordyn_spatial, create_management_scenario, dispersal

Examples

Load example landscape data
data("example_ifn")

Load example meteo data frame from package meteoland
data("examplemeteo”)

26

forest_parametrization

Load default medfate parameters
data("SpParamsMED")

Creates scenario with one management unit and annual demand for P. nigra
scen <- create_management_scenario(1, c("Pinus nigra/Pinus sylvestris” = 2300))

Assign management unit to all stands
example_ifn$management_unit <- 1

Assume that each stand represents 1km2 = 100 ha
example_ifn$represented_area_ha <- 100

Transform to UTM31 (necessary for dispersal)
example_ifn_utm31 <- sf::st_transform(example_ifn, crs = 32631)

Subset three plots to speed-up calculations
example_subset <- example_ifn_utm31[31:33,]

Launch simulation scenario

fs_12 <- fordyn_scenario(example_subset, SpParamsMED, meteo = examplemeteo,
volume_function = NULL, management_scenario = scen,
parallelize = FALSE)

forest_parametrization
Landscape forest parametrization

Description

Utility functions to define forest inputs in a landscape:
* impute_forests() performs imputation of forest objects from a forest inventory using a
forest map to match forest types and topography as covariates.

* modify_forest_structure() uses forest structure rasters supplied by the user to correct
forest structure metrics.

* check_forests() checks that forests are defined and do not contain missing values in key
tree/shrub attributes.

Usage

impute_forests(
X,
sf_fi,
dem,
forest_map,
var_class = NA,

forest_parametrization 27

max_distance_km = 100,
replace_existing = FALSE,
missing_class_imputation = FALSE,
missing_class_forest = NULL,
merge_trees = TRUE,

merge_shrubs = TRUE,

progress = TRUE

modify_forest_structure(
X,
structure_map,
variable,
map_var = NA,
ratio_limits = NULL,
minDBH = 7.5,
biomass_function = NULL,
biomass_arguments = NULL,
SpParams = NULL,
progress = TRUE

)
Arguments

X An object of class sf. If it contains a column named ’land_cover_type’, imputa-
tion will be performed for locations whose land cover is "wildland". Otherwise,
forest imputation is done for all locations. For structural corrections or when
checking, x should already contain a column named ’forest’ containing forest
objects.

sf_fi An object of class sf with forest inventory data column ’forest’.

dem A digital elevation model (class SpatRaster) with meters as units

forest_map An object of class SpatRaster or SpatVector with the forest class map

var_class Variable name or index containing forest classes in forest_map. If missing the

first column is taken.
max_distance_km
Maximum distance, in km, for forest inventory plot imputation.
replace_existing
A logical flag to force the replacement of existing forest objects, when present.
missing_class_imputation
A logical flag to force imputation in locations where forest class is not defined.
If missing_class_imputation = TRUE, imputation in those locations will be
based on geographic and topographic criteria only.
missing_class_forest
A forest object to be used for locations with missing class.

merge_trees A logical flag to simplify tree cohorts by merging tree records in DBH classes
(see forest_mergeTrees).

28 forest_parametrization

merge_shrubs A logical flag to simplify shrub cohorts by merging shrub records in height
classes (see forest_mergeShrubs).

progress A logical flag to print console output.

structure_map An object of class SpatRaster or SpatVector with a forest structural variable

map
variable Structural variable to correct. See options in details.
map_var Variable name or index containing structural variable in ’structure_map’. If

missing the first column is taken.
ratio_limits Limits for ratio of variable in corrections, used to avoid outliers.

minDBH Minimum diameter for stand metric calculation. If minDBH > @ then those stands

with smaller trees will not be corrected because of the missing stand metric. A

special case occurs for correction following basal area (see details).
biomass_function

A function accepting a forest object or a tree data table (as parameter name

x) and returning the aboveground tree biomass (Mg/ha) of the forest stand. The

function may accept additional arguments. Needed if variable = "aboveground_tree_biomass”.
biomass_arguments

List with additional arguments to be supplied to the biomass function.

SpParams A data frame with species parameters (see SpParamsMED). This will be passed
onto biomass_function, but can be left as NULL if not actually needed.

Details

Function impute_forests() performs imputation of forest inventory plots on target locations pro-
vided that they correspond to the same forest class, defined in the input forest map, and are geo-
graphically closer than a distance threshold (max_distance_km). Among the multiple stands that
can have fulfill these two requirements, the function chooses the one that has the most similar ele-
vation and position in the N-to-S slopes (i.e. the product of the cosine of aspect and slope). Both
topographic features are standardized to zero mean and unit standard deviation (using the supplied
digital elevation model to calculate those metrics), to make their weight on the imputation equal.
This imputation method will be more or less successful depending on the resolution of forest classes
and the number of forest inventory plots available for each of them. Additionally, tree and shrub
cohorts can be simplified after imputation (merge_trees and merge_shrubs), to reduce the number
of records (and hence, speed-up simulations).

Function modify_forest_structure() can be used to modify specific structure variables of the
imputed forests building on rasters supplied by the user (typically from aerial or satellite LIDAR
products). For any given metric, the function will calculate the ratio of the structure metric between
the target forest object (see stand_basalArea) and the input map in the target location. Options
for structural variables are the following:

* mean_tree_height: Should contain values in cm. Corrects tree heights and diameters (as-
suming a constant diameter-height relationship).

e dominant_tree_height: Should contain values in cm. Corrects tree heights and diameters
(assuming a constant diameter-height relationship).

* tree_density: Should contain values in individuals per hectare. Corrects tree density.

initialize_landscape 29

* basal_area: Should contain values in squared meters per hectare (m2/ha). Corrects tree
density.

* aboveground_tree_biomass: Should contain values in tons per hectare (Mg/ha) of above-
ground tree dry weight. Corrects tree density.

Locations where the metric value in the map is missing are left unmodified. The same happens if
metric value is zero, to avoid division by zero. A special case occurs for correction of basal area
or aboveground tree biomass. In those cases, if there are no trees larger than minDBH but structural
map indicates positive values of basal area or aboveground tree biomass, DBH values will be set to
minDBH, and correction will be performed.

Value

Functions impute_forests() and modify_forest_structure() return a modified object of class
sf. Function check_forests() returns an invisible data frame with columns indicating missing
forest data and missing values in tree or shrub parameters.

Author(s)

Miquel De Ciceres Ainsa, CREAF
Rodrigo Balaguer-Romano, CREAF

See Also

add_topography (), add_forests(), add_soilgrids(), forest_mergeTrees

Examples

See package vignettes 'Preparing inputs’

initialize_landscape [nitialization of model inputs for spatially-distributed forest stands

Description

Initializes state for local models spwb or growth.

Usage

initialize_landscape(
X7
SpParams,
local_control,
model = "spwb"”,
merge_trees = FALSE,
merge_shrubs = FALSE,
reduce_to_dominant = FALSE,
replace = FALSE,
progress = TRUE

30 initialize_landscape

Arguments
X An object of class sf with the following columns:

* geometry: Spatial geometry.

» forest: Objects of class forest.

* soil: Objects of class soil or data frames of physical properties.

* land_cover_type: Land cover type of each grid cell (values should be
’wildland’ or ’agriculture’).

* crop_factor: Crop evapo-transpiration factor. Only required for *agricul-
ture’ land cover type.

* local_control: A list of control parameters (optional). Used to override
function parameter local_control for specific cells (values can be NULL
for the remaining ones).

