Package ‘WARDEN’

October 13, 2025

Title Workflows for Health Technology Assessments in R using Discrete
EveNts

Version 2.0.0

Description Toolkit to support and perform discrete event simulations with and without
resource constraints in the context of health technology assessments (HTA).
The package focuses on cost-effectiveness modelling and aims to be submission-ready
to relevant HTA bodies in alignment with 'NICE TSD 15'
<https://sheffield.ac.uk/nice-dsu/tsds/patient-level-simulation>.
More details an examples can be found in the package website <https:
//jsanchezalv.github.io/WARDEN/>.

License GPL (>=3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2

BugReports https://github.com/jsanchezalv/WARDEN/issues

Suggests dplyr, ggplot2, knitr, rmarkdown, kableExtra, testthat (>=
3.0.0), survminer, survival

Imports purrr, data.table, foreach, future, doFuture, stats, utils,
flexsurv, MASS, zoo, progressr, magrittr, tidyr, lifecycle,
Repp

VignetteBuilder knitr

Config/testthat/edition 3
Depends R (>=2.10)

URL https://jsanchezalv.github.io/WARDEN/
LinkingTo Rcpp
NeedsCompilation yes

Author Javier Sanchez Alvarez [aut, cre],
Gabriel Lemyre [ctb],
Valerie Aponte Ribero [ctb]

Maintainer Javier Sanchez Alvarez <javiersanchezeco@gmail.com>

1

https://sheffield.ac.uk/nice-dsu/tsds/patient-level-simulation
https://jsanchezalv.github.io/WARDEN/
https://jsanchezalv.github.io/WARDEN/
https://github.com/jsanchezalv/WARDEN/issues
https://jsanchezalv.github.io/WARDEN/

2 Contents

Repository CRAN
Date/Publication 2025-10-13 07:20:02 UTC

Contents
add_itemo e 3
add_item?2 e e e e e e e e e 4
add_reactevt e e e 5
add_tte e e 6
adj_val . . . L e e 7
ast_as LISt L . s 8
CeaC_deS 9
cond_dirichlet e e e e 10
CONd_IMVIL o ot e e e e e 11
create_Indicators e e e 12
discrete_resource_clone e e e 13
disc_cycle oL 13
disc_cycle_v e e 14
disc_instant e e e e e e e e e e e e e e 15
disC_INStant_V e 16
disc_ongoing 17
disc_ongoing_v e e 17
draw_tte e e e 18
eVPI_des e e 19
extract_elements_from_list 20
extract_from_reactions e e e 22
extract_psa_result L. e e e 23
GELLEVENL L i e e e e e e e e e e e e 24
has_event L e 25
Iuck_adj e e 25
modify_event 27
modify_item 28
modify_item_Seq e e e e e e 29
NEW_EVENT . . . v v v v v o e e e e e e e e e e e 30
NEXL EVENL o o o e e e e e e e e e e e e 31
NEXL_EVENT_Pt o o it e e e e e e e e e e e e e e 31
pecond_gOMPErtZ e e 32
pick psa 32
pick_val_v. . . . e e e e 34
pop_and_return_eVento e e e e e e e e e e e e e 36
POP_EVENL o e e e e e e e 36
gDeta_MSEt e e e e e e e e e e e e e e 37
qeond_eXPo e e 37
geond_gammao e e e e e e e 38
qeond_gOMPETTZ o v v i e e e e e e e e e e e e e e e e 38
geond_llogis 39

geond_lnorm e 40

add_item 3
geond_NOTM v v v i e e e e e e e e e e e e e e e e 40
gecond_weibull L. oL 41
gecond_weibullPH 42
QEAMMA_IMSE .« « . v v v e e e e e e e e e e e e e e e e e e 42
QUMECOV . . o o o e e e e e e e e 43
QUEUE_CIEALE . . .« . v v v i v e 46
QUEUE_EIMPLY .« . v v v v v e 47
QUEUE_SIZE . .« v v v v v e 47
random_Stream e e e e e e e e e e e e e e e e e 48
rbeta_mSe e e 49
rcond_GOMPEITZ o L e e e e 49
recond_gompertz_lu L e e e 50
rdirichlet e e 51
rdirichlet_prob L L 51
TEMOVE_EVENL . . . v v v v v o e e e e e e e e e e e e e e 52
replicate_profiles L 52
resource_diSCIEte e 53
TEAMMA_INSE . .« « « o e v v e v e e e e e e e e e e e e e e e e e 55
TPOISAMMA v v v v e v e 55
IPOISZAMMA_TCPP . . « « o v v v e e e e e e e e e e e e e e e 56
TUN_SIM . . ot e e e e e e e e e e s 57
run_sim_parallel L 62
SENS_ItETAtOr v v e e e e e e e e e e e e e e e 67
shared_input 68
summary_results_det 70
summary_resultS_Sens e e e e e e e e 71
summary_results_sim L e e 72
tte.df . . . e 73

Index 74

add_item Define or append model inputs

Description

Build a single {} expression that defines inputs for a simulation.

Named args in . .. become assignments (name <- expr), e.g., add_item(a=5)

Unnamed args are inserted raw/unevaluated. If an unnamed arg is a {3} block, its statements
are spliced (flattened). add_item(pick_val_v(...))

Works with magrittr pipes: a leading . (the LHS) is resolved to its value; if that value is a {3}
block (or list of expressions), it becomes the starting block.

input argument can be used to handle alternative add_item2 method, e.g. add_item(input =

{a<-5})

4 add_item2

Usage
add_item(..., .data = NULL, input)
Arguments
Unevaluated arguments. Named — name <- expr; unnamed — raw expr.
.data Optional named argument: an existing {} block (or list of expressions) to start
from.
input Optional unevaluated expression or { } block to splice in.
Value

A single {3} call (language object) ready for load_inputs().

Examples

library(magrittr)

add_item(input = {fl.idfs <- @3})

add_item(input = {

util_idfs <- if(psa_bool){rnorm(1,0.8,0.2)} else{0.8}
util.mbc <- 0.6

cost_idfs <- 2500})
common_inputs <- add_item(input = {

pick_val_v(
base = 1_statics[["base"]],
psa = pick_psa(

1_statics[["function”]],
1_statics[["n"]],
1_statics[["a"]],
1_statics[["b"]]

)?

sens = 1_statics[[sens_name_used]],
psa_ind = psa_bool,

sens_ind = sensitivity_bool,

indicator = indicators_statics,
names_out = 1_statics[["parameter_name"”]],
deploy_env = TRUE #Note this option must be active if using it at add_item?2

add_item?2 Define parameters that may be used in model calculations (uses ex-
pressions)

add_reactevt 5

Description

Define parameters that may be used in model calculations (uses expressions)

Usage

add_item2(.data = NULL, input)

Arguments

.data Existing data

input Items to define for the simulation as an expression (i.e., using)
Details

DEPRECATED (old description): The functions to add/modify events/inputs use named vectors
or lists. If chaining together add_item2, it will just append the expressions together in the order
established.

If using pick_val_v, note it should be used with the deploy_env = TRUE argument so that add_item?2
process it correctly.

Value

A substituted expression to be evaluated by engine

add_reactevt Define the modifications to other events, costs, utilities, or other items
affected by the occurrence of the event

Description

Define the modifications to other events, costs, utilities, or other items affected by the occurrence
of the event

Usage

add_reactevt(.data = NULL, name_evt, input)

Arguments
.data Existing data for event reactions
name_evt Name of the event for which reactions are defined.
input Expressions that define what happens at the event, using functions as defined in

the Details section

6 add_tte

Details

There are a series of objects that can be used in this context to help define the event reactions.

The following functions may be used to define event reactions within this add_reactevt() func-
tion: modify_item() | Adds & Modifies items/flags/variables for future events (does not consider
sequential) modify_item_seq() | Adds & Modifies items/flags/variables for future events in a se-
quential manner new_event () | Adds events to the vector of events for that patient modify_event ()
| Modifies existing events by changing their time

Apart from the items defined with add_item(), we can also use standard variables that are always
defined within the simulation: curtime | Current event time (numeric) prevtime | Time of the
previous event (numeric) cur_evtlist | Named vector of events that is yet to happen for that
patient (named numeric vector) evt | Current event being processed (character) i | Patient being
iterated (character) simulation | Simulation being iterated (numeric)

The model will run until curtime is set to Inf, so the event that terminates the model should modify
curtime and set it to Inf.

The user can use extract_from_reactions function on the output to obtain a data.frame with all
the relationships defined in the reactions in the model.
Value

A named list with the event name, and inside it the substituted expression saved for later evaluation

Examples

add_reactevt(name_evt = "start”,input = {})
add_reactevt(name_evt = "idfs”,input = {modify_item(list("fl.idfs"= 0))})

add_tte Define events and the initial event time

Description

Define events and the initial event time

Usage

add_tte(.data = NULL, arm, evts, other_inp = NULL, input)

Arguments
.data Existing data for initial event times
arm The intervention for which the events and initial event times are defined
evts A vector of the names of the events
other_inp A vector of other input variables that should be saved during the simulation

input The definition of initial event times for the events listed in the evts argument

adj_val 7

Details

Events need to be separately defined for each intervention.

For each event that is defined in this list, the user needs to add a reaction to the event using the
add_reactevt () function which will determine what calculations will happen at an event.

Value

A list of initial events and event times

Examples

add_tte(arm="int",evts = c("start”,"ttot"”,"idfs","os"),
input={

start <- 0

idfs <- draw_tte(1, 'lnorm',coef1=2, coef2=0.5)

ttot <- min(draw_tte(1, 'lnorm', coef1=1, coef2=4),idfs)
os <- draw_tte(1, 'lnorm',coef1=0.8, coef2=0.2)

b

adj_val Adjusted Value Calculation

Description

This function calculates an adjusted value over a time interval with optional discounting. This
is useful for instances when adding cycles may not be desirable, so one can perform "cycle-like"
calculations without needing cycles, offering performance speeds. See the vignette on avoiding
cycles for an example in a model.

Usage

adj_val(curtime, nexttime, by, expression, discount = NULL)

Arguments

curtime Numeric. The current time point.

nexttime Numeric. The next time point. Must be greater than or equal to curtime.

by Numeric. The step size for evaluation within the interval.

expression An expression evaluated at each step. Use time as the variable within the ex-

pression.

discount Numeric or NULL. The discount rate to apply, or NULL for no discounting.

Details

The user can use the . time variable to select the corresponding time of the sequence being eval-
uvated. For example, in curtime = @, nexttime = 4, by = 1, time would correspond to
0, 1, 2, 3. Ifusing nexttime=4.2,0, 1, 2, 3, 4

8 ast_as_list

Value

Numeric. The calculated adjusted value.

