Package ‘TreeDist’

October 13, 2025
Type Package

Title Calculate and Map Distances Between Phylogenetic Trees
Version 2.11.1
License GPL (>=3)

Description Implements measures of tree similarity, including
information-based generalized Robinson-Foulds distances
(Phylogenetic Information Distance, Clustering Information Distance,
Matching Split Information Distance; Smith 2020)
<doi:10.1093/bioinformatics/btaa614>;
Jaccard-Robinson-Foulds distances (Bocker et al. 2013)
<doi:10.1007/978-3-642-40453-5_13>,
including the Nye et al. (2006) metric <doi:10.1093/bioinformatics/bti720>;
the Matching Split Distance (Bogdanowicz & Giaro 2012)
<doi:10.1109/TCBB.2011.48>;
the Hierarchical Mutual Information (Perotti et al. 2015)
<doi:10.1103/PhysRevE.92.062825>;
Maximum Agreement Subtree distances;
the Kendall-Colijn (2016) distance <doi:10.1093/molbev/msw124>, and the
Nearest Neighbour Interchange (NNI) distance, approximated per Li et al.
(1996) <doi:10.1007/3-540-61332-3_168>.
Includes tools for visualizing mappings of tree space (Smith 2022)
<doi:10.1093/sysbio/syab100>,
for identifying islands of trees (Silva and Wilkinson 2021)
<doi:10.1093/sysbio/syab015>,
for calculating the median of sets of trees,
and for computing the information content of trees and splits.

Copyright Jonker-Volgenant Linear Assignment Problem implementation by
Roy Jonker modified by Yong Yang and Yi Cao.

URL https://ms609.github.io/TreeDist/,
https://github.com/ms6@9/TreeDist/

BugReports https://github.com/ms609/TreeDist/issues/

Additional_repositories https://ms609.github.io/packages/

1

https://doi.org/10.1093/bioinformatics/btaa614
https://doi.org/10.1007/978-3-642-40453-5_13
https://doi.org/10.1093/bioinformatics/bti720
https://doi.org/10.1109/TCBB.2011.48
https://doi.org/10.1103/PhysRevE.92.062825
https://doi.org/10.1093/molbev/msw124
https://doi.org/10.1007/3-540-61332-3_168
https://doi.org/10.1093/sysbio/syab100
https://doi.org/10.1093/sysbio/syab015
https://ms609.github.io/TreeDist/
https://github.com/ms609/TreeDist/
https://github.com/ms609/TreeDist/issues/
https://ms609.github.io/packages/

2 Contents

Depends R (>=4.0), stats,

Imports ape (>=5.0), cli (>=3.0), colorspace, Rdpack (>=0.7),
shiny, shinyjs, TreeTools (>= 1.16),

Suggests bookdown, cluster, ggplot2, hypervolume, kdensity, knitr,
MASS, parallel, phangorn (>= 2.2.1), plotly, PlotTools,
protoclust, Quartet, readxl, rmarkdown, Rcpp (>= 1.0.8), rgl,
Rogue, spelling, testthat (>= 3.0), Ternary (>= 1.1.2),
TreeDistData (> 0.1.0), TreeSearch (>= 1.4.0), Umatrix, uwot,
vdiffr (>=1.0.0),

LinkingTo Rcpp, TreeTools (>=1.16.1),
RdMacros Rdpack

VignetteBuilder knitr

Config/Needs/check rcmdcheck
Config/Needs/coverage covr
Config/Needs/memcheck devtools
Config/Needs/metadata codemetar
Config/Needs/revdeps revdepcheck
Config/Needs/website pkgdown
Config/testthat/parallel false
Config/testthat/edition 3
SystemRequirements C++17, pandoc-citeproc
ByteCompile true

Encoding UTF-8

Language en-GB

X-schema.org-keywords phylogenetics, tree-distance
RoxygenNote 7.3.3

NeedsCompilation yes

Author Martin R. Smith [aut, cre, cph, prg] (ORCID:
<https://orcid.org/0000-0001-5660-1727>),
Roy Jonker [prg, cph] (LAP algorithm),
Yong Yang [ctb, cph] (LAP algorithm),
Yi Cao [ctb, cph] (LAP algorithm)

Maintainer Martin R. Smith <martin.smith@durham.ac.uk>
Repository CRAN
Date/Publication 2025-10-13 13:40:06 UTC

Contents

AllSplitPairings 3
cluster-statiStics e e e e e e 4

https://orcid.org/0000-0001-5660-1727

AlISplitPairings 3

CompareAll e e 6
Entropy e 7
HierarchicalMutuallnfo L 8
HPart o e 10
Islands L e 12
JaccardRobinsonFoulds 13
KendallColijn e 16
KMeansPP e 18
LAPIV . e 19
MappingQuality e e 21
MapTrees o o e e e 22
MASTSize e 24
MatchingSplitDistance 25
median.multiPhylo 27
MeilaVariationOfInformation Lo 29
MSTSegments e e e 30
NNIDISt . . . oo e e e 32
NyeSimilarity e 34
PathDist 37
Plot3 e 38
ReduceTrees o o e 40
Robinson-Foulds e 41
SpectralEigens e 44
SplitEntropy L 45
SplitsCompatible e 46
SplitSharedInformation L 46
SPRDISt o 48
StartParallel e 50
TreeDistance e e e e e e 51
Treelnfo e 56
VisualizeMatching 60
Index 63
AllSplitPairings Variation of information for all split pairings
Description

Calculate the variation of clustering information (Meila 2007) for each possible pairing of non-
trivial splits on n leaves (Smith 2020), tabulating the number of pairings with each similarity.

Usage

AllSplitPairings(n)

4 cluster-statistics

Arguments

n Integer specifying the number of leaves in a tree.

Value

AllSplitPairings() returns a named vector. The name of each element corresponds to a certain
variation of information, in bits; the value of each element specifies the number of pairings of non-
trivial splits that give rise to that variation of information. Split AB|CD is treated as distinct from
CD|AB. If pairing AB|CD=CD|AB is considered equivalent to CD|AB=CD|AB (etc), then values should
be divided by four.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References
Meila M (2007). “Comparing clusterings—an information based distance.” Journal of Multivariate

Analysis, 98(5), 873-895. doi:10.1016/j.jmva.2006.11.013.