SpParams A data frame with species parameters (see SpParamsMED).

local_control A list of control parameters (see defaultControl).
model A string to indicate the model, either "spwb” or "growth”.

merge_trees A logical flag to simplify tree cohorts by merging tree records in DBH classes
(see forest_mergeTrees).

merge_shrubs A logical flag to simplify shrub cohorts by merging shrub records in height
classes (see forest_mergeShrubs).

reduce_to_dominant
Boolean flag to simplify forest to the tree and shrub cohorts with largest leaf
area index. The leaf area index of the whole tree (respectively, shrub) layer will
be attributed to the selected cohort. See function forest_reduceToDominant.

replace Boolean flag to replace existing initialized states
progress Boolean flag to display progress information.
Details

Initialization is normally dealt automatically when calling simulation functions spwb_spatial,
growth_spatial, spwb_spatial_day or growth_spatial_day. However, function initialize_landscape
allows separating initialization from model simulations.

Options merge_shrubs, merge_trees and reduce_to_dominant have been implemented to allow
simplification of forests during watershed simulations where focus is on runoff (e.g. calibration of
watershed parameters or burnin periods). Elements identified as result_cell will not be simpli-
fied.

Value
Replaces or adds column ’state’ whose elements are spwbInput or growthInput objects and returns
the modified object of class *sf’.

Author(s)
Miquel De Céaceres Ainsa, CREAF

landscape_summary 31

See Also

spwb_spatial, spwb_spatial_day, update_landscape

Examples

Load example landscape data
data("example_ifn")

Load example meteo data frame from package meteoland
data("examplemeteo”)

Load default medfate parameters
data("”SpParamsMED")

Define local control parameters using function in medfate
local_control <- defaultControl()

If necessary, change defaults

Initialize state for 'spwb' simulations

example_ifn_init <- initialize_landscape(example_ifn, SpParamsMED,
local_control = local_control,
model = "spwb")

landscape_summary Forest and soil summaries over space

Description

Functions to calculates a summary function for the forest or soil of all spatial elements in an object
of class sf containing landscape information.

Usage

landscape_summary (
object,
name,
summary_function,
unlist = FALSE,
progress = FALSE

Arguments

object An object of class sf.

name A string of the element to summarize: "forest", "soil" or "state".

32 optimization_rock

summary_function
A function that accepts objects of class forest, soil or model input objects,
respectively.

Additional arguments to the summary function.

unlist Logical flag to try converting the summaries into different columns
progress Boolean flag to display progress information
Value

An object of class sf containing the calculated statistics. If unlist = FALSE column ’summary’ is a
list with summaries for each element. If unlist = TRUE different columns are returned instead, one
per variable given in the summary function.

Author(s)
Miquel De Ciceres Ainsa, CREAF.

See Also

forest, soil, summary.forest

Examples

Load plot data and species parameters from medfate
data(example_ifn)

Load default medfate parameters
data("SpParamsMED")

Apply forest summary function
landscape_summary(example_ifn, "forest”, summary.forest, SpParamsMED)

optimization_rock Rock optimization

Description

Optimization of rock fragment content

Usage

optimization_rock(
sf,
SpParams,
meteo = NULL,
local_control = defaultControl(),
dates = NULL,

optimization_rock 33

parallelize = FALSE,

num_cores = detectCores() - 1,
chunk_size = NULL,

PLCquantile = 0.9,

gPLC_target = 12,

gPLC_tol = 0.5,

sew_min = 30,

max_rocks = 99,

progress = TRUE

)
Arguments
sf An object of class sf (see spwb_spatial).
SpParams A data frame with species parameters (see SpParamsMED).
meteo Input meteorological data (see section details in spwb_spatial).

local_control A list of control parameters (see defaultControl).

dates A Date object describing the days of the period to be modeled.

parallelize Boolean flag to try parallelization (will use all clusters minus one).

num_cores Integer with the number of cores to be used for parallel computation.
chunk_size Integer indicating the size of chuncks to be sent to different processes (by de-

fault, the number of spatial elements divided by the number of cores).
PLCquantile Maximum PLC quantile to be calculated across years.

gPLC_target Target PLC to be achieved (by default 12%).

gPLC_tol Tolerance of PLC difference to target accepted when finding solution.
sew_min Minimum soil extractable water (mm) for rock exploration.
max_rocks Maximum content in coarse fragments allowed for any soil layer.
progress Boolean flag to display progress information of simulations.

Value

An object of class sf with a modified soil column and an additional column optimization_message
with text information about the optimization.

Author(s)

Miquel De Caceres Ainsa, CREAF

See Also

utils_rockOptimization

34 overland_routing

Examples

data("example_ifn")

data("examplemeteo”)

data("SpParamsMED")

example_subset <- example_ifn[31:32, 1]
optimization_rock(example_subset, SpParamsMED, examplemeteo)

overland_routing Overland routing for TETIS sub-model

Description

Determines overland routing given a raster definition and a set of target locations for watershed
simulations. If channel is supplied, it also determines channel routing.

Usage

overland_routing(r, sf, subwatersheds = FALSE, max_overlap = 0.2)

cell_neighbors(r, sf)

Arguments
r An object of class SpatRaster, defining the raster topology.
sf An object of class sf with the following columns:

* geometry: Spatial point geometry corresponding to cell centers.

¢ elevation: Elevation above sea level (in m).

* channel: An optional logical (or binary) vector indicating cells corre-
sponding to river channel.

subwatersheds A boolean flag to define watershed subunits.

max_overlap Maximum proportion of overlapping cells for watershed subunits to be consid-
ered independent. Lower values will normally produce larger subunits.

Details

If channel is not supplied, then cells where all neighbors are at higher elevation are considered
outlet cells. If channel is supplied, then outlets are channel cells in the domain limits and not
having a neighbor channel at lower elevation. In this case, model simulations will include channel
routing towards outlet cells.

If defining watershed subunits is requested (i.e. if subwatersheds = TRUE), subunits are defined first
by determining the area draining to each channel or outlet cell. Then, those areas are progressively
merged if one is nested into the other or when the proportion of overlapping cells is lower than a
pre-specified threshold (i.e. larger than max_overlap). A given cell cannot belong to more than
one subunit. Therefore, the overlap between the final subwatersheds is eliminated by deciding the
main subwatershed for each cell. The neighbors and proportion of overland flow to neighbors are
modified for cells in located in subunit boundaries.

overland_routing 35

Value

An object of class sf describing overland routing parameters and outlet cells:

geometry: Spatial point geometry corresponding to cell centers.
elevation: Elevation above sea level (in m).

slope: Slope (in degrees).

waterRank: Ranked elevation in decreasing order.

waterOrder: A vector with the cell’s processing order for overland routing (based on ele-
vation). First value corresponds to the row index of the first processed cell, second value
corresponds to the row index of the second processed cell and so forth.

queenNeigh: A list where, for each cell, a vector gives the identity of neighbours (up to eight).

waterQ: A list where, for each cell, a vector gives the proportion of overland flow to each
neighbour.

channel: A logical vector indicating channel cells.
outlet: A logical vector indicating outlet cells.
target_outlet: Index of the outlet cell to which the channel leads (NA for non-channel cells).

distance_to_outlet: Distance to the target outlet in number of cells (NA for non-channel
cells).

outlet_backlog: For each outlet, the backlog volume of water (m3) in its channel network
(NA for non-outlet cells).

subwatershed: Integer vector indicating watershed subunits (NA if subwatersheds = FALSE).