Examples

Define a function or vector to evaluate
bs_age <- 1
vec <- 1:8/10

Calculate adjusted value without discounting
adj_val(@, 4, by = 1, expression = vec[floor(.time + bs_age)])
adj_val(@, 4, by = 1, expression = .time x 1.1)

Calculate adjusted value with discounting
adj_val(@, 4, by = 1, expression = vec[floor(.time + bs_age)], discount = 0.03)

ast_as_list Transform a substituted expression to its Abstract Syntax Tree (AST)
as a list

Description

Transform a substituted expression to its Abstract Syntax Tree (AST) as a list

Usage

ast_as_list(ee)

Arguments

ee Substituted expression

Value

Nested list with the Abstract Syntax Tree (AST)
Examples

expr <- substitute({

a <- sum(5+7)

modify_item(list(afsa=ifelse(TRUE, "asda"” ,NULL)))

modify_item_seq(list(

o_other_g_goldl = if(gold == 1) { utility } else { @ },

ceac_des

o_other_g_gold2 = if(gold == 2) { utility } else { @ },
o_other_qg_gold3 = if(gold == 3) { utility } else { 0 },

o_other_g_gold4 = if(gold == 4) { utility } else { @ },

o_other_g_on_dup = if(on_dup) { utility } else { @ }

)

if(a==1){

modify_item(list(a=1list(6+b)))

modify_event(list(e_exn = curtime + 14 / days_in_year + gexp(rnd_exn, r_exn)))
} elsef

modify_event(list(e_exn = curtime + 14 / days_in_year + gexp(rnd_exn, r_exn)))

if(a>6){

modify_item(list(a=8))
}

if (sel_resp_incl == 1 & on_dup == 1) {
modify_event(list(e_response = curtime, z = 6))

3

»

out <- ast_as_list(expr)

ceac_des Calculate the cost-effectiveness acceptability curve (CEAC) for a DES
model with a PSA result

Description

Calculate the cost-effectiveness acceptability curve (CEAC) for a DES model with a PSA result

Usage

ceac_des(wtp, results, interventions = NULL, sensitivity_used = 1)

Arguments

wtp Vector of length >=1 with the willingness to pay

10 cond_dirichlet

results The list object returned by run_sim()

interventions A character vector with the names of the interventions to be used for the analysis
sensitivity_used
Integer signaling which sensitivity analysis to use

Value

A data frame with the CEAC results

Examples

nn

res <- list(list(list(sensitivity_name = , arm_list = c("int", "noint”
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945

), total_galys = c(int = 6.20743830697466, noint = 6.18115138126336

), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378

), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039
), total_galys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), c_default = c(int = 49921.6357486899, noint = 41225.2544659378

), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), g_default = c(int = 6.20743830697466, noint = 6.18115138126336

), g_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))

ceac_des(seq(from=10000, to=500000,by=10000) ,res)

cond_dirichlet Calculate conditional dirichlet values

Description

Calculate conditional dirichlet values

Usage
cond_dirichlet(alpha, i, xi, full_output = FALSE)

Arguments
alpha mean vector
i index of the known parameter (1-based index)
X1 known value of the i-th parameter (should be >0)
full_output boolean indicating whether to return the full list of parameters
Details

Function to compute conditional dirichlet values

cond_mvn 11

Value

List of length 2, one with new mu and other with covariance parameters

Examples

alpha <- c(2, 3, 4)
i <- 2 # Index of the known parameter
xi <- 0.5 # Known value of the second parameter

Compute the conditional alpha parameters with full output
cond_dirichlet(alpha, i, xi, full_output = TRUE)

cond_mvn Calculate conditional multivariate normal values

Description

Calculate conditional multivariate normal values

Usage

cond_mvn(mu, Sigma, i, xi, full_output = FALSE)

Arguments

mu mean vector

Sigma covariance matrix

i index of the known parameter (1-based index)

xi known value of the i-th parameter

full_output boolean indicating whether to return the full list of parameters
Details

Function to compute conditional multivariate normal values

Value

List of length 2, one with new mu and other with covariance parameters

12 create_indicators

Examples

mu <- c(1, 2, 3)
Sigma <- matrix(c(0.2, .05, 0.1,
0.05, 0.3, 0.05,
0.1, 0.05, 0.4), nrow = 3)

i <= 1:2 # Index of the known parameter
xi <= ¢(1.2,2.3) # Known value of the first parameter

cond_mvn(mu, Sigma, i, xi,full_output = TRUE)

create_indicators Creates a vector of indicators (0 and 1) for sensitivity/DSA analysis

Description

Creates a vector of indicators (0 and 1) for sensitivity/DSA analysis

Usage

create_indicators(sens, n_sensitivity, elem, n_elem_before = 0)

Arguments
sens current analysis iterator
n_sensitivity total number of analyses to be run

elem vector of Os and 1s of elements to iterate through (1 = parameter is to be included
in scenario/DSA)

n_elem_before Sum of Is (# of parameters to be included in scenario/DSA) that go before elem

Details

n_elem_before is to be used when several indicators want to be used (e.g., for patient level and
common level inputs) while facilitating readibility of the code

Value

Numeric vector composed of 0 and 1, where value 1 will be used by pick_val_v to pick the
corresponding index in its sens argument

Examples

create_indicators(10,20,c(1,1,1,1))
create_indicators(7,20,c(1,0,0,1,1,1,0,0,1,1),2)

discrete_resource_clone 13

discrete_resource_clone
Clone independent discrete resources

Description

Clone independent discrete resources

Usage

discrete_resource_clone(x, n = 1)

Arguments
X discrete resource created with resource_discrete()
n Number of independent clones to be generated
Value

List of independent clones of discrete resource envs (even forn = 1)

disc_cycle Cycle discounting

Description

Cycle discounting

Usage
disc_cycle(
lcldr = 0.035,
lclprvtime = 0,
cyclelength,
lclcurtime,
lclval,
starttime = 0@
)
Arguments
lcldr The discount rate
lclprvtime The time of the previous event in the simulation
cyclelength The cycle length
lclcurtime The time of the current event in the simulation
lclval The value to be discounted

starttime The start time for accrual of cycle costs (if not 0)

14 disc_cycle_v

Details

Note this function counts both extremes of the interval, so the example below would consider 25
cycles, while disc_cycle_v leave the right interval open

Value

Double based on cycle discounting

Examples

disc_cycle(lcldr=0.035, lclprvtime=0, cyclelength=1/12, lclcurtime=2, lclval=500,starttime=0)

disc_cycle_v Cycle discounting for vectors

Description

Cycle discounting for vectors

Usage

disc_cycle_v(
lcldr,
lclprvtime,
cyclelength,
lclcurtime,
lclval,
starttime,
max_cycles = NULL

Arguments
lcldr The discount rate
lclprvtime The time of the previous event in the simulation

cyclelength The cycle length

lclcurtime The time of the current event in the simulation
lclval The value to be discounted
starttime The start time for accrual of cycle costs (if not 0)

max_cycles The maximum number of cycles

disc_instant 15

Details

This function per cycle discounting, i.e., considers that the cost/qaly is accrued per cycles, and
performs it automatically without needing to create new events. It can accommodate changes in
cycle length/value/starttime (e.g., in the case of induction and maintenance doses) within the same
item.

Value

Double vector based on cycle discounting

Examples

disc_cycle_v(lcldr=0.03, lclprvtime=0, cyclelength=1/12, lclcurtime=2, lclval=500,starttime=0)
disc_cycle_v(

1cldr=0.000001,

lclprvtime=0,

cyclelength=1/12,

lclcurtime=2,

lclval=500,

starttime=0,

max_cycles = 4)

#Here we have a change in cycle length, max number of cylces and starttime at time 2
#(e.g., induction to maintenance)
#In the model, one would do this by redifining cycle_1, max_cycles and starttime

#of the corresponding item at a given event time.

disc_cycle_v(lcldr=0,

lclprvtime=c(0,1,2,2.5),

cyclelength=c(1/12, 1/12,1/2,1/2),

lclcurtime=c(1,2,2.5,4), lclval=c(500,500,6500,6500),

starttime=c(0,0,2,2), max_cycles = c(24,24,2,2)

)

disc_instant Calculate instantaneous discounted costs or qalys

Description

Calculate instantaneous discounted costs or qalys

Usage

disc_instant(lcldr = 0.035, lclcurtime, lclval)

Arguments
lcldr The discount rate
lclcurtime The time of the current event in the simulation

lclval The value to be discounted

16 disc_instant_v
Value

Double based on discrete time discounting

Examples

disc_instant(lcldr=0.035, lclcurtime=3, lclval=2500)

disc_instant_v Calculate instantaneous discounted costs or qalys for vectors

Description

Calculate instantaneous discounted costs or galys for vectors

Usage

disc_instant_v(lcldr, lclcurtime, lclval)

Arguments
lcldr The discount rate
lclcurtime The time of the current event in the simulation
lclval The value to be discounted

Value

Double based on discrete time discounting

Examples

disc_instant_v(lcldr=0.035, lclcurtime=3, lclval=2500)

disc_ongoing

17

disc_ongoing

Calculate discounted costs and qalys between events

Description

Calculate discounted costs and qalys between events

Usage

disc_ongoing(lcldr = 0.035, lclprvtime, lclcurtime, lclval)

Arguments

lcldr
lclprvtime
lclcurtime
lclval

Value

The discount rate
The time of the previous event in the simulation
The time of the current event in the simulation

The value to be discounted

Double based on continuous time discounting

Examples

disc_ongoing(lcldr=0.035,1clprvtime=0.5, lclcurtime=3, lclval=2500)

disc_ongoing_v

Calculate discounted costs and qalys between events for vectors

Description

Calculate discounted costs and galys between events for vectors

Usage

disc_ongoing_v(lcldr, lclprvtime, lclcurtime, lclval)

Arguments
lcldr
lclprvtime
lclcurtime
lclval

The discount rate
The time of the previous event in the simulation
The time of the current event in the simulation

The value to be discounted

18 draw_tte

Value

Double based on continuous time discounting

Examples

disc_ongoing_v(lcldr=0.035,1clprvtime=0.5, lclcurtime=3, lclval=2500)

draw_tte Draw a time to event from a list of parametric survival functions

Description

Draw a time to event from a list of parametric survival functions

Usage
draw_tte(
n_chosen,
dist,
coef1 = NULL,
coef2 = NULL,
coef3 = NULL,
beta_tx = 1,
seed = NULL
)
Arguments
n_chosen The number of observations to be drawn
dist The distribution; takes values ’Inorm’,’ norm’,’ mvnorm’, weibullPH’, weibull’,’llogis’,’ gompertz’,’ gengat
coef1 First coefficient of the distribution, defined as in the coef() output on a flex-
survreg object (rate in "rpoisgamma’)
coef?2 Second coefficient of the distribution, defined as in the coef() output on a flex-
survreg object (theta in "rpoisgamma")
coef3 Third coefficient of the distribution, defined as in the coef() output on a flex-
survreg object (not used in "rpoisgamma")
Additional arguments to be used by the specific distribution (e.g., return_ind_rate
if dist = "poisgamma")
beta_tx Parameter in natural scale applied in addition to the scale/rate coefficient -e.g.,

a HR if used in an exponential- (not used in "rpoisgamma" nor "beta")

seed An integer which will be used to set the seed for this draw.

evpi_des 19

Details

Other arguments relevant to each function can be called directly

Value

A vector of time to event estimates from the given parameters

Examples

draw_tte(n_chosen=1,dist="exp',coef1=1,beta_tx=1)
draw_tte(n_chosen=10, "poisgamma”,coef1=1,coef2=1,obs_time=1,return_ind_rate=FALSE)

evpi_des Calculate the Expected Value of Perfect Information (EVPI) for a DES
model with a PSA result

Description

Calculate the Expected Value of Perfect Information (EVPI) for a DES model with a PSA result

Usage

evpi_des(wtp, results, interventions = NULL, sensitivity_used = 1)

Arguments
wtp Vector of length >=1 with the willingness to pay
results The list object returned by run_sim()

interventions A character vector with the names of the interventions to be used for the analysis
sensitivity_used
Integer signaling which sensitivity analysis to use

Value

A data frame with the EVPI results

Examples

nn

res <- list(list(list(sensitivity_name = , arm_list = c("int"”, "noint”
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945

), total_galys = c(int = 6.20743830697466, noint = 6.18115138126336

), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378

), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039
), total_galys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), c_default = c(int = 49921.6357486899, noint = 41225.2544659378

), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), g_default = c(int = 6.20743830697466, noint = 6.18115138126336

20 extract_elements_from_list

), g_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))

evpi_des(seq(from=10000,t0o=500000,by=10000),res)

extract_elements_from_list
Extracts items and events by looking into assignments, modify_event
and new_event

Description

Extracts items and events by looking into assignments, modify_event and new_event

Usage

extract_elements_from_list(node, conditional_flag = FALSE)

Arguments

node Relevant node within the nested AST list
conditional_flag
Boolean whether the statement is contained within a conditional statement

Value

A data.frame with the relevant item/event, the event where it’s assigned, and whether it’s contained
within a conditional statement

Examples

expr <- substitute({
a <- sum(5+7)
ggplot()
data.frame(x=1,b=2)
list(b=5)
a <- list(s=7)
j<-6
if (TRUE){modify_event(list(j=5))}