Smith MR (2020). “Information theoretic Generalized Robinson-Foulds metrics for comparing
phylogenetic trees.” Bioinformatics, 36(20), 5007-5013. doi:10.1093/bioinformatics/btaa614.

Examples

AllSplitPairings(6)
Treat equivalent splits as identical by dividing by four:
AllSplitPairings(6) / 4L

cluster-statistics Cluster size statistics

Description

Cluster size statistics

Usage

SumOfRanges(x, cluster = 1)

SumOfVariances(x, cluster = 1)

SumOfVars(x, cluster = 1)

MeanCentroidDistance(x, cluster = 1, Average = mean)

MeanCentDist(x, cluster = 1, Average = mean)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1093/bioinformatics/btaa614

cluster-statistics 5

MeanCentroidDist(x, cluster = 1, Average = mean)
DistanceFromMedian(x, cluster = 1, Average = mean)
DistFromMed(x, cluster = 1, Average = mean)
MeanNN(x, cluster = 1, Average = mean)

MeanMSTEdge(x, cluster = 1)

Arguments
X Matrix in which each row lists the coordinates of a point in a Euclidian space; or,
where supported, dist object specifying distances between each pair of points.
cluster Optional integer vector specifying the cluster or group to which each row in x
belongs.
Average Function to use to summarize distances. Defaults to mean; specifying median
returns a value akin to the median absolute divergence (see mad).
Value

SumOfRanges () returns a numeric specifying the sum of ranges within each cluster across all di-
mensions.

SumOfVariances() returns a numeric specifying the sum of variances within each cluster across
all dimensions.

MeanCentroidDistance() returns a numeric specifying the mean distance from the centroid to
points in each cluster.

DistanceFromMedian() returns a numeric specifying the mean distance of each point (except the
median) from the median point of its cluster.

MeanNN() returns a numeric specifying the mean distance from each point within a cluster to its
nearest neighbour.

MeanMSTEdge () returns a numeric specifying the mean length of an edge in the minimum spanning
tree of points within each cluster.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

See Also

Other tree space functions: Islands(),MSTSegments(),MapTrees(),MappingQuality(), SpectralEigens(),
median.multiPhylo()

Other cluster functions: KMeansPP ()

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

6 CompareAll

Examples

points <- rbind(matrix(1:16, 4), rep(1, 4), matrix(1:32, 8, 4) / 10)
cluster <- rep(1:3, c(4, 1, 8))

plot(
points[, 1:2], # Plot first two dimensions of four-dimensional space
col = cluster, pch = cluster, # Style by cluster membership
asp = 1, # Fix aspect ratio to avoid distortion
ann = FALSE, frame = FALSE # Simple axes

)

SumOfRanges(points, cluster)
SumOfVariances(points, cluster)
MeanCentroidDistance(points, cluster)
DistanceFromMedian(points, cluster)
MeanNN(points, cluster)

MeanMSTEdge (points, cluster)

CompareAll Distances between each pair of trees

Description

Calculate the distance between each tree in a list, and each other tree in the same list.

Usage
CompareAll(x, Func, FUN.VALUE = Func(x[[11]1, x[[111, ...), ...)
Arguments
X List of trees, in the format expected by Func().
Func distance function returning distance between two trees, e.g. path.dist().
FUN.VALUE Format of output of Func(), to be passed to vapply (). If unspecified, calculated
by running Func(x[[111, x[[111).
Additional parameters to pass to Func().
Details

CompareAll() is not limited to tree comparisons: Func can be any symmetric function.

Value

CompareAll () returns a distance matrix of class dist detailing the distance between each pair of
trees. Identical trees are assumed to have zero distance.

Entropy 7

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

Examples

Generate a list of trees to compare
library("TreeTools"”, quietly = TRUE)
trees <- list(ball = BalancedTree(1:8),

pecl = PectinateTree(1:8),

pec2 = PectinateTree(c(4:1, 5:8)))

Compare each tree with each other tree
CompareAll(trees, NNIDist)

Providing FUN.VALUE yields a modest speed gain:
dist <- CompareAll(trees, NNIDist, FUN.VALUE = integer(7))

View distances as a matrix
as.matrix(dist$lower)

Entropy Entropy in bits

Description

Calculate the entropy of a vector of probabilities, in bits. Probabilities should sum to one. Proba-
bilities equalling zero will be ignored.

Usage
Entropy(...)
Ntropy(...)
Arguments
Series of numerics, or single numeric vector, specifying probabilities of out-
comes (for Entropy()) or counts (for Ntropy()).
Value

Entropy() and Ntropy () return the entropy of the specified probabilities or counts, in bits.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

8 HierarchicalMutuallnfo

Examples

Entropy(1/2, @, 1/2) # 1
Entropy(rep(1/4, 4)) # = 2
Ntropy(c(2, 2, 0, 2, 2)) # =2

HierarchicalMutualInfo
Hierarchical Mutual Information

Description

Calculate the Hierarchical Mutual Information (HMI) between two trees, following the recursive
algorithm of Perotti et al. (2020).

This function was written during a code sprint: its documentation and test cases have not yet been
carefully scrutinized, and its implementation may change without notice. Please alert the maintainer
to any issues you encounter.

Usage

HierarchicalMutualInfo(treel, tree2 = NULL, normalize = FALSE)
HMI(treel, tree2 = NULL, normalize = FALSE)

SelfHMI(tree)

EHMI(treel, tree2, precision = .01, minResample = 36)

AHMI (treel, tree2, Mean = max, precision = 0.01, minResample = 36)

Arguments

normalize If FALSE, return the raw HMI, in bits. If TRUE, normalize to range [0,1] by di-
viding by max(SelfHMI(treel), SelfHMI(tree2)). If a function, divide by
normalize(SelfHMI(treel), SelfHMI(tree2)).

tree, treel, tree2
An object that can be coerced to an HPart object.

precision Numeric; Monte Carlo sampling will terminate once the relative standard error
falls below this value.

minResample Integer specifying minimum number of Monte Carlo samples to conduct. Avoids
early termination when sample size is too small to reliably estimate the standard
error of the mean.

Mean Function by which to combine the self-information of the two input hierarchies,
in order to normalize the HMI.