Examples

Load example watershed data
data("example_watershed")

#
b
b

#
#
#
r

Get bounding box to determine limits
<- sf::st_bbox(example_watershed)

Define a raster topology, using terra package,

with the same CRS as the watershed. In this example cells have 100 m side.
Coordinates in the 'sf' object are assumed to be cell centers
<-terra::rast(xmin = 401380, ymin = 4671820, xmax = 402880, ymax = 4672620,

nrow = 8, ncol = 15, crs = "epsg:32631")

Generate overland routing
or <- overland_routing(r, example_watershed)

Plot elevation
plot(or["elevation”])

Rank (decreasing elevation) for processing
plot(or["waterRank"])

Plot outlet cells

36

plot(or["outlet”])

Define 4-cell channel
example_watershed$channel <- FALSE
example_watershed$channell[c(6, 11, 12, 20)] <- TRUE

Generate overland and channel routing
or_channel <- overland_routing(r, example_watershed)

Plot outlet and distance to outlet
plot(or_channel["outlet"])
plot(or_channel["distance_to_outlet”])

parse_forestable

parse_forestable

Parse forestable

Description

Usage

parse_forestable(

X,

keepSpeciesCodes = TRUE,
filterMissingSpecies = TRUE,
filterDeadTrees = TRUE,
filterCutTrees = TRUE,
keepUnfilteredCopy = FALSE,
minimumTreeDBH = 0.1,
progress = FALSE

Arguments

A data frame or sf object issued from package forestables.
keepSpeciesCodes
Keeps forest inventory species codes.
filterMissingSpecies
If TRUE, filters out records where species is missing.
filterDeadTrees

Transforms a data frame or sf object issued from package forestables into an sf object for simula-
tions with medfateland.

If TRUE, filters out dead trees (Spanish forest inventory IFN3 or IFN4).

filterCutTrees If TRUE, filters out cut trees (Spanish forest inventory IFN3 or IFN4).
keepUnfilteredCopy

If TRUE, an additional column is given where dead/cut trees have not been

filtered.

plot.spwb_land 37

minimumTreeDBH Minimum DBH for keeping a tree record.

progress A logical flag to include a progress bar while processing the data.

Details
This function retrieves the following information from the forestables object:

* Id unique code, survey year, non-unique plot code and country.

* Plot location. Output geometry is always points in WGS 84. Note that exact coordinates are
not normally given in forest inventory data.

* Elevation, slope and aspect, whenever available

* Tree and understory data. The function will create a column forest with this information. If
both tree and understory data are missing for a given row, the corresponding forest will be
empty.

Value

An sf object including a ’forest’ column. If keepUnfilteredCopy=TRUE an additional column
*forest_unfiltered’ is also given.

plot.spwb_land Displays watershed-level simulation results

Description
Plots time series of the watershed-level balance results of simulations with spwb_land, growth_land
or fordyn_land.
Usage
S3 method for class 'spwb_land'
plot(x, type = "Hydrograph_Hietograph”, dates = NULL, summary.freq = NULL, ...)

S3 method for class 'growth_land'
plot(x, type = "Hydrograph_Hietograph", dates = NULL, summary.freq = NULL, ...)

S3 method for class 'fordyn_land'

plot(x, type = "Hydrograph_Hietograph”, dates = NULL, summary.freq = NULL, ...)
Arguments

X An object of class spwb_land, growth_land or fordyn_land.

type The information to be plotted (see details).

dates A Date vector with a subset of dates to be plotted.

summary . freq Frequency of summary statistics (see cut.Date).

Additional parameters for function plot (not used).

38 plot_summary
Details
The following plots are currently available:
* "Hydrograph_Hietograph”: A combination of hydrograph and hietograph (in a secondary,
reversed, axis).
e "PET_Precipitation”: Potential evapotranspiration, rainfall and snow.
e "Channel”: Partitioning of overall discharge into discharge from channel and direct outlet
discharge. Channel loading is also shown to evidence the routing effect.
* "Export": Water exported through different fluxes: (total watershed export, channel routing,
deep drainage).
e "Overland_Runoff”: Origin of overland runoff flows (i.e. saturation excess or infiltration
excess).
» "Aquifer_Balance": Water exchanged between soil and aquifer (i.e. soil deep drainage and
capillarity rise).
* "Evapotranspiration”: Interception, woody transpiration, herb transpiration and soil evap-
oration.
Value
A ggplot object
Author(s)
Miquel De Céiceres Ainsa, CREAF
See Also
spwb_land, growth_land, fordyn_land, plot_summary, shinyplot.spwb_land
plot_summary Displays spatial simulation summaries
Description
Produces graphical output of the summaries of a simulation models
Usage
plot_summary(x, variable, date, r = NULL, ...)
Arguments
X An object of class sf, with simulation summaries.
variable The variable to be drawn.
date The date of the summary to be plotted.
r An object of class SpatRaster, defining the raster topology.

Additional parameters (passed to scale definition, such as 1imits).

shinyplot.sf 39

Details

Appropriate values for x can originate from calls to simulation_summary. Alternatively, if sum-
mary functions were specified at the time of performing simulations, the result of the spatial sim-
ulation function (e.g. spwb_spatial) will already contain the summaries. A special case is made
for spwb_land and growth_1land, that are accepted inputs as x, because its element ’sf’ is used.

Value

An object of class ggplot.

Author(s)
Miquel De Céaceres Ainsa, CREAF.

See Also

spwb_spatial, simulation_summary

shinyplot.sf Shiny app with interactive plots and maps

Description

Creates a shiny app with interactive plots for spatial inputs and simulation results

Usage
S3 method for class 'sf'
shinyplot(x, SpParams = NULL, r = NULL, ...)
Arguments
X The object of class ’sf’ containing information to be drawn (see details).
SpParams A data frame with species parameters (see SpParamsMED), required for most

forest stand variables.
r An object of class SpatRaster, defining the raster topology.

Additional parameters for function shinyplot (not used).

Details
Only run this function in interactive mode. The shiny app can be used to display spatial inputs or
simulation results.
Spatial inputs: This is the case if the user supplies an object of class sf with simulation inputs.

Simulation result summaries: This is the case if the user supplies an object of class sf with simu-
lation summaries. Available plots depend on the summary function used to create the result sum-
maries.

40 shinyplot.spwb_land

Value

An object that represents the shiny app

Author(s)
Miquel De Céaceres Ainsa, CREAF

See Also

plot_summary, extract_variables

shinyplot.spwb_land Shiny app with interactive plots and maps of watershed simulation
results

Description

Creates a shiny app with interactive plots for simulation results

Usage

S3 method for class 'spwb_land'
shinyplot(x, r = NULL, ...)

S3 method for class 'growth_land'
shinyplot(x, r = NULL, ...)

S3 method for class 'fordyn_land'

shinyplot(x, r = NULL, ...)

Arguments
X An object of class spwb_land, growth_land or fordyn_land.
r An object of class SpatRaster, defining the raster topology.

Additional parameters for function shinyplot (not used).

Value

An object that represents the shiny app

Author(s)
Miquel De Céaceres Ainsa, CREAF

See Also

spwb_land, plot.spwb_land, plot_variable

simulation_summary 41

simulation_summary Summarizes spatial simulation results

Description

Creates spatial objects containing summaries of simulations

Usage
simulation_summary(object, summary_function, ...)
Arguments
object An object of class ’sf” simulation results (e.g. the result of calling spwb_spatial).

summary_function
The summary function to be executed on simulation results (see details).

Additional parameters to the summary function.

Details

The function supplied should take as input an object of local simulation function, i.e. spwb, growth,
or fordyn. The output should be a matrix with dates as rows and variables in columns. An example
of suitable function is summary . spwb.

Value
An object of class sf, with the following two elements:
* geometry: Spatial geometry.

* id: Stand id, taken from the input.

e summary: A list of model output summaries for each simulated location.

Author(s)

Miquel De Caceres Ainsa, CREAF.