1<-9

extract_elements_from_list

afsa=ifelse(TRUE, "asda" ,NULL)

o_exn = o_exn + 1

a = NULL

o
1

if(a){"CzZ"}else{"AW"}

rnd_prob_exn_sev = runif(1)

exn_sev = rnd_prob_exn_sev <= p_sev

o_exn_mod = o_exn_mod + if(exn_sev) { @ } else { 1 }
o_exn_sev = o_exn_sev + if(exn_sev) { 1 } else { 0 }
o_rec_time_without_exn = (o_exn == 0) * 1
o_rec_time_without_exn_sev = (o_exn_sev == Q) x 1
o_c_exn = if(exn_sev) { c_sev } else { c_mod }
o_other_c_exn_mod = if(exn_sev) { @ } else { c_mod }

o_other_c_exn_sev = if(exn_sev) { c_sev } else { @ }

o_qgloss_exn = -if(exn_sev) { g_sev } else { g_mod }
o_other_gloss_exn_mod = -if(exn_sev) { @ } else { g_mod }
o_other_gloss_exn_sev = -if(exn_sev) { q_sev } else { 0 }
o_qloss_cg_exn = -if(exn_sev) { g_cg_sev } else { g_cg_mod }
o_other_gloss_cg_exn_mod = -if(exn_sev) { @ } else { g_cg_mod }
o_other_gloss_cg_exn_sev = -if(exn_sev) { q_cg_sev } else { 0 }
o_q = utility

o_other_g_goldl = if(gold == 1) { utility } else { @ }
o_other_g_gold2 = if(gold == 2) { utility } else { @ }
o_other_qg_gold3 = if(gold == 3) { utility } else { 0 }
o_other_g_gold4 = if(gold == 4) { utility } else { @ }
o_other_g_on_dup = if(on_dup) { utility } else { @ }

n_exn = n_exn + 1

22 extract_from_reactions

n_exn_mod = n_exn_mod + (1 - exn_sev)
n_exn_sev = n_exn_sev + exn_sev
u_adj_exn_lt = u_adj_exn_lt + if(exn_sev) { u_adj_sev_1t } else { u_adj_mod_lt }
utility = u_gold - u_adj_exn_1t - u_mace_lt
o_rec_utility = utility
rnd_exn = runif (1)
if(a==1){
a=list(6+b)
modify_event(list(e_exn = curtime + 14 / days_in_year + gexp(rnd_exn, r_exn)))
} else{
modify_event(list(e_exn = curtime + 14 / days_in_year + gexp(rnd_exn, r_exn)))

if(a>6){
a=8

if (sel_resp_incl == 1 & on_dup == 1) {

modify_event(list(e_response = curtime, z = 6))

b

out <- ast_as_list(expr)

results <- extract_elements_from_list(out)

extract_from_reactions

Extract all items and events and their interactions from the event re-
actions list

Description

Extract all items and events and their interactions from the event reactions list

extract_psa_result 23

Usage

extract_from_reactions(reactions)

Arguments

reactions list generated through add_reactevt

Value

A data.frame with the relevant item/event, the event where it’s assigned, and whether it’s contained
within a conditional statement

Examples

evt_react_list2 <-
add_reactevt(name_evt = "sick”,
input = {modify_item(list(a=1+5/3))
assign("W", 5+ 3/ 6)
x[5] <- 18
for(i in 1:5){
assign(paste@("x_",i),5+3)
}
if(j == TRUE){
y[["w"]] <- 612-31+3
HE
g_default <- 0
c_default <- @
curtime <- Inf
d <- ¢c <- k <- 67
1)

extract_from_reactions(evt_react_list2)

extract_psa_result Extract PSA results from a treatment

Description

Extract PSA results from a treatment

Usage

extract_psa_result(x, element)

Arguments

X The output_sim data frame from the list object returned by run_sim()
element Variable for which PSA results are being extracted (single string)

24

Value

A dataframe with PSA results from the specified intervention

Examples

nn

res <- list(list(list(sensitivity_name = , arm_list = c("int"”, "noint”
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945

), total_galys = c(int = 6.20743830697466, noint = 6.18115138126336

), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378

), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039
), total_galys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), c_default = c(int = 49921.6357486899, noint = 41225.2544659378

), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), q_default = c(int = 6.20743830697466, noint = 6.18115138126336

), g_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))

extract_psa_result(res[[1]],"total_costs")

get_event

get_event Get a specific event time

Description

Get a specific event time

Usage

get_event(event_name, ptr, patient_id)

Arguments
event_name Character string, the name of the event.
ptr The event queue pointer. Defaults to cur_evtlist.
patient_id The patient ID. Defaults to i.

Value

Numeric, time of event for patient

has_event 25

has_event Check if a patient has a specific event in the queue

Description

Check if a patient has a specific event in the queue

Usage

has_event(event_name, ptr, patient_id, exclude_inf = FALSE)

Arguments
event_name Character string, the name of the event.
ptr The event queue pointer. Defaults to cur_evtlist.
patient_id The patient ID. Defaults to i.

exclude_inf Logical, whether to exclude events with Inf time. Default is FALSE.

Value

Logical, TRUE if the event exists for the patient (optionally excluding Inf), FALSE otherwise.

luck_adj Perform luck adjustment

Description

Perform luck adjustment

Usage

luck_adj(prevsurv, cursurv, luck, condg = TRUE)

Arguments
prevsurv Value of the previous survival
cursurv Value of the current survival
luck Luck used to be adjusted (number between 0 and 1)

condq Conditional quantile approach or standard approach

26 luck_adj

Details

This function performs the luck adjustment automatically for the user, returning the adjusted luck
number. Luck is interpreted in the same fashion as is standard in R (higher luck, higher time to
event).

Note that if TTE is predicted using a conditional quantile function (e.g., conditional gompertz, con-
ditional quantile weibull...) prevsurv and cursurv are the unconditional survival using the "previ-
ous" parametrization but at the previous time for presurv and at the current time for cursurv. For
other distributions, presurv is the survival up to current time using the previous parametrization,
and cursurv is the survival up to current time using the current parametrization.

Note that the advantage of the conditional quantile function is that it does not need the new parametriza-
tion to update the luck, which makes this approach computationally more efficient. This function
can also work with vectors, which could allow to update multiple lucks in a single approach, and it
can preserve names

Value

Adjusted luck number between 0 and 1

Examples

luck_adj(prevsurv = 0.8,
cursurv = 0.7,

luck = 0.5,

condg = TRUE)

luck_adj(prevsurv = ¢(1,0.8,0.7),

cursurv = ¢c(0.7,0.6,0.5),

luck = setNames(c(0.5,0.6,0.7),c("A","B","C")),
condg = TRUE)

luck_adj(prevsurv = 0.8,

cursurv = 0.7,

luck = 0.5,

condq = FALSE) #different results

#Unconditional approach, timepoint of change is 25,
parameter goes from 0.02 at time 10 to ©.025 to 0.015 at time 25,
starting luck is 0.37
new_luck <- luck_adj(prevsurv = 1 - pweibull(g=10,3,1/0.02),
cursurv = 1 - pweibull(qg=10,3,1/0.025),
luck = 0.37,
condq = FALSE) #time 10 change

new_luck <- luck_adj(prevsurv = 1 - pweibull(qg=25,3,1/0.025),
cursurv = 1 - pweibull(qg=25,3,1/0.015),

luck = new_luck,

condg = FALSE) #time 25 change

gweibull(new_luck, 3, 1/0.015) #final TTE

modify_event 27

#Conditional quantile approach
new_luck <- luck_adj(prevsurv = 1-pweibull(g=0,3,1/0.02),
cursurv = 1- pweibull(g=10,3,1/0.02),
luck = 0.37,
condg = TRUE) #time 10 change, previous time is @ so prevsurv will be 1

new_luck <- luck_adj(prevsurv = 1-pweibull(q=10,3,1/0.025),
cursurv = 1- pweibull(g=25,3,1/0.025),
luck = new_luck,
condq = TRUE) #time 25 change

gcond_weibull(rnd = new_luck,
shape = 3,
scale = 1/0.015,
lower_bound = 25) + 25 #final TTE

modify_event Modify or add events for a patient

Description

Modifies existing event times, or adds new events if create_if_missing is TRUE.

Usage

modify_event(events, create_if_missing = TRUE, ptr, patient_id)

Arguments

events A named numeric vector with event names and new event times. It can also
handle lists instead of named vectors (at a small computational cost).
create_if_missing
Logical, whether to create events if they do not exist.

ptr The event queue pointer. Defaults to cur_evtlist.
patient_id The patient ID. Defaults to i.
Details

The functions to add/modify events/inputs use named vectors or lists. Whenever several inputs/events
are added or modified, it’s recommended to group them within one function, as it reduces the com-
putation cost. So rather than use two modify_event with a list of one element, it’s better to group
them into a single modify_event with a list of two elements.

This function does not evaluate sequentially.

While multiple events can be added, they must be named differently. If the same event is added
multiple times at once, only the last occurrence will be kept (only one event per event type in the
queue of events yet to occur). If an event occurs, then a new one with the same name can be set.

This function is intended to be used only within the add_reactevt function in its input parameter
and should not be run elsewhere or it will return an error.

28 modify_item

Value

NULL (invisible). Modifies the queue in-place.

Examples

add_reactevt(name_evt = "idfs”,input = {modify_event(c("0s"=5))})

modify_item Modify the value of existing items

Description

Modify the value of existing items

Usage

modify_item(list_item)

Arguments

list_item A list of items and their values or expressions

Details

DEPRECATED (old description): The functions to add/modify events/inputs use lists. Whenever
several inputs/events are added or modified, it’s recommended to group them within one function,
as it reduces the computation cost. So rather than use two modify_item with a list of one element,
it’s better to group them into a single modify_item with a list of two elements.

Note that modify_itemnor modify_item_seq can work on subelements (e.g., modify_item(list(obj$item = 5))
will not work as intended, for that is better to assign directly using the expression approach, so
obj$item<-5).

Costs and utilities can be modified by using the construction type_name_category, where type is
either "qaly" or "cost", name is the name (e.g., "default") and category is the category used (e.g.,
"instant"), so one could pass cost_default_instant and modify the cost. This will overwrite the
value defined in the corresponding cost/utility section.

This function is intended to be used only within the add_reactevt function in its input parameter
and should not be run elsewhere or it will return an error.

Value

No return value, modifies/adds item to the environment and integrates it with the main list for
storage

Examples

add_reactevt(name_evt = "idfs",input = {modify_item(list("cost.it"=5))})

modify_item_seq 29

modify_item_seq Modify the value of existing items

Description

Modify the value of existing items

Usage

modify_item_seq(...)

Arguments

A list of items and their values or expressions. Will be evaluated sequentially
(so one could have list(a=1,b=a +2))

Details

The functions to add/modify events/inputs use lists. Whenever several inputs/events are added or
modified, it’s recommended to group them within one function, as it reduces the computation cost.
So rather than use two modify_item with a list of one element, it’s better to group them into a
single modify_item with a list of two elements.

Note that modify_itemnor modify_item_seq can work on subelements (e.g., modify_item_seq(list(obj$item = 5))
will not work as intended, for that is better to assign directly using the expression approach, so
obj$item<-5).

Costs and utilities can be modified by using the construction type_name_category, where type is
either "qaly" or "cost", name is the name (e.g., "default") and category is the category used (e.g.,
"instant"), so one could pass cost_default_instant and modify the cost. This will overwrite the
value defined in the corresponding cost/utility section.

The function is different from modify_item in that this function evaluates sequentially the arguments
within the list passed. This implies a slower performance relative to modify_item, but it can be more
cleaner and convenient in certain instances.

This function is intended to be used only within the add_reactevt function in its input parameter
and should not be run elsewhere or it will return an error.

Value
No return value, modifies/adds items sequentially and deploys to the environment and with the main
list for storage

Examples

add_reactevt(name_evt = "idfs”,input = {
modify_item_seq(list(cost.idfs = 500, cost.tx = cost.idfs + 4000))
D)

30 new_event

new_event Add events to the queue for a patient

Description

Adds one or more events for a given patient to the queue.

Usage

new_event(events, ptr, patient_id)

Arguments
events A named numeric vector. Names are event types, values are event times. It can
also handle lists instead of named vectors (at a small computational cost).
ptr The event queue pointer. Defaults to cur_evtlist.
patient_id The patient ID. Defaults to i.
Details

The functions to add/modify events/inputs use named vectors or lists. Whenever several inputs/events
are added or modified, it’s recommended to group them within one function, as it reduces the com-
putation cost. So rather than use two new_event with a list of one element, it’s better to group them
into a single new_event with a list of two elements.

While multiple events can be added, they must be named differently. If the same event is added
multiple times at once, only the last occurrence will be kept (only one event per event type in the
queue of events yet to occur). If an event occurs, then a new one with the same name can be set.

This function is intended to be used only within the add_reactevt function in its input parameter
and should not be run elsewhere or it will return an error.

