Package ‘graphsim’

May 13, 2025
Type Package

Title Simulate Expression Data from 'igraph' Networks
Version 1.0.4

Date 2025-05-02

Description Functions to develop simulated continuous data (e.g., gene expression) from a sigma co-
variance matrix derived from a graph structure in 'igraph’ objects. Intended to extend 'mvt-
norm' to take 'igraph' structures rather than sigma matrices as input. This allows the use of simu-
lated data that correctly accounts for pathway relationships and correlations. This al-
lows the use of simulated data that correctly accounts for pathway relationships and correla-
tions. Here we present a versatile statistical framework to simulate correlated gene expres-
sion data from biological pathways, by sampling from a multivariate normal distribution de-
rived from a graph structure. This package allows the simulation of biological path-
ways from a graph structure based on a statistical model of gene expression. For example meth-
ods to infer biological pathways and gene regulatory networks from gene expres-
sion data can be tested on simulated datasets using this framework. This also allows for path-
way structures to be considered as a confounding variable when simulating gene expres-
sion data to test the performance of genomic analyses.

License GPL-3
URL https://github.com/TomKellyGenetics/graphsim/

BugReports https://github.com/TomKellyGenetics/graphsim/issues/
Depends R (>=2.10)
Imports gplots, igraph, mvtnorm, matrixcalc, Matrix, graphics

Suggests devtools, knitr (>= 1.5), markdown, prettydoc, R.rsp,
rmarkdown, testthat, scales, vdiffr

LazyData TRUE
RoxygenNote 7.3.2
Encoding UTF-8
VignetteBuilder R.rsp

NeedsCompilation no

https://github.com/TomKellyGenetics/graphsim/
https://github.com/TomKellyGenetics/graphsim/issues/

2 graphsim-package

Author S. Thomas Kelly [aut, cre],
Michael A. Black [aut, ths],
Robrecht Cannoodt [ctb],
Jason Cory Brunson [ctb]

Maintainer S. Thomas Kelly <tomkellygenetics@gmail.com>
Repository CRAN
Date/Publication 2025-05-12 22:10:02 UTC

Contents
graphsim-package L 2
GENETate_eXPIeSSION v v v v v v e e e e e e e e e e e e e e e e 11
make_adjmatrix 16
make _commonlink L e 17
make_diStance e e e e e 19
make_laplaciano 21
make_Sigma e e e e e 23
make_State e e e 27
Pi3K_AKT graph e 29
Pi3K_graph 30
plot_directed 31
RAF_MAP graph e 33
TGFBeta_Smad_graph e 34

Index 35

graphsim-package The graphsim package
Description

graphsim is a package to simulate normalised expression data from networks for biological path-
ways using ‘igraph’ objects and multivariate normal distributions.

Details

This package provides functions to develop simulated continuous data (e.g., gene expression) from
a Sigma (X)) covariance matrix derived from a graph structure in ‘igraph’ objects. Intended to
extend ‘mvtnorm’ to take ’igraph’ structures rather than sigma matrices as input. This allows the
use of simulated data that correctly accounts for pathway relationships and correlations. Here we
present a versatile statistical framework to simulate correlated gene expression data from biological
pathways, by sampling from a multivariate normal distribution derived from a graph structure. This
package allows the simulation of biologicalpathways from a graph structure based on a statistical
model of gene expression, such as simulation of expression profiles that of log-transformed and
normalised data from microarray and RNA-Seq data.

graphsim-package 3

Introduction

This package enables the generation of simulated gene expression datasets containing pathway
relationships from a known underlying network. These simulated datasets can be used to evaluate
various bioinformatics methodologies, including statistical and network inference procedures.

These are computed by 1) resolving inhibitory states to derive a consistent matrix of positive and
negative edges, 2) inferring relationships between nodes from paths in the graph, 3) weighting these
in a Sigma (%) covariance matrix and 4) using this to sample a multivariate normal distribution.

Getting Started

The generate_expression function is a wrapper around all necessary functions to give a final
simulated dataset.

Here we set up an example graph object using the igraph package.

library("igraph")

graph_structure_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"),c("D", "E"),
C(”D”, ”F”)’ C(HF”, ”GH), C(”FH’ HIH)’ C(HHH’ HIH))

graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)

Then we can call generate_expression to return the simulated data based on the relationships
defined in the graph structure. Various options are available to fine-tune this.

expr <- generate_expression(100, graph_structure,

cor = 0.8,
mean = 0,

sd =1,

comm = FALSE,
dist = TRUE,

absolute = FALSE,
laplacian = FALSE)

Here we can see the final result. The graph structure defines the covariance matrix used by rmvnorm
to generate a multivariate distribution.

dim(expr)

library("gplots”)
heatmap.2(expr,

scale = "none",
trace = "none”,
col = bluered(50),
colsep = 1:4,

rowsep = 1:4)

This dataset consists of 9 rows (one for each vertex or gene) in the graph and 100 columns (one for
each sample or observation).

Input with an adjacency matrix is available using the generate_expression_mat function.

4 graphsim-package

Creating Input Data

Graph structures can be passed directly from the igraph package. Using this package, you can
create an ‘igraph’ class object.

> class(graph_structure)
[1]1 "igraph"

> graph_structure
IGRAPH ba7fa2f DN-- 9 8 --
+ attr: name (v/c)
+ edges from ba7fa2f (vertex names):
[1] A->C B->C C->D D->E D->F F->G F->I H->I

This ‘igraph’ object class can be passed directly to generate_expression shown above and inter-
nal functions described below: make_sigma_mat_graph, make_sigma_mat_dist_graph, make_distance_graph,
and make_state_matrix.

The ‘graphsim’ package also supports various matrix formats and has functions to handle these.
The following functions will compute matrices from an ‘igraph’ object class:

* make_adjmatrix_graph to derive the adjacency matrix for a graph structure.

* make_commonlink_graph to derive the ‘common link’ matrix for a graph structure of mutu-
ally shared neighbours.

* make_laplacian_graph to derive the Laplacian matrix for a graph structure.
The following functions will compute matrices from an adjacency matrix:

* make_commonlink_adjmat to derive the ‘common link’ matrix for a graph structure of mutu-
ally shared neighbours.

* make_laplacian_adjmat to derive the Laplacian matrix for a graph structure.
We provide some pre-generate pathways from Reactoem database for testing and demonstrations:

e RAF_MAP_graph for the interactions in the “RAF/MAP kinase” cascade (17 vertices and 121
edges).

* Pi3K_graph for the phosphoinositide-3-kinase cascade (35 vertices and 251 edges).

* Pi3K_AKT_graph for the phosphoinositide-3-kinase activation of Protein kinase B pathway
“PI3K/AKT activation” (275 vertices and 21106 edges).

e TGFBeta_Smad_graph for the TGF-f receptor signaling activates SMADs pathway (32 ver-
tices and 173 edges).

Please note that demonstrations on larger graph objects. These can be called directly from the
pakage:

> graphsim: :Pi3K_graph
IGRAPH 21437e3 DN-- 35 251 --
+ attr: name (v/c)
+ edges from 21437e3 (vertex names):

graphsim-package 5

[1] AKT1->AKT2 AKT1->AKT3 AKT1->CASP9 AKT1->CASP9

[5] AKT1->CASP9 AKT1->FOX01 AKT1->FOX01 AKT1->FOXO1

[9] AKT1->FOX03 AKT1->FOX03 AKT1->FOX03 AKT1->F0X04

[13] AKT1->FOX04 AKT1->FOX04 AKT1->GSK3B AKT1->GSK3B
[17] AKT1->GSK3B AKT1->NOST AKT1->NOS2 AKT1->NOS3

[21] AKT1->PDPK1 AKT2->AKT3 AKT2->CASP9 AKT2->CASP9
[25] AKT2->CASP9 AKT2->FOX01 AKT2->FOX01 AKT2->FOXO1
[29] AKT2->FOX03 AKT2->FOX03 AKT2->FOX03 AKT2->FOX04
+ ... omitted several edges

+ ... omitted several edges

They can also be imported into R:

data(Pi3K_graph)

You can assign them to your local environment by calling with from the package:
graph_object <- identity(Pi3K_graph)

You can also change the object class directly from the package:

library("igraph")
Pi3K_adjmat <- as_adjacency_matrix(Pi3K_graph)

Pi3K_AKT_graph and TGFBeta_Smad_graph contain graph edge attributes for the ‘state’ parameter
described below.

