
Package ‘funspace’
June 17, 2024

Type Package

Title Creating and Representing Functional Trait Spaces

Version 0.2.2

Description Estimation of functional spaces based on traits of organisms.
The package includes functions to impute missing trait values (with or
without considering phylogenetic information), and to create,
represent and analyse two dimensional functional spaces based on
principal components analysis, other ordination methods, or raw
traits. It also allows for mapping a third variable onto the
functional space. See 'Carmona et al. (2021)'
<doi:10.1038/s41586-021-03871-y>, 'Puglielli et al. (2021)'
<doi:10.1111/nph.16952>, 'Carmona et al. (2021)'
<doi:10.1126/sciadv.abf2675>, 'Carmona et al. (2019)'
<doi:10.1002/ecy.2876> for more information.

License GPL-3

Depends R (>= 2.10)

Imports ade4, ape, ks, mgcv, missForest, MASS, paran, vegan, phytools,
viridis

Suggests testthat (>= 3.0.0)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Config/testthat/edition 3

NeedsCompilation no

Author Carlos P. Carmona [cre] (<https://orcid.org/0000-0001-6935-4913>),
Nicola Pavanetto [aut] (<https://orcid.org/0000-0002-9441-863X>),
Giacomo Puglielli [aut] (<https://orcid.org/0000-0003-0085-4535>)

Maintainer Carlos P. Carmona <perezcarmonacarlos@gmail.com>

Repository CRAN

Date/Publication 2024-06-17 05:00:02 UTC

1

https://doi.org/10.1038/s41586-021-03871-y
https://doi.org/10.1111/nph.16952
https://doi.org/10.1126/sciadv.abf2675
https://doi.org/10.1002/ecy.2876
https://orcid.org/0000-0001-6935-4913
https://orcid.org/0000-0002-9441-863X
https://orcid.org/0000-0003-0085-4535

2 funspace

Contents
funspace . 2
funspaceDim . 4
funspaceGAM . 5
funspaceNull . 6
GSPFF . 8
GSPFF_missing . 9
GSPFF_missing_tax . 9
GSPFF_tax . 10
impute . 11
phylo . 12
plot.funspace . 13
summary.funspace . 16

Index 18

funspace Functional space

Description

Defines the functional structure of a set of species

Usage

funspace(
x,
PCs = c(1, 2),
group.vec = NULL,
fixed.bw = TRUE,
n_divisions = 100,
trait_ranges = NULL,
threshold = 0.999

)

Arguments

x Data to create the functional space. It can be either a PCA object obtained using
the princomp function, a PCoA obtained using the capscale function from the
vegan package, an NMDS generated with the metaMDS or monoMDS functions
from vegan, a TPDs object generated with the TPD package or a matrix or data
frame with at least two columns (representing two dimensions which can be
either traits or ordination scores obtained with other methods).

PCs A vector specifying the Principal Components to be considered (e.g. choosing
PCs = c(1,2) would lead to to consider the first and the second principal com-
ponents). Only applies if x contains a PCA. Defaults to c(1, 2), which selects
the first two principal components.

funspace 3

group.vec An object of class factor specifying the levels of the grouping variable.

fixed.bw Logical indicating whether the same bandwidth that is used in the kde estimation
for the whole dataset should also be used for the kde estimation of individual
groups of observations (fixed.bw = T), or if a different bandwidth has to be
estimated for each group ((fixed.bw = F)). Defaults to TRUE, which makes the
most extreme quantiles of the individual groups to coincide with those of the
global distribution, and allows for more meaningful comparisons of the amount
of functional space occupied by groups (functional richness).

n_divisions The number of equal-length parts in which each principal component should
be divided to calculate the grid in which calculations are based. Higher values
of n_divisions will result in larger computation times, but also more smooth
graphics. Defaults to 100.

trait_ranges A list indicating the range of values that will be considered in the calculations
for each of the considered PCA components. The list should contain the range
(minimum and maximum) of values that will be considered. Each element of
the list corresponds with one PCA component. The order of the components
must be the same as the order provided in PCs. Defaults to NULL, in which case
ranges are automatically calculated to ensure the functional space considered is
sufficiently large to encompass the whole TPD function.

threshold The probability threshold to consider to estimate the TPD function. TPD func-
tions are positive across the whole trait space; threshold defines boundaries
beyond which the TPD function is set to 0 (see Carmona et al. 2016; 2019 for
more information). Defaults to 0.999.

