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Overview
Package cpfa implements a k-fold cross-validation procedure to predict class labels using component weights
from a single mode of a Parallel Factor Analysis model-1 (Parafac; Harshman, 1970) or a Parallel Factor
Analysis model-2 (Parafac2; Harshman, 1972), which is fit to a three-way or four-way data array. After fitting
a Parafac or Parafac2 model with package multiway via an alternating least squares algorithm (Helwig,
2025), estimated component weights from one mode of this model are passed to one or more classification
methods. For each method, a k-fold cross-validation is conducted to tune classification parameters using
estimated Parafac component weights, optimizing class label prediction. This process is repeated over multiple
train-test splits in order to improve the generalizability of results. Multiple constraint options are available to
impose on any mode of the Parafac model during the estimation step (see Helwig, 2017). Multiple numbers
of components can be considered in the primary package function cpfa. This vignette describes how to use
the cpfa package.

Installation
cpfa can be installed directly from CRAN. Type the following command in an R console: install.packages("cpfa",
repos = "https://cran.r-project.org/"). The argument repos can be modified according to user
preferences. For more options and details, see help(install.packages). In this case, the package cpfa
has been downloaded and installed to the default directories. Users can download the package source at
https://cran.r-project.org/package=cpfa and use Unix commands for installation.

Example 1: Four-way Array with Multiclass Response
We start by using the simulation function simcpfa and examining basic operations and outputs related to
this function.

First, we load the cpfa package:
library(cpfa)

We simulate a four-way array where the fourth mode (i.e., the classification mode) of the simulated array
is related to a response vector, which is also simulated. To generate data, we specify the data-generating
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model as a Parafac2 model via the model argument and specify three components for this model with the
nfac argument. We specify the number of dimensions for the simulated array using the arraydim argument.
However, because a Parafac2 model is used, the function ignores the first element of arraydim and looks
for input provided through the argument pf2num instead. Argument pf2num specifies the number of rows in
each three-way array that exists within each level of the fourth mode of the four-way ragged array being
simulated. As a demonstration, we set pf2num <- rep(c(7, 8, 9), length.out = 100), which specifies
that the number of rows alternates from 7, to 8, to 9, and back to 7, across all 100 levels of the fourth mode
of the simulated array. Note that a useful feature of Parafac2 is that it can be fit to ragged arrays directly,
while maintaining the intrinsic axis property of Parafac (see Harshman and Lundy, 1994).

For these simulated data, we specify that the response vector should have three classes using nclass. Moreover,
we set a target correlation matrix, corrpred, specifying correlations among the columns of the classification
mode’s weight matrix (i.e., the fourth mode, in this case). We also specify correlations, contained in corresp,
between columns of the classification mode’s weight matrix and the response vector. Input modes sets the
number of modes in the array; and we use meanpred to specify the target means for the columns of the
classification mode weight matrix. Finally, onreps specifies the number of classification mode weight matrices
to generate while nreps specifies, for any one classification mode weight matrix, the number of response
vectors to generate (see help(simcpfa) for additional details of the simulation procedure). Then, in R we
have the following:
# set seed for reproducibility
set.seed(500)

# specify correlation
cp <- 0.1

# define target correlation matrix for columns of fourth mode weight matrix
corrpred <- matrix(c(1, cp, cp, cp, 1, cp, cp, cp, 1), nrow = 3, ncol = 3)

# define correlations between fourth mode weight matrix and response vector
corresp <- rep(.85, 3)

# specify number of rows in the three-way array for each level of fourth mode
pf2num <- rep(c(7, 8, 9), length.out = 100)

# simulate a four-way ragged array connected to a response
data <- simcpfa(arraydim = c(10, 11, 12, 100), model = "parafac2", nfac = 3,

nclass = 3, nreps = 10, onreps = 10, corresp = corresp,
pf2num = pf2num, modes = 4, corrpred = corrpred,
meanpred = c(10, 20, 30))

# define simulated array 'X' and response vector 'y' from the output
X <- data$X
y <- data$y

The above creates a four-way array X with Parafac2 structure that is connected through its fourth mode
to response vector y. We confirm the dimensions of X and y, confirm their classes, and inspect the possible
values of y:
# examine data object X
class(X)