> TGFBeta_Smad_graph
IGRAPH f3eac@4 DN-- 32 173 --
+ attr: name (v/c), state (e/n)
+ edges from f3eac@4 (vertex names):
[1] BAMBI ->SMAD7 BAMBI ->TGFB1 BAMBI ->TGFBR1 BAMBI ->TGFBR2
[5] CBL ->NEDD8 CBL ->NEDD8 CBL ->TGFBR2 CBL ->TGFBR2
[9] CBL ->UBE2M CBL ->UBE2M FKBP1A->TGFB1 FKBP1A->TGFBR1
[13] FKBP1A->TGFBR2 FURIN ->TGFB1 FURIN ->TGFB1 MTMR4 ->SMAD2
[17] MTMR4 ->SMAD2 MTMR4 ->SMAD3 MTMR4 ->SMAD3 NEDD4L->RPS27A
[21] NEDD4L->SMAD7 NEDD4L->SMURF1 NEDD4L->SMURF2 NEDD4L->TGFB1
[25] NEDD4L->TGFBR1 NEDD4L->TGFBR2 NEDD4L->UBA52 NEDD4L->UBB
[29] NEDD4L->UBC NEDD8 ->TGFBR2 NEDD8 ->UBE2M PMEPA1->SMAD2
+ ... omitted several edges

> E(TGFBeta_Smad_graph)$state
(fJ222217111111111111111111111111111

[321 2222222222222222222222222222222
631 2111111111111 11111T1T17171111111111
[941 11 12222222222222222222222222222
[125J11111111111T11711111111111T1T111111
[(156]J]111111111222222111

6 graphsim-package

> states <- E(TGFBeta_Smad_graph)$state
> table(states)

states

1 2

103 70

Internal Functions

The following functions are used by generate_expression to compute a simulated dataset. They
can be called separately to summarise the steps used to compute the final data matrix or for trou-
bleshooting.

e make_sigma_mat_adjmat, make_sigma_mat_comm, make_sigma_mat_laplacian, and make_sigma_mat_graph
will compute a Sigma (X)) covariance matrix from an adjacency matrix, common link matrix,
Laplacian matrix, or an ‘igraph’ object. There are computed as above and passed to rmvnorm.

¢ make_distance_adjmat, make_distance_comm, make_distance_laplacian, and make_distance_graph
will compute a distance matrix of relationships from an adjacency matrix, common link ma-
trix, Laplacian matrix, or an ‘igraph’ object. There are computed as above and passed to
make_sigma.

* make_state_matrix will compute a “state matrix” resolving positive and negative correla-
tions from a vector of edge properties. This is called by make_sigma and generate_expression
to ensure that the signs of correlations are consistent.

Examining Step-by-Step

These internal functions can be called to compute steps of the simulation procedure and examine
the results.

1. first we create a graph structure and define the input parameters

library("igraph")

graph_structure_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"),c("D", "E"),
c("D", "F"), c("F", "G"), c("F", "I"), c("H", "I"))

graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)

#sample size

data.n <- 100

#data distributions

data.cor <- 0.75

data.mean <- 3

data.sd <- 1.5

#inhibition states

edge_states <- c(1, 1, -1, -1, 1, 1, 1, 1)

2. examine the relationships between the genes.

Here we can see which nodes share an edge:

graphsim-package 7

> adjacency_matrix <- make_adjmatrix_graph(graph_structure)

> adjacency_matrix

ACBDEFGIH
AQO10000000©0
C101100000
B01000000O0
D010011000
E0O00100000
FOooo1001180
GOOOOO1000
1000001001
HoQo0o000O010

Here we define a geometrically decreasing series of relationships between genes based on distance
by paths in the graph:

> relationship_matrix <- make_distance_graph(graph_structure, absolute = FALSE)
> relationship_matrix

A C B D E F G I H
A 1.00000000 0.20000000 0.10000000 0.10000000 0.06666667 0.06666667 0.05000000 0.05000000 0.04000000
C 0.20000000 1.00000000 0.20000000 0.20000000 0.10000000 0.10000000 0.06666667 0.06666667 0.05000000
B 0.10000000 0.20000000 1.00000000 @.10000000 0.06666667 0.06666667 0.05000000 0.05000000 0.04000000
D 0.10000000 0.20000000 0.10000000 1.00000000 @.20000000 0.20000000 0.10000000 0.10000000 0.06666667
E 0.06666667 0.10000000 0.06666667 0.20000000 1.00000000 0.10000000 0.06666667 0.06666667 ©.05000000
F 0.06666667 0.10000000 0.06666667 0.20000000 @.10000000 1.00000000 0.20000000 0.20000000 0.10000000
G 0.05000000 0.06666667 0.05000000 0.10000000 0.06666667 0.20000000 1.00000000 0.10000000 0.06666667
1 0.05000000 0.06666667 0.05000000 0.10000000 0.06666667 0.20000000 0.10000000 1.00000000 0.20000000
H 0.04000000 0.05000000 0.04000000 0.06666667 0.05000000 0.10000000 0.06666667 0.20000000 1.00000000

Here we can see the resolved edge states through paths in the adjacency matrix:

> names(edge_states) <- apply(graph_structure_edges, 1, paste, collapse = "-")
> edge_states
A-C B-C C-D D-E D-F F-G F-I H-I
1T 1 -1 -1 1 1 1 1
> state_matrix <- make_state_matrix(graph_structure, state = edge_states)
> state_matrix
A CBDZETF GTIH
T 1T 1-1 1-1-1-1-1
T 1 1-1 1-1-1-1-1
T 1 1-1 1-1-1-1-1
-1 1 1 1 1
1T-1-1-1-1
1T 1 1 1

I I
_
I
—_
|
—_
—_
I
—_

T HO TMmOWO >
1
—
1
—
1
—-

I
—_

1
—_

1
—_
_
I
—_

1T 1 1
1T 1 1
1T 1 1

I
—_
I
—_
1
—_
_

graphsim-package

3. define a Sigma (X) covariance matrix

Here we can see that the signs match the state_matrix and the covariance is based on the relationship_matrix
weighted by the correlation (cor) and standard deviation (sd) parameters.

Note that where sd = 1, the diagonals will be 1 and the off-diagonal terms will be correlations.

> sigma_matrix <- make_sigma_mat_dist_graph(
+ graph_structure,
+ state = edge_states,
+ cor = data.cor,
+ sd = data.sd,
+ absolute = FALSE
+)
> sigma_matrix

A C B D E F G I H
2.250000 1.687500 0.843750 -0.84375 0.562500 -0.56250 -0.421875 -0.421875 -0.337500
1.687500 2.250000 1.687500 -1.68750 0.843750 -0.84375 -0.562500 -0.562500 -0.421875
0.843750 1.687500 2.250000 -0.84375 0.562500 -0.56250 -0.421875 -0.421875 -0.337500
-0.843750 -1.687500 -0.843750 2.25000 -1.687500 1.68750 0.843750 ©.843750 0.562500
0.562500 0.843750 ©.562500 -1.68750 2.250000 -0.84375 -0.562500 -0.562500 -0.421875
-0.562500 -0.843750 -0.562500 1.68750 -0.843750 2.25000 1.687500 1.687500 0.843750
-0.421875 -0.562500 -0.421875 0.84375 -0.562500 1.68750 2.250000 0.843750 0.562500
-0.421875 -0.562500 -0.421875 0.84375 -0.562500 1.68750 0.843750 2.250000 1.687500
-0.337500 -0.421875 -0.337500 0.56250 -0.421875 0.84375 0.562500 1.687500 2.250000

T HO TMOWmO >

4. generate an expression dataset using this sigma matrix

We use generate_expression to compute and expression dataset, simulated using these parame-
ters:

> expression_data <- generate_expression(
+ n = data.n,

+ graph_structure,

+ state = edge_states,
+ cor = data.cor,

+ mean = data.mean,

+ sd = data.sd,

+ comm = FALSE,

+ dist = FALSE,

+ absolute = FALSE,

+ laplacian = FALSE
+)

> dim(expression_data)

[1] 9 100

Here we also compute the final observed correlations in the simulated dataset:

> cor_data <- cor(t(expression_data))
> dim(cor_data)
[1]1 9 9

These functions are demonstrated in more detail in the main vignette.

https://CRAN.R-project.org/package=graphsim/vignettes/simulate_expression.html

graphsim-package 9

Data Visualization

Heatmaps can be used from the gplots package to display these simulated datasets.

library("gplots")
heatmap.2(adjacency_matrix, scale = "none"”, trace = "none”,
col = colorpanel(50, "white”, "black"), key = FALSE)

heatmap.2(relationship_matrix, scale = "none”, trace = "none",
col = colorpanel(50, "white", "red"))

heatmap.2(state_matrix, scale = "none"”, trace = "none”,
col = colorpanel(5@, "royalblue”, "palevioletred"”),
colsep = 1:1length(V(graph_structure)),
rowsep = 1:length(V(graph_structure)))

heatmap.2(sigma_matrix, scale = "none"”, trace = "none”,
col = colorpanel(50, "royalblue”, "white", "palevioletred”),
colsep = 1:1length(V(graph_structure)),
rowsep = 1:length(V(graph_structure)))

heatmap.2(expression_data, scale = "none", trace = "none",
col = colorpanel(50, "royalblue”, "white", "palevioletred”),
colsep = 1:length(V(graph_structure)),
rowsep = 1:length(V(graph_structure)))

heatmap.2(cor_data, scale = "none”, trace = "none”,
col = colorpanel(50, "royalblue”, "white", "palevioletred”),
colsep = 1:length(V(graph_structure)),
rowsep = 1:length(V(graph_structure)))

In particular we can see here that the expected correlations show by the sigma_matrix are similar
to the observed correlations in the cor_data.