Details

The functional structure of a set of organisms refers to how these organisms are distributed within
a functional space (a space defined by traits). Functional structure can be expressed in probabilistic
terms using trait probability density functions (TPD). TPD functions reflect how densely the organ-
isms occupy the different parts of the functional space, and are implemented in the package TPD
(Carmona et al. 2019).

funspace allows the user to define functional structure in a two-dimensional functional space cre-
ated using a PCA, other ordination methods, or raw traits. The function automatically estimates
the probability of occurrence of trait combinations within the space using kernel density estimation
with unconstrained bandwidth using the functions from the ks R package (Duong, 2007). Contour
lines can be drawn at any quantile of the probability distribution. Colored areas, corresponding to
the target quantiles, visually summarize the probability of occurrence of certain trait combinations
within the trait space.

Value

funspace The function returns an object of class funspace containing characteristics of the func-
tional space and the trait probability distributions. The object includes estimations of functional
richness and functional divergence for all observations taken together (global) and for each individ-
ual group (if groups are provided). The funspace class has specific methods exists for the generic
functions plot and summary.

4 funspaceDim

References

CP Carmona, F de Bello, NWH Mason, J Leps (2019). Trait Probability Density (TPD): measur-
ing functional diversity across scales based on trait probability density with R. Ecology e02876. T
Duong, T., (2007). ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivari-
ate Data in R. J. Stat. Softw. 21(7), 1-16.

Examples

1. Plotting a space based on a PCA
x <- princomp(GSPFF)
funtest <- funspace(x = x, PCs = c(1, 2), threshold = 0.95)
summary(funtest)
plot(funtest, type = "global")

#2. To include groups, let's consider two major families.
We will use two raw traits, ph and sla:
selFam <- c("Pinaceae", "Fabaceae")
selRows <- which(GSPFF_tax$family %in% selFam)
GSPFF_subset <- GSPFF[selRows, c("ph", "sla")]
tax_subset <- droplevels(GSPFF_tax[selRows,])
funtest <- funspace(x = GSPFF_subset, threshold = 0.95, group.vec = tax_subset$family)
summary(funtest)
plot(funtest, type = "global")
plot(funtest, type = "groups", axis.title.x = "Plant height",

axis.title.y = "Specific leaf area",
quant.plot = TRUE, pnt = TRUE, pnt.cex = 0.5,
pnt.col = rgb(0, 1, 1, alpha = 0.2))

funspaceDim Dimensionality of a trait space

Description

Calculating the dimensionality of a functional space based on PCA

Usage

funspaceDim(data)

Arguments

data A data.frame or matrix containing trait data

funspaceGAM 5

Details

funspaceDim allows the user to identify the number of dimensions that are needed to build a trait
space. The identified dimensions are those that minimize redundancy while maximizing the infor-
mation contained in the trait data. The number of significant PCA axes to be retained is determined
by using the paran() function of the R package paran (Dinno, 2018). paran() is based on the
method proposed by Horn (1965), which involves contrasting the eigenvalues produced through
PCAs run on (30 * (number of variables)) random datasets with the same number of variables and
observations as the input dataset. Eigenvalues > 1 are retained in the adjustment.

Value

funspaceDim returns the number of dimensions to be retained. The output is stored and printed out
in the R console as well.

References

Horn, J.L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika
30: 179-185.

Dinno, A. (2018). paran: Horn’s test of principal components/factors. R package version 1.5.2.

Examples

Dimensionality of the GSPFF
funspaceDim(GSPFF)

funspaceGAM Functional space GAM

Description

Mapping response variables in a functional space

Usage

funspaceGAM(y, funspace, family = "gaussian", minObs = 30)

Arguments

y vector including the variable to be mapped inside the functional space. There
must be a correspondence between the elements of y and the observations used
to make the PCA (contained in ’pca.object’), both in the number of elements
and in their order.

funspace An object of class funspace providing the functional space to be considered.
See function funspace

family A family object specifying the distribution and link to use in the gam model.
Defaults to "gaussian". See package mgcv for more details.

6 funspaceNull

minObs minimum number of observations needed in a group to make a model (defaults
to 30).

Details

Different response variables can be mapped onto a functional space. In funspace, we follow the
approach by Carmona et al. (2021), in which a generalized additive model is estimated across the
bidimensional functional space. The resulting models show the predicted values of the response
variable at each position of the portion of the functional space that is defined in the TPD of the
global set of observations or of individual groups.

Value

The function returns an object of class funspace containing the functional space, trait probability
distributions, and the fitted gam models. The funspace class has specific methods exists for the
generic functions plot and summary.

