cycleTrendR: Adaptive Cycle and Trend Analysis for Irregular Time Series

Provides adaptive trend estimation, cycle detection, Fourier harmonic selection, bootstrap confidence intervals, change-point detection, and rolling-origin forecasting. Supports LOESS (Locally Estimated Scatterplot Smoothing), GAM (Generalized Additive Model), and GAMM (Generalized Additive Mixed Model), and automatically handles irregular sampling using the Lomb-Scargle periodogram. Methods implemented in this package are described in Cleveland et al. (1990) <doi:10.2307/2289548>, Wood (2017) <doi:10.1201/9781315370279>, and Scargle (1982) <doi:10.1086/160554>.

Version: 0.3.0
Depends: R (≥ 4.1.0)
Imports: blocklength, fANCOVA, ggplot2, lomb, changepoint, mgcv, nortest, nlme, tseries
Suggests: testthat (≥ 3.0.0), knitr, rmarkdown
Published: 2026-01-26
DOI: 10.32614/CRAN.package.cycleTrendR
Author: Pietro Piu [aut, cre]
Maintainer: Pietro Piu <pietro.piu.si at gmail.com>
License: GPL-3
URL: https://github.com/PietroPiu-labstats/cycleTrendR, https://pietropiu-labstats.github.io/cycleTrendR/
NeedsCompilation: no
Materials: NEWS
CRAN checks: cycleTrendR results

Documentation:

Reference manual: cycleTrendR.html , cycleTrendR.pdf
Vignettes: cycleTrendR-overview (source, R code)
cycleTrendR in practice (source, R code)

Downloads:

Package source: cycleTrendR_0.3.0.tar.gz
Windows binaries: r-devel: cycleTrendR_0.2.0.zip, r-release: cycleTrendR_0.2.0.zip, r-oldrel: cycleTrendR_0.2.0.zip
macOS binaries: r-release (arm64): cycleTrendR_0.3.0.tgz, r-oldrel (arm64): cycleTrendR_0.3.0.tgz, r-release (x86_64): cycleTrendR_0.3.0.tgz, r-oldrel (x86_64): cycleTrendR_0.3.0.tgz
Old sources: cycleTrendR archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=cycleTrendR to link to this page.