See Also

spwb_spatial, plot_summary

42

soil_parametrization

soil_parametrization Landscape soil parametrization

Description

Function add_soilgrids fills column ’soil” with physical soil characteristics drawn from SoilGrids
2.0 (Hengl et al. 2017; Poggio et al. 2021). Function modify_soils modifies soil definition
according to soil depth and depth to bedrock information. Function check_soils verifies that soil
data does not contain missing values for key variables and, if so, assigns default values.

Usage

add_soilgrids(

)

X,

soilgrids_path = NULL,
widths = NULL,
replace_existing = TRUE,
progress = TRUE

modify_soils(

X,
soil_depth_map = NULL,
depth_to_bedrock_map = NULL,
regolith_rfc = 97.5,
full_rock_filling = TRUE,
progress = TRUE

Arguments

X

An object of class sf with a valid CRS definition. If it contains a column
called ’land_cover_type’, soils will be retrieved for "agriculture" and "wild-
land" cover types only. Otherwise, soils are retrieved for all locations. For
functions modify_soils or check_soils, x should already contain a column
named "soil".

soilgrids_path Path to SoilGrids rasters (see details). If missing, the SoilGrids REST API

(https://rest.isric.org) will be queried.

widths A numeric vector indicating the desired layer widths, in mm. If NULL the default

soil grids layer definition is returned.

replace_existing

A logical flag to force the replacement of existing soil data, when already present

progress A logical flag to include a progress bar while processing the output of the query

to the SoilGrids REST API.

soil_depth_map An object of class SpatRaster or SpatVector with the soil depth (in mm) val-

ues.

soil_parametrization 43

depth_to_bedrock_map

An object of class SpatRaster or SpatVector with depth to bedrock (in mm)
values.

regolith_rfc Rock fragment content, in percent volume, between soil depth and 200cm depth
(or lower depths, if modified via widths).

full_rock_filling
Logical flag to modify rock fragment content in all soil layers with according to
distance to soil depth.

Details

If soilgrids_path = NULL the function connects with the SoilGrids REST API (https://rest.isric.org)
to retrieve the soil physical and chemical characteristics for a site (Hengl ef al. 2007; Poggio et al.
2021), selected by its coordinates. Also, in case the depths are not the default ones in the SoilGrids
API, the function uses averages the values of soil grid layers depending on the overlap between soil
layer definitions. Unfortunately, SoilGrids REST API queries are limited to a few points.

If soilgrids_path !=NULL the function will read SoilGrid rasters from the file disk. Folders need
to be defined for each variable ("sand", "clay", "soc", "bdod", "cfvo" and "nitrogen"). File paths
from soilgrids_path should be named:

var/var_layer_mean.tif

where var is one of the above and layer is "0-5cm", "5-15cm", "15-30cm", "30-60cm", "60-100cm"
or "100-200cm"

SoilGrids does not provide soil depth estimates. Function modify_soils is designed to adjust
soil depths according to available information. When soil_depth_map is provided, the function
adjusts rock fragment content of layers below soil depth with the value of regolith_rfc. When
depth_to_bedrock_map is provided, the function truncates the total depth of the soil definition to
the depth to bedrock. If regional maps of soil depth are not available, users are recommended to
resort on Shangguan et al (2017).

Value

A modified object of class sf with column ’soil’.

Author(s)

Victor Granda, EMF-CREAF
Miquel De Ciceres Ainsa, EMF-CREAF

References

Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagoti¢ A, et
al. (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE
12(2): e0169748. doi:10.1371/journal.pone.0169748.

Poggio L, de Sousa LM, Batjes NH, Heuvelink GBM, Kempen B, Ribeiro E, Rossiter D (2021).
SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7,
217-240. doi: 10.5194/s0il-7-217-2021

44 spwb_land

Shangguan W, Hengl T, Mendes de Jesus J, Yuan H, Dai J (2017). Mapping the global depth to
bedrock for land surface modeling. Journal of Advances in Modeling Earth Systems 9: 65-88. doi:
10.1002/2016MS000686

See Also

add_topography (), impute_forests(), soil, defaultSoilParams

Examples

library(sf)

x <- st_sf(geometry = st_sfc(st_point(c(-5.6333, 42.6667)), crs = 4326))
x_so0il <- add_soilgrids(x, widths = c(300, 700, 1000))

x_soil

See more complete examples in package vignettes 'Preparing inputs'

spwb_land Watershed simulations

Description
Functions to perform simulations on a watershed described by a set of connected grid cells.

* Function spwb_land implements a distributed hydrological model that simulates daily local
water balance, from spwb_day, on grid cells of a watershed while accounting for overland
runoff, subsurface flow and groundwater flow between cells.

* Function growth_land is similar to spwb_land, but includes daily local carbon balance,
growth and mortality processes in grid cells, provided by growth_day.

* Function fordyn_land extends the previous two functions with the simulation of manage-
ment, seed dispersal, recruitment and resprouting.

Usage

spwb_land(
r,
sf,
SpParams,
meteo = NULL,
dates = NULL,
CO2ByYear = numeric(0),
summary_blocks = NULL,
summary_frequency = "years”,
local_control = defaultControl(soilDomains = "single"),
watershed_control = default_watershed_control(),
parallelize = FALSE,
num_cores = parallel::detectCores() - 1,

spwb_land

progress = TRUE

)

growth_land(
r,
sf,
SpParams,
meteo = NULL,
dates = NULL,

CO2ByYear = numeric(0),

summary_blocks = NULL,

summary_frequency = "years”,

local_control = medfate::defaultControl(soilDomains = "single"),
watershed_control = default_watershed_control(),

parallelize = FALSE,

num_cores = parallel::detectCores() - 1,

progress = TRUE

)

fordyn_land(
r,
sf,
SpParams,
meteo = NULL,
dates = NULL,

CO2ByYear = numeric(0),

summary_blocks = NULL,

summary_frequency = "years”,

local_control = medfate::defaultControl(soilDomains = "single"),
watershed_control = default_watershed_control(),
dispersal_control = default_dispersal_control(),
management_function = NULL,

parallelize = FALSE,

num_cores = parallel::detectCores() - 1,

progress = TRUE

)

S3 method for class 'spwb_land'
summary (object, ...)

S3 method for class 'growth_land'

summary (object, ...)

Arguments
r An object of class SpatRaster, defining the raster topology.
sf An object of class sf with the following columns:

* geometry: Spatial point geometry corresponding to cell centers.

45

46

SpParams

meteo
dates
CO2ByYear

spwb_land

¢ elevation: Elevation above sea level (in m).

* slope: Slope (in degrees).

* aspect: Aspect (in degrees).

* land_cover_type: Land cover type of each grid cell (values should be
"wildland’, *agriculture’, 'rock’, "artificial” or "water’).

» forest: Objects of class forest.

* soil: Objects of class soil or data frames of physical properties.

* state: Objects of class spwbInput or growthInput (optional).

* meteo: Data frames with weather data (required if parameter meteo = NULL).

* crop_factor: Crop evapo-transpiration factor. Only required for *agricul-
ture’ land cover type.

* local_control: A list of control parameters (optional). Used to override
function parameter local_control for specific cells (values can be NULL
for the remaining ones).

* snowpack: An optional numeric vector with the snow water equivalent con-
tent of the snowpack in each cell (in mm). If missing it will be initialized
to zero.

* management_arguments: Lists with management arguments (optional, rel-
evant for fordyn_land only).

* result_cell: A logical indicating that local model results are desired (op-
tional, relevant for spwb_land and growth_land only). Model results are
only produced for wildland and agriculture cells.