References

CP Carmona, et al. (2021). Erosion of global functional diversity across the tree of life. Science
Advances eabf2675

Examples

1. GAM on a space based on a PCA
x <- princomp(GSPFF)
funtest <- funspace(x = x, PCs = c(1, 2), threshold = 0.95)
y <- abs(x$scores[, 1] * x$scores[, 2]) + rnorm(nrow(GSPFF), mean = 0, sd = 1)
funtestGAM <- funspaceGAM(y = y, funspace = funtest)
plot(funtestGAM, quant.plot = TRUE, quant.col = "grey90")
summary(funtestGAM)

funspaceNull Null models in functional space

Description

Comparing the amount of occupied functional space against null models

Usage

funspaceNull(
funspace,
nrep = 100,
alter = "greater",
null.distribution = "multnorm",
verbose = TRUE

)

funspaceNull 7

Arguments

funspace An object of class funspace

nrep numericThe number of generated null surfaces

alter character. The hypothesis to be tested when comparing the observed trait
space against the null model. Options are ’greater’, ’less’, and ’two-sided’. See
specification of the as.randtest function in the ade4 R package

null.distribution

character. Data distribution for null model building. Available options are
’multnorm’ and ’uniform’ to generate data with a multivariate normal or uniform
distribution, respectively.

verbose logical. Do you want to information about the progress of the null model to
be written to the console?

Details

funspaceNull The function tests for the statistical difference between the size (functional rich-
ness) of the considered TPD, obtained using the funspace function, against a vector of functional
richness values generated using null models (see below) across a user-defined number of iterations.
Two null models are currently available for testing. One generates data with a multivariate normal
distribution, creating a dataset with normally distributed variables having the same mean and co-
variance than the observations used to build the functional space (see Carmona et al. 2021). This
null model returns a theoretical TPD where some trait combinations (those around the mean of the
trait space axes, thus towards the center of the null trait space) are more likely than others (i.e., this
null model resembles an ellipse). The other null model generates a dataset with variables following
a uniform distribution (see null model 1 in Diaz et al. 2016), creating a distribution where all trait
combinations within the range of the original observations are equally possible (i.e., the approxi-
mate shape of this null model is a rectangle). Note that the function does not work for funspace
objects that are based on a TPDs object created using the package TPD

Value

funspaceNull The function returns the list containing all the simulated datasets, the area of the
observed trait space, the mean value of the area for the null model (calculated across iterations),
the p-value of the difference between observed and simulated trait space, as well as a standardized
effect size of the difference between observed trait space and mean null model areas. This output is
reported together with the output of funspace.

References

CP Carmona, et al. (2021). Fine-root traits in the global spectrum of plant form and function.
Nature 597, 683–687 S Diaz, et al. (2016). The global spectrum of plant form and function. Nature
529, 167–171

Examples

1. PCA space, multivariate model (see Carmona et al. 2021, Nature)
x <- princomp(GSPFF)
funtest <- funspace(x = x, PCs = c(1, 2), threshold = 0.95)

8 GSPFF

funtestNull <- funspaceNull(funtest, null.distribution = 'multnorm', nrep = 1000)
summary(funtestNull)

#'# 2. Two raw traits and uniform distribution (see Diaz et al. 2016, Nature)
x <- GSPFF[, c("ph", "sla")]
funtest <- funspace(x = x, threshold = 0.95)
funtestNull <- funspaceNull(funtest, null.distribution = 'uniform', nrep = 1000)
summary(funtestNull)

GSPFF Aboveground traits from the global spectrum of plant form and func-
tion (complete data)

Description

Data on six aboveground traits for 2,630 species with complete trait information. Data was pro-
cessed from the TRY database (https://www.try-db.org/TryWeb/Home.php) and used in the paper
"Fine-root traits in the global spectrum of plant form and function (Carmona et al. 2021, Nature).
The data is available in https://doi.org/10.6084/m9.figshare.13140146. All traits are log10 trans-
formed and scaled.

Usage

GSPFF

Format

‘GSPFF‘ A data frame with 2,630 rows and 6 columns:

la leaf area

ln leaf nitrogen content

ph plant height

sla specific leaf area

ssd specific stem density

sm seed mass ...