HierarchicalMutuallnfo 9

Details

HierarchicalMutualInfo() computes the hierarchical mutual content of trees (Perotti et al. 2015;
Perotti et al. 2020), which accounts for the non-independence of information represented by nested
splits.

tree is converted to a set of hierarchical partitions, and the mutual information (in bits) is computed
recursively; the contribution of a node is given by:

Hus +Htv - H

I(t,s) = logy(nts) — “2 + mean(1,,)

Nts
Where:

* n;s is the number of common elements between partitions
* H,s, Hy,, Hy, are entropy terms from child comparisons

* [,y is the recursive HMI for child pairs
AHMI () calculates the adjusted hierarchical mutual information:

AHMI(t 5) = I(tv 3) - f(t, 8)
s mean(H(t), H(s)) — [A(t7 5)

o I(t,s) is the hierarchical mutual information between treel and tree2
, s) is the expected HMI between treel and tree2, estimated by Monte Carlo sampling

t
* H(t), H(s) is the entropy (self-mutual information) of each tree

Value

HierarchicalMutualInfo() returns a numeric value representing the hierarchical mutual infor-
mation between the input trees, in bits, normalized as specified. Higher values indicate more shared
hierarchical structure.

SelfHMI() returns the hierarchical mutual information of a tree compared with itself, i.e. its hier-
archical entropy (HH).

EHMI () returns the expected HMI against a uniform shuffling of element labels, estimated by per-
forming Monte Carlo resampling on the same hierarchical structure until the relative standard error
of the estimate falls below precision. The attributes of the returned object list the variance (var),
standard deviation (sd), standard error of the mean (sem) and relative error (relativeError) of the
estimate, and the number of Monte Carlo samples used to obtain it (samples).

AHMI () returns the adjusted HMI, normalized such that zero corresponds to the expected HMI given
a random shuffling of elements on the same hierarchical structure. The attribute sem gives the
standard error of the estimate.

10 HPart

References

Perotti JI, Almeira N, Saracco F (2020). “Towards a Generalization of Information Theory for Hi-
erarchical Partitions.” Physical Review E, 101(6), 062148. doi:10.1103/PhysRevE.101.062148.

Perotti JI, Tessone CJ, Caldarelli G (2015). “Hierarchical Mutual Information for the Comparison
of Hierarchical Community Structures in Complex Networks.” Physical Review E - Statistical, Non-
linear, and Soft Matter Physics, 92(6), 062825-1-062825-13. doi:10.1103/PhysRevE.92.062825.

See Also

Other tree distances: JaccardRobinsonFoulds(),KendallColijn(),MASTSize(),MatchingSplitDistance(),
NNIDist(), NyeSimilarity(), PathDist(), Robinson-Foulds, SPRDist(), TreeDistance()

Examples

library("TreeTools"”, quietly = TRUE)

treel <- BalancedTree(8)
tree2 <- PectinateTree(8)

Calculate HMI between two trees
HierarchicalMutualInfo(treel, tree2)

HMI normalized against the mean information content of treel and tree2
HierarchicalMutualInfo(treel, tree2, normalize = mean)

Normalized HMI above is equivalent to:

HMI(treel, tree2) / mean(SelfHMI(treel), SelfHMI(tree2))
Expected mutual info for this pair of hierarchies
EHMI(treel, tree2, precision = 0.1)

The adjusted HMI normalizes against this expectation
AHMI(treel, tree2, precision = 0.1)

HPart Hierarchical partition structure

Description

A structure of class HPart comprises a pointer to a C++ representation of hierarchical partitions,
with the attribute tip.label recording the character labels of its leaves. HPart objects with identi-
cal tip labels can be compared using HierarchicalMutualInfo().

Usage
as.HPart(tree, tiplLabels)

S3 method for class 'HPart'
as.HPart(tree, tipLabels = NULL)

https://doi.org/10.1103/PhysRevE.101.062148
https://doi.org/10.1103/PhysRevE.92.062825

HPart 11

Default S3 method:
as.HPart(tree, tipLabels = NULL)

S3 method for class 'list'
as.HPart(tree, tipLabels = NULL)

S3 method for class 'phylo'
as.HPart(tree, tipLabels = TipLabels(tree))

is.HPart(x)

S3 method for class 'HPart'
print(x, ...)

S3 method for class 'HPart'
as.phylo(x, ...)

S3 method for class 'HPart'

plot(x, ...)
Arguments
tree An object to convert to an HPart structure, in a supported format (see details).
tipLabels Character vector specifying sequence in which to order tip labels.
X HPart object to plot.
Additional arguments to plot.phylo.
Details

An HPart object may be created from various representations of hierarchical structures:

* atree (possibly phylogenetic) of class phylo
* A hierarchical list of lists, in which elements are represented by integers 1 to n

* A vector, which will be interpreted as a flat structure in which all elements bearing the same
label are assigned to the same cluster

Value

HPart () returns a structure containing a pointer to a C++ representation of a hierarchical partition
structure.

12 Islands

Islands Find islands from distance matrix

Description

Islands() assigns a set of objects to islands, such that all elements within an island can form a
connected graph in which each edge is no longer than threshold distance units Silva AS, Wilkinson
M (2021). “On Defining and Finding Islands of Trees and Mitigating Large Island Bias.” Systematic
Biology, 70(6), 1282—-1294. doi:10.1093/sysbio/syab015..

Usage

Islands(D, threshold, dense = TRUE, smallest = 0)

Arguments
D Square matrix or dist object containing Euclidean distances between data points.
threshold Elements greater than threshold distance units will not be assigned to the same
island.
dense Logical; if FALSE, each island will be named according to the index of its lowest-
indexed member; if TRUE, each island will be numbered sequentially from 1,
ordered by the index of the lowest-indexed member.
smallest Integer; Islands comprising no more than smallest elements will be assigned
to island NA.
Value

Islands() returns a vector listing the island to which each element is assigned.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

Other tree space functions: MSTSegments (), MapTrees(), MappingQuality(), SpectralEigens(),
cluster-statistics, median.multiPhylo()

https://doi.org/10.1093/sysbio/syab015
https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

JaccardRobinsonFoulds 13

Examples

library("TreeTools", quietly = TRUE)
Generate a set of trees
trees <- as.phylo(as.TreeNumber(BalancedTree(16)) + c(-(40:20), 70:105), 16)