Value

NULL (invisible). Modifies the queue in-place.

Examples

add_reactevt(name_evt = "idfs”,input = {new_event(c("ae"=5))3})

next_event

31

next_event Get the next events in the queue

Description

Retrieves the next n events (without removing them).

Usage

next_event(n = 1, ptr)

Arguments

n Number of events to retrieve. Default is 1.

ptr The event queue pointer. Defaults to cur_evtlist.
Value

A list of events, each with patient_id, event_name, and time.

next_event_pt Get the next events in the queue for a specific patient

Description

Retrieves the next n events (without removing them).

Usage

next_event_pt(n = 1, ptr, patient_id)

Arguments
n Number of events to retrieve. Default is 1.
ptr The event queue pointer. Defaults to cur_evtlist.
patient_id The patient ID. Defaults to i.

Value

A list of events, each with patient_id, event_name, and time.

32 pick_psa

pcond_gompertz Survival Probaility function for conditional Gompertz distribution
(lower bound only)

Description

Survival Probaility function for conditional Gompertz distribution (lower bound only)

Usage

pcond_gompertz(time = 1, shape, rate, lower_bound = @)

Arguments
time Vector of times
shape The shape parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object
rate The rate parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object
lower_bound The lower bound of the conditional distribution
Value

Estimate(s) from the conditional Gompertz distribution based on given parameters

Examples

pcond_gompertz(time=1,shape=0.05,rate=0.01,lower_bound = 50)

pick_psa Helper function to create a list with random draws or whenever a
series of functions needs to be called. Can be implemented within
pick_val_v.

Description

Helper function to create a list with random draws or whenever a series of functions needs to be
called. Can be implemented within pick_val_v.

Usage
pick_psa(f, ...)

pick_psa 33

Arguments
f A string or vector of strings with the function to be called, e.g., "rnorm"
parameters to be passed to the function (e.g., if "rnorm", arguments n, mean, sd)
Details

This function can be used to pick values for the PSA within pick_val_v.

The function will ignore NA items within the respective parameter (see example below). If an ele-
ment in f is NA (e.g., a non PSA input) then it will return NA as its value This feature is convenient
when mixing distributions with different number of arguments, e.g., rnorm and rgengamma.

While it’s slightly lower than individually calling each function, it makes the code easier to read
and more transparent

Value

List with length equal to f of parameters called

Examples

params <- list(

param=list("a","b"),

dist=list("rlnorm”,"rnorm"),

n=list(4,1),

a=list(c(1,2,3,4),1),

b=1ist(c(0.5,0.5,0.5,0.5),0.5),

dsa_min=list(c(1,2,3,4),2),

dsa_max=list(c(1,2,3,4),3)

)
pick_psa(params[["dist"]],params[["n"]1],params[["a"]1],params[["b"]])

#It works with functions that require different number of parameters
params <- list(
param=list("a","b","c"),
dist=list("rlnorm”,"rnorm”,"rgengamma”),
n=list(4,1,1),
a=list(c(1,2,3,4),1,0),
b=list(c(0.5,0.5,0.5,0.5),0.5,1),
c=1ist(NA,NA,0.2),
dsa_min=list(c(1,2,3,4),2,1),
dsa_max=list(c(1,2,3,4),3,3)
)

pick_psa(params[["dist"”]],params[["n"]1],params[["a"]],params[["b"]1],params[["c"]1]1)
#Can be combined with multiple type of functions and distributions if parameters are well located

params <- list(
param:]_ist("a” R Hb" , ”C” s Ildll) ,
n n

dist=list("rlnorm”,"rnorm”,"rgengamma”, "draw_tte"),
n=list(4,1,1,1),

34 pick_val_v

a=list(c(1,2,3,4),1,0,"norm"),
b=list(c(0.5,0.5,0.5,0.5),0.5,1,1),
c=1ist(NA,NA,0.2,0.5),

c=1ist(NA,NA,NA,NA), #NA arguments will be ignored
dsa_min=list(c(1,2,3,4),2,1,0),
dsa_max=list(c(1,2,3,4),3,3,2)

)
pick_val_v Select which values should be applied in the corresponding loop for
several values (vector or list).
Description

Select which values should be applied in the corresponding loop for several values (vector or list).

Usage

pick_val_v(
base,
psa,
sens,
psa_ind = psa_bool,
sens_ind = sens_bool,
indicator,
indicator_psa = NULL,
names_out = NULL,
indicator_sens_binary = TRUE,
sens_iterator = NULL,
distributions = NULL,
covariances = NULL,
deploy_env = TRUE

)
Arguments
base Value if no PSA/DSA/Scenario
psa Value if PSA
sens Value if DSA/Scenario
psa_ind Boolean whether PSA is active
sens_ind Boolean whether Scenario/DSA is active
indicator Indicator which checks whether the specific parameter/parameters is/are active

in the DSA or Scenario loop

indicator_psa Indicator which checks whether the specific parameter/parameters is/are active
in the PSA loop. If NULL, it’s assumed to be a vector of 1s of length equal to
length(indicator)

pick_val_v 35

names_out Names to give the output list

indicator_sens_binary
Boolean, TRUE if parameters will be varied fully, FALSE if some elements of
the parameters may be changed but not all

sens_iterator Current iterator number of the DSA/scenario being run, e.g., 5 if it corresponds
to the 5th DSA parameter being changed

distributions List with length equal to length of base where the distributions are stored

covariances List with length equal to length of base where the variance/covariances are
stored (only relevant if multivariate normal are being used)
deploy_env Boolean, if TRUE will deploy all objects in the environment where the function
is called for. Must be active if using add_item (and FALSE if a list must be
returned)
Details

This function can be used with vectors or lists, but will always return a list. Lists should be used
when correlated variables are introduced to make sure the selector knows how to choose among
those This function allows to choose between using an approach where only the full parameters are
varied, and an approach where subelements of the parameters can be changed

Value

List used for the inputs

Examples

pick_val_v(base = 1ist(90,0),
psa =list(rnorm(1,0,0.1),rnorm(1,0,0.1)),
sens = list(2,3),
psa_ind = FALSE,
sens_ind = TRUE,
indicator=1list(1,2),
indicator_sens_binary = FALSE,
sens_iterator = 2,
distributions = list("rnorm”,"rnorm"),
deploy_env = FALSE

)

pick_val_v(base = list(2,3,c(1,2)),
psa =sapply(1:3,
function(x) eval(call(
c("rnorm”,"rnorm”, "mvrnorm”)[[x]1],
1,
c(2,3,list(c(1,2)))[[x]1],
c(0.1,0.1,1list(matrix(c(1,0.1,0.1,1),2,2)))[[x]1]
),
sens = list(4,5,c(1.3,2.3)),
psa_ind = FALSE,
sens_ind = TRUE,
indicator=1list(1,2,c(3,4)),

36 pop_event

names_out=c("util”,"util2"”, "correlated_vector”) ,
indicator_sens_binary = FALSE,

sens_iterator = 4,

distributions = list("rnorm”,”rnorm”,"mvrnorm"),
covariances = 1ist(0.1,0.1,matrix(c(1,0.1,0.1,1),2,2)),
deploy_env = FALSE

pop_and_return_event Pop and return the next event

Description

Removes the next event from the queue and returns its details. Not needed by user.

Usage

pop_and_return_event(ptr)

Arguments

ptr The event queue pointer. Defaults to cur_evtlist.

Value

A named list with patient_id, event_name, and time.

pop_event Remove the next event from the queue

Description

Removes the next scheduled event from the queue. Not needed by user.

Usage

pop_event(ptr)

Arguments

ptr The event queue pointer. Defaults to cur_evtlist.

Value

NULL (invisible). Modifies the queue in-place.

gbeta_mse 37

gbeta_mse Draw from a beta distribution based on mean and se (quantile)

Description

Draw from a beta distribution based on mean and se (quantile)

Usage

gbeta_mse(q, mean_v, se)

Arguments

q Quantiles to be used

mean_v A vector of the mean values

se A vector of the standard errors of the means
Value

A single estimate from the beta distribution based on given parameters

Examples

gbeta_mse(q=0.5,mean_v=0.8,se=0.2)

gcond_exp Conditional quantile function for exponential distribution

Description

Conditional quantile function for exponential distribution

Usage

gcond_exp(rnd, rate)

Arguments
rnd Vector of quantiles
rate The rate parameter
Note taht the conditional quantile for an exponential is independent of time due
to constant hazard
Value

Estimate(s) from the conditional exponential distribution based on given parameters

38 gcond_gompertz

Examples

gcond_exp(rnd = 0.5,rate = 3)

gcond_gamma Conditional quantile function for gamma distribution

Description

Conditional quantile function for gamma distribution

Usage

gcond_gamma(rnd, shape, rate, lower_bound, s_obs)

Arguments
rnd Vector of quantiles
shape The shape parameter
rate The rate parameter
lower_bound The lower bound to be used (current time)
s_obs is the survival observed up to lower_bound time, normally defined from time 0
as 1 - pgamma(q = lower_bound, rate, shape) but may be different if parametriza-
tion has changed previously
Value

Estimate(s) from the conditional gamma distribution based on given parameters

Examples

gcond_gamma(rnd = 0.5, shape = 1.06178, rate = 0.01108,lower_bound = 1, s_obs=0.8)

gcond_gompertz Quantile function for conditional Gompertz distribution (lower bound
only)

Description

Quantile function for conditional Gompertz distribution (lower bound only)

Usage

gcond_gompertz(rnd, shape, rate, lower_bound = as.numeric(c(@)))

gcond_llogis 39

Arguments
rnd Vector of quantiles
shape The shape parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object
rate The rate parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object
lower_bound The lower bound of the conditional distribution
Value

Estimate(s) from the conditional Gompertz distribution based on given parameters

Examples

gcond_gompertz(rnd=0.5, shape=0.05,rate=0.01, lower_bound = 50)

gcond_llogis Conditional quantile function for loglogistic distribution

Description

Conditional quantile function for loglogistic distribution

Usage

gcond_llogis(rnd, shape, scale, lower_bound = as.numeric(c(@)))

Arguments

rnd Vector of quantiles

shape The shape parameter

scale The scale parameter

lower_bound The lower bound to be used (current time)
Value

Estimate(s) from the conditional loglogistic distribution based on given parameters

Examples

gcond_llogis(rnd = @.5,shape = 1,scale = 1,lower_bound = 1)

40 gcond_norm

gcond_lnorm Conditional quantile function for lognormal distribution

Description

Conditional quantile function for lognormal distribution

Usage

gcond_lnorm(rnd, meanlog, sdlog, lower_bound, s_obs)

Arguments
rnd Vector of quantiles
meanlog The meanlog parameter
sdlog The sdlog parameter
lower_bound The lower bound to be used (current time)
s_obs is the survival observed up to lower_bound time, normally defined from time
0 as 1 - plnorm(q = lower_bound, meanlog, sdlog) but may be different if
parametrization has changed previously
Value

Estimate(s) from the conditional lognormal distribution based on given parameters

Examples

gcond_lnorm(rnd = 0.5, meanlog = 1,sdlog = 1,lower_bound = 1, s_obs=0.8)

gcond_norm Conditional quantile function for normal distribution

Description

Conditional quantile function for normal distribution

Usage

gcond_norm(rnd, mean, sd, lower_bound, s_obs)

gcond_weibull 41

Arguments
rnd Vector of quantiles
mean The mean parameter
sd The sd parameter
lower_bound The lower bound to be used (current time)
s_obs is the survival observed up to lower_bound time, normally defined from time O
as 1 - pnorm(q = lower_bound, mean, sd) but may be different if parametrization
has changed previously
Value

Estimate(s) from the conditional normal distribution based on given parameters

Examples

gcond_norm(rnd = 0.5, mean = 1,sd = 1,lower_bound = 1, s_obs=0.8)

gcond_weibull Conditional quantile function for weibull distribution

Description

Conditional quantile function for weibull distribution

Usage

gcond_weibull(rnd, shape, scale, lower_bound = as.numeric(c(@)))

Arguments
rnd Vector of quantiles
shape The shape parameter as in R stats package weibull
scale The scale parameter as in R stats package weibull
lower_bound The lower bound to be used (current time)

Value

Estimate(s) from the conditional weibull distribution based on given parameters

Examples

gcond_weibull(rnd = @.5,shape = 3,scale = 66.66,lower_bound = 50)

42 ggamma_mse

gcond_weibullPH Conditional quantile function for WeibullPH (flexsurv)

Description

Conditional quantile function for WeibullPH (flexsurv)

Usage

gcond_weibullPH(rnd, shape, scale, lower_bound = as.numeric(c(@)))

Arguments
rnd Vector of quantiles (between 0 and 1)
shape Shape parameter of WeibullPH
scale Scale (rate) parameter of WeibullPH (i.e., as in hazard = scale * t"(shape - 1))
lower_bound Lower bound (current time)
Value

Estimate(s) from the conditional weibullPH distribution based on given parameters

Examples

gcond_weibullPH(rnd = 0.5, shape = 2, scale = 0.01, lower_bound = 5)

ggamma_mse Use quantiles from a gamma distribution based on mean and se

Description

Use quantiles from a gamma distribution based on mean and se

Usage

ggamma_mse(q = 1, mean_v, se, seed = NULL)

Arguments
q Quantile to draw
mean_v A vector of the mean values
se A vector of the standard errors of the means

seed An integer which will be used to set the seed for this draw.

qtimecov

Value

A single esti

Examples

43

mate from the gamma distribution based on given parameters

ggamma_mse (q=0.5,mean_v=0.8,se=0.2)

gtimecov

Draw time-to-event with time-dependent covariates and luck adjust-
ment

Description

Simulate a time-to-event (TTE) from a parametric distribution with parameters varying over time.
User provides parameter functions and distribution name. The function uses internal survival and
conditional quantile functions, plus luck adjustment to simulate the event time. See the vignette on
avoiding cycles for an example in a model.