When using TETIS watershed model, the following columns are also REQUIRED:
* depth_to_bedrock: Depth to bedrock (mm).
* bedrock_conductivity: Bedrock (saturated) conductivity (in m-day-1).
* bedrock_porosity: Bedrock porosity (the proportion of pore space in the
rock).
When using TETIS watershed model, the following columns are OPTIONAL.:
* aquifer: A numeric vector with the water content of the aquifer in each
cell (in mm). If missing, it will be initialized to zero.

* deep_aquifer_loss: A numeric vector with the maximum daily loss to
a deeper aquifer (in mm-day-1). If missing all cells take their value from
deep_aquifer_loss in default_watershed_control

* channel: A logical (or binary) vector indicating overland channel routing.

* outlet_backlog: A vector indicating, for outlet cells, backlog volume of
water (m3) of the corresponding channel network from a previous simula-
tion.

A data frame with species parameters (see SpParamsMED). IMPORTANT: If sf
has been already initialized, this parameter has no effect.

Input meteorological data (see spwb_spatial and details).
A Date object describing the days of the period to be modeled.

A named numeric vector with years as names and atmospheric CO2 concentra-
tion (in ppm) as values. Used to specify annual changes in CO2 concentration
along the simulation (as an alternative to specifying daily values in meteo).

spwb_land 47

summary_blocks A character vector with variable blocks for cell summaries (or NULL to retain
only basic summaries). Accepted summary blocks for spwb_land are "Wa-
terBalance", "Stand" and "FireHazard". For growth_land and fordyn_land,
"CarbonBalance" and "BiomassBalance" are also accepted.

summary_frequency
Frequency in which cell summary will be produced (e.g. "years", "months",
"weeks", ...) (see cut.Date). In fordyn_land summary frequency can only be
"months" or "years".

local_control A list of control parameters (see defaultControl) for function spwb_day or
growth_day. By default, parameter soilDomains is set to "single"”, meaning
a single-domain Richards model. IMPORTANT: If sf has been already initial-
ized, this parameter has no effect.

watershed_control
A list of watershed control parameters (see default_watershed_control).
Importantly, the sub-model used for lateral water flows - either Francés et al.
(2007) or Caviedes-Voullieme et al. (2023) - is specified there.

parallelize Boolean flag to try parallelization (only works with subwatersheds, see details).

num_cores Integer with the number of cores to be used for parallel computation (by default
it will use all clusters minus one).

progress Boolean flag to display progress information for simulations.
dispersal_control
A list of dispersal control parameters (see default_dispersal_control). If
NULL, then dispersal is not simulated.
management_function
A function that implements forest management actions (see fordyn). of such
lists, one per spatial unit.

object An object of class spwb_land or groth_land

Additional parameters for summary functions

Details

IMPORTANT: Simulation function will normally call the initialization of state variables via an
internal call to initialize_landscape, using parameters local_control and SpParams in this
call. The default soilDomains = "single"” means that vertical bulk soil flows are simulated using
a single permeability domain with Richards equation. However, if object sf has been previously
initialized, then the control parameters of this previous initialization will remain the same. In other
words, parameters local_control and SpParams will have no effect in the call to the simulation
routines if the sf has been previously initialized.

Two sub-models are available for lateral water transfer processes (overland flow, sub-surface flow,
etc.), either "TETIS" (similar to Francés et al. 2007) or "SERGHEI" (Caviedes-Voullieme et al.
2023).

IMPORTANT: medfateland needs to be compiled along with SERGHEI model in order to launch
simulations with using this distributed hydrological model.

When running fordyn_land, the input ’sf’ object has to be in a Universal Transverse Mercator
(UTM) coordinate system (or any other projection using meters as length unit) for appropriate
behavior of dispersal sub-model.

48 spwb_land

Due to the large communication overload, parallel computation is only allowed for TETIS in combi-
nation with definition of subwatersheds (see flag of TETIS parameters in default_watershed_control).

When dealing with large data sets, weather data included in the ’sf’ object will likely be very data
hungry. In those cases, it is recommended to resort on weather interpolation (see spwb_spatial).
Weather interpolation can be done using a coarser resolution than that of raster ’r’, by changing the
watershed control parameter called *weather_aggregation_factor’ (see default_watershed_control).

Value

Functions spwb_land, growth_land and fordyn_land return a list of class of the same name as
the function with the following elements:

* watershed_control: A list with input control parameters.
* sf: An object of class sf, similar to the output of spwb_spatial, with the following columns:
— geometry: Spatial geometry.
— state: A list of model input objects for each simulated stand.
— aquifer: A numeric vector with the water volume in the aquifer of each cell.
— snowpack: A numeric vector with the snowpack water equivalent volume of each cell.

— summary: A list of cell summaries containing at least the following variables (additional
variables are summarized using summary_blocks):

#* MinTemperature: Minimum temperature (degrees Celsius).

* MaxTemperature: Maximum temperature (degrees Celsius).

x PET: Potential evapotranspiration (in mm).

+ Rain: Rainfall (in mm).

* Snow: Snowfall (in mm).

* SWE: Snow water equivalent (in mm) of the snowpack.

* RWC: Soil relative water content with respect to field capacity (in percent).
* S0ilVol: Soil water volume integrated across vertical layers (in mm).

* WTD: Saturated soil water table depth (in mm from surface).

% DTA: Depth to aquifer (in m from surface).

— result: A list of cell detailed results (only for those indicated in the input), with contents
depending on the local model.

— outlet: A logical vector indicating outlet cells.
— channel: A logical vector indicating channel cells.

— target_outlet: Index of the outlet cell to which the channel leads (NA for non-channel
cells).

— outlet_backlog: A vector indicating channel water volume (m3) backlog of outlet cells
(for subsequent simulations).

— subwatershed: Integer vector indicating watershed subunits (NA if subwatersheds =
FALSE in watershed control parameters).
In function fordyn_land the sf object contains additional columns:
— forest: A list of forest objects for each simulated stand, to be used in subsequent
simulations (see update_landscape).

— management_arguments: A list of management arguments for each simulated stand, to
be used in subsequent simulations (see update_landscape).

spwb_land 49

— tree_table: A list of data frames for each simulated stand, containing the living trees at
each time step.

— shrub_table: A list of data frames for each simulated stand, containing the living shrub
at each time step.

— dead_tree_table: A list of data frames for each simulated stand, containing the dead
trees at each time step.

— dead_shrub_table: A list of data frames for each simulated stand, containing the dead
shrub at each time step.

— cut_tree_table: A list of data frames for each simulated stand, containing the cut trees
at each time step.

— cut_shrub_table: A list of data frames for each simulated stand, containing the cut
shrub at each time step.

* watershed_balance: A data frame with as many rows as days and where columns are
(spatially-averaged) components of the water balance at the watershed level (i.e., rain, snow,
interception, infiltration, soil evaporation, plant transpiration, ...).

* watershed_soil_balance: A data frame with as many rows as days and where columns are
(spatially-averaged) components of the water balance at the watershed level restricted to those
cells with a soil definition.

* channel_export_m3s: A matrix with daily values of runoff (in m3/s) reaching each of the
channel cells of the landscape (useful for channel processing with an external model).

* outlet_export_m3s: A matrix with daily values of runoff (in m3/s) reaching each of the
outlet cells of the landscape. Each outlet drains its own subset of cells (sometimes including
channel routing), so the daily overall watershed export corresponds to the sum of row values.

Author(s)
Miquel De Céaceres Ainsa, CREAF.

Maria Gonzalez-Sanchis, Universitat Politecnica de Valencia.
Daniel Caviedes-Voullieme, Forschungszentrum Julich.

Mario Morales-Herndndez, Universidad de Zaragoza.

References

Francés, F., Vélez, J.I. & Vélez, J.J. (2007). Split-parameter structure for the automatic calibration
of distributed hydrological models. Journal of Hydrology, 332, 226-240.