Calculate distances between trees
distances <- ClusteringInfoDist(trees)
summary (distances)

Assign trees to islands
isle <- Islands(distances, quantile(distances, 0.1))
table(isle)

Indicate island membership on 2D mapping of tree distances

mapping <- cmdscale(distances, 2)

plot(mapping, col = isle + 1,
asp = 1, # Preserve aspect ratio - do not distort distances
ann = FALSE, axes = FALSE, # Don't label axes: dimensions are meaningless)
pch = 16 # Plotting character: Filled circle

Compare strict consensus with island consensus trees
oPar <- par(mfrow = c(2, 2), mai = rep(0.1, 4))

plot(Consensus(trees), main = "Strict")

plot(Consensus(trees[isle == 1]), edge.col = 2, main = "Island 1")
plot(Consensus(trees[isle == 2]), edge.col = 3, main = "Island 2")
plot(Consensus(trees[isle == 3]), edge.col = 4, main = "Island 3")

Restore graphical parameters
par(oPar)

JaccardRobinsonFoulds Jaccard—Robinson—Foulds metric

Description

Calculate the Jaccard—Robinson—Foulds metric (Bocker et al. 2013), a Generalized Robinson—Foulds

metric.
Usage
JaccardRobinsonFoulds(
treel,
tree2 = NULL,
k = 1L,

allowConflict = TRUE,
similarity = FALSE,
normalize = FALSE,
reportMatching = FALSE

https://ms609.github.io/TreeDist/articles/Generalized-RF.html#jaccard-robinson-foulds-metric
https://ms609.github.io/TreeDist/articles/Robinson-Foulds.html#generalized-robinson-foulds-distances
https://ms609.github.io/TreeDist/articles/Robinson-Foulds.html#generalized-robinson-foulds-distances

14

)

JaccardRobinsonFoulds

JaccardSplitSimilarity(

splitst,
splits2,

nTip = attr(splitsl, "nTip"),

k=1L,

allowConflict

= TRUE,

reportMatching = FALSE

Arguments

treel, tree2

allowConflict

similarity

normalize

reportMatching

splitst, splits2

nTip

Details

Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison. Where implemented, tree2 = NULL will compute
distances between each pair of trees in the list treel using a fast algorithm based
on Day (1985).

An arbitrary exponent to which to raise the Jaccard index. Integer values greater
than one are anticipated by Bocker er al. The Nye et al. metric uses k = 1. As k
increases towards infinity, the metric converges to the Robinson—Foulds metric.

Logical specifying whether to allow conflicting splits to be paired. If FALSE,
such pairings will be allocated a similarity score of zero.

Logical specifying whether to report the result as a tree similarity, rather than a
difference.

If a numeric value is provided, this will be used as a maximum value against
which to rescale results. If TRUE, results will be rescaled against a maximum
value calculated from the specified tree sizes and topology, as specified in the
"Normalization" section below. If FALSE, results will not be rescaled.

Logical specifying whether to return the clade matchings as an attribute of the
score.

Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

(Optional) Integer specifying the number of leaves in each split.

In short, the Jaccard—Robinson—Foulds metric is a generalized Robinson-Foulds metric: it finds the
optimal matching that pairs each split in one tree with a similar split in the second. Matchings are
scored according to the size of the largest split that is consistent with both of them, normalized
against the Jaccard index, and raised to an arbitrary exponent. A more detailed explanation is
provided in the vignettes.

By default, conflicting splits may be paired.

https://ms609.github.io/TreeDist/articles/Generalized-RF.html#jaccard-robinson-foulds-metric

JaccardRobinsonFoulds 15

Note that the settings k = 1, allowConflict = TRUE, similarity = TRUE give the simi-
larity metric of Nye et al. (2006); a slightly faster implementation of this metric is available as
NyeSimilarity().

The examples section below details how to visualize matchings with non-default parameter values.

Trees need not contain identical leaves; scores are based on the leaves that trees hold in common.
Check for unexpected differences in tip labelling with setdiff(TipLabels(treel), TipLabels(tree2)).

Value

JaccardRobinsonFoulds() returns an array of numerics providing the distances between each pair
of trees in treel and tree2, or splits1 and splits2.

Normalization

If normalize = TRUE, then results will be rescaled from zero to one by dividing by the maximum
possible value for trees of the given topologies, which is equal to the sum of the number of splits in
each tree. You may wish to normalize instead against the maximum number of splits present in a
pair of trees with n leaves, by specifying normalize =n - 3.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Bocker S, Canzar S, Klau GW (2013). “The generalized Robinson-Foulds metric.” In Darling A,
Stoye J (eds.), Algorithms in Bioinformatics. WABI 2013. Lecture Notes in Computer Science, vol
8126, 156-169. Springer, Berlin, Heidelberg. doi:10.1007/9783642404535_13.

Day WHE (1985). “Optimal algorithms for comparing trees with labeled leaves.” Journal of Clas-
sification, 2(1), 7-28. doi:10.1007/BF01908061.

Nye TMW, Lio P, Gilks WR (2006). “A novel algorithm and web-based tool for comparing two al-
ternative phylogenetic trees.” Bioinformatics, 22(1), 117-119. doi:10.1093/bioinformatics/bti720.

See Also

Other tree distances: HierarchicalMutualInfo(),KendallColijn(),MASTSize(),MatchingSplitDistance(),
NNIDist(), NyeSimilarity(), PathDist(), Robinson-Foulds, SPRDist(), TreeDistance()

Examples

set.seed(2)

treel <- ape::rtree(10)

tree2 <- ape::rtree(10)
JaccardRobinsonFoulds(treel, tree2, k
JaccardRobinsonFoulds(treel, tree2, k

2, allowConflict = FALSE)
2, allowConflict = TRUE)

JRF2 <- function(treel, tree2, ...)
JaccardRobinsonFoulds(treel, tree2, k = 2, allowConflict = FALSE, ...)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1007/978-3-642-40453-5_13
https://doi.org/10.1007/BF01908061
https://doi.org/10.1093/bioinformatics/bti720

16

KendallColijn

VisualizeMatching(JRF2, treel, tree2, matchZeros = FALSE)

KendallColijn

Kendall-Colijn distance

Description

Calculate the Kendall-Colijn tree distance, a measure related to the path difference.