Usage

gtimecov(
luck,
a_fun,
b_fun
dist ="

NULL,
eXp",

dt = 0.1,

max_time
start_ti

Arguments

luck

a_fun

b_fun

dist

dt
max_time

start_time

100,
0

me

Numeric between 0 and 1. Initial random quantile (luck).

Function of time .time returning the first distribution parameter (e.g., rate, shape,
meanlog).

Function of time .time returning the second distribution parameter (e.g., scale,
sdlog). Defaults to a function returning NA.

non non

Character string specifying the distribution. Supported: "exp", "gamma", "Inorm",

"norm", "weibull", "llogis", "gompertz".

s

non
bl

Numeric. Time step increment to update parameters and survival. Default 0.1.
Numeric. Max allowed event time to prevent infinite loops. Default 100.

Numeric. Time to use as a starting point of reference (e.g., curtime).

44 qtimecov

Details

The objective of this function is to avoid the user to have cycle events with the only scope of
updating some variables that depend on time and re-evaluate a TTE. The idea is that this function
should only be called at start and when an event impacts a variable (e.g., stroke event impacting
death TTE), in which case it would need to be called again at that point. In that case, the user would
need to call e.g., a <- gtimecov with max_time = curtime arguments, and then call it again with
no max_time, and luck = a$luck, start_time=a$tte (so there is no need to add curtime to the
resulting time).

It’s recommended to play with dt argument to balance running time and precision of the estimates.
For example, if we know we only update the equation annually (not continuously), then we could
just set dt = 1, which would make computations faster.

Value

List with simulated time-to-event and final luck value.

Examples

param_fun_factory <- function(p@, pl1, p2, p3) {
function(.time) p@ + pl*.time + p2*x.time*2 + p3*(floor(.time) + 1)
3

set.seed(42)

1. Exponential Example
rate_exp <- param_fun_factory(0.1, 0, 0, @)
gtimecov(

luck = runif(1),

a_fun = rate_exp,

dist = "exp”

)

2. Gamma Example
shape_gamma <- param_fun_factory(2, @, 0, 0)
rate_gamma <- param_fun_factory(0.2, @, 0, 0)
gtimecov(

luck = runif(1),

a_fun = shape_gamma,

b_fun = rate_gamma,

dist = "gamma"

)

3. Lognormal Example
meanlog_lnorm <- param_fun_factory(log(10) - 0.5%0.5*2, @, @, Q)
sdlog_lnorm <- param_fun_factory(@.5, @, 0, 0)
gtimecov(
luck = runif(1),
a_fun = meanlog_lnorm,
b_fun = sdlog_lnorm,

qtimecov

dist = "lnorm”

4. Normal Example
mean_norm <- param_fun_factory(10, @, 0, 0)
sd_norm <- param_fun_factory(2, 0, 0, 0)
gtimecov(

luck = runif(1),

a_fun = mean_norm,

b_fun = sd_norm,

dist = "norm”

5. Weibull Example
shape_weibull <- param_fun_factory(2, 0, 0, 0)
scale_weibull <- param_fun_factory(10, 0, @, 0)
gtimecov(

luck = runif(1),

a_fun = shape_weibull,

b_fun = scale_weibull,

dist = "weibull”

6. Loglogistic Example
shape_llogis <- param_fun_factory(2.5, 0, 0, @)
scale_llogis <- param_fun_factory(7.6, @, 0, 0)
gtimecov(

luck = runif(1),

a_fun = shape_llogis,

b_fun = scale_llogis,

dist = "llogis"”
)

7. Gompertz Example
shape_gomp <- param_fun_factory(@.01, @, 0, 0)
rate_gomp <- param_fun_factory(0.091, 0, 0, 0)
gtimecov(

luck = runif(1),

a_fun = shape_gomp,

b_fun = rate_gomp,

dist = "gompertz"

)

#Time varying example, with change at time 8

rate_exp <- function(.time) 0.1 + 0.01%.time * 0.00001%.time"2
rate_exp2 <- function(.time) 0.2 + 0.02x.time

time_change <- 8

init_luck <- 0.95

45

46 queue_create

a <- gtimecov(luck = init_luck,a_fun = rate_exp,dist = "exp"”, dt = 0.005,
max_time = time_change)
gtimecov(luck = a$luck,a_fun = rate_exp2,dist = "exp”, dt = 0.005, start_time=a$tte)

#An example of how it would work in the model, this would also work with time varying covariates!
rate_exp <- function(.time) 0.1

rate_exp2 <- function(.time) 0.2

rate_exp3 <- function(.time) 0.3

time_change <- 10 #evt 1

time_change2 <- 15 #evt2

init_luck <- 0.95

#at start, we would just draw TTE

gtimecov(luck = init_luck,a_fun = rate_exp,dist = "exp", dt = 0.005)

#at event in which rate changes (at time 10) we need to do this:
a <- gtimecov(luck = init_luck,a_fun = rate_exp,dist = "exp”, dt = 0.005,
max_time = time_change)
new_luck <- a$luck
gtimecov(luck = new_luck,a_fun = rate_exp2,dist = "exp", dt = 0.005, start_time=a$tte)

#at second event in which rate changes again (at time 15) we need to do this:
a <- gtimecov(luck = new_luck,a_fun = rate_exp2,dist = "exp”, dt = 0.005,
max_time = time_change2, start_time=a$tte)
new_luck <- a$luck
#final TTE is
gtimecov(luck = new_luck,a_fun = rate_exp3,dist = "exp”, dt = 0.005, start_time=a$tte)

gqueue_create Create a New Event Queue

Description

Initializes a new event queue with the specified priority order of event names.

Usage

queue_create(priority_order)

Arguments

priority_order A character vector of event names sorted by decreasing importance.

Value

An external pointer to the new event queue.

queue_empty 47

queue_empty Check if the event queue is empty

Description

Check if the event queue is empty

Usage

queue_empty(ptr, exclude_inf = FALSE)

Arguments

ptr The event queue pointer. Defaults to cur_evtlist.

exclude_inf Logical, whether to exclude events with Inf time. Default is FALSE.

Value

Logical, TRUE if the queue is empty, FALSE otherwise.

queue_size Get the Size of the Event Queue

Description

Get the Size of the Event Queue

Usage

queue_size(ptr, exclude_inf = FALSE)

Arguments

ptr The event queue pointer. Defaults to cur_evtlist.

exclude_inf Logical, whether to exclude events with Inf time. Default is FALSE.

Value

An integer indicating the number of events in the queue.

48 random_stream

random_stream Creates an environment (similar to R6 class) of random uniform num-
bers to be drawn from

Description

Creates an environment (similar to R6 class) of random uniform numbers to be drawn from

Usage

random_stream(stream_size = 100)

Arguments

stream_size Length of the vector of random uniform values to initialize

Details

This function creates an environment object that behaves similar to an R6 class but offers more
speed vs. an R6 class.

The object is always initialized (see example below) to a specific vector of random uniform values.
The user can then call the object with obj$draw_number(n), where n is an integer, and will return
the first n elements of the created vector of uniform values. It will automatically remove those
indexes from the vector, so the next time the user calls obj$draw_n() it will already consider the
next index.

The user can also access the latest elements drawn by accessing obj$random_n (useful for when
performing a luck adjustment), the current stream still to be drawn using obj$stream and the
original size (when created) using obj$stream_size.

If performing luck adjustment, the user can always modify the random value by using obj$random_n
<- luck_adj(...) (only valid if used with the expression approach, not with modify_item)

Value

Self (environment) behaving similar to R6 class

Examples

stream_1 <- random_stream(1000)

number_1 <- stream_1$draw_n() #extract 1st index from the vector created
identical(number_1,stream_1$random_n) #same value

number_2 <- stream_1$draw_n() #gets 1st index (considers previous)
identical (number_2,stream_1$random_n) #same value

rbeta_mse 49

rbeta_mse Draw from a beta distribution based on mean and se

Description

Draw from a beta distribution based on mean and se

Usage

rbeta_mse(n = 1, mean_v, se, seed = NULL)

Arguments

n Number of draws (must be >= 1)

mean_v A vector of the mean values

se A vector of the standard errors of the means

seed An integer which will be used to set the seed for this draw.
Value

A single estimate from the beta distribution based on given parameters

Examples

rbeta_mse(n=1,mean_v=0.8,se=0.2)

rcond_gompertz Draw from a conditional Gompertz distribution (lower bound only)

Description

Draw from a conditional Gompertz distribution (lower bound only)

Usage

rcond_gompertz(n = 1, shape, rate, lower_bound = @, seed = NULL)

Arguments
n The number of observations to be drawn
shape The shape parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object
rate The rate parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object
lower_bound The lower bound of the conditional distribution

seed An integer which will be used to set the seed for this draw.

50 rcond_gompertz_lu

Value

Estimate(s) from the conditional Gompertz distribution based on given parameters

Examples

rcond_gompertz(1, shape=0.05,rate=0.01,lower_bound = 50)

rcond_gompertz_lu Draw from a conditional Gompertz distribution (lower and upper
bound)

Description

Draw from a conditional Gompertz distribution (lower and upper bound)

Usage

rcond_gompertz_lu(
n,
shape,
rate,
lower_bound =
upper_bound = Inf,

|
[

seed = NULL
)
Arguments
n The number of observations to be drawn
shape The shape parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object
rate The rate parameter of the Gompertz distribution, defined as in the coef() output
on a flexsurvreg object
lower_bound The lower bound of the conditional distribution
upper_bound The upper bound of the conditional distribution
seed An integer which will be used to set the seed for this draw.
Value

Estimate(s) from the Conditional Gompertz distribution based on given parameters

Examples

rcond_gompertz_lu(1, shape=0.05,rate=0.01,lower_bound = 50)

rdirichlet 51

rdirichlet Draw from a dirichlet distribution based on number of counts in tran-
sition. Adapted from brms::rdirichlet

Description

Draw from a dirichlet distribution based on number of counts in transition. Adapted from brms::rdirichlet

Usage

rdirichlet(n = 1, alpha, seed = NULL)

Arguments
n Number of draws (must be >= 1). If n>1, it will return a list of matrices.
alpha A matrix of alphas (transition counts)
seed An integer which will be used to set the seed for this draw.

Value

A transition matrix. If n>1, it will return a list of matrices.

Examples

rdirichlet(n=1,alpha= matrix(c(1251, @, 350, 731),2,2))
rdirichlet(n=2,alpha= matrix(c(1251, @, 350, 731),2,2))

rdirichlet_prob Draw from a dirichlet distribution based on mean transition probabil-
ities and standard errors

Description

Draw from a dirichlet distribution based on mean transition probabilities and standard errors

Usage

rdirichlet_prob(n = 1, alpha, se, seed = NULL)

Arguments
n Number of draws (must be >= 1). If n>1, it will return a list of matrices.
alpha A matrix of transition probabilities
se A matrix of standard errors

seed An integer which will be used to set the seed for this draw.