Caviedes-Voullieme, D., Morales-Herndndez, M., Norman, M.R. & Ogzen-Xian, 1. (2023). SERGHEI
(SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-
water solver for hydrology and environmental hydraulics. Geoscientific Model Development, 16,
977-1008.

See Also

default_watershed_control, initialize_landscape, overland_routing, spwb_land_day, spwb_day,
growth_day, spwb_spatial, fordyn_spatial, dispersal

50 spwb_land

Examples

Load example watershed data
data("example_watershed")

Set crop factor
example_watershed$crop_factor <- NA
example_watershed$crop_factor[example_watershed$land_cover_type=="agriculture"] <- 0.75

Set request for daily model results in cells number 3, 6 (outlet) and 9
example_watershed$result_cell <- FALSE
example_watershed$result_cell[c(3,6,9)] <- TRUE

Get bounding box to determine limits
b <- sf::st_bbox(example_watershed)
b

Define a raster topology, using terra package,

with the same CRS as the watershed. In this example cells have 100 m side.

Coordinates in the 'sf' object are assumed to be cell centers

r <-terra::rast(xmin = 401380, ymin = 4671820, xmax = 402880, ymax = 4672620,
nrow = 8, ncol = 15, crs = "epsg:32631")

Load example meteo data frame from package meteoland
data("examplemeteo”)

Load default medfate parameters
data("SpParamsMED")

Set simulation period
dates <- seq(as.Date("2001-01-01"), as.Date("2001-03-31"), by="day")

Watershed control parameters (TETIS model; Frances et al. 2007)
ws_control <- default_watershed_control("tetis")

Launch simulations

res <- spwb_land(r, example_watershed, SpParamsMED, examplemeteo,
dates = dates, summary_frequency = "month”,
watershed_control = ws_control)

Print a summary of water balance components
summary(res)

Option 'reduce_to_dominant = TRUE' in initialization, may be useful to speed up calculations
example_simplified <- initialize_landscape(example_watershed, SpParams = SpParamsMED,
local_control = defaultControl(soilDomains = "single"),
reduce_to_dominant = TRUE)

Launch simulations over simplified landscape (should be considerably faster)

res_simplified <- spwb_land(r, example_simplified, SpParamsMED, examplemeteo,
dates = dates, summary_frequency = "month”,
watershed_control = ws_control)

spwb_land_day 51

spwb_land_day One-day watershed simulations

Description
Functions to perform one-day simulations on a watershed described by a set of connected grid cells.
* Function spwb_land_day implements a distributed hydrological model that simulates daily

local water balance, from spwb_day, on grid cells of a watershed while accounting for over-
land runoff, subsurface flow and groundwater flow between cells.

 Function growth_land_day is similar to spwb_land_day, but includes daily local carbon
balance, growth and mortality processes in grid cells, provided by growth_day.

Usage

spwb_land_day (
r7
sf,
SpParams,
meteo = NULL,
date = NULL,
local_control = medfate::defaultControl(soilDomains = "single"),

watershed_control = default_watershed_control(),
progress = TRUE
)

growth_land_day/(
r,
sf,
SpParams,
meteo = NULL,
date = NULL,
local_control = medfate::defaultControl(soilDomains = "single"),
watershed_control = default_watershed_control(),
progress = TRUE

)

Arguments
r An object of class SpatRaster, defining the raster topology.
sf An object of class sf as described in spwb_land.
SpParams A data frame with species parameters (see SpParamsMED).
meteo Input meteorological data (see spwb_spatial and details).

date A string with the date to be simulated.

52

spwb_land_day

local_control A list of control parameters (see defaultControl) for function spwb_day or

growth_day.

watershed_control

A list of watershed control parameters (see default_watershed_control).
Importantly, the sub-model used for lateral water flows - either Francés et al.
(2007) or Caviedes-Voullieme et al. (2023) - is specified there.

progress Boolean flag to display progress information for simulations.

Details

See details in spwb_land. Subwatershed units and parallelization are not possible, at present, for
single-day watershed simulations.

Value

Functions spwb_land_day and spwb_land_day return a sf object:

geometry: Spatial geometry.

state: A list of model input objects for each simulated stand.

aquifer: A numeric vector with the water volume in the aquifer of each cell.
snowpack: A numeric vector with the snowpack water equivalent volume of each cell.

result: A list of cell detailed results (only for those indicated in the input), with contents
depending on the local model.

outlet: A logical vector indicating outlet cells (for subsequent simulations).
outlet_backlog: A vector indicating channel water volume (m3) backlog of outlet cells.
MinTemperature: Minimum temperature (degrees Celsius).

MaxTemperature: Maximum temperature (degrees Celsius).

PET: Potential evapotranspiration (in mm).

Rain: Rainfall (in mm).

Snow: Snowfall (in mm).

Snowmelt: Snow melt (in mm).

Interception: Rainfall interception (in mm).

NetRain: Net rainfall, i.e. throughfall, (in mm).

Infiltration: The amount of water infiltrating into the soil (in mm).
InfiltrationExcess: The amount of water exceeding the soil infiltration capacity (in mm).

SaturationExcess: The amount of water that reaches the soil surface because of soil satura-
tion (in mm).

Runoff: The amount of water exported via surface runoff (in mm).

DeepDrainage: The amount of water draining from soil to the aquifer via deep drainage (in
mm).

CapillarityRise: Water entering the soil via capillarity rise (mm) from the water table.

SoilEvaporation: Bare soil evaporation (in mm).

spwb_land_day 53

* Transpiration: Woody plant transpiration (in mm).
* HerbTranspiration: Herbaceous transpiration (in mm).

* InterflowInput: The amount of water that reaches the soil of the cell from adjacent cells via
subsurface flow (in mm).

* InterflowOutput: The amount of water that leaves the soil of the cell towards adjacent cells
via subsurface flow (in mm).

* InterflowBalance: The balance of water circulating via subsurface flow (in mm).

* BaseflowInput: The amount of water that reaches the aquifer of the cell from adjacent cells
via groundwater flow (in mm).

* BaseflowOutput: The amount of water that leaves the aquifer of the cell towards adjacent
cells via groundwater flow (in mm).

* BaseflowBalance: The balance of water circulating via groundwater flow (in mm).

* AquiferExfiltration: The amount of water of the cell that generates surface runoff due to
the aquifer reaching the soil surface (in mm).

Author(s)
Miquel De Céaceres Ainsa, CREAF.

Maria Gonzalez-Sanchis, Universitat Politecnica de Valencia.
Daniel Caviedes-Voullieme, Forschungszentrum Julich.

Mario Morales-Herndndez, Universidad de Zaragoza.

References

Francés, F., Vélez, J.I. & Vélez, J.J. (2007). Split-parameter structure for the automatic calibration
of distributed hydrological models. Journal of Hydrology, 332, 226-240.

Caviedes-Voullieme, D., Morales-Herndndez, M., Norman, M.R. & Ogzen-Xian, 1. (2023). SERGHEI
(SERGHEI-SWE) v1.0: a performance-portable high-performance parallel-computing shallow-
water solver for hydrology and environmental hydraulics. Geoscientific Model Development, 16,
977-1008.

See Also

default_watershed_control, spwb_day, growth_day, spwb_land,

Examples

Load example watershed data after burnin period
data("example_watershed_burnin”)

Set request for daily model results in cells number 3, 6 (outlet) and 9
example_watershed_burnin$result_cell <- FALSE
example_watershed_burnin$result_cell[c(3,6,9)] <- TRUE

Get bounding box to determine limits
b <- sf::st_bbox(example_watershed_burnin)

54 spwb_spatial

Define a raster topology, using terra package,

with the same CRS as the watershed. In this example cells have 100 m side.