Graph Visualization

The ‘graphsim’ package comes with a built-in plotting function to display graph objects.

graph_structure_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"),c("D", "E"),
c("D", "F"), c("F", "G"), c("F", "I"), c("H", "I"))

graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)

plot_directed(graph_structure, layout = layout.kamada.kawai)

This supports the ‘state’ parameter to display activating relationships (with positive correlations)
and inhibiting or repressive relationships (with negative correlations).

edge_states <- c(1, 1, -1, -1, 1, -1, 1, -1)
graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)
plot_directed(graph_structure, state = edge_states,

10 graphsim-package

col.arrow = c("darkgreen”, "red")[edge_states / 2 + 1.5]
layout = layout.kamada.kawai)

These states can also be passed from the ‘state’ edge attribute of the graph object.

graph_pathway <- identity(TGFBeta_Smad_graph)
edge_properties <- E(graph_pathway)$state
plot_directed(graph_pathway,
col.arrow = c(alpha(”"navyblue”, 0.25),
alpha("red”, 0.25))[edge_properties],
fill.node = c("lightblue"),
layout = layout.kamada.kawai)

This plotting function is demonstrated in more detail in the plots_directed.Rmd plotting vignette.

Further information

The graphsim package is published in the Journal of Open Source Software. See the paper here for
more details: doi:10.21105/joss.02161

The graphsim GitHub repository is here: TomKellyGenetics/graphsim You can find the develop-
ment version and submit an issue if you have questions or comments.

Citation
To cite package "graphsim’ in publications use:

Kelly, S.T. and Black, M.A. (2020). graphsim: An R package for simulating gene expression
data from graph structures of biological pathways. Journal of Open Source Software, 5(51), 2161,
doi:10.21105/joss.02161

A BibTeX entry for LaTeX users is:

@article{Kelly2020joss02161,
doi = {10.21105/jo0ss.02161},
year = {2020},
publisher = {The Open Journal},
volume = {5},
number = {51},
pages = {21613},
author = {S. Thomas Kelly and Michael A. Black},

title = {graphsim: An R package for simulating gene expression data from graph structures of biologic

journal = {Journal of Open Source Software}

}

Author(s)

Maintainer: Tom Kelly <tom.kelly@riken. jp>
Authors:

https://doi.org/10.21105/joss.02161
https://github.com/TomKellyGenetics/graphsim
https://github.com/TomKellyGenetics/graphsim/issues/new/choose
https://doi.org/10.21105/joss.02161

generate_expression 11

¢ Tom Kelly (RIKEN IMS) ORCID)
* Mik Black (Otago University) (ORCID)

Reviewers:

* Cory Brunson (UConn) (ORCID)
* Robrecht Cannoodt (Ghent University) (ORCID)

Editor: Mark Jensen (Frederick National Laboratory for Cancer Research)

See Also

Publication at Journal of Open Source Software:

* doi:10.21105/joss.02161

GitHub repository:

* https://github.com/TomKellyGenetics/graphsim/

Report bugs:

e https://github.com/TomKellyGenetics/graphsim/issues

Contributions:

* https://github.com/TomKellyGenetics/graphsim/blob/master/CONTRIBUTING.md

generate_expression Generate Simulated Expression

Description

Compute simulated continuous expression data from a graph network structure. Requires an igraph

pathway structure and a matrix of states (1 for activating and -1 for inhibiting) for link signed corre-

lations, from a vector of edge states to a signed adjacency matrix for use in generate_expression.

Uses graph structure to pass a sigma covariance matrix from make_sigma_mat_graph or make_sigma_mat_dist_graph
on to rmvnorm. By default data is generated with a mean of 0 and standard deviation of 1 for each

gene (with correlations between derived from the graph structure).

https://orcid.org/0000-0003-3904-6690
https://orcid.org/0000-0003-1174-6054
https://orcid.org/0000-0003-3126-9494
https://orcid.org/0000-0003-3641-729X
https://doi.org/10.21105/joss.02161
https://github.com/TomKellyGenetics/graphsim/
https://github.com/TomKellyGenetics/graphsim/issues
https://github.com/TomKellyGenetics/graphsim/blob/master/CONTRIBUTING.md

12

Usage

generate_expression

generate_expression(

n,

graph,
state = N
cor = 0.8
mean Q,
sd =1,
comm FA
dist = FA

I =1

ULL

’
’

LSE,
LSE,

absolute = FALSE,
= FALSE

laplacian

)

generate_expression_mat(

FA
dist FA
absolute

Arguments

n
graph
state

cor

mean

sd

LSE,
LSE,

= FALSE,
laplacian = FALSE

number of observations (simulated samples).
An igraph object. May must be directed if states are used.

numeric vector. Vector of length E(graph). Sign used to calculate state ma-
trix, may be an integer state or inferred directly from expected correlations for
each edge. May be applied a scalar across all edges or as a vector for each
edge respectively. May also be entered as text for "activating” or "inhibiting" or
as integers for activating (0,1) or inhibiting (-1,2). Compatible with inputs for
plot_directed. Also takes a pre-computed state matrix from make_state if
applied to the same graph multiple times.

numeric. Simulated maximum correlation/covariance of two adjacent nodes.
Default to 0.8.

mean value of each simulated gene. Defaults to 0. May be entered as a scalar
applying to all genes or a vector with a separate value for each.

standard deviations of each gene. Defaults to 1. May be entered as a scalar
applying to all genes or a vector with a separate value for each.

comm, absolute, laplacian

logical. Parameters for Sigma matrix generation. Passed on to make_sigma or
make_sigma.

generate_expression 13

dist logical. Whether a graph distance make_sigma_mat_graph or derived matrix
make_sigma_mat_dist_graphis used to compute the sigma matrix (using make_distance).

mat precomputed adjacency, laplacian, commonlink, or scaled distance matrix (gen-
erated by make_distance).

Value

numeric matrix of simulated data (log-normalised counts)

Author(s)

Tom Kelly <tom.kelly@riken. jp>

See Also

See also make_sigma for computing the Sigma () matrix, make_distance for computing distance
from a graph object, and make_state for resolving inhibiting states.

See also plot_directed for plotting graphs or heatmap. 2 for plotting matrices.
See also make_laplacian, make_commonlink, or make_adjmatrix for computing input matrices.
See also igraph for handling graph objects.

Other graphsim functions: make_adjmatrix, make_commonlink, make_distance, make_laplacian,
make_sigma, make_state, plot_directed()

Other generate simulated expression functions: make_distance, make_sigma, make_state

Examples

construct a synthetic graph module

library("igraph")

graph_test_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test <- graph.edgelist(graph_test_edges, directed = TRUE)

compute a simulated dataset for toy example
n = 100 samples
cor = 0.8 max correlation between samples
absolute = FALSE (geometric distance by default)
test_data <- generate_expression(100, graph_test, cor = 0.8)
##' # visualise matrix
library("gplots")
expression data
heatmap.2(test_data, scale = "none", trace = "none",
col = colorpanel(50, "blue”, "white", "red"))
correlations
heatmap.2(cor(t(test_data)), scale = "none”, trace = "none",
col = colorpanel(50, "white", "red"))
expected correlations (\egn{\Sigma})
sigma_matrix <- make_sigma_mat_graph(graph_test, cor = 0.8)
heatmap.2(make_sigma_mat_graph(graph_test, cor = 0.8),
scale = "none"”, trace = "none”,
col = colorpanel(50, "white", "red"))