## [1] "list"

length(X)

## [1] 100
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dim(X[[1]])

## [1] 7 11 12

dim(X[[2]])

## [1] 8 11 12

# examine data object y
class(y)

## [1] "matrix" "array"

length(y)

## [1] 100

table(y)

## y
## 0 1 2
## 36 24 40

As shown, X is a list where each element is a three-way array. The dimensions of X match those specified in
input arguments arraydim and pf2num. Likewise, y is a vector with length equal to the number of levels of
the fourth mode of X. As desired, we can see that y contains three classes. However, note that no control
currently exists to specify the proportions of output classes in y, which is a limitation of simcpfa. Future
enhancements are planned to address this limitation.

We confirm that the columns of the fourth mode’s weights are linearly associated with y:
# examine correlations between columns of fourth mode weights 'Dmat' and
# simulated response vector 'y'
cor(data$Dmat, data$y)

## [,1]
## [1,] 0.3955246
## [2,] 0.3557359
## [3,] 0.4321371

As shown, the classification mode weight matrix Dmat contains columns that have a positive correlation with
the response vector y. The target correlations (i.e., 0.85) were not achieved, especially given that nreps =
10 and onreps = 10 were small values. Nevertheless, achieved positive correlations indicate that building a
classifier between X and y through the fourth mode of a three-component Parafac2 model could prove useful.

We initialize values for tuning parameter α from penalized logistic regression (PLR) implemented through
package glmnet (Friedman, Hastie, and Tibshirani, 2010; Zou and Hastie, 2005). We specify the classification
method as PLR through method, the model of interest as Parafac2 through model, the number of folds in the
k-fold cross-validation step as three through nfolds, and the number of random starts for fitting the Parafac2
model as three through nstart. Further, we specify nfac to be two or three because we wish to explore
classification performance for a two-component model and for a three-component model. The classification
problem is multiclass, which is specified by setting multinomial for input family. In this demonstration, we
allow for three train-test splits by setting nrep <- 3 with a split ratio of ratio <- 0.9. We also specify
pre-determined fold IDs for k-fold cross-validation using foldid. Finally, we set a Parafac2 model constraint:
the fourth mode must have non-negative weights. We use const to set this constraint. In R:
# set seed
set.seed(500)

# initialize alpha and store within a list called 'parameters'
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alpha <- seq(0, 1, length.out = 11)
parameters <- list(alpha = alpha)

# initialize inputs
method <- "PLR"
model <- "parafac2"
nfolds <- 3
nstart <- 3
nfac <- c(2, 3)
family <- "multinomial"
nrep <- 3
ratio <- 0.9
plot.out <- TRUE
const <- c("uncons", "uncons", "uncons", "nonneg")
foldid <- rep(1:nfolds, length.out = ratio * length(y))

# implement train-test splits with inner k-fold CV to optimize classification
output <- cpfa(x = X, y = as.factor(y), model = model, nfac = nfac,

nrep = nrep, ratio = ratio, nfolds = nfolds, method = method,
family = family, parameters = parameters, plot.out = plot.out,
parallel = FALSE, const = const, foldid = foldid,
nstart = nstart, verbose = FALSE)
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The function generates box plots of classification accuracy for each number of components and for each
classification method. In greater detail, we examine classification performance in the output object:
# examine classification performance measures - median across train-test splits
output$descriptive$median[, 1:2]

## err acc
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## fac.2plr 0.5 0.5
## fac.3plr 0.4 0.6

As shown, classification accuracy (i.e., ‘acc’) is relatively good and certainly above baseline (for more details
on classification performance measures, see help file for package function cpm via help(cpm)). In this case,
the data-generating model with three components worked for classification purposes. We also examine,
averaged across train-test splits, optimal tuning parameters. Note that glmnet optimized tuning parameter
λ internally.
# examine optimal tuning parameters averaged across train-test splits
output$mean.opt.tune

## nfac alpha lambda gamma cost ntree nodesize size decay rda.alpha
## 1 2 0.03333333 974.374043 NA NA NA NA NA NA NA
## 2 3 0.06666667 9.291151 NA NA NA NA NA NA NA
## delta eta max.depth subsample nrounds
## 1 NA NA NA NA NA
## 2 NA NA NA NA NA

We can see average values for α that worked best. In addition, the best average λ values are also displayed.
Note that other classifiers were not used in this demonstration, but their tuning parameters are indicated in
the output with placeholders of NA.