Usage

KendallColijn(treel, tree2 = NULL, Vector = KCVector)

KCVector(tree)

PathVector(tree)

SplitVector(tree)

KCDiameter(tree)

Arguments

treel, tree2

Vector

tree

Details

Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison. Where implemented, tree2 = NULL will compute
distances between each pair of trees in the list treel using a fast algorithm based
on Day (1985).

Function converting a tree to a numeric vector.

KCVector, the default, returns the number of edges between the common an-
cestor of each pair of leaves and the root of the tree (per Kendall and Colijn
2016).

PathVector returns the number of edges between each pair of leaves (per Steel
and Penny 1993).

SplitVector returns the size of the smallest split that contains each pair of
leaves (per Smith 2022).

A tree of class phylo.

The Kendall-Colijn distance works by measuring, for each pair of leaves, the distance from the
most recent common ancestor of those leaves and the root node. For a given tree, this produces a
vector of values recording the distance-from-the-root of each most recent common ancestor of each

pair of leaves.

Two trees are compared by taking the Euclidean distance between the respective vectors. This is
calculated by taking the square root of the sum of the squares of the differences between the vectors.

KendallColijn 17

An analogous distance can be created from any vector representation of a tree. The split size vector
metric (Smith 2022) is an attempt to mimic the Kendall Colijn metric in situations where the position
of the root should not be afforded special significance; and the path distance (Steel and Penny 1993)
is a familiar alternative whose underlying vector measures the distance of the last common ancestor
of each pair of leaves from the leaves themselves, i.e. the length of the path from one leaf to another.

None of these vector-based methods performs as well as other tree distances in measuring similar-
ities in the relationships implied by a pair of trees (Smith 2020); in particular, the Kendall Colijn
metric is strongly influenced by tree balance, and may not be appropriate for a suite of common
applications (Smith 2022).

Value

KendallColijn() returns an array of numerics providing the distances between each pair of trees
in treel and tree2, or splits1 and splits2.

KCDiameter() returns the value of the Kendall & Colijn’s (2016) metric distance between two
pectinate trees with n leaves ordered in the opposite direction, which I suggest (without any attempt
at a proof) may be a useful proxy for the diameter (i.e. maximum value) of the K—C metric.

Functions

e KCVector(): Creates a vector that characterises a rooted tree, as described in Kendall and
Colijn (2016).

* PathVector(): Creates a vector reporting the number of edges between each pair of leaves,
per the path metric of Steel and Penny (1993).

* SplitVector(): Creates a vector reporting the smallest split containing each pair of leaves,
per the metric proposed in Smith (2022).
Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Day WHE (1985). “Optimal algorithms for comparing trees with labeled leaves.” Journal of Clas-
sification, 2(1), 7-28. doi:10.1007/BF01908061.

Kendall M, Colijn C (2016). “Mapping phylogenetic trees to reveal distinct patterns of evolution.”
Molecular Biology and Evolution, 33(10), 2735-2743. doi:10.1093/molbev/msw124.

Smith MR (2020). “Information theoretic Generalized Robinson-Foulds metrics for comparing
phylogenetic trees.” Bioinformatics, 36(20), 5007-5013. doi:10.1093/bioinformatics/btaa614.

Smith MR (2022). “Robust analysis of phylogenetic tree space.” Systematic Biology, 7T1(5), 1255—
1270. doi:10.1093/sysbio/syab100.

Steel MA, Penny D (1993). “Distributions of tree comparison metrics—some new results.” System-
atic Biology, 42(2), 126—-141. doi:10.1093/sysbio/42.2.126.

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1007/BF01908061
https://doi.org/10.1093/molbev/msw124
https://doi.org/10.1093/bioinformatics/btaa614
https://doi.org/10.1093/sysbio/syab100
https://doi.org/10.1093/sysbio/42.2.126

18 KMeansPP

See Also

treespace: : treeDist is a more sophisticated, if more cumbersome, implementation that supports
lambda > 0, i.e. use of edge lengths in tree comparison.

Other tree distances: HierarchicalMutualInfo(), JaccardRobinsonFoulds(),MASTSize(),MatchingSplitDistance (]
NNIDist(), NyeSimilarity(), PathDist(), Robinson-Foulds, SPRDist(), TreeDistance()

Examples

KendallColijn(TreeTools: :BalancedTree(8), TreeTools::PectinateTree(8))

set.seed(0)
KendallColijn(TreeTools: :BalancedTree(8), lapply(rep(8, 3), ape::rtree))
KendallColijn(lapply(rep(8, 4), ape::rtree))

KendallColijn(lapply(rep(8, 4), ape::rtree), Vector = SplitVector)

Notice that changing tree shape close to the root results in much

larger differences

treel <- ape::read.tree(text = "(a, (b, (c, (d, (e, (f, (g, DIN);™
tree2 <- ape::read.tree(text = "(a, ((b,), (d, (e, (f, (g, h))))));"
tree3 <- ape::read.tree(text = "(a, (b, (c, (d, (e, ((f, g, hIYN));"
trees <- c(treel, tree2, tree3)

KendallColijn(trees)

KendallColijn(trees, Vector = SplitVector)

KCDiameter(4)

KCDiameter(trees)

KMeansPP k-means++ clustering

Description

k-means++ clustering (Arthur and Vassilvitskii 2007) improves the speed and accuracy of standard
kmeans clustering (Hartigan and Wong 1979) by preferring initial cluster centres that are far from
others. A scalable version of the algorithm has been proposed for larger data sets (Bahmani et al.
2012), but is not implemented here.

Usage
KMeansPP(x, k = 2, nstart = 10, ...)
Arguments
X Numeric matrix of data, or an object that can be coerced to such a matrix (such
as a numeric vector or a data frame with all numeric columns).
k Integer specifying the number of clusters, k.
nstart Positive integer specifying how many random sets should be chosen

additional arguments passed to kmeans

https://CRAN.R-project.org/package=treespace/vignettes/introduction.html

LAPJV 19

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Arthur D, Vassilvitskii S (2007). “K-Means++: The Advantages of Careful Seeding.” In Pro-
ceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA °07,
1027-1035.

Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvitskii S (2012). “Scalable K-Means++.” arXiv.
doi:10.48550/arXiv.1203.6402, 1203.6402.