14

generate_expression

compute adjacency matrix for toy example

adjacency_matrix <- make_adjmatrix_graph(graph_test)

generate simulated data from adjacency matrix input

test_data <- generate_expression_mat(100, adjacency_matrix, cor = 0.8)

compute a simulated dataset for toy example
n = 100 samples
cor = 0.8 max correlation between samples
absolute = TRUE (arithmetic distance)
test_data <- generate_expression(100, graph_test, cor = 0.8, absolute = TRUE)
##' # visualise matrix
library("gplots”)
expression data
heatmap.2(test_data, scale = "none"”, trace = "none",
col = colorpanel(50, "blue”, "white", "red"))
correlations
heatmap.2(cor(t(test_data)),
scale = "none"”, trace = "none”,
col = colorpanel(50, "white", "red"))
expected correlations (\egn{\Sigma})
sigma_matrix <- make_sigma_mat_graph(graph_test, cor = 0.8)
heatmap.2(make_sigma_mat_graph(graph_test, cor = 0.8),
scale = "none”, trace = "none”,
col = colorpanel(50, "white", "red"))

construct a synthetic graph network

graph_structure_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"), c("D", "E"),
c("D", "E"y, c("F", "G"y, c("F", "I"), c("H", "I"))

graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)

compute a simulated dataset for toy network
n = 250 samples
state = edge_state (properties of each edge)
cor = 0.95 max correlation between samples
absolute = FALSE (geometric distance by default)
edge_state <- c(1, 1, -1, 1, 1, 1, 1, -1)
structure_data <- generate_expression(250, graph_structure,
state = edge_state, cor = 0.95)

##' # visualise matrix
library("gplots")
expression data
heatmap.2(structure_data, scale = "none”, trace = "none”,

col = colorpanel(50, "blue", "white", "red"))
correlations
heatmap.2(cor(t(structure_data)), scale = "none"”, trace = "none”,

col = colorpanel(50, "blue", "white", "red"))
expected correlations (\eqgn{\Sigma})
sigma_matrix <- make_sigma_mat_graph(graph_structure,

state = edge_state, cor = 0.8)
heatmap.2(make_sigma_mat_graph(graph_structure,
state = edge_state, cor = 0.8),
scale = "none"”, trace = "none”,

generate_expression 15

col = colorpanel(50, "blue”, "white", "red"))

compute adjacency matrix for toy network

graph_structure_adjacency_matrix <- make_adjmatrix_graph(graph_structure)

define states for for each edge

edge_state <- c(1, 1, -1, 1, 1, 1, 1, -1)

generate simulated data from adjacency matrix input

structure_data <- generate_expression_mat(250, graph_structure_adjacency_matrix,
state = edge_state, cor = 0.8)

compute a simulated dataset for toy network

n = 1000 samples

state = TGFBeta_Smad_state (properties of each edge)
cor = 0.75 max correlation between samples

absolute = FALSE (geometric distance by default)

compute states directly from graph attributes for TGF-\egn{\Beta} pathway
TGFBeta_Smad_state <- E(TGFBeta_Smad_graph)$state
table(TGFBeta_Smad_state)

generate simulated data
TGFBeta_Smad_data <- generate_expression(1000, TGFBeta_Smad_graph, cor = 0.75)
##' # visualise matrix
library("gplots")
expression data
heatmap.2(TGFBeta_Smad_data, scale = "none”, trace = "none”,
col = colorpanel(50, "blue”, "white", "red"))
correlations
heatmap.2(cor(t(TGFBeta_Smad_data)), scale = "none"”, trace = "none",
dendrogram = "none"”, Rowv = FALSE, Colv = FALSE,
col = colorpanel(50, "blue", "white", "red"))
expected correlations (\eqgn{\Sigma})
sigma_matrix <- make_sigma_mat_dist_graph(TGFBeta_Smad_graph, cor = 0.75)
heatmap.2(make_sigma_mat_dist_graph(TGFBeta_Smad_graph, cor = 0.75),
scale = "none”, trace = "none”,
dendrogram = "none"”, Rowv = FALSE, Colv = FALSE,
col = colorpanel(50, "blue", "white", "red"))

generate simulated data (absolute distance and shared edges)
TGFBeta_Smad_data <- generate_expression(1000, TGFBeta_Smad_graph,
cor = 0.75, absolute = TRUE, comm = TRUE)

##' # visualise matrix
library("gplots")
expression data
heatmap.2(TGFBeta_Smad_data, scale = "none”, trace = "none",

col = colorpanel(50, "blue", "white”, "red"))
correlations
heatmap.2(cor(t(TGFBeta_Smad_data)), scale = "none"”, trace = "none”,

dendrogram = "none”, Rowv = FALSE, Colv = FALSE,

col = colorpanel(50, "blue", "white", "red"))
expected correlations (\egn{\Sigma})
sigma_matrix <- make_sigma_mat_graph(TGFBeta_Smad_graph,

cor = @.75, comm = TRUE)

heatmap.2(make_sigma_mat_graph(TGFBeta_Smad_graph, cor = .75, comm = TRUE),

16 make_adjmatrix

scale = "none”, trace = "none”,
dendrogram = "none”, Rowv = FALSE, Colv = FALSE,
col = colorpanel(50, "blue", "white", "red"))

make_adjmatrix Generate Adjacency Matrix

Description

Compute the adjacency matrix of a (directed) igraph structure, preserving node/column/row names
(and direction).

Usage

make_adjmatrix_graph(graph, directed = FALSE)

Arguments

graph An igraph object. May be directed or weighted.

directed logical. Whether directed information is passed to the adjacency matrix.
Value

An adjacency matrix compatible with generating an expression matrix

Author(s)

Tom Kelly <tom.kelly@riken. jp>

See Also

See also generate_expression for computing the simulated data, make_sigma for computing the
Sigma (X)) matrix, make_distance for computing distance from a graph object, make_state for
resolving inhibiting states.

See also plot_directed for plotting graphs or heatmap. 2 for plotting matrices.
See also make_laplacian or make_commonlink for computing input matrices.
See also igraph for handling graph objects.

Other graphsim functions: generate_expression(), make_commonlink, make_distance, make_laplacian,
make_sigma, make_state, plot_directed()

Other graph conversion functions: make_commonlink, make_laplacian

make_commonlink 17

Examples

construct a synthetic graph module

library("igraph")

graph_test_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test <- graph.edgelist(graph_test_edges, directed = TRUE)

compute adjacency matrix for toy example
adjacency_matrix <- make_adjmatrix_graph(graph_test)
adjacency_matrix

construct a synthetic graph network

graph_structure_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"), c("D", "E"),
c("D", "F"), c("F", "G"), c("F", "I"), c("H", "I"))

graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)

compute adjacency matrix for toy network

graph_structure_adjacency_matrix <- make_adjmatrix_graph(graph_structure)

graph_structure_adjacency_matrix

import graph from package for reactome pathway
TGF-\egn{\Beta} receptor signaling activates SMADs (R-HSA-2173789)
TGFBeta_Smad_graph <- identity(TGFBeta_Smad_graph)

compute adjacency matrix for TGF-\eqn{\Beta} receptor signaling activates SMADs
TGFBeta_Smad_adjacency_matrix <- make_adjmatrix_graph(TGFBeta_Smad_graph)
dim(TGFBeta_Smad_adjacency_matrix)

TGFBeta_Smad_adjacency_matrix[1:12, 1:12]

make_commonlink Generate Common Link Matrix

Description

Compute the common link matrix of a (directed) igraph structure, preserving node / column / row
names (and direction). We can compute the common links between each pair of nodes. This shows
how many nodes are mutually connected to both of the nodes in the matrix (how many paths of
length 2 exist between them).

Usage

make_commonlink_adjmat(adj_mat)

make_commonlink_graph(graph, directed = FALSE)

Arguments
adj_mat precomputed adjacency matrix.
graph An igraph object. May be directed or weighted.

directed logical. Whether directed information is passed to the adjacency matrix.

18 make_commonlink

Value

An integer matrix of number of links shared between nodes

Author(s)

Tom Kelly <tom.kelly@riken. jp>

See Also

See also generate_expression for computing the simulated data, make_sigma for computing the
Sigma (X)) matrix, make_distance for computing distance from a graph object, make_state for
resolving inhibiting states.

See also plot_directed for plotting graphs or heatmap. 2 for plotting matrices.
See also make_laplacian or make_adjmatrix for computing input matrices.
See also igraph for handling graph objects.