52 replicate_profiles

Value

A transition matrix. If n>1, it will return a list of matrices.

Examples

rdirichlet_prob(n=1,alpha= matrix(c(
se=matrix(c(0.7,0.3,0,0.1,0.7,0.2,0.

- o

0.2,0.1,0.2,0.7),3,3),
)

rdirichlet_prob(n=2,alpha= matrix(c(
se=matrix(c(0.7,0.3,0,0.1,0.7,0.2,0.

- o

0.2,0.1,0.2,0.7),3,3),
)

remove_event Remove events for a patient

Description

Removes one or more events from the queue for the given patient.

Usage

remove_event(events, ptr, patient_id)

Arguments
events A character vector of event names to remove. It can also handle lists instead of
named vectors (at a small computational cost).
ptr The event queue pointer. Defaults to cur_evtlist.
patient_id The patient ID. Defaults to i.
Value

NULL (invisible). Modifies the queue in-place.

replicate_profiles Replicate profiles data.frame

Description

Replicate profiles data.frame

resource_discrete 53

Usage

replicate_profiles(
profiles,
replications,
probabilities = NULL,
replacement = TRUE,
seed_used = NULL

Arguments

profiles data.frame of profiles
replications integer, final number of observations

probabilities vector of probabilities with the same length as the number of rows of profiles.
Does not need to add up to 1 (are reweighted)

replacement Boolean whether replacement is used
seed_used Integer with the seed to be used for consistent results
Value

Resampled data.frame of profiles

Examples

replicate_profiles(profiles=data.frame(id=1:100,age=rnorm(100,60,5)),
replications=200,probabilities=rep(1,100))

resource_discrete Create a discrete resource

Description

Creates a discrete resource management system for discrete event simulations. This system man-
ages a fixed number of identical resource units that can be blocked (used) by patients and maintains
a priority queue for waiting patients.

Usage

resource_discrete(n)

Arguments

n Integer. The total capacity of the resource (must be >=1).

54 resource_discrete

Details
The returned environment has the following methods:

* size(): Returns the total capacity

* queue_size(): Returns the number of patients in queue

e n_free(): Returns the number of free resource units

* patients_using(): Vector of patient IDs currently using the resource

* patients_using_times(): Vector of start times for patients using the resource

* queue_start_times(): Vector of queue start times parallel to queue order

* queue_priorities(): Vector of priorities parallel to queue order

e queue_info(n): Data.frame with patient_id, priority, start_time for queue

* is_patient_in_queue(patient_id): Check if patient is in queue

* is_patient_using(patient_id): Check if patient is using resource

* attempt_block(patient_id, priority, start_time): Attempt to block a resource unit
* attempt_free(patient_id, remove_all): Free a resource unit

e attempt_free_if_using(patient_id, remove_all): Free only if patient is using
e next_patient_in_line(n): Get next n patients in queue

* modify_priority(patient_id, new_priority): Modify patient priority in queue
* add_resource(n): Add n resource units to total capacity

* remove_resource(n, current_time): Remove n resource units from total capacity

Value

An environment with methods for resource management.

Examples

Create a resource with 3 units
beds <- resource_discrete(3)

Check initial state
beds$size() # 3
beds$n_free() # 3
beds$queue_size() # @

Block resources
i <- 101; curtime <- 0.0
beds$attempt_block() # Uses i and curtime from environment

Or explicitly
beds$attempt_block(patient_id = 102, priority = 1, start_time = 1.0)

Check patient status
beds$is_patient_using(101) # TRUE
beds$is_patient_in_queue(102) # FALSE

rgamma_mse

55

rgamma_mse

Draw from a gamma distribution based on mean and se

Description

Draw from a gamma distribution based on mean and se

Usage

rgamma_mse(n = 1, mean_v, se, seed = NULL)

Arguments

n
mean_v
se
seed

Value

Number of draws (must be >= 1)

A vector of the mean values

A vector of the standard errors of the means

An integer which will be used to set the seed for this draw.

A single estimate from the gamma distribution based on given parameters

Examples

rgamma_mse(n=1,mean_v=0.8,se=0.2)

rpoisgamma

Draw time to event (tte) from a Poisson or Poisson-Gamma (PG) Mix-
ture/Negative Binomial (NB) Process

Description

Draw time to event (tte) from a Poisson or Poisson-Gamma (PG) Mixture/Negative Binomial (NB)

Process

Usage

rpoisgamma(
n,
rate,
theta = NULL,
obs_time = 1,
t_reps,
seed = NULL,

return_ind_rate = FALSE,
return_df = FALSE

56

Arguments

n
rate

theta

obs_time

t_reps

seed

return_ind_rate

return_df

Details

rpoisgamma_rcpp

The number of observations to be drawn
rate of the event (in terms of events per observation-time)

Optional. When omitted, the function simulates times for a Poisson process.
Represents the shape of the gamma mixture distribution. Estimated and reported
as theta in negative binomial regression analyses in r.

period over which events are observable

Optional. Number of TBEs to be generated to capture events within the obser-
vation window. When omitted, the function sets t_reps to the 99.99th quantile of
the Poisson (if no theta is provided) or negative binomial (if theta is provided).
Thus, the risk of missing possible events in the observation window is 0.01%.

An integer which will be used to set the seed for this draw.

A boolean that indicates whether an additional vector with the rate parameters
used per observation is used. It will alter the structure of the results to two lists,
one storing tte with name tte, and the other with name ind_rate

A boolean that indicates whether a data.table object should be returned

Function to simulate event times from a Poisson or Poisson-Gamma (PG) Mixture/Negative Bino-
mial (NB) Process Event times are determined by sampling times between events (TBEs) from an
exponential distribution, and cumulating these to derive the event times. Events occurring within
the set observation time window are retained and returned. For times for a Poisson process, the
provided rate is assumed constant. For a PG or NB, the individual rates are sampled from a Gamma
distribution with shape = theta and scale = rate/theta.

Value

Estimate(s) from the time to event based on poisson/Poisson-Gamma (PG) Mixture/Negative Bino-
mial (NB) distribution based on given parameters

Examples

rpoisgamma(1,rate=1,obs_time=1,theta=1)

rpoisgamma_rcpp

Draw time to event (tte) from a Poisson or Poisson-Gamma (PG) Mix-
ture/Negative Binomial (NB) Process using C++

Description

Draw time to event (tte) from a Poisson or Poisson-Gamma (PG) Mixture/Negative Binomial (NB)

Process using C++

run_sim 57

Usage
rpoisgamma_rcpp(
n,
rate,
theta = NULL,

obs_time = 1,

t_reps = NULL,

seed = NULL,
return_ind_rate = FALSE,
return_df = FALSE

)
Arguments
n The number of observations to be drawn
rate rate of the event (events per unit time)
theta Optional. If provided, Poisson-Gamma (NB). Represents gamma shape.
obs_time period over which events are observable
t_reps Optional. Number of TBEs to be generated to capture events within the obser-
vation window.
seed Optional integer seed for reproducibility.

return_ind_rate
Logical: include individual rate vector in output when theta provided.

return_df Logical: return a data.frame with event-level rows (if TRUE).

Value

If return_df=TRUE: a data.frame (or NULL if no events). Else: list with tte and optionally ind_rate.

Examples

rpoisgamma_rcpp(1, rate = 1, obs_time = 1, theta = 1)

run_sim Run the simulation

Description

Run the simulation

58 run_sim

Usage

run_sim(
arm_list = c("int"”, "noint"),
sensitivity_inputs = NULL,
common_all_inputs = NULL,
common_pt_inputs = NULL,
unique_pt_inputs = NULL,
init_event_list = NULL,
evt_react_list = evt_react_list,
util_ongoing_list = NULL,
util_instant_list = NULL,
util_cycle_list = NULL,
cost_ongoing_list = NULL,
cost_instant_list = NULL,

cost_cycle_list = NULL,

other_ongoing_list = NULL,
other_instant_list = NULL,
npats = 500,

n_sim = 1,

psa_bool = NULL,
sensitivity_bool = FALSE,
sensitivity_names = NULL,
n_sensitivity = 1,
input_out = character(),
ipd = 1,

constrained = FALSE,
timed_freq = NULL,

debug = FALSE,
accum_backwards = FALSE,
continue_on_error = FALSE,
seed = NULL

Arguments

arm_list A vector of the names of the interventions evaluated in the simulation
sensitivity_inputs
A list of sensitivity inputs that do not change within a sensitivity in a similar
fashion to common_all_inputs, etc
common_all_inputs
A list of inputs common across patients that do not change within a simulation
common_pt_inputs
A list of inputs that change across patients but are not affected by the interven-
tion
unique_pt_inputs
A list of inputs that change across each intervention

run_sim 59

init_event_list
A list of initial events and event times. If no initial events are given, a "Start"
event at time 0 is created automatically

evt_react_list A list of event reactions

util_ongoing_list
Vector of QALY named variables that are accrued at an ongoing basis (dis-
counted using drq)

util_instant_list
Vector of QALY named variables that are accrued instantaneously at an event
(discounted using drq)

util_cycle_list
Vector of QALY named variables that are accrued in cycles (discounted using
drq)

cost_ongoing_list
Vector of cost named variables that are accrued at an ongoing basis (discounted
using drc)

cost_instant_list
Vector of cost named variables that are accrued instantaneously at an event (dis-
counted using drc)

cost_cycle_list
Vector of cost named variables that are accrued in cycles (discounted using drc)

other_ongoing_list
Vector of other named variables that are accrued at an ongoing basis (discounted
using drq)

other_instant_list
Vector of other named variables that are accrued instantaneously at an event
(discounted using drq)

npats The number of patients to be simulated (it will simulate npats * length(arm_list))
n_sim The number of simulations to run per sensitivity
psa_bool A boolean to determine if PSA should be conducted. If n_sim > 1 and psa_bool

= FALSE, the differences between simulations will be due to sampling
sensitivity_bool

A boolean to determine if Scenarios/DSA should be conducted.
sensitivity_names

A vector of scenario/DSA names that can be used to select the right sensitiv-

ity (e.g., c("Scenario_1", "Scenario_2")). The parameter "sens_name_used" is

created from it which corresponds to the one being used for each iteration.

n_sensitivity Number of sensitivity analysis (DSA or Scenarios) to run. It will be interacted
with sensitivity_names argument if not null (n_sensitivityitivity = n_sensitivity
* length(sensitivity_names)). For DSA, it should be as many parameters as there
are. For scenario, it should be 1.

input_out A vector of variables to be returned in the output data frame

ipd Integer taking value 1 for full IPD data returned, and 2 IPD data but aggregating
events (returning last value for numeric/character/factor variables. For other
objects (e.g., matrices), the IPD will still be returned as the aggregation rule is

60 run_sim

not clear). Other values mean no IPD data returned (removes non-numerical or
length>1 items)

constrained Boolean, FALSE by default, which runs the simulation with patients not in-
teracting with each other, TRUE if resources are shared within an arm (allows
constrained resources)

timed_freq If NULL, it does not produce any timed outputs. Otherwise should be a number
(e.g., every 1 year)
debug If TRUE, will generate a log file

accum_backwards
If TRUE, the ongoing accumulators will count backwards (i.e., the current value
is applied until the previous update). If FALSE, the current value is applied
between the current event and the next time it is updated.

continue_on_error
If TRUE, on error it will attempt to continue by skipping the current simulation

seed Starting seed to be used for the whole analysis. If null, it’s set to 1 by default.

Details

This function is slightly different from run_sim_parallel. run_sim_parallel only runs multiple-
core at the simulation level. run_sim uses only-single core. run_sim can be more efficient if using
only one simulation (e.g., deterministic), while run_sim_parallel will be more efficient if the
number of simulations is >1 (e.g., PSA).

Event ties are processed in the order declared within the init_event_list argument (evts argu-
ment within the first sublist of that object). To do so, the program automatically adds a sequence
from to O to the (number of events - 1) times le-10 to add to the event times when selecting the
event with minimum time. This time has been selected as it’s relatively small yet not so small as to
be ignored by which.min (see .Machine for more details)

A list of protected objects that should not be used by the user as input names or in the global environ-

non non

ment to avoid the risk of overwriting them is as follows: c("arm", "arm_list", "categories_for_export",

non "non "nonzn o non "non non non non

"cur_evtlist", "curtime", "evt", "i", "prevtime", "sens", "simulation", "sens_name_used","list_env","uc_lists","npats","ipd").