Hartigan JA, Wong MA (1979). “Algorithm AS 136: a K-means clustering algorithm.” Journal of
the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108. doi:10.2307/2346830.

See Also

kmeans

Other cluster functions: cluster-statistics

Examples

Generate random points

set.seed(1)

x <= cbind(c(rnorm(1@, -5), rnorm(5, 1), rnorm(10, 6)),
c(rnorm(5, @), rnorm(15, 4), rnorm(5, 9)))

Conventional k-means may perform poorly
klusters <- kmeans(x, cent = 5)
plot(x, col = klusters$cluster, pch = rep(15:19, each

50

Here, k-means++ recovers a better clustering
plusters <- KMeansPP(x, k = 5)
plot(x, col = plusters$cluster, pch = rep(15:19, each = 5))

LAPJV Solve linear assignment problem using LAPJV

Description
Use the algorithm of Jonker and Volgenant (1987) to solve the Linear Sum Assignment Problem
(LSAP).

Usage

LAPIV(x)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.48550/arXiv.1203.6402
https://doi.org/10.2307/2346830

20 LAPJV

Arguments

X Matrix of costs.

Details
The Linear Assignment Problem seeks to match each row of a matrix with a column, such that the
cost of the matching is minimized.

The Jonker & Volgenant approach is a faster alternative to the Hungarian algorithm (Munkres 1957),
which is implemented in clue: : solve_LSAP().

Note: the JV algorithm expects integers. In order to apply the function to a non-integer n, as in
the tree distance calculations in this package, each n is multiplied by the largest available integer
before applying the JV algorithm. If two values of n exhibit a trivial difference — e.g. due to floating
point errors — then this can lead to interminable run times. (If numbers of the magnitude of billions
differ only in their last significant digit, then the JV algorithm may undergo billions of iterations.)
To avoid this, integers over 2722 that differ by a value of 8 or less are treated as equal.

Value
LAPJV() returns a list with two entries: score, the score of the optimal matching; and matching,
the columns matched to each row of the matrix in turn.

Author(s)
C++ code by Roy Jonker, MagicLogic Optimization Inc. roy_jonker@magiclogic.com, with con-
tributions from Yong Yang yongyanglink @gmail.com, after Yi Cao

References

Jonker R, Volgenant A (1987). “A shortest augmenting path algorithm for dense and sparse linear
assignment problems.” Computing, 38, 325-340. doi:10.1007/BF02278710.

Munkres J (1957). “Algorithms for the assignment and transportation problems.” Journal of the
Society for Industrial and Applied Mathematics, 5(1), 32-38. doi:10.1137/0105003.
See Also

Implementations of the Hungarian algorithm exist in adagio, RcppHungarian, and clue and Ip-
Solve; for larger matrices, these are substantially slower. (See discussion at Stack Overflow.)

The JV algorithm is implemented for square matrices in the Bioconductor package GraphAlignment
Examples
problem <- matrix(c(7, 9, 8, 9, 9,
2, 8,5, 7,9,
1, 6,6,9,09,
3: 6: 2: 2: 9)y 4, 5, berW = TRUE)

LAPJV(problem)

::LinearAssignment ()

https://github.com/yongyanghz/LAPJV-algorithm-c/blob/master/src/lap.cpp
mailto:roy_jonker@magiclogic.com
mailto:yongyanglink@gmail.com
https://uk.mathworks.com/matlabcentral/profile/authors/69713-yi-cao
https://doi.org/10.1007/BF02278710
https://doi.org/10.1137/0105003
https://stackoverflow.com/questions/72806265/
https://www.bioconductor.org/packages/release/bioc/html/GraphAlignment.html

MappingQuality 21

MappingQuality Faithfulness of mapped distances

Description

MappingQuality() calculates the trustworthiness and continuity of mapped distances (Venna and
Kaski 2001; Kaski et al. 2003). Trustworthiness measures, on a scale from 01, the degree to which
points that are nearby in a mapping are truly close neighbours; continuity, the extent to which points
that are truly nearby retain their close spatial proximity in a mapping.

Usage

MappingQuality(original, mapped, neighbours = 10L)

ProjectionQuality(original, mapped, neighbours = 10L)

Arguments

original, mapped
Square matrix or dist object containing original / mapped pairwise distances.

neighbours Integer specifying number of nearest neighbours to use in calculation. This
should typically be small relative to the number of points.

Value

MappingQuality () returns a named vector of length four, containing the entries: Trustworthiness,
Continuity, TxC (the product of these values), and sqrtTxC (its square root).

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Kaski S, Nikkila J, Oja M, Venna J, Toronen P, Castren E (2003). “Trustworthiness and metrics in
visualizing similarity of gene expression.” BMC Bioinformatics, 4, 48. doi:10.1186/14712105448.

Venna J, Kaski S (2001). “Neighborhood preservation in nonlinear projection methods: an ex-
perimental study.” In Dorffner G, Bischof H, Hornik K (eds.), Artificial Neural Networks — ICANN
2001, Lecture Notes in Computer Science, 485-491. doi:10.1007/3540446680_68.

See Also

Other tree space functions: Islands(),MSTSegments(),MapTrees(), SpectralEigens(), cluster-statistics,
median.multiPhylo()

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1186/1471-2105-4-48
https://doi.org/10.1007/3-540-44668-0_68

22

MapTrees

Examples

library("TreeTools"”, quietly = TRUE)

trees <- as.phylo(0:10, nTip = 8)
distances <- ClusteringInfoDistance(trees)
mapping <- cmdscale(distances)
MappingQuality(distances, dist(mapping), 4)

MapTrees Graphical user interface for mapping distances and analysing tree
space

Description

MapTrees() launches a "Shiny" application for the visualization and evaluation of tree spaces.

Usage

MapTrees()

Project()

Input tab

The input tab allows for the upload of sets of phylogenetic trees from file. Trees at the start or end
of a file can be excluded, and the number of trees can be brought down to a manageable number
by uniformly subsampling every _n_th tree. Samples of c. 100 trees can be analysed in seconds;
analysis of larger samples will take longer, particularly with slower methods (e.g. quartet distances;
Kruskal-1 MDS; large minimum spanning trees).

Different batches can be plotted with different colours / symbols.