Other graphsim functions: generate_expression(), make_adjmatrix, make_distance, make_laplacian,
make_sigma, make_state, plot_directed()

Other graph conversion functions: make_adjmatrix, make_laplacian

Examples

construct a synthetic graph module

library("igraph")

graph_test_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test <- graph.edgelist(graph_test_edges, directed = TRUE)

compute adjacency matrix for toy example

adjacency_matrix <- make_adjmatrix_graph(graph_test)

compute nodes with shared edges to a 3rd node
common_link_matrix <- make_commonlink_adjmat(adjacency_matrix)
common_link_matrix

construct a synthetic graph network
graph_structure_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"), c("D", "E"),
c("D", "F"), c("F", "G"), c("F", "I"), c("H", "I"))
graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)
compute adjacency matrix for toy network
graph_structure_adjacency_matrix <- make_adjmatrix_graph(graph_structure)
compute nodes with shared edges to a 3rd node
graph_structure_common_link_matrix <- make_commonlink_adjmat(graph_structure_adjacency_matrix)
graph_structure_common_link_matrix

import graph from package for reactome pathway

TGF-\egn{\Beta} receptor signaling activates SMADs (R-HSA-2173789)

TGFBeta_Smad_graph <- identity(TGFBeta_Smad_graph)

compute nodes with shared edges to a 3rd node

TGFBeta_Smad_adjacency_matrix <- make_adjmatrix_graph(TGFBeta_Smad_graph)
TGFBeta_Smad_common_link_matrix <- make_commonlink_adjmat(TGFBeta_Smad_adjacency_matrix)
we show summary statistics as the graph is large

make_distance 19

dim(TGFBeta_Smad_common_link_matrix)

TGFBeta_Smad_common_link_matrix[1:12, 1:12]

visualise matrix

library("gplots”)

heatmap.2(TGFBeta_Smad_common_link_matrix, scale = "none"”, trace = "none"”,
col = colorpanel(50, "white"”, "red"))

make_distance Generate Distance Matrix

Description

Compute the distance matrix of using shortest paths of a (directed) igraph structure, normalising
by the diameter of the network, preserving node/column/row names (and direction). This is used to
compute the simulatted data for generate_expression (when dist = TRUE) by make_sigma_mat_dist_graph.

Usage

make_distance_graph(graph, directed = FALSE, absolute = FALSE)
make_distance_adjmat(mat, directed = FALSE, absolute = FALSE)
make_distance_comm(mat, directed = FALSE, absolute = FALSE)

make_distance_laplacian(mat, directed = FALSE, absolute = FALSE)

Arguments
graph An igraph object. May be directed or weighted.
directed logical. Whether directed information is passed to the distance matrix.
absolute logical. Whether distances are scaled as the absolute difference from the diam-
eter (maximum possible). Defaults to TRUE. The alternative is to calculate a
relative difference from the diameter for a geometric decay in distance.
mat precomputed adjacency or commonlink matrix.
Value

A numeric matrix of values in the range [0, 1] where higher values are closer in the network

Author(s)

Tom Kelly <tom.kelly@riken. jp>

20

make_distance

See Also

See also generate_expression for computing the simulated data, make_sigma for computing the
Sigma (X)) matrix, make_state for resolving inhibiting states.

See also plot_directed for plotting graphs or heatmap. 2 for plotting matrices.
See also make_laplacian, make_commonlink, or make_adjmatrix for computing input matrices.
See also igraph for handling graph objects.

Other graphsim functions: generate_expression(), make_adjmatrix, make_commonlink, make_laplacian,
make_sigma, make_state, plot_directed()

Other generate simulated expression functions: generate_expression(), make_sigma, make_state

Examples

construct a synthetic graph module

library("igraph")

graph_test_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test <- graph.edgelist(graph_test_edges, directed = TRUE)

compute adjacency matrix for toy example

adjacency_matrix <- make_adjmatrix_graph(graph_test)

compute nodes with relationships between nodes (geometrically decreasing by default)
distance_matrix_geom <- make_distance_adjmat(adjacency_matrix)

distance_matrix_geom

compute nodes with relationships between nodes (arithmetically decreasing)
distance_matrix_abs <- make_distance_adjmat(adjacency_matrix, absolute = TRUE)
distance_matrix_abs

compute Laplacian matrix

laplacian_matrix <- make_laplacian_graph(graph_test)

compute distances from Laplacian

distance_matrix <- make_distance_laplacian(laplacian_matrix)

construct a synthetic graph network
graph_structure_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"), c("D", "E"),
c("D", "F"), c("F", "G"), c("F", "I"), c("H", "I"))
graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)
compute adjacency matrix for toy network
graph_structure_adjacency_matrix <- make_adjmatrix_graph(graph_structure)
compute nodes with relationships between nodes (geometrically decreasing by default)
graph_structure_distance_matrix_geom <- make_distance_adjmat(graph_structure_adjacency_matrix)
graph_structure_distance_matrix_geom
visualise matrix
library("gplots")
heatmap.2(graph_structure_distance_matrix_geom, scale = "none"”, trace = "none",
col = colorpanel(50, "white", "red"))
compute nodes with relationships between nodes (arithmetically decreasing)
graph_structure_distance_matrix_abs <- make_distance_adjmat(graph_structure_adjacency_matrix,
absolute = TRUE)
graph_structure_distance_matrix_abs
visualise matrix

make_laplacian 21

library("gplots")
heatmap.2(graph_structure_distance_matrix_abs,
scale = "none”, trace = "none”,
col = colorpanel(50, "white", "red"))

import graph from package for reactome pathway
TGF-\egn{\Beta} receptor signaling activates SMADs (R-HSA-2173789)
TGFBeta_Smad_graph <- identity(TGFBeta_Smad_graph)
compute nodes with relationships between nodes (geometrically decreasing by default)
TGFBeta_Smad_adjacency_matrix <- make_adjmatrix_graph(TGFBeta_Smad_graph)
TGFBeta_Smad_distance_matrix_geom <- make_distance_adjmat(TGFBeta_Smad_adjacency_matrix)
visualise matrix
library("gplots”)
heatmap.2(TGFBeta_Smad_distance_matrix_geom, scale = "none"”, trace = "none",

col = colorpanel(50, "white”, "red"))
compute nodes with relationships between nodes (arithmetically decreasing)
TGFBeta_Smad_distance_matrix_abs <- make_distance_adjmat(TGFBeta_Smad_adjacency_matrix,

absolute = TRUE)

visualise matrix
library("gplots")
heatmap.2(TGFBeta_Smad_distance_matrix_abs, scale = "none"”, trace = "none”,

col = colorpanel(50, "white", "red"))

make_laplacian Generate Laplacian Matrix

Description

Compute the Laplacian matrix of a (directed) igraph structure, preserving node/column/row names
(and direction).

Usage

make_laplacian_adjmat(mat, directed = FALSE)

make_laplacian_graph(graph, directed = FALSE)

Arguments
mat precomputed adjacency matrix.
directed logical. Whether directed information is passed to the Laplacian matrix.
graph An igraph object. May be directed or weighted.

Value

An Laplacian matrix compatible with generating an expression matrix

22 make_laplacian

Author(s)

Tom Kelly <tom.kelly@riken. jp>

See Also

See also generate_expression for computing the simulated data, make_sigma for computing the
Sigma (3) matrix, make_distance for computing distance from a graph object, make_state for
resolving inhibiting states.

See also plot_directed for plotting graphs or heatmap. 2 for plotting matrices.
See also make_commonlink or make_adjmatrix for computing input matrices.
See also igraph for handling graph objects.

Other graphsim functions: generate_expression(), make_adjmatrix, make_commonlink, make_distance,
make_sigma, make_state, plot_directed()

Other graph conversion functions: make_adjmatrix, make_commonlink

Examples

construct a synthetic graph module

library("igraph")

graph_test_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test <- graph.edgelist(graph_test_edges, directed = TRUE)
compute Laplacian matrix for toy example

laplacian_matrix <- make_laplacian_graph(graph_test)
laplacian_matrix

compute Laplacian matrix from adjacency matrix
adjacency_matrix <- make_adjmatrix_graph(graph_test)
laplacian_matrix <- make_laplacian_adjmat(adjacency_matrix)
laplacian_matrix

construct a synthetic graph network

graph_structure_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"), c("D", "E"),
c("D", "F"), c("F", "G"), c("F", "I"), c("H", "I"))

graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)

compute Laplacian matrix for toy network

graph_structure_laplacian_matrix <- make_laplacian_graph(graph_structure)

graph_structure_laplacian_matrix

import graph from package for reactome pathway
TGF-\egn{\Beta} receptor signaling activates SMADs (R-HSA-2173789)
TGFBeta_Smad_graph <- identity(TGFBeta_Smad_graph)

compute Laplacian matrix for TGF-\eqn{\Beta} receptor signaling activates SMADs
TGFBeta_Smad_laplacian_matrix <- make_laplacian_graph(TGFBeta_Smad_graph)
dim(TGFBeta_Smad_laplacian_matrix)