Source

<https://doi.org/10.6084/m9.figshare.13140146>

GSPFF_missing 9

GSPFF_missing Aboveground traits from the global spectrum of plant form and func-
tion (incomplete data)

Description

Data on six aboveground traits for 10,746 species with incomplete trait information. Data was pro-
cessed from the TRY database (https://www.try-db.org/TryWeb/Home.php) and used in the paper
"Fine-root traits in the global spectrum of plant form and function (Carmona et al. 2021, Nature).
The data is available in https://doi.org/10.6084/m9.figshare.13140146. Only species with informa-
tion for at least three traits are included. All traits are log10 transformed and scaled.

Usage

GSPFF_missing

Format

‘GSPFF_missing‘ A data frame with 10,746 rows and 6 columns:

la leaf area

ln leaf nitrogen content

ph plant height

sla specific leaf area

ssd specific stem density

sm seed mass ...

Source

<https://doi.org/10.6084/m9.figshare.13140146>

GSPFF_missing_tax Taxonomic information for plants from the global spectrum of plant
form and function (incomplete data)

Description

Taxonomic data for 10,746 species with incomplete trait information (species with at least three
traits).

Usage

GSPFF_missing_tax

10 GSPFF_tax

Format

‘GSPFF_missing_tax‘ A data frame with 10,746 rows and 3 columns:

genus genus to which the species belongs

family family to which the species belongs

order order to which the species belongs ...

Source

<https://doi.org/10.6084/m9.figshare.13140146>

GSPFF_tax Taxonomic information for plants from the global spectrum of plant
form and function (complete data)

Description

Taxonomic data for 2,630 species with complete trait information.

Usage

GSPFF_tax

Format

‘GSPFF_tax‘ A data frame with 2,630 rows and 3 columns:

genus genus to which the species belongs

family family to which the species belongs

order order to which the species belongs ...

Source

<https://doi.org/10.6084/m9.figshare.13140146>

impute 11

impute Imputing Trait Information

Description

Imputing incomplete trait information, with the possibility of using phylogenetic information

Usage

impute(
traits,
phylo = NULL,
addingSpecies = FALSE,
nEigen = 10,
messages = TRUE

)

Arguments

traits A matrix or data.frame containing trait information with missing values. The
rows correspond to observations (generally species) and the columns to the vari-
ables (generally traits). Traits can be continuous and/or categorical. Row names
of the traits object must contain the names of the species. We recommend
writing species name in the format "Genus_species" or "Genus species".

phylo (optional) A phylogenetic tree (an object of class "phylo") containing the evo-
lutionary relationships between species. phylo is used to estimate phylogenetic
eigenvectors that are added to the traits matrix. Not all species in traits need
to be necessarily included in phylo, despite this is highly recommended. Note
that in order to assign phylogenetic information to species reliably, the names in
phylo$tip.label must be exactly the same as row.names(traits), although
not necessarily in the same order. Note that computing cophenetic distances for
very large trees (ca. 30,000 species) can result in memory allocation problems.

addingSpecies Logical, defaults to FALSE. Should species present in the trait matrix but not in
the phylogeny be added to the phylogeny? If TRUE, the phytools::add.species.to.genus
function is used to add species to the root of the genus (in case there are any other
congeneric species in the tree). Note that phytools::add.species.to.genus
has other arguments that provide more flexibility, but those are not considered
here for simplicity; users who want to make use of those options can instead
modify their phylogenetic tree beforehand.

nEigen The number of phylogenetic eigenvectors to be considered. Defaults to 10.

messages Logical, defaults to TRUE. Should the function return messages?

12 phylo

Details

impute imputes trait values in trait matrices with incomplete trait information. It uses the Random
Forest approach implemented in the missForest package. Phylogenetic information can be incor-
porated in the imputation in the form of a phylogenetic tree, from which a number of phylogenetic
eigenvectors are added to the trait matrix.

Value

The function returns a list containing both the original trait data (incomplete) and the imputed trait
data.

Examples

GSPFF_missing dataset includes >10,000 species.
Preparing and imputing this data takes very long time.
Let's select a small random subset:
selectSPS <- 200
set.seed(2)
subset_traits <- GSPFF_missing[sample(1:nrow(GSPFF_missing), selectSPS),]
deleteTips <- setdiff(phylo$tip.label, rownames(subset_traits))
subset_phylo <- ape::drop.tip(phylo, tip = deleteTips)
GSPFF_subset <- impute(traits = subset_traits, phylo = subset_phylo, addingSpecies = TRUE)
pca <- princomp(GSPFF_subset$imputed)
funtest <- funspace(pca)
plot(funtest, pnt = TRUE, pnt.cex = 0.2, arrows = TRUE)
summary(funtest)

phylo Phylogeny for species from the global spectrum of plant form and func-
tion (incomplete data)

Description

Phylogenetic tree including information for 10,746 species with incomplete trait information (species
with at least three traits), contained in GSPFF_missing.