If each tree is associated with a property — for example, the data or method used to generate it, or
its stratigraphic congruence — a list of properties for each tree, with one entry per line/row, can be
uploaded along with the trees. Points in tree space can then be styled according to the corresponding
property.

If trees are subsampled (using the "Sample every" slider), then the values in the tree properties
file can also be subsampled accordingly. Unfortunately there is not yet support for multiple point
property files; one file will be applied to all trees, in the sequence that they were added to memory.

Analysis tab

Select from a suite of distance methods: clustering information and phylogenetic information are
quick and satisfactory; quartet is slow but gives slightly better mappings; path is very fast but may
not reflect evolutionary signal very well; and Robinson—Foulds should probably never be used for
analysis; it is included for comparison purposes.

Principle components mappings should suffice for most purposes; Sammon and Kruskal mappings
are slower and seldom differ by much, in character or quality, but may emphasize outliers more.

MapTrees 23

Partitioning around medoids or minimax-linkage hierarchical clustering will typically find a close-
to-optimal clustering where one exists; select additional methods for a more exhaustive search. To
avoid redundant calculation, clusterings are only updated when "recalculate clustering" is clicked,
or the "maximum cluster number" slider is modified; clustering solutions using more than this many
clusters are not considered Clusterings with silhouette coefficients < 0.25 are unlikely to represent
genuine structure and are not reported or depicted.

Display tab

Up to 15 dimensions can be depicted; the quality of a mapping — that is, the faithfulness of mapped
distances to true tree-to-tree distances — is quantified by the product of the Trustworthiness and
Continuity metrics, which should exceed 0.9 (at least).

An interactive 3D plot can be explored by dragging the mouse and scrolling, but do be careful to
check that three dimensions are enough to depict your data accurately.

The minimum spanning tree is the shortest possible line selecting the chosen subsample of trees; if
it takes a convoluted zig-zagging route, then the mapping is doing a poor job of reflecting true tree
to tree distances.

Convex hulls are the smallest polygons enclosing all points in each cluster; they are handy for spot-
ting clusters, but their area does not correspond to a genuine quantity, so should not be interpreted.

Tree numbers correspond to the sequence of trees in their original input file, before subsampling.

Each tree is denoted by a point, whose symbol can be styled according to cluster membership or
according to the file that contains the tree, with each click of "Add to existing" on the input tab
constituting a new batch with a new symbol.

Points can be coloured according to a category — the cluster or batch to which they belong, or custom
data provided in the Point Property File on the input tab — or continuously, either by the sequence
in which they were added to memory, or according to custom data.

Exporting tree spaces

A mapping can be saved to PDF or as a PNG bitmap at the size selected.

References

A list of references employed when constructing the tree space is populated according to the meth-
ods used; it would be appropriate to cite and briefly discuss these studies in any publication using
figures generated using this application. The application itself can be cited using Smith (2020,
2022)

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Smith MR (2020). “Information theoretic Generalized Robinson-Foulds metrics for comparing
phylogenetic trees.” Bioinformatics, 36(20), 5007-5013. doi:10.1093/bioinformatics/btaa614.

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1093/bioinformatics/btaa614

24 MASTSize

Smith MR (2022). “Robust analysis of phylogenetic tree space.” Systematic Biology, 71(5), 1255—
1270. doi:10.1093/sysbio/syab100.

See Also

Full detail of tree space analysis in R is provided in the accompanying vignette.

Other tree space functions: Islands(),MSTSegments(), MappingQuality(), SpectralEigens(),
cluster-statistics, median.multiPhylo()

MASTSize Maximum Agreement Subtree size

Description

Calculate the size or phylogenetic information content (Steel and Penny 2006) of the maximum
agreement subtree between two phylogenetic trees, i.e. the largest tree that can be obtained from
both treel and tree2 by deleting, but not rearranging, leaves, using the algorithm of Valiente
(2009).

Usage

MASTSize(treel, tree2 = treel, rooted = TRUE)

MASTInfo(treel, tree2 = treel, rooted = TRUE)

Arguments

treel, tree2 Trees of class phylo, or lists of such trees to undergo pairwise comparison.

rooted Logical specifying whether to treat the trees as rooted.

Details
Implemented for trees with up to 4096 tips. Contact the maintainer if you need to process larger
trees.

Value

MASTSize() returns an integer specifying the number of leaves in the maximum agreement subtree.

MASTInfo() returns a vector or matrix listing the phylogenetic information content, in bits, of the
maximum agreement subtree.

Author(s)

Martin R. Smith (martin.smith @durham.ac.uk)

https://doi.org/10.1093/sysbio/syab100
https://ms609.github.io/TreeDist/articles/treespace.html
https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

MatchingSplitDistance 25

References

Steel MA, Penny D (2006). “Maximum parsimony and the phylogenetic information in multistate
characters.” In Albert VA (ed.), Parsimony, Phylogeny, and Genomics, 163—178. Oxford University
Press, Oxford.

Valiente G (2009). Combinatorial Pattern Matching Algorithms in Computational Biology using
Perl and R, CRC Mathematical and Computing Biology Series. CRC Press, Boca Raton.

See Also

phangorn: :mast (), a slower implementation that also lists the leaves contained within the subtree.

Other tree distances: HierarchicalMutualInfo(), JaccardRobinsonFoulds(), KendallColijn(),
MatchingSplitDistance(),NNIDist(),NyeSimilarity(),PathDist(), Robinson-Foulds, SPRDist(),
TreeDistance()

Examples

for as.phylo, BalancedTree, PectinateTree:
library("TreeTools"”, quietly = TRUE)

MASTSize(PectinateTree(8), BalancedTree(8))
MASTInfo(PectinateTree(8), BalancedTree(8))

MASTSize(BalancedTree(7), as.phylo(@:3, 7))
MASTSize(as.phylo(0:3, 7), PectinateTree(7))

MASTInfo(BalancedTree(7), as.phylo(@:3, 7))
MASTInfo(as.phylo(@:3, 7), PectinateTree(7))

MASTSize(list(Bal = BalancedTree(7), Pec = PectinateTree(7)),
as.phylo(0:3, 7))

MASTInfo(list(Bal = BalancedTree(7), Pec = PectinateTree(7)),
as.phylo(0:3, 7))

CompareAll(as.phylo(@:4, 8), MASTSize)
CompareAll(as.phylo(@:4, 8), MASTInfo)