TGFBeta_Smad_laplacian_matrix[1:12, 1:12]

visualise matrix

library("gplots")

heatmap.2(TGFBeta_Smad_laplacian_matrix, scale = "none”, trace = "none”,

make_sigma 23

col = colorpanel(50, "blue”, "white", "red"))

make_sigma Generate Sigma (%) Matrix

Description

Compute the Sigma (3) matrix from an igraph structure or pre-computed matrix. These are com-
patible with rmvnorm and generate_expression. By default data is generated with a mean of 0
and standard deviation of 1 for each gene (with correlations between derived from the graph struc-
ture). Thus where the Sigma (3) matrix has diagonals of 1 (for the variance of each gene) then the
symmetric non-diagonal terms (for covariance) determine the correlations between each gene in the
output from generate_expression

Usage

make_sigma_mat_adjmat(mat, state = NULL, cor = 0.8, sd = 1)
make_sigma_mat_comm(mat, state = NULL, cor = 0.8, sd = 1)
make_sigma_mat_laplacian(mat, state = NULL, cor = 0.8, sd = 1)

make_sigma_mat_graph(

graph,

state = NULL,
cor = 0.8,

sd =1,

comm = FALSE,

laplacian = FALSE,
directed = FALSE

)
make_sigma_mat_dist_adjmat(
mat,
state = NULL,
cor = 0.8,
sd =1,
absolute = FALSE
)
make_sigma_mat_dist_graph(
graph,
state = NULL,
cor = 0.8,
sd =1,

absolute = FALSE

24 make_sigma

Arguments

mat precomputed adjacency, laplacian, commonlink, or scaled distance matrix (gen-
erated by make_distance).

state numeric vector. Vector of length E(graph). Sign used to calculate state ma-
trix, may be an integer state or inferred directly from expected correlations for
each edge. May be applied a scalar across all edges or as a vector for each
edge respectively. May also be entered as text for "activating” or "inhibiting" or
as integers for activating (0,1) or inhibiting (-1,2). Compatible with inputs for
plot_directed. Also takes a pre-computed state matrix from make_state if
applied to the same graph multiple times.

cor numeric. Simulated maximum correlation/covariance of two adjacent nodes.
Default to 0.8.

sd standard deviations of each gene. Defaults to 1. May be entered as a scalar
applying to all genes or a vector with a separate value for each.

graph An igraph object. May be directed or weighted.

comm logical whether a common link matrix is used to compute sigma. Defaults to
FALSE (adjacency matrix).

laplacian logical whether a Laplacian matrix is used to compute sigma. Defaults to FALSE
(adjacency matrix).

directed logical. Whether directed information is passed to the distance matrix.

absolute logical. Whether distances are scaled as the absolute difference from the diam-
eter (maximum possible). Defaults to TRUE. The alternative is to calculate a
relative difference from the diameter for a geometric decay in distance.

Value

a numeric covariance matrix of values in the range [-1, 1]

Author(s)

Tom Kelly <tom.kelly@riken. jp>

See Also

See also generate_expression for computing the simulated data, make_distance for computing
distance from a graph object, and make_state for resolving inhibiting states.

See also plot_directed for plotting graphs or heatmap. 2 for plotting matrices.
See also make_laplacian, make_commonlink, or make_adjmatrix for computing input matrices.
See also igraph for handling graph objects.

Other graphsim functions: generate_expression(), make_adjmatrix, make_commonlink, make_distance,
make_laplacian, make_state, plot_directed()

Other generate simulated expression functions: generate_expression(), make_distance, make_state

make_sigma 25

Examples

construct a synthetic graph module

library("igraph")

graph_test_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test <- graph.edgelist(graph_test_edges, directed = TRUE)
compute sigma (\egn{\Sigma}) matrix for toy example
sigma_matrix <- make_sigma_mat_graph(graph_test, cor = 0.8)
sigma_matrix

compute sigma (\egn{\Sigma}) matrix from adjacency matrix for toy example
adjacency_matrix <- make_adjmatrix_graph(graph_test)

sigma_matrix <- make_sigma_mat_adjmat(adjacency_matrix, cor = 0.8)
sigma_matrix

compute sigma (\egn{\Sigma}) matrix from shared edges for toy example
common_link_matrix <- make_commonlink_graph(graph_test)

sigma_matrix <- make_sigma_mat_comm(common_link_matrix, cor = @.8)
sigma_matrix

compute sigma (\egn{\Sigma}) matrix from Laplacian for toy example
laplacian_matrix <- make_laplacian_graph(graph_test)

sigma_matrix <- make_sigma_mat_laplacian(laplacian_matrix, cor = 0.8)
sigma_matrix

compute sigma (\egn{\Sigma}) matrix from distance matrix for toy example
distance_matrix <- make_distance_graph(graph_test, absolute = FALSE)
sigma_matrix <- make_sigma_mat_dist_adjmat(distance_matrix, cor = 0.8)
sigma_matrix

compute sigma (\egn{\Sigma}) matrix from geometric distance directly from toy example graph
sigma_matrix <- make_sigma_mat_dist_graph(graph_test, cor = 0.8)
sigma_matrix

compute sigma (\egn{\Sigma}) matrix from absolute distance directly from toy example graph
sigma_matrix <- make_sigma_mat_dist_graph(graph_test, cor = 0.8, absolute = TRUE)
sigma_matrix

compute sigma (\eqgn{\Sigma}) matrix from geometric distance with sd = 2
sigma_matrix <- make_sigma_mat_dist_graph(graph_test, cor = 0.8, sd = 2)
sigma_matrix

construct a synthetic graph network

graph_structure_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"), c("D", "E"),
C(HDH’ HF”)’ C(”FII’ HGII)’ C(HFH’ IIIH)’ C(”H”, IIIH))

graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)

compute sigma (\egn{\Sigma}) matrix from geometric distance directly from synthetic graph network
sigma_matrix_graph_structure <- make_sigma_mat_dist_graph(graph_structure,

cor = 0.8, absolute = FALSE)
sigma_matrix_graph_structure
visualise matrix
library("gplots")

make_sigma

heatmap.2(sigma_matrix_graph_structure, scale = "none"”, trace = "none",
col = colorpanel(50, "white", "red"))

compute sigma (\egn{\Sigma}) matrix from geometric distance directly from

synthetic graph network with inhibitions

edge_state <- c(1, 1, -1, 1, 1, 1, 1, -1)

pass edge state as a parameter

sigma_matrix_graph_structure_inhib <- make_sigma_mat_dist_graph(graph_structure,
state = edge_state,
cor = 0.8,
absolute = FALSE)

sigma_matrix_graph_structure_inhib

visualise matrix

library("gplots")

heatmap.2(sigma_matrix_graph_structure_inhib, scale = "none", trace = "none",

col = colorpanel(50, "blue”, "white", "red"))

compute sigma (\egn{\Sigma}) matrix from geometric distance directly from

synthetic graph network with inhibitions

E(graph_structure)$state <- c(1, 1, -1, 1, 1, 1, 1, -1)

pass edge state as a graph attribute

sigma_matrix_graph_structure_inhib <- make_sigma_mat_dist_graph(graph_structure,
cor = 0.8,
absolute = FALSE)

sigma_matrix_graph_structure_inhib

visualise matrix

library("gplots")

heatmap.2(sigma_matrix_graph_structure_inhib, scale = "none"”, trace = "none”,

col = colorpanel(50, "blue", "white", "red"))

import graph from package for reactome pathway
TGF-\egn{\Beta} receptor signaling activates SMADs (R-HSA-2173789)
TGFBeta_Smad_graph <- identity(TGFBeta_Smad_graph)

compute sigma (\egn{\Sigma}) matrix from geometric distance directly from TGF-\egn{\Beta} pathway

TFGBeta_Smad_state <- E(TGFBeta_Smad_graph)$state

table(TFGBeta_Smad_state)

states are edge attributes

sigma_matrix_TFGBeta_Smad_inhib <- make_sigma_mat_dist_graph(TGFBeta_Smad_graph,
cor = 0.8,
absolute = FALSE)

visualise matrix

library("gplots")

heatmap.2(sigma_matrix_TFGBeta_Smad_inhib, scale = "none"”, trace = "none",

col = colorpanel(50, "blue", "white”, "red"))

compute sigma (\egn{\Sigma}) matrix from geometric distance directly from TGF-\egn{\Beta} pathway
TGFBeta_Smad_graph <- remove.edge.attribute(TGFBeta_Smad_graph, "state")
compute with states removed (all negative)
sigma_matrix_TFGBeta_Smad <- make_sigma_mat_dist_graph(TGFBeta_Smad_graph,
state = -1,
cor = 0.8,
absolute = FALSE)

make_state 27

visualise matrix
library("gplots")
heatmap.2(sigma_matrix_TFGBeta_Smad, scale = "none"”, trace = "none",
col = colorpanel(50, "white", "red"))
compute with states removed (all positive)
sigma_matrix_TFGBeta_Smad <- make_sigma_mat_dist_graph(TGFBeta_Smad_graph,
state = 1,
cor = 0.8,
absolute = FALSE)
visualise matrix
library("gplots")
heatmap.2(sigma_matrix_TFGBeta_Smad, scale = "none"”, trace = "none",
col = colorpanel(50, "white", "red"))

#restore edge attributes
TGFBeta_Smad_graph <- set_edge_attr(TGFBeta_Smad_graph, "state”,
value = TFGBeta_Smad_state)
TFGBeta_Smad_state <- E(TGFBeta_Smad_graph)$state
states are edge attributes
sigma_matrix_TFGBeta_Smad_inhib <- make_sigma_mat_dist_graph(TGFBeta_Smad_graph,

cor = 0.8,
absolute = FALSE)

visualise matrix

library("gplots”)

heatmap.2(sigma_matrix_TFGBeta_Smad_inhib, scale = "none”, trace = "none",

col = colorpanel(50, "blue", "white", "red"))

make_state Make State Matrix

Description

Functions to compute the matrix of states (1 for activating and -1 for inhibiting) for link signed cor-
relations, from a vector of edge states to a signed adjacency matrix for use in generate_expression.
This resolves edge states to determine the sign of all correlations between nodes in a network. These
are computed interally for sigma matrices as required.