The engine uses the L’Ecuyer-CMRG for the random number generator. Note that the random seeds
are set to be unique in their category (i.e., at patient level, patient-arm level, etc.)

If no drc or drq parameters are passed within sensitivity or common_all input lists, these are
assigned a default value 0.03 for discounting costs, QALYs and others.

Ongoing items will look backward to the last time updated when performing the discounting and
accumulation. This means that the user does not necessarily need to keep updating the value, but
only add it when the value changes looking forward (e.g., 0_q = utility at event 1, at event 2 utility
does not change, but at event 3 it does, so we want to make sure to add o_q = utility at event
3 before updating utility. The program will automatically look back until event 1). Note that in
previous versions of the package backward was the default, and now this has switched to forward.

The requirement to use modify_item if using accum_backwards = TRUE, is no longer the case
thanks to a new method using active bindings, so it can be used normally.

It is important to note that the QALY's and Costs (ongoing or instant or per cycle) used should be
of length 1. If they were of length > 1, the model would expand the data, so instead of having
each event as a row, the event would have N rows (equal to the length of the costs/qalys to discount

run_sim 61

passed). This means more processing of the results data would be needed in order for it to provide
the correct results.

If the cycle lists are used, then it is expected the user will declare as well the name of the variable
pasted with cycle_1 and cycle_starttime (e.g., c_default_cycle_l and c_default_cycle_starttime)
to ensure the discounting can be computed using cycles, with cycle_I being the cycle length, and cy-
cle_starttime being the starting time in which the variable started counting. Optionally, max_cycles
must also be added (if no maximum number of cycles, it should be set equal to NA).

debug = TRUE will export a log file with the timestamp up the error in the main working directory.
Note that using this mode without modify_item or modify_item_seq may lead to inaccuracies if
assignments are done in non-standard ways, as the AST may not catch all the relevant assignments
(e.g., an assigment like assign(paste("x_",i),5) in a loop will not be identified).

continue_on_error will skip the current simulation (so it won’t continue for the rest of patient-
arms) if TRUE. Note that this will make the progress bar not correct, as a set of patients that were
expected to be run is not.

Value

A list of data frames with the simulation results

Examples

library(magrittr)
common_all_inputs <-add_item(
util.sick = 0.8,

util.sicker = 0.5,

cost.sick = 3000,

cost.sicker = 7000,

cost.int = 1000,

coef_noint = log(0.2),

HR_int = 0.8,

drc = 0.035, #different values than what's assumed by default
drq = 0.035,

random_seed_sicker_i = sample.int(100000,5,replace = FALSE)

)

common_pt_inputs <- add_item(death= max(@.0000001,rnorm(n=1, mean=12, sd=3)))

unique_pt_inputs <- add_item(fl.sick = 1,
g_default = util.sick,
c_default = cost.sick + if(arm=="int"){cost.int}else{0})

init_event_list <-
add_tte(arm=c("noint"”,"int"), evts = c(”"sick”,"sicker”,"death"”) ,input={
sick <- 0
sicker <- draw_tte(1,dist="exp",
coefl=coef_noint, beta_tx = ifelse(arm=="int" HR_int,1),
seed = random_seed_sicker_i[i])

b

62 run_sim_parallel

evt_react_list <-
add_reactevt(name_evt = "sick”,
input = {}) %%
add_reactevt(name_evt = "sicker”,
input = {
g_default <- util.sicker
c_default <- cost.sicker + if(arm=="int"){cost.int}else{0}

fl.sick <- 0
1 %%
add_reactevt(name_evt = "death”,
input = {

g_default <- @
c_default <- 0
curtime <- Inf

D

util_ongoing <- "g_default”
cost_ongoing <- "c_default”

non

run_sim(arm_list=c("int”,"noint"),
common_all_inputs = common_all_inputs,
common_pt_inputs = common_pt_inputs,
unique_pt_inputs = unique_pt_inputs,
init_event_list = init_event_list,
evt_react_list = evt_react_list,
util_ongoing_list = util_ongoing,
cost_ongoing_list = cost_ongoing,
npats = 2,

n_sim = 1,

psa_bool = FALSE,

ipd = 1)

run_sim_parallel Run simulations in parallel mode (at the simulation level)

Description

Run simulations in parallel mode (at the simulation level)

Usage

run_sim_parallel(
arm_list = c("int", "noint"),
sensitivity_inputs = NULL,
common_all_inputs = NULL,
common_pt_inputs = NULL,
unique_pt_inputs = NULL,
init_event_list = NULL,

run_sim_parallel 63

evt_react_list = evt_react_list,
util_ongoing_list = NULL,
util_instant_list = NULL,
util_cycle_list = NULL,
cost_ongoing_list = NULL,
cost_instant_list = NULL,
cost_cycle_list = NULL,
other_ongoing_list = NULL,
other_instant_list = NULL,
npats = 500,

n_sim = 1,

psa_bool = NULL,
sensitivity_bool = FALSE,
sensitivity_names = NULL,
n_sensitivity = 1,

ncores = 1,

input_out = character(),
ipd = 1,

constrained = FALSE,
timed_freq = NULL,

debug = FALSE,
accum_backwards = FALSE,
continue_on_error = FALSE,
seed = NULL

Arguments

arm_list A vector of the names of the interventions evaluated in the simulation
sensitivity_inputs
A list of sensitivity inputs that do not change within a sensitivity in a similar
fashion to common_all_inputs, etc
common_all_inputs
A list of inputs common across patients that do not change within a simulation
common_pt_inputs
A list of inputs that change across patients but are not affected by the interven-
tion
unique_pt_inputs
A list of inputs that change across each intervention
init_event_list
A list of initial events and event times. If no initial events are given, a "Start"
event at time 0 is created automatically

evt_react_list A list of event reactions
util_ongoing_list

Vector of QALY named variables that are accrued at an ongoing basis (dis-
counted using drq)

64

run_sim_parallel

util_instant_list
Vector of QALY named variables that are accrued instantaneously at an event
(discounted using drq)

util_cycle_list
Vector of QALY named variables that are accrued in cycles (discounted using
drq)

cost_ongoing_list
Vector of cost named variables that are accrued at an ongoing basis (discounted
using drc)

cost_instant_list
Vector of cost named variables that are accrued instantaneously at an event (dis-
counted using drc)

cost_cycle_list
Vector of cost named variables that are accrued in cycles (discounted using drc)

other_ongoing_list
Vector of other named variables that are accrued at an ongoing basis (discounted
using drq)

other_instant_list
Vector of other named variables that are accrued instantaneously at an event
(discounted using drq)

npats The number of patients to be simulated (it will simulate npats * length(arm_list))
n_sim The number of simulations to run per sensitivity
psa_bool A boolean to determine if PSA should be conducted. If n_sim > 1 and psa_bool

= FALSE, the differences between simulations will be due to sampling
sensitivity_bool

A boolean to determine if Scenarios/DSA should be conducted.
sensitivity_names

A vector of scenario/DSA names that can be used to select the right sensitiv-

ity (e.g., c("Scenario_1", "Scenario_2")). The parameter "sens_name_used" is

created from it which corresponds to the one being used for each iteration.

n_sensitivity Number of sensitivity analysis (DSA or Scenarios) to run. It will be interacted
with sensitivity_names argument if not null (n_sensitivityitivity = n_sensitivity
* length(sensitivity_names)). For DSA, it should be as many parameters as there
are. For scenario, it should be 1.

ncores The number of cores to use for parallel computing
input_out A vector of variables to be returned in the output data frame
ipd Integer taking value O if no IPD data returned, 1 for full IPD data returned, and

2 IPD data but aggregating events

constrained Boolean, FALSE by default, which runs the simulation with patients not in-
teracting with each other, TRUE if resources are shared within an arm (allows
constrained resources)

timed_freq If NULL, it does not produce any timed outputs. Otherwise should be a number
(e.g., every 1 year)

debug If TRUE, will generate a log file

run_sim_parallel 65

accum_backwards
If TRUE, the ongoing accumulators will count backwards (i.e., the current value
is applied until the previous update). If FALSE, the current value is applied
between the current event and the next time it is updated.

continue_on_error
If TRUE, on error at patient stage will attempt to continue to the next simulation
(only works if n_sim and/or n_sensitivity are > 1, not at the patient level)

seed Starting seed to be used for the whole analysis. If null, it’s set to 1 by default.

Details

This function is slightly different from run_sim. run_sim allows to run single-core. run_sim_parallel
allows to use multiple-core at the simulation level, making it more efficient for a large number of
simulations relative to run_sim (e.g., for PSA).

Event ties are processed in the order declared within the init_event_list argument (evts argu-
ment within the first sublist of that object). To do so, the program automatically adds a sequence
from to O to the (number of events - 1) times le-10 to add to the event times when selecting the
event with minimum time. This time has been selected as it’s relatively small yet not so small as to
be ignored by which.min (see .Machine for more details)

A list of protected objects that should not be used by the user as input names or in the global environ-

non non

ment to avoid the risk of overwriting them is as follows: c("arm", "arm_list", "categories_for_export",

non non nonnon non non non non non

"cur_evtlist", "curtime", "evt", "i", "prevtime", "sens", "simulation", "sens_name_used","list_env","uc_lists","npats","ipd").

The engine uses the L’Ecuyer-CMRG for the random number generator. Note that if ncores > 1,
then results per simulation will only be exactly replicable if using run_sim_parallel (as seeds are
automatically transformed to be seven integer seeds -i.e, L'Ecuyer-CMRG seeds-) Note that the
random seeds are set to be unique in their category (i.e., at patient level, patient-arm level, etc.)

If no drc or drq parameters are passed within sensitivity or common_all input lists, these are
assigned a default value 0.03 for discounting costs, QALYs and others.

Ongoing items will look backward to the last time updated when performing the discounting and
accumulation. This means that the user does not necessarily need to keep updating the value, but
only add it when the value changes looking forward (e.g., 0_q = utility at event 1, at event 2 utility
does not change, but at event 3 it does, so we want to make sure to add o_q = utility at event
3 before updating utility. The program will automatically look back until event 1). Note that in
previous versions of the package backward was the default, and now this has switched to forward.

The requirement to use modify_item if using accum_backwards = TRUE, is no longer the case
thanks to a new method using active bindings, so it can be used normally.

If the cycle lists are used, then it is expected the user will declare as well the name of the variable
pasted with cycle_1 and cycle_starttime (e.g., c_default_cycle_l and c_default_cycle_starttime)
to ensure the discounting can be computed using cycles, with cycle_I being the cycle length, and cy-
cle_starttime being the starting time in which the variable started counting. Optionally, max_cycles
must also be added (if no maximum number of cycles, it should be set equal to NA).

debug = TRUE will export a log file with the timestamp up the error in the main working directory.
Note that using this mode without modify_item or modify_item_seq may lead to inaccuracies if
assignments are done in non-standard ways, as the AST may not catch all the relevant assignments

(e.g., an assigment like assign(paste("x_",i),5) in a loop will not be identified).

66 run_sim_parallel

If continue_on_error is set to FALSE, it will only export analysis level inputs due to the parallel
engine (use single-engine for those inputs) continue_on_error will skip the current simulation
(so it won’t continue for the rest of patient-arms) if TRUE. Note that this will make the progress bar
not correct, as a set of patients that were expected to be run is not.