We next use package function plotcpfa to fit the best (in terms of mean accuracy) Parafac2 model and to
plot the results:
# set seed
set.seed(500)

# plot heat maps of component weights for optimal model
results <- plotcpfa(output, nstart = 3, ctol = 1e-1, verbose = FALSE)
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Generated plots are heatmaps displaying the size of estimated component weights for the second (B) and
third (C) modes. Because the input array was simulated, these plots do not display meaningful results
but serve only to demonstrate the utility of function plotcpfa for visualizing the component weights of
the optimal classification model (i.e., the model with the best classification performance, based on output
from function cpfa). Thus, where function cpfa can serve as a guide to identify a meaningful number
of components and a meaningful set of constraints for different modes, function plotcpfa can be used to
visualize component weights of the best model to better understand how different levels of each mode map
onto the set of components.

Example 2: Three-way Array with Binary Response
We now simulate a three-way array. For this array, the third mode is related linearly to a response vector of
class labels, which is also simulated. To generate data using function simcpfa, we specify the data-generating
model as a Parafac model via the model argument and specify two components for this model with the nfac
argument. We specify the number of dimensions for the simulated array using the arraydim argument.

For these simulated data, we specify that the response vector should have two classes using nclass. Moreover,
we set a target correlation matrix, corrpred, specifying correlations among the columns of the classification
mode’s weight matrix (i.e., in this case, the third mode). We also specify correlations, contained in corresp,
between columns of the classification mode’s weight matrix and the response vector.
# set seed for reproducibility
set.seed(400)

# specify correlation
cp <- 0.1

# define target correlation matrix for columns of third mode weight matrix
corrpred <- matrix(c(1, cp, cp, 1), nrow = 2, ncol = 2)

# define correlations between third mode weight matrix and response vector
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corresp <- rep(.9, 2)

# simulate a three-way array connected to a binary response
data <- simcpfa(arraydim = c(10, 11, 100), model = "parafac", nfac = 2,

nclass = 2, nreps = 10, onreps = 10, corresp = corresp,
modes = 3, corrpred = corrpred, meanpred = c(10, 20))

# define simulated array 'X' and response vector 'y' from the output
X <- data$X
y <- data$y

The above creates a three-way array X with Parafac structure that is connected through its third mode to
response vector y. We confirm the dimensions of X and y, confirm their classes, and inspect the possible
values of y:
# examine data object X
class(X)

## [1] "array"

dim(X)

## [1] 10 11 100

# examine data object y
class(y)

## [1] "matrix" "array"

length(y)

## [1] 100

table(y)

## y
## 0 1
## 52 48

As shown, X is a three-way array. The dimensions of X match those specified in input argument arraydim.
Likewise, y is a vector with length equal to the number of levels of the third mode of X. As desired, we can
see that y contains two classes. As in the last example, we see that the output classes in y are imbalanced.

We confirm that the columns of the third mode’s weights are linearly associated with y:
# examine correlations between columns of third mode weights 'Cmat' and
# simulated response vector 'y'
cor(data$Cmat, data$y)

## [,1]
## [1,] 0.4962389
## [2,] 0.3457724

As shown, the classification mode weight matrix Cmat contains columns that have a positive correlation with
the response vector y. The target correlations (i.e., 0.9) were not achieved, especially given that nreps = 10
and onreps = 10 were small values. Nevertheless, the positive correlations indicate that building a classifier
between X and y through the third mode of a two-component Parafac model could prove useful.