Usage

make_state_matrix(graph, state = NULL)

Arguments
graph An igraph object. May be directed or weighted as long as a shortest path can
be computed.
state numeric vector. Vector of length E(graph). Sign used to calculate state ma-

trix, may be an integer state or inferred directly from expected correlations for
each edge. May be applied a scalar across all edges or as a vector for each

28 make_state

edge respectively. May also be entered as text for "activating” or "inhibiting" or
as integers for activating (0,1) or inhibiting (-1,2). Compatible with inputs for
plot_directed. Vector input is supported either directly calling the function
with a value for each edge in E(graph) or as an edge "attribute” in the igraph
object (using E(g) $state <- states).

Value

An integer matrix indicating the resolved state (activating or inhibiting for each edge or path be-
tween nodes)

Author(s)

Tom Kelly <tom.kelly@riken. jp>

See Also

See also generate_expression for computing the simulated data, make_sigma for computing the
Sigma (3) matrix, and make_distance for computing distance from a graph object.

See also plot_directed for plotting graphs or heatmap. 2 for plotting matrices.
See also make_laplacian, make_commonlink, or make_adjmatrix for computing input matrices.
See also igraph for handling graph objects.

Other graphsim functions: generate_expression(), make_adjmatrix, make_commonlink, make_distance,
make_laplacian, make_sigma, plot_directed()

Other generate simulated expression functions: generate_expression(), make_distance, make_sigma

Examples

construct a synthetic graph module

library("igraph")

graph_test_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test <- graph.edgelist(graph_test_edges, directed = TRUE)

compute state matrix for toy example
state_matrix <- make_state_matrix(graph_test)

construct a synthetic graph network

graph_structure_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"), c("D", "E"),
cC"D”, "E"y, c("F", "G"y, c("F", "I"), c("H", "I"))

graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)

compute state matrix for toy network
graph_structure_state_matrix <- make_state_matrix(graph_structure)
graph_structure_state_matrix

compute state matrix for toy network with inhibitions

edge_state <- c(1, 1, -1, 1, 1, 1, 1, -1)

edge states are a variable

graph_structure_state_matrix <- make_state_matrix(graph_structure, state = edge_state)
graph_structure_state_matrix

Pi3K_AKT_graph 29

compute state matrix for toy network with inhibitions
E(graph_structure)$state <- c(1, 1, -1, 1, 1, 1, 1, -1)

edge states are a graph attribute

graph_structure_state_matrix <- make_state_matrix(graph_structure)
graph_structure_state_matrix

library("igraph")

graph_test_edges <- rbind(c("A", "B"), c("B", "C"), c("B", "D"))
graph_test <- graph.edgelist(graph_test_edges, directed = TRUE)
state_matrix <- make_state_matrix(graph_test)

import graph from package for reactome pathway
TGF-\egn{\Beta} receptor signaling activates SMADs (R-HSA-2173789)
TGFBeta_Smad_graph <- identity(TGFBeta_Smad_graph)

compute sigma (\egn{\Sigma}) matrix from geometric distance directly from TGF-\egn{\Beta} pathway
TFGBeta_Smad_state <- E(TGFBeta_Smad_graph)$state
table(TFGBeta_Smad_state)
states are edge attributes
state_matrix_TFGBeta_Smad <- make_state_matrix(TGFBeta_Smad_graph)
visualise matrix
library("gplots")
heatmap.2(state_matrix_TFGBeta_Smad , scale = "none”, trace = "none”,
dendrogram = "none"”, Rowv = FALSE, Colv = FALSE,
col = colorpanel(50, "blue", "white", "red"))

compare the states to the sign of expected correlations in the sigma matrix
sigma_matrix_TFGBeta_Smad_inhib <- make_sigma_mat_dist_graph(TGFBeta_Smad_graph,
cor = 0.8,
absolute = FALSE)
visualise matrix
heatmap.2(sigma_matrix_TFGBeta_Smad_inhib,
scale = "none"”, trace = "none”,
dendrogram = "none"”, Rowv = FALSE, Colv = FALSE,
col = colorpanel(50, "blue", "white”, "red"))

compare the states to the sign of final correlations in the simulated matrix
TFGBeta_Smad_data <- generate_expression(100, TGFBeta_Smad_graph, cor = 0.8)
heatmap.2(cor(t(TFGBeta_Smad_data)), scale = "none"”, trace = "none”,
dendrogram = "none”, Rowv = FALSE, Colv = FALSE,
col = colorpanel(50, "blue", "white”, "red"))

Pi3K_AKT_graph PI3K/AKT activation

30 Pi3K_graph

Description

Reactome pathway R-HSA-198203 for the interactions in the phosphoinositide-3-kinase activation
of Protein kinase B (PKB), also known as Akt

Usage

Pi3K_AKT_graph

Format
A graph object of 275 vertices and 21106 edges:
V gene symbol (human)

E directed relationship for pathway

state type of relationship (activating or inhibiting) as edge attribute

Source

PathwayCommons https://reactome.org/content/detail/R-HSA-198203

Pi3K_graph PI3K Cascade

Description

Reactome pathway R-HSA-109704 for the interactions in the phosphoinositide-3-kinase cascade

Usage

Pi3K_graph

Format
A graph object of 35 vertices and 251 edges:
V gene symbol (human)

E directed relationship for pathway

state type of relationship (activating or inhibiting) as edge attribute

Source

PathwayCommons https://reactome.org/content/detail/R-HSA-109704

https://reactome.org/content/detail/R-HSA-198203
https://reactome.org/content/detail/R-HSA-109704

plot_directed 31

plot_directed Extensions to igraph for Customising plots

Description

Functions to plot_directed or graph structures including customised colours, layout, states, arrows.
Uses graphs functions as an extension of igraph. Designed for plotting directed graphs.

Usage
plot_directed(
X,
state = NULL,

labels = NULL,

layout = layout.fruchterman.reingold,
cex.node = 1,
cex.label = 0.75,
cex.arrow = 1.25,
cex.main = 0.8,

cex.sub = 0.8,
arrow_clip = 0.075,

pch = 21,

border.node = "grey33",
fill.node = "grey66",

col.label = NULL,
col.arrow = NULL,
main = NULL,

sub = NULL,

xlab = "",

ylab = "",

frame.plot = F,

)
Arguments

X An igraph object. Must be directed with known states.

state character or integer. Defaults to "activating” if no "state" edge attribute found.
May be applied a scalar across all edges or as a vector for each edge respec-
tively. Accepts non-integer values for weighted edges provided that the sign
indicates whether links are activating (positive) or inhibiting (negative). May
also be entered as text for "activating" or "inhibiting" or as integers for acti-
vating (0,1) or inhibiting (-1,2). Compatible with inputs for make_state_matrix
or generate_expression_graph in the graphsim package https://github.com/
TomKellyGenetics/graphsim. Vector input is supported

labels character vector. For labels to plot nodes. Defaults to vertex names in graph

"nn

object. Entering "" would yield unlabelled nodes.

https://github.com/TomKellyGenetics/graphsim
https://github.com/TomKellyGenetics/graphsim

32 plot_directed

layout function. Layout function as selected from layout_. Defaults to layout.fruchterman.reingold.
Alternatives include layout.kamada.kawai, layout.reingold.tilford, layout.sugiyama,
and layout.davidson.harel. A 2-column layout matrix giving X and y co-ordinates
of each node can be given.

cex.node numeric. Defaults to 1.