Coordinates in the 'sf' object are assumed to be cell centers

r <-terra::rast(xmin = 401380, ymin = 4671820, xmax = 402880, ymax = 4672620,
nrow = 8, ncol = 15, crs = "epsg:32631")

Load example meteo data frame from package meteoland
data("examplemeteo”)

Load default medfate parameters
data("SpParamsMED")

Watershed control parameters (TETIS model; Frances et al. 2007)
ws_control <- default_watershed_control("tetis")

Launch simulation

date <- "2001-03-01"

sf_out <- spwb_land_day(r, example_watershed_burnin, SpParamsMED, examplemeteo,
date = date,
watershed_control = ws_control)

spwb_spatial Simulations for spatially-distributed forest stands

Description

Functions that allow calling local models spwb, growth or fordyn, for a set of forest stands dis-
tributed in specific locations. No spatial processes are simulated.

Usage

spwb_spatial(
sf,
SpParams,
meteo = NULL,
local_control = defaultControl(),
dates = NULL,
CO2ByYear = numeric(0),
keep_results = TRUE,
summary_function = NULL,
summary_arguments = NULL,
parallelize = FALSE,
num_cores = detectCores() - 1,
chunk_size = NULL,
progress = TRUE,
local_verbose = FALSE

spwb_spatial

)

growth_spatial(
sf,
SpParams,
meteo = NULL,
local_control = defaultControl(),
dates = NULL,
CO2ByYear = numeric(9),
fire_regime = NULL,
keep_results = TRUE,
summary_function = NULL,
summary_arguments = NULL,
parallelize = FALSE,
num_cores = detectCores() - 1,
chunk_size = NULL,
progress = TRUE,
local_verbose = FALSE

)

fordyn_spatial(
sf,
SpParams,
meteo = NULL,
local_control = defaultControl(),
dates = NULL,
CO2ByYear = numeric(0),
fire_regime = NULL,
keep_results = TRUE,
management_function = NULL,
summary_function = NULL,
summary_arguments = NULL,
parallelize = FALSE,
num_cores = detectCores() - 1,
chunk_size = NULL,
progress = TRUE,
local_verbose = FALSE

Arguments

sf An object of class sf with the following columns:

e geometry: Spatial geometry

¢ id: Stand identifiers.

¢ elevation: Elevation above sea level (in m).
* slope: Slope (in degrees).

* aspect: Aspect (in degrees).

56

SpParams
meteo

local_control
dates

CO2ByYear

keep_results

spwb_spatial

e land_cover_type: Land cover type of each grid cell (values should be
’wildland’ or ’agriculture’).

» forest: Objects of class forest.

* soil: Objects of class soil or data frames of physical properties.

* state: Objects of class spwbInput or growthInput (optional).

* meteo: Data frames with weather data (required if parameter meteo = NULL).

* crop_factor: Crop evapo-transpiration factor. Only required for *agricul-
ture’ land cover type.

* local_control: A list of control parameters (optional). Used to override
function parameter local_control for specific locations (values can be
NULL for the remaining ones).

* management_arguments: Lists with management arguments. Optional,
relevant for fordyn_spatial only.

* represented_area_ha: Area represented by each stand in hectares. Op-
tional, relevant for fordyn_spatial when fire_regime is supplied only).

e ignition_weights: Relative weights to determine stands to be burned.
Optional, relevant for fordyn_spatial when fire_regime is supplied
only).

A data frame with species parameters (see SpParamsMED).

Input meteorological data (see section details). If NULL, the function will ex-
pect a column ’meteo’ in parameter y.

A list of control parameters (see defaultControl) for function spwb_day or
growth_day.

A Date object describing the days of the period to be modeled.

A named numeric vector with years as names and atmospheric CO2 concentra-
tion (in ppm) as values. Used to specify annual changes in CO2 concentration
along the simulation (as an alternative to specifying daily values in meteo).
Boolean flag to indicate that point/cell simulation results are to be returned (set
to FALSE and use summary functions for large data sets).

summary_function

An appropriate function to calculate summaries (e.g., summary . spwb).

summary_arguments

parallelize
num_cores
chunk_size

progress
local_verbose
fire_regime

List with additional arguments for the summary function.

Boolean flag to try parallelization (will use all clusters minus one).

Integer with the number of cores to be used for parallel computation.

Integer indicating the size of chuncks to be sent to different processes (by de-
fault, the number of spatial elements divided by the number of cores).

Boolean flag to display progress information of simulations.

Boolean flag to display detailed progress information in local simulations.

A list of parameters defining the fire regime (see create_fire_regime) or a
matrix representing a fire regime instance (see fire_regime_instance), to be
used in simulations with fordyn_spatial. If NULL, wildfires are not simu-
lated.

management_function

A function that implements forest management actions (see fordyn). of such
lists, one per spatial unit.

spwb_spatial 57

Details

Simulation functions accept different formats for meteorological input (parameter meteo). The user
may supply two kinds of daily weather sources:

1. A data frame with meteorological data common for all spatial location (spatial variation of
weather not considered).

2. An object or (a list of objects) of class stars with reference interpolation data created by
package meteoland. If a list of such interpolator objects is supplied, the simulation functions
will interpolate on the target locations for the periods covered by each interpolator, but the
user will be responsible for supplying interpolators in the correct temporal order.

Alternatively, the user may leave parameter meteo = NULL and specify a weather data frame for each
element of y in a column named *meteo’.

Fire regimes are only allowed for function fordyn_spatial. If an object of class fire_regime is
supplied, the function will call fire_regime_instance to generate a realization of the fire regime
before conducting simulations. Alternatively, users can directly supply a fire regime instance matrix,
derived from another source (e.g. a fire landscape model). Note that operating with fire regimes
assumes all forest stands share the same period of simulation, but enforcing this is left to the user.

Value
An object of class ’sf” containing four elements:

* geometry: Spatial geometry.
* id: Stand id, taken from the input.

* state: A list of spwbInput or growthInput objects for each simulated stand, to be used in
subsequent simulations (see update_landscape) or with NULL values whenever simulation
errors occurred.

* forest: Alistof forest objects for each simulated stand (only in function fordyn_spatial),
to be used in subsequent simulations (see update_landscape) or with NULL values whenever
simulation errors occurred.

* management_arguments: A list of management arguments for each simulated stand (only in
function fordyn_spatial if management function was supplied), to be used in subsequent
simulations (see update_landscape).

* result: A list of model output for each simulated stand. Some elements can contain an
error condition if the simulation resulted in an error. Values will be NULL (or errors) if
keep_results = FALSE.

* summary: A list of model output summaries for each simulated stand (if summary_function
was not NULL), with NULL values whenever simulation errors occurred.

Author(s)
Miquel De Céceres Ainsa, CREAF

See Also

spwb, growth, fordyn, spwb_spatial_day, simulation_summary,plot_summary, initialize_landscape,
update_landscape

58 spwhb_spatial_day

Examples

Load example landscape data
data("example_ifn")

Load example meteo data frame from package meteoland
data("examplemeteo”)

Load default medfate parameters
data("SpParamsMED")

Subset two plots to speed-up calculations
example_subset <- example_ifn[31:32,]

Perform simulation
dates <- seq(as.Date("2001-03-01"), as.Date("2001-03-15"), by="day")
res <- spwb_spatial(example_subset, SpParamsMED, examplemeteo, dates = dates)

Perform fordyn simulation for one year (one stand) without management
res_noman <- fordyn_spatial(example_subset, SpParamsMED, examplemeteo)

spwb_spatial_day One-day simulation for spatially-distributed forest stands

Description

Functions that allow calling local models spwb_day or growth_day, for a set of forest stands dis-
tributed in specific locations and a given date. No spatial processes are simulated.