Usage

phylo

Format

‘phylo‘ An object of class "phylo"

plot.funspace 13

plot.funspace Functional space plotting

Description

Takes a funspace object produced by funspace() or funspaceGAM() and plots the trait probability
distribution (TPD) or the map of the response variable (depending of which kind of funspace object
is provided) in a functional space.

Usage

S3 method for class 'funspace'
plot(
x = NULL,
type = "global",
which.group = NULL,
quant.plot = FALSE,
quant = NULL,
quant.lty = 1,
quant.col = "grey30",
quant.lwd = 1,
quant.labels = TRUE,
colors = NULL,
ncolors = 100,
pnt = FALSE,
pnt.pch = 19,
pnt.cex = 0.5,
pnt.col = "grey80",
arrows = FALSE,
arrows.length = 1,
arrows.head = 0.08,
arrows.col = "black",
arrows.label.col = "black",
arrows.label.pos = 1.1,
arrows.label.cex = 1,
axis.title = TRUE,
axis.title.x = NULL,
axis.title.y = NULL,
axis.title.cex = 1,
axis.title.line = 2,
axis.cex = 1,
globalContour = TRUE,
globalContour.quant = NULL,
globalContour.lwd = 3,
globalContour.lty = 1,
globalContour.col = "grey50",
xlim = NULL,

14 plot.funspace

ylim = NULL,
...

)

Arguments

x A funspace object produced by funspace() or funspaceGAM().

type character indicating whether the plots should represent the global distribution of
observations (type = "global"), or be separated by the groups (type = "groups")
provided when the funspace object was created. Defaults to "global". In the
case of funspace objects based on a TPD function created with the TPD package,
only groups are plotted (there is no "global" distribution).

which.group when plotting groups, either a character or a number indicating the name (char-
acter) or position (number) of a single group to be plotted individually.

quant.plot Logical, Default is TRUE. Should contour lines representing quantiles (specified
in quant) be plotted?

quant A vector specifying the quantiles to be plotted (in case quant.plot is set to
TRUE. In case a TPD function is plotted, the quantiles represent the quantiles of
the trait probability density function (lower quantiles indicate areas with higher
probability density). In case a GAM object is plotted, the quantiles of the fitted
response variable are plotted. In case a TPD function is plotted, default quantiles
are 0.99 (or the selected threshold if it is lower), 0.5 and 0.25. In the GAM
alternative, default quantiles are 0.99, 0.5 and 0.25.

quant.lty type of line to be used to represent quantiles. See lty argument in graphics::par().

quant.col Color to be used in the quantile lines. Defaults to "grey30".

quant.lwd Line width to be used in the quantile lines. Defaults to 1.

quant.labels Logical, Default is TRUE. Should labels be added to quantile lines?

colors A vector defining the colors of plotted quantiles in the TPD case. Only two col-
ors need to be specified. The first color is automatically assigned to the highest
quantile in quantiles (e.g. 0.99), the second color is assigned to the lowest
quantile. These colors are then used to automatically generate a gradient from
the greatest to the lowest quantile. Any color is admitted. Default is NULL, in
which case c("yellow", "red") is used in case a trait probability density func-
tion is plotted and to viridis::viridis(5) in the GAM case.

ncolors number of colors to include in the color gradients set by colors. Defaults to
100.

pnt Logical, defaults to FALSE. Should data points be added to the functional space?

pnt.pch Numerical. Graphical parameter to select the type of point to be drawn. Default
is set to 19. See pch argument in graphics::par()..

pnt.cex Numerical. Graphical parameter to set the size of the points. Default is 0.5. See
cex argument in graphics::par().

pnt.col Graphical parameter to set the points color. Default is "grey80".

arrows Logical, defaults to FALSE. In case the functional space is based on a PCA,
should the loadings of the original traits be represented by arrows in the func-
tional space?

plot.funspace 15

arrows.length Numerical. Graphical parameter to set the length of the arrow (see arrows).
Lower values lead to shorter arrows, which can help to make arrows fit within
the represented functional space. Defaults to 1.

arrows.head Numerical. Graphical parameter to set the length of the arrow head (see arrows).
Defaults to 0.08.

arrows.col Graphical parameter to set the arrows color (see arrows). Default is "black".
arrows.label.col