cex. label numeric. Defaults to 0.75.

cex.arrow numeric Defaults to 1.25. May take a scalar applied to all edges or a vector with
values for each edge respectively.

cex.main numeric. Defaults to 0.8.

cex.sub numeric. Defaults to 0.8.

arrow_clip numeric Defaults to 0.075 (7.5%).

pch parameter passed to plot. Defaults to 21. Recommends using selecting be-

tween 21-25 to preserve colour behaviour. Otherwise entire node will inherit
border.node as it’s colour, in which case a light colour is recommended to see

labels.
border.node character. Specifies the colours of node border passed to plot. Defaults to
grey33. Applies to whole node shape if pch has only one colour.
fill.node character. Specfies the colours of node fill passed to plot. Defaults to grey66.
col.label character. Specfies the colours of node labels passed to plot. Defaults to par("fg").
col.arrow character. Specfies the colours of arrows passed to plot. Defaults to par("fg").
May take a scalar applied to all edges or a vector with colours for each edge
respectively.

main, sub, xlab, ylab
Plotting parameters to specify plot titles or axes labels

frame.plot logical. Whether to frame plot with a box. Defaults to FALSE.

arguments passed to plot

Value

base R graphics

Author(s)

Tom Kelly <tom.kelly@riken. jp>

See Also

See also generate_expression for computing the simulated data, make_sigma for computing the
Sigma (32) matrix, make_distance for computing distance from a graph object, make_state for
resolving inhibiting states.

See also heatmap. 2 for plotting matrices.
See also make_laplacian, make_commonlink, or make_adjmatrix for computing input matrices.
See also igraph for handling graph objects and plot.igraph for base R plot methods.

Other graphsim functions: generate_expression(), make_adjmatrix, make_commonlink, make_distance,
make_laplacian, make_sigma, make_state

RAF_MAP _graph 33

Examples

generate example graphs

library("igraph")

graph_structure_edges <- rbind(c("A", "C"), c("B", "C"), c("C", "D"), c("D", "E"),
c("D", "F"), c("F", "G"), c("F", "I"), c("H", "I"))

graph_structure <- graph.edgelist(graph_structure_edges, directed = TRUE)

plots with igraph defaults
plot(graph_structure, layout = layout.fruchterman.reingold)
plot(graph_structure, layout = layout.kamada.kawai)

plots with scalar states
plot_directed(graph_structure, state="activating")
plot_directed(graph_structure, state="inhibiting")

plots with vector states

plot_directed(graph_structure, state = c(1, 1, 1, 1, -1, 1, 1, 1))
plot_directed(graph_structure, state = c(1, 1, -1, 1, -1, 1, -1, 1))
plot_directed(graph_structure, state = c(1, 1, -1, 1, 1, 1, 1, -1))

plots states with graph attributes
E(graph_structure)$state <- 1
plot_directed(graph_structure)

E(graph_structure)$state <- c(1, 1, -1, 1, -1, 1, -1, 1)
plot_directed(graph_structure)

plot layout customised
plot_directed(graph_structure, state=c(1, 1, -1, 1, -1, 1, -1, 1), layout = layout.kamada.kawai)

RAF_MAP_graph # RAF/MAP kinase cascade

Description

Reactome pathway R-HSA-5673001 for the interactions in the RAF/MAP kinase cascade

Usage

RAF_MAP_graph

Format

A graph object of 17 vertices and 121 edges:

V gene symbol (human)
E directed relationship for pathway

34 TGFBeta_Smad_graph

Source

PathwayCommons https://reactome.org/content/detail/R-HSA-5673001

TGFBeta_Smad_graph TGF-(3 receptor signaling activates SMADs

Description
Reactome pathway R-HSA-2173789 for the interactions in the TGF-§ receptor signaling activates
SMADs

Usage
TGFBeta_Smad_graph

Format
A graph object of 32 vertices and 173 edges:

V gene symbol (human)
E directed relationship for pathway

state type of relationship (activating or inhibiting) as edge attribute

Source

PathwayCommons https://reactome.org/content/detail/R-HSA-2173789

https://reactome.org/content/detail/R-HSA-5673001
https://reactome.org/content/detail/R-HSA-2173789

Index

* Laplacian
make_laplacian, 21

x adjacency
make_adjmatrix, 16
make_distance, 19

+ datasets
Pi3K_AKT_graph, 29
Pi3K_graph, 30
RAF_MAP_graph, 33
TGFBeta_Smad_graph, 34

* generate simulated expression functions
generate_expression, 11
make_distance, 19
make_sigma, 23
make_state, 27

* graph conversion functions
make_adjmatrix, 16
make_commonlink, 17
make_laplacian, 21

x graph plotting functions
plot_directed, 31

* graphsim functions
generate_expression, 11
make_adjmatrix, 16
make_commonlink, 17
make_distance, 19
make_laplacian, 21
make_sigma, 23
make_state, 27
plot_directed, 31

+ graph
generate_expression, 11
make_adjmatrix, 16
make_commonlink, 17
make_distance, 19
make_laplacian, 21
make_sigma, 23
make_state, 27
plot_directed, 31

35

* igraph
generate_expression, 11
make_adjmatrix, 16
make_commonlink, 17
make_distance, 19
make_laplacian, 21
make_sigma, 23
make_state, 27
plot_directed, 31

* mvtnorm
generate_expression, 11
make_sigma, 23
make_state, 27

* neighbourhood
make_commonlink, 17

* network
generate_expression, 11
make_adjmatrix, 16
make_commonlink, 17
make_distance, 19
make_laplacian, 21
make_sigma, 23
make_state, 27

* plot
plot_directed, 31

* simulation
generate_expression, 11
make_state, 27

generate_expression, 3, 4,6, 11,11, 16,
18-20, 22-24, 27, 28, 32

generate_expression_mat, 3

generate_expression_mat
(generate_expression), 11

gplots, 9

graphsim (graphsim-package), 2

graphsim-package, 2

heatmap.2, 13, 16, 18, 20, 22, 24, 28, 32

36

igraph, 3, 4, 11-13, 16-24, 27, 28, 31, 32

layout_, 32

make_adjmatrix, 13, 16, 18, 20, 22, 24, 28, 32
make_adjmatrix_graph, 4
make_adjmatrix_graph (make_adjmatrix),
16
make_commonlink, 13, 16, 17, 20, 22, 24, 28,
32
make_commonlink_adjmat, 4
make_commonlink_adjmat
(make_commonlink), 17
make_commonlink_graph, 4
make_commonlink_graph
(make_commonlink), 17
make_distance, 13, 16, 18,19, 22, 24, 28, 32
make_distance_adjmat, 6
make_distance_adjmat (make_distance), 19
make_distance_comm, 6
make_distance_comm (make_distance), 19
make_distance_graph, 4, 6
make_distance_graph (make_distance), 19
make_distance_laplacian, 6
make_distance_laplacian
(make_distance), 19
make_laplacian, 13, 16, 18, 20, 21, 24, 28, 32
make_laplacian_adjmat, 4
make_laplacian_adjmat (make_laplacian),
21
make_laplacian_graph, 4
make_laplacian_graph (make_laplacian),
21
make_relationship (make_distance), 19
make_sigma, 6, 12, 13, 16, 18, 20, 22, 23, 28,
32
make_sigma_mat_adjmat, 6
make_sigma_mat_adjmat (make_sigma), 23
make_sigma_mat_comm, 6
make_sigma_mat_comm (make_sigma), 23
make_sigma_mat_dist_adjmat
(make_sigma), 23
make_sigma_mat_dist_graph, 4, 11, 13, 19
make_sigma_mat_dist_graph (make_sigma),
23
make_sigma_mat_graph, 4,6, 11, 13
make_sigma_mat_graph (make_sigma), 23
make_sigma_mat_laplacian, 6

INDEX

make_sigma_mat_laplacian (make_sigma),
23
make_state, 12, 13, 16, 18, 20, 22, 24,27, 32
make_state_matrix, 4, 6
make_state_matrix (make_state), 27

Pi3K_AKT_graph, 4, 5,29

Pi3K_graph, 4, 30

plot, 32

plot.directed (plot_directed), 31

plot.igraph, 32

plot_directed, 12, 13, 16, 18, 20, 22, 24, 28,
31

RAF_MAP_graph, 33
rmvnorm, 3, 6, 11,23

TGFBeta_Smad_graph, 4, 5, 34

	graphsim-package
	generate_expression
	make_adjmatrix
	make_commonlink
	make_distance
	make_laplacian
	make_sigma
	make_state
	Pi3K_AKT_graph
	Pi3K_graph
	plot_directed
	RAF_MAP_graph
	TGFBeta_Smad_graph
	Index