MatchingSplitDistance Matching Split Distance

Description

Calculate the Matching Split Distance (Bogdanowicz and Giaro 2012; Lin et al. 2012) for unrooted
binary trees.

https://ms609.github.io/TreeDist/articles/Generalized-RF.html#matching-split-distance

26 MatchingSplitDistance

Usage
MatchingSplitDistance(
treel,
tree2 = NULL,

normalize = FALSE,
reportMatching = FALSE
)

MatchingSplitDistanceSplits(
splitst,
splits2,
nTip = attr(splitsl, "nTip"),
normalize = TRUE,
reportMatching = FALSE

)
Arguments
treel, tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison. Where implemented, tree2 = NULL will compute
distances between each pair of trees in the list treel using a fast algorithm based
on Day (1985).
normalize If a numeric value is provided, this will be used as a maximum value against

which to rescale results. If TRUE, results will be rescaled against a maximum
value calculated from the specified tree sizes and topology, as specified in the
"Normalization" section below. If FALSE, results will not be rescaled.

reportMatching Logical specifying whether to return the clade matchings as an attribute of the
score.

splits1, splits2
Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

nTip (Optional) Integer specifying the number of leaves in each split.

Details

Trees need not contain identical leaves; scores are based on the leaves that trees hold in common.
Check for unexpected differences in tip labelling with setdiff(TipLabels(treel), TipLabels(tree2)).

Value

MatchingSplitDistance() returns an array of numerics providing the distances between each pair
of trees in treel and tree2, or splits1 and splits2.

median.multiPhylo 27

Normalization

A normalization value or function must be provided in order to return a normalized value. If you
are aware of a generalised formula, please let me know by creating a GitHub issue so that it can be
implemented.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Bogdanowicz D, Giaro K (2012). “Matching split distance for unrooted binary phylogenetic trees.”
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(1), 150-160. doi:10.1109/
TCBB.2011.48.

Day WHE (1985). “Optimal algorithms for comparing trees with labeled leaves.” Journal of Clas-
sification, 2(1), 7-28. doi:10.1007/BF01908061.

Lin Y, Rajan V, Moret BME (2012). “A metric for phylogenetic trees based on matching.” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 4(9), 1014—1022. doi:10.1109/TCBB.2011.157.

See Also
Other tree distances: HierarchicalMutualInfo(), JaccardRobinsonFoulds(), KendallColijn(),

MASTSize(),NNIDist(),NyeSimilarity(),PathDist(),Robinson-Foulds, SPRDist(), TreeDistance()

Examples

MatchingSplitDistance(lapply(rep(8, 5), ape::rtree), normalize = 16)

MatchingSplitDistance(TreeTools: :BalancedTree(6),
TreeTools: :PectinateTree(6),
reportMatching = TRUE)

VisualizeMatching(MatchingSplitDistance, TreeTools::BalancedTree(6),
TreeTools: :PectinateTree(6))

median.multiPhylo Median of a set of trees

Description

Calculate the single binary tree that represents the geometric median — an "average" — of a forest of
tree topologies.

https://github.com/ms609/TreeDist/issues/new
https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1109/TCBB.2011.48
https://doi.org/10.1109/TCBB.2011.48
https://doi.org/10.1007/BF01908061
https://doi.org/10.1109/TCBB.2011.157

28 median.multiPhylo

Usage

S3 method for class 'multiPhylo'
median(
X,
na.rm = FALSE,
Distance = ClusteringInfoDistance,
index = FALSE,
breakTies = TRUE,

)
Arguments
X Object of class multiPhylo containing phylogenetic trees.
na.rm, ... Unused; included for consistency with default function..
Distance Function to calculate distances between each pair of trees in x.
index Logical: if TRUE, return the index of the median tree(s); if FALSE, return the tree
itself.
breakTies Logical: if TRUE, return a single tree with the minimum score; if FALSE, return
all tied trees.
Details

The geometric median is the tree that exhibits the shortest average distance from each other tree
topology in the set. It represents an "average" of a set of trees, though note that an unsampled
tree may be closer to the geometric "centre of gravity" of the input set — such a tree would not be
considered.

The result will depend on the metric chosen to calculate distances between tree topologies. In the
absence of a natural metric of tree topologies, the default choice is ClusteringInfoDistance() —
which discards branch length information. If specifying a different function, be sure that it returns
a difference, rather than a similarity.

Value

median() returns an object of class phylo corresponding to the geometric median of a set of trees:
that is, the tree whose average distance from all other trees in the set is lowest. If multiple trees
tie in their average distance, the first will be returned, unless breakTies = FALSE, in which case an
object of class multiPhylo containing all such trees will be returned.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

See Also

Consensus methods: ape: :consensus(), TreeTools: : ConsensusWithout ()

Other tree space functions: Islands(),MSTSegments(),MapTrees(),MappingQuality(), SpectralEigens(),
cluster-statistics

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

MeilaVariationOfInformation 29

Examples

library("TreeTools”, quietly = TRUE)
tenTrees <- as.phylo(1:10, nTip = 8)

Default settings:
median(tenTrees)

Robinson-Foulds distances include ties:
median(tenTrees, Distance = RobinsonFoulds, breakTies = FALSE)

Be sure to use a distance function, rather than a similarity:
NyeDistance <- function(...) NyeSimilarity(..., similarity = FALSE)
median(tenTrees, Distance = NyeDistance)

To analyse a list of trees that is not of class multiPhylo:
treeList <- lapply(1:10, as.phylo, nTip = 8)

class(treelList)

median(structure(treelList, class = "multiPhylo"))

MeilaVariationOfInformation
Use variation of clustering information to compare pairs of splits

Description
Compare a pair of splits viewed as clusterings of taxa, using the variation of clustering information
proposed by (Meila 2007).

Usage

MeilaVariationOfInformation(splitl, split2)

MeilaMutualInformation(splitl, split2)

Arguments
split1, split2 Logical vectors listing leaves in a consistent order, identifying each leaf as a
member of the ingroup (TRUE) or outgroup (FALSE) of the split in question.
Details
This is equivalent to the mutual clustering information (Vinh et al. 2010). For the total information
content, multiply the Vol by the number of leaves.
Value

MeilaVariationOfInformation() returns the variation of (clustering) information, measured in