Value

A list of lists with the analysis results

Examples

library(magrittr)
common_all_inputs <-add_item(
util.sick = 0.8,

util.sicker = 0.5,

cost.sick = 3000,

cost.sicker = 7000,

cost.int = 1000,

coef_noint = log(0.2),

HR_int = 0.8,

drc = 0.035, #different values than what's assumed by default
drq = 0.035,

random_seed_sicker_i = sample.int(100000,5,replace = FALSE)

)

common_pt_inputs <- add_item(death= max(@.0000001,rnorm(n=1, mean=12, sd=3)))

unique_pt_inputs <- add_item(fl.sick =
g_default
c_default

1 ’
= util.sick,
= cost.sick + if(arm=="int"){cost.int}else{0})

init_event_list <-
add_tte(arm=c("noint"”,"int"), evts = c(”"sick”,"sicker”,"death"”) ,input={
sick <- 0
sicker <- draw_tte(1,dist="exp",
coefl=coef_noint, beta_tx = ifelse(arm=="int" HR_int,1),
seed = random_seed_sicker_i[i])

b

evt_react_list <-
add_reactevt(name_evt = "sick”,
input = {}) %%
add_reactevt(name_evt = "sicker”,
input = {
g_default <- util.sicker
c_default <- cost.sicker + if(arm=="int"){cost.int}else{0}

fl.sick <- 0
1 %%
add_reactevt(name_evt = "death”,
input = {

g_default <- @

sens_iterator 67

c_default <- 0
curtime <- Inf

D

util_ongoing <- "g_default”
cost_ongoing <- "c_default”

non

run_sim_parallel(arm_list=c("int","noint"),
common_all_inputs = common_all_inputs,
common_pt_inputs = common_pt_inputs,
unique_pt_inputs = unique_pt_inputs,
init_event_list = init_event_list,
evt_react_list = evt_react_list,
util_ongoing_list = util_ongoing,
cost_ongoing_list = cost_ongoing,
npats = 2,

n_sim = 1,

psa_bool = FALSE,

ipd = 1,

ncores = 1)

sens_iterator Create an iterator based on sens of the current iteration within a sce-
nario (DSA)

Description

Create an iterator based on sens of the current iteration within a scenario (DSA)

Usage

sens_iterator(sens, n_sensitivity)

Arguments

sens current analysis iterator

n_sensitivity total number of analyses to be run

Details

In a situation like a DSA, where two (low and high) scenarios are run, sens will go from 1 to
n_sensitivity*2. However, this is not ideal as the parameter selector may depend on knowing the
parameter order (i.e., 1, 2, 3...), which means resetting the counter back to 1 once sens reaches
n_sensitivity (or any multiple of n_sensitivity) is needed.

Value

Integer iterator based on the number of sensitivity analyses being run and the total iterator

68 shared_input

Examples

sens_iterator(5,20)
sens_iterator(25,20)

shared_input Shared input object

Description

Constructor for a lightweight "shared or immutable" value holder.

Usage

shared_input (expr, constrained = NULL)

Arguments
expr A value or expression to initialize the shared input with. The expression is
evaluated immediately.
constrained Logical. If TRUE, creates a shared environment-backed object. If FALSE, creates
an immutable copy-on-modify object. If NULL (default), the function looks up
constrained in the calling environment; only an explicit TRUE enables shared
mode.
Details

shared_input () produces a simple object that wraps a value with controlled mutability semantics.
It can operate in two distinct modes:

e Immutable (non-shared): every modification produces a fresh, independent copy of the ob-
ject (safe for parallel or functional code).

* Shared (constrained): the object’s value is stored in a common environment shared across
all aliases (by-reference semantics). This allows coordinated updates across multiple handles.

The mode is determined either by the explicit argument constrained, or by inheriting the value of
a constrained variable in the parent frame.

e In immutable mode, each wrapper stores its value in closures (make_val()) and is fully
copy-on-modify. No references are shared.

* In shared mode, all wrappers produced by $modify() or direct aliasing point to the same un-
derlying environment (state). This means updating one updates all aliases until a $clone()
or $reset () breaks the link.

The underlying state environments are internal. Users should rely only on the public methods
above.

Note: if the stored value itself is a reference type (e.g., environment, external pointer, R6 object),
those internal references remain shared regardless of mode, following normal R semantics.

shared_input 69

Value

An object of class shared_input_val (immutable mode) or shared_input_env (shared mode),
both inheriting from class "shared_input"”. Each instance exposes the following user methods:

$value() Returns the current stored value.

$modify(new_v) In immutable mode: returns a new independent wrapper with updated value. In
shared mode: updates the shared value by reference and returns a new wrapper pointing to the
same shared state.

$clone() Returns a deep copy (independent wrapper and independent internal state). Subsequent
modifications on clones do not affect the original object or its aliases.

$reset() Returns a new wrapper whose value is restored to the original initialization value. In both
modes this creates an independent fresh state.

$fork(n) Creates nindependent deep clones as a list. Useful for generating multiple isolated copies

quickly.
Examples

--- Immutable (default) mode ---
a <- shared_input(5)

a$value() #5

a2 <- a$modify(a$value() + 7)
a$value() #5
a2$value() # 12

Cloning and resetting

a3 <- a2%clone()

a4 <- a2%reset()

a3$value(); a4$value() #12, 5

Forking
forks <- a$fork(3)
vapply(forks, function(x) x$value(), numeric(1))

--- Shared (constrained) mode ---
constrained <- TRUE

b1 <- shared_input(10)

b2 <- b1 # alias (same state)
b1$modify(11)

b1$value(); b2$value() # both 11

b3 <- b1%$clone()
b1$modify(99)
b1$value(); b3$value() # 99, 11

Reset breaks sharing
b4 <- b1$reset()
b4$value() # 10

70 summary_results_det

summary_results_det Deterministic results for a specific treatment

Description

Deterministic results for a specific treatment

Usage

summary_results_det(out = results[[1]JJ[[1]], arm = NULL, wtp = 50000)

Arguments
out The final_output data frame from the list object returned by run_sim()
arm The reference treatment for calculation of incremental outcomes
wtp Willingness to pay to have INMB

Value

A dataframe with absolute costs, LY's, QALYs, and ICER and ICUR for each intervention

Examples

nn

res <- list(list(list(sensitivity_name = , arm_list = c("int", "noint”
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945

), total_galys = c(int = 6.20743830697466, noint = 6.18115138126336

), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378

), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039
), total_galys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), c_default = c(int = 49921.6357486899, noint = 41225.2544659378

), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), g_default = c(int = 6.20743830697466, noint = 6.18115138126336

), g_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))

summary_results_det(res[[1]1][[1]1],arm="int")

summary_results_sens 71

summary_results_sens Summary of sensitivity outputs for a treatment

Description

Summary of sensitivity outputs for a treatment

Usage

summary_results_sens(out = results, arm = NULL, wtp = 50000)

Arguments
out The list object returned by run_sim()
arm The reference treatment for calculation of incremental outcomes
wtp Willingness to pay to have INMB

Value

A data frame with each sensitivity output per arm

Examples
res <- list(list(list(sensitivity_name = "", arm_list = c("int"”, "noint”
), total_lys = c(int = 9.04687362556945, noint = 9.04687362556945
), total_galys = c(int = 6.20743830697466, noint = 6.18115138126336
), total_costs = c(int = 49921.6357486899, noint = 41225.2544659378
), total_lys_undisc = c(int = 10.8986618377039, noint = 10.8986618377039
), total_galys_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), total_costs_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), c_default = c(int = 49921.6357486899, noint = 41225.2544659378
), c_default_undisc = c(int = 59831.3573929783, noint = 49293.1025437205
), g_default = c(int = 6.20743830697466, noint = 6.18115138126336
), g_default_undisc = c(int = 7.50117621700097, noint = 7.47414569286751
), merged_df = list(simulation = 1L, sensitivity = 1L))))

summary_results_sens(res,arm="int")

72

summary_results_sim

summary_results_sim

Summary of PSA outputs for a treatment

Description

Summary of PSA outputs for a treatment

Usage

summary_results_sim(out results[[1]1],

Arguments

out
arm

wtp

Value

arm = NULL, wtp = 50000)

The output_sim data frame from the list object returned by run_sim()
The reference treatment for calculation of incremental outcomes

Willingness to pay to have INMB

A data frame with mean and 95% CI of absolute costs, LYs, QALYs, ICER and ICUR for each

intervention from the PSA samples

Examples

nn

res <- list(list(list(sensitivity_name =
), total_lys = c(int = 9
), total_galys = c(int =
), total_costs = c(int
), total_lys_undisc
), total_galys_undisc
), total_costs_undisc
), c_default = c(int
), c_default_undisc
),
),
),

c(int

c(int

g_default_undisc = c(int
merged_df = list(simulation

summary_results_sim(res[[1]],arm="int")

.04687362556945, noint
6.20743830697466, noint
49921.6357486899, noint
10.8986618377039, noint = 10.8986618377039
c(int = 7.50117621700097, noint = 7.47414569286751
c(int = 59831.3573929783, noint = 49293.1025437205
49921.6357486899, noint
59831.3573929783, noint = 49293.1025437205
g_default = c(int = 6.20743830697466, noint = 6.18115138126336
7.50117621700097, noint = 7.47414569286751
1L, sensitivity = 1L))))

, arm_list = c("int"”, "noint”

9.04687362556945

= 6.18115138126336
41225.2544659378

41225.2544659378

tte.df 73

tte.df Example TTE IPD data

Description

An example of TTE IPD data for the example_ipd file

Usage
tte.df

Format

tte.df:

A data frame with 1000 rows and 8 columns:
USUBJID Patient ID

ARMCD, ARM Arm code and variables
PARAMCD, PARAM Parameter

AVAL, AVALCD Values of interest

CNSR Censored observation?

Source

Simulated through FlexsurvPlus package using sim_adtte(seed = 821, tho = 0, beta_1la = 1og(0.6),
beta_1b =10g(0.6), beta_pd = log(0.2))

Index

x datasets
tte.df, 73

add_item, 3
add_item2, 4
add_reactevt, 5
add_tte, 6
adj_val, 7
ast_as_list, 8

ceac_des, 9
cond_dirichlet, 10
cond_mvn, 11
create_indicators, 12

disc_cycle, 13
disc_cycle_v, 14
disc_instant, 15
disc_instant_v, 16
disc_ongoing, 17
disc_ongoing_v, 17
discrete_resource_clone, 13
draw_tte, 18

evpi_des, 19
extract_elements_from_list, 20

extract_from_reactions, 22
extract_psa_result, 23

get_event, 24
has_event, 25
luck_adj, 25
modify_event, 27
modify_item, 28

modify_item_seq, 29

new_event, 30
next_event, 31

74

next_event_pt, 31

pcond_gompertz, 32
pick_psa, 32
pick_val_v, 34
pop_and_return_event, 36
pop_event, 36

gbeta_mse, 37
qgcond_exp, 37
qcond_gamma, 38
qcond_gompertz, 38
gcond_llogis, 39
qcond_lnorm, 40
gcond_norm, 40
gcond_weibull, 41
qcond_weibullPH, 42
qgamma_mse, 42
gtimecov, 43
queue_create, 46
queue_empty, 47
queue_size, 47

random_stream, 48
rbeta_mse, 49
rcond_gompertz, 49
rcond_gompertz_1lu, 50
rdirichlet, 51
rdirichlet_prob, 51
remove_event, 52
replicate_profiles, 52
resource_discrete, 53
rgamma_mse, 55
rpoisgamma, 55
rpoisgamma_rcpp, 56
run_sim, 57
run_sim_parallel, 62

sens_iterator, 67
shared_input, 68

INDEX

summary_results_det, 70
summary_results_sens, 71
summary_results_sim, 72

tte.df, 73

75

	add_item
	add_item2
	add_reactevt
	add_tte
	adj_val
	ast_as_list
	ceac_des
	cond_dirichlet
	cond_mvn
	create_indicators
	discrete_resource_clone
	disc_cycle
	disc_cycle_v
	disc_instant
	disc_instant_v
	disc_ongoing
	disc_ongoing_v
	draw_tte
	evpi_des
	extract_elements_from_list
	extract_from_reactions
	extract_psa_result
	get_event
	has_event
	luck_adj
	modify_event
	modify_item
	modify_item_seq
	new_event
	next_event
	next_event_pt
	pcond_gompertz
	pick_psa
	pick_val_v
	pop_and_return_event
	pop_event
	qbeta_mse
	qcond_exp
	qcond_gamma
	qcond_gompertz
	qcond_llogis
	qcond_lnorm
	qcond_norm
	qcond_weibull
	qcond_weibullPH
	qgamma_mse
	qtimecov
	queue_create
	queue_empty
	queue_size
	random_stream
	rbeta_mse
	rcond_gompertz
	rcond_gompertz_lu
	rdirichlet
	rdirichlet_prob
	remove_event
	replicate_profiles
	resource_discrete
	rgamma_mse
	rpoisgamma
	rpoisgamma_rcpp
	run_sim
	run_sim_parallel
	sens_iterator
	shared_input
	summary_results_det
	summary_results_sens
	summary_results_sim
	tte.df
	Index