We initialize values for tuning parameter α from PLR implemented through package glmnet. We also
initialize values for the tuning parameters ntree (i.e., number of trees) and nodesize (i.e., node size) from
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random forest (RF; Breiman, 2001) implemented through package randomForest (Liaw and Wiener, 2002).
We specify the classification methods as PLR and RF through method, the model of interest as Parafac
through model, the number of folds in the k-fold cross-validation step as three through nfolds, and the
number of random starts for fitting the Parafac model as three through nstart. Further, we specify nfac to
be two or three because we wish to explore classification performance for a two-component model and for
a three-component model. The classification problem is binary, which is specified by setting binomial for
input family. We allow for three train-test splits by setting nrep <- 3 with a split ratio of ratio <- 0.9.
Finally, for this demonstration, we set a Parafac model constraint: the second mode must have orthogonal
weights. We use const to set this constraint. In R:
# set seed
set.seed(300)

# initialize tuning parameters and store within a list called 'parameters'
alpha <- seq(0, 1, length.out = 3)
ntree <- c(200, 400)
nodesize <- c(2, 4)
parameters <- list(alpha = alpha, ntree = ntree, nodesize = nodesize)

# initialize inputs
method <- c("PLR", "RF")
model <- "parafac"
nfolds <- 3
nstart <- 3
nfac <- c(2, 3)
family <- "binomial"
nrep <- 3
ratio <- 0.9
plot.out <- TRUE
const <- c("uncons", "orthog", "uncons")

# implement train-test splits with inner k-fold CV to optimize classification
output <- cpfa(x = X, y = as.factor(y), model = model, nfac = nfac,

nrep = nrep, ratio = ratio, nfolds = nfolds, method = method,
family = family, parameters = parameters, plot.out = plot.out,
parallel = FALSE, const = const, nstart = nstart,
verbose = FALSE)

8



plr.2 rf.2 plr.3 rf.3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Performance Measure

Method and Number of Components

A
C

C

The function generates box plots of classification accuracy for each number of components and for each
classification method. In greater detail, we examine classification performance in the output object:
# examine classification performance measures - median across train-test splits
output$descriptive$mean[, 1:2]

## err acc
## fac.2plr 0.3666667 0.6333333
## fac.2rf 0.2666667 0.7333333
## fac.3plr 0.3666667 0.6333333
## fac.3rf 0.3333333 0.6666667

As shown, classification accuracy is highest for the two-component RF classifer. In this case, the data-
generating model with two components worked best for classification purposes (i.e, compared to the three-
component model). We also examine, averaged across train-test splits, optimal tuning parameters.
# examine optimal tuning parameters averaged across train-test splits
output$mean.opt.tune

## nfac alpha lambda gamma cost ntree nodesize size decay rda.alpha
## 1 2 0.0000000 0.1655723 NA NA 266.6667 3.333333 NA NA NA
## 2 3 0.1666667 0.2013264 NA NA 266.6667 3.333333 NA NA NA
## delta eta max.depth subsample nrounds
## 1 NA NA NA NA NA
## 2 NA NA NA NA NA

We can see average tuning values that worked best. For example, PLR favored α = 0 for the two-component
model (i.e., preferred ridge regression).

We next could use the function plotcpfa to fit the best Parafac model and to plot the results. The code
looks like this:
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# set seed
set.seed(400)

# plot heat maps of component weights for optimal model
results <- plotcpfa(output, nstart = 3, ctol = 1e-1, verbose = FALSE)

However, as in the previous example, the simulated array contains mode A and mode B weights whose levels
do not have a substantive meaning. As such, we omit the heat maps for this example. However, if these
were real data, such heat maps might reveal relationships between model components and the levels of mode
A or B. Interested readers might explore the application of this package to popular, real data sets used in
classification research, such as the MNIST data set (LeCun et al., 2002).

Concluding Thoughts
Package cpfa implements a k-fold cross-validation procedure, connecting Parafac models fit by multiway to
classification methods implemented through six popular packages used for classification: glmnet; e1071
(Meyer et al., 2024; Cortes and Vapnik, 1995); randomForest (Liaw and Wiener, 2002; Breiman, 2001); nnet
(Ripley, 1994; Venables and Ripley, 2002); rda (Guo, Hastie, and Tibshirani, 2007, 2023; Friedman, 1989),
and xgboost (Chen et al., 2025; Friedman, 2001). Parallel computing is implemented through packages
parallel (R Core Team, 2025) and doParallel (Microsoft Corporation and Weston, 2022). The example
above highlights the use of cpfa and three of its functions. For more information about the package, see
https://CRAN.R-project.org/package=cpfa or examine package help files with help(simcpfa), help(cpfa),
or help(plotcpfa).
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