Graphical parameter to set the color of the arrows labels color. Default is
"black".

arrows.label.pos

Numerical. Graphical parameter to set the position of the arrow labels with
respect to the arrow heads. Default is 1.1, which draws arrow labels slightly
beyond the arrow heads. A value of 1 means drawing labels on top of arrow
heads.

arrows.label.cex

Numerical. Graphical parameter to set the size of arrow labels. Defaults to 1.

axis.title Logical. Default is TRUE. Should axes titles be plotted?

axis.title.x Character. The title to be plotted in the x axis if axis.title is set to TRUE. If
not specified, a default axis title is plotted.

axis.title.y Character. The title to be plotted in the y axis if axis.title is set to TRUE. If
not specified, a default axis title is plotted.

axis.title.cex Numerical. Graphical parameter to set the size of the axes titles. Default is 1.
axis.title.line

Numerical. Graphical parameter to set the on which margin line to plot axes
titles. Default is 2.

axis.cex Numerical. Graphical parameter to set the size of the axes annotation. Default
is 1.

globalContour Logical, Default is TRUE. Should a contour line representing the global distri-
bution be plotted when type is set to "groups". Adding a global contour lines
provides a common reference for all groups and makes comparisons easier.

globalContour.quant

A vector specifying the quantiles to be plotted (in case globalContour is set
to TRUE. Defaults to the threshold selected when the provided funspace object
was originally created.

globalContour.lwd

Line width to be used in the global contour lines. Defaults to 3.
globalContour.lty

type of line to be used to represent the global contour lines. See lty argument
in graphics::par(). Defaults to 1 (a continuous line).

globalContour.col

Graphical parameter to set the color of the global contour lines. Default is
"grey50".

xlim the x limits (x1, x2) of the plot.

ylim the y limits (y1, y2) of the plot.

... Other arguments

16 summary.funspace

Details

Produces default plots. If the input object was generated with funspace(), the plot shows a bi-
variate functional trait space displaying trait probability densities (for single or multiple groups). If
the input object was generated with funspaceGAM, the plot shows a heatmap depicting how a target
variable is distributed within the functional trait space (for single or multiple groups).

Value

No return value. This function is called for its side effect: generating plots.

Examples

x <- princomp(GSPFF)
funtest <- funspace(x = x, PCs = c(1, 2), threshold = 0.95)
plot(funtest, type = "global", quant.plot = TRUE, quant.lwd = 2, pnt = TRUE, pnt.cex = 0.1,

pnt.col = rgb(0.1, 0.8, 0.2, alpha = 0.2), arrows = TRUE, arrows.length = 0.7)

summary.funspace Summarizing Functional Spaces

Description

summary method for class funspace"

Usage

S3 method for class 'funspace'
summary(object, ...)

Arguments

object A funspace object produced by funspace(), funspaceGAM(), or funspaceNull().

... Other arguments

Details

Produces default summary. If the input object was generated with funspace(), the summary in-
cludes information about the characteristics of the functional space (particularly if it derives from a
PCA), along with functional diversity indicators (functional richness and functional divergence) for
the whole set of observations and for each group (in case groups are specified). If the input object
was generated with funspaceGAM(), the function returns the summary for the GAM models for the
whole set of observations and individual groups. In the case of funspace objects based on a TPD
object created with the TPD package, only information about groups is provided (since there is no
global distribution). If the input was generated with funspaceNull(), the function returns tests
exploring the difference between the observed functional richness and the null model functional
richness.

summary.funspace 17

Value

No return value. This function is called for its side effect: summarizing objects of class "funspace".

Examples

x <- princomp(GSPFF)
funtest <- funspace(x = x, PCs = c(1, 2), threshold = 0.95)
summary(funtest)

Index

∗ datasets
GSPFF, 8
GSPFF_missing, 9
GSPFF_missing_tax, 9
GSPFF_tax, 10
phylo, 12

funspace, 2
funspaceDim, 4
funspaceGAM, 5
funspaceNull, 6

GSPFF, 8
GSPFF_missing, 9
GSPFF_missing_tax, 9
GSPFF_tax, 10

impute, 11

phylo, 12
plot.funspace, 13

summary.funspace, 16

18

	funspace
	funspaceDim
	funspaceGAM
	funspaceNull
	GSPFF
	GSPFF_missing
	GSPFF_missing_tax
	GSPFF_tax
	impute
	phylo
	plot.funspace
	summary.funspace
	Index