Usage

spwb_spatial_day(
sf,
meteo = NULL,
date,
SpParams,
local_control = defaultControl(),
parallelize = FALSE,
num_cores = detectCores() - 1,
chunk_size = NULL,
progress = TRUE

growth_spatial_day(
sf,
meteo = NULL,

spwhb_spatial_day

date,
SpParams,

59

local_control = defaultControl(),
parallelize = FALSE,

num_cores =

chunk_size

detectCores() - 1,
NULL,

progress = TRUE

Arguments

sf

meteo

date

SpParams
local_control
parallelize
num_cores

chunk_size

progress

Details

An object of class sf with landscape information (see spwb_spatial).
Meteorology data (see spwb_spatial).

A string with the date to be simulated.

A data frame with species parameters (see SpParamsMED).

A list of local model control parameters (see defaultControl).
Boolean flag to try parallelization (will use all clusters minus one).
Integer with the number of cores to be used for parallel computation.

Integer indicating the size of chunks to be sent to different processes (by default,
the number of spatial elements divided by the number of cores).

Boolean flag to display progress information for simulations.

Simulation functions accept different formats for meteorological input (described in spwb_spatial).

Value

An object of class sf the same name as the function called containing three elements:

* geometry: Spatial geometry.

* id: Stand id, taken from the input.

* state: A list of model input objects for each simulated stand, to be used in subsequent simu-

lations.

* result: A list of model output for each simulated stand.

Author(s)

Miquel De Céceres Ainsa, CREAF

See Also

spwb_day, growth_day, spwb_spatial

60 update_landscape

Examples

#lLoad example landscape data
data("example_ifn")

#lLoad example meteo data frame from package meteoland
data("examplemeteo”)

#lLoad default medfate parameters
data(”SpParamsMED")

#Perform simulation
date <- "2001-03-01"
res <- spwb_spatial_day(example_ifn, examplemeteo, date, SpParamsMED)

update_landscape Updates the state of a landscape object

Description

Updates the state of a spatial object *x’ according to the final state in simulation outcome ’y’

Usage

update_landscape(x, y)

Arguments
X An object of class sf with the corresponding landscape columns.
y The object resulting of a simulation previously carried on x using spwb_spatial,
growth_spatial, spwb_land, etc.
Value

An object of class sf with modified state variables.

Author(s)
Miquel De Céiceres Ainsa, CREAF.

See Also

spwb_spatial, spwb_spatial_day, spwb_land

Index

+ data
defaultPrescriptionsBySpecies, 12

add_forests, 3

add_forests(), 29

add_land_cover (add_topography), 5
add_soilgrids (soil_parametrization), 42
add_soilgrids(), 29

add_topography, 5
add_topography(), 29, 44

cell_neighbors (overland_routing), 34

check_forests (check_inputs), 7

check_inputs, 7

check_land_cover (check_inputs), 7

check_land_cover(), 6

check_soils (check_inputs), 7

check_topography (check_inputs), 7

check_topography(), 6

create_fire_regime, 9, 11, 21, 22, 24, 56

create_management_scenario, 10, 12,
23-25

cut.Date, 37,47

Date, 24, 33, 46, 56
default_dispersal_control, 12, 24, 47
default_volume_function, 13
default_watershed_control, 14, 4649, 52,
53
defaultControl, 16, 24, 30, 33,47, 52, 56, 59
defaultManagementArguments, 10, 12, 24
defaultManagementFunction, /1, 24
defaultPrescriptionsBySpecies, 11, 12
defaultSoilParams, 44
dispersal, 13, 15, 25,49

example_ifn, 17

example_watershed, 18

example_watershed_burnin
(example_watershed), 18

61

extract_variables, 19, 40

fire_regime_instance, 9, 21, 24, 56, 57
fordyn, 41, 47, 54, 56, 57
fordyn_land, 16, 38, 40
fordyn_land (spwb_land), 44
fordyn_scenario, 9, 11-13, 21, 22,22
fordyn_spatial, 9, 21-25, 49, 56
fordyn_spatial (spwb_spatial), 54
forest, 8, 13, 16, 20, 23, 27, 28, 30, 32, 46,
48, 56, 57
forest_mapWoodyTables, 4
forest_mergeShrubs, 4, 28, 30
forest_mergeTrees, 4, 27, 29, 30
forest_parametrization, 26
forest_reduceToDominant, 30

ggplot, 39
growth, 29, 41, 54, 57
growth_day, 44, 47,49, 51-53, 56, 58, 59
growth_land, 38—40
growth_land (spwb_land), 44
growth_land_day (spwb_land_day), 51
growth_spatial, 30, 60
growth_spatial (spwb_spatial), 54
growth_spatial_day, 30
growth_spatial_day (spwb_spatial_day),
58
growthInput, 23, 30, 46, 56, 57

impute_forests
(forest_parametrization), 26

impute_forests(), 4, 44

initialize_landscape, 29, 47, 49, 57

landscape_summary, 31

meteoland, 57

modify_forest_structure
(forest_parametrization), 26

modify_soils (soil_parametrization), 42

62

optimization_rock, 32
overland_routing, 34, 49

parse_forestable, 36
plot.fordyn_land (plot.spwb_land), 37
plot.growth_land (plot.spwb_land), 37
plot.spwb_land, 37, 40
plot_summary, 38, 38, 40, 41, 57
plot_variable, 40

plot_variable (extract_variables), 19

sf,3,4,6,8,16-21, 23,27, 29-35, 38, 39,
41-43, 45,48, 51, 55, 59, 60
shinyplot.fordyn_land
(shinyplot.spwb_land), 40
shinyplot.growth_land
(shinyplot.spwb_land), 40
shinyplot.sf, 20, 39
shinyplot.spwb_land, 38, 40
simulation_summary, 39, 41, 57
soil, 20, 23, 30, 32, 44, 46, 56
soil_parametrization, 42
SpatRaster, 6, 19, 27, 28, 34, 3840, 42, 43,
45,51
SpatVector, 27, 28, 42, 43
SpParamsMED, 4, 8, 16, 19, 23, 28, 30, 33, 39,
46, 51, 56, 59
spwb, 29, 41, 54, 57
spwb_day, 44, 47, 49, 51-53, 56, 58, 59
spwb_land, 13, 15, 18, 38—40, 44, 51-53, 60
spwb_land_day, 49, 51
spwb_spatial, 17, 30, 31, 33, 39,41, 46, 48,
49, 51, 54, 59, 60
spwb_spatial_day, 30, 31, 57, 58, 60
spwbInput, 23, 30, 46, 56, 57
stand_basalArea, 28
summary . fordyn, 24
summary. forest, 20, 32
summary.growth_land (spwb_land), 44
summary . spwb, 41, 56
summary . spwb_land (spwb_land), 44

update_landscape, 31,48, 57, 60
utils_rockOptimization, 33

INDEX

	add_forests
	add_topography
	check_inputs
	create_fire_regime
	create_management_scenario
	defaultPrescriptionsBySpecies
	default_dispersal_control
	default_volume_function
	default_watershed_control
	dispersal
	example_ifn
	example_watershed
	extract_variables
	fire_regime_instance
	fordyn_scenario
	forest_parametrization
	initialize_landscape
	landscape_summary
	optimization_rock
	overland_routing
	parse_forestable
	plot.spwb_land
	plot_summary
	shinyplot.sf
	shinyplot.spwb_land
	simulation_summary
	soil_parametrization
	spwb_land
	spwb_land_day
	spwb_spatial
	spwb_spatial_day
	update_landscape
	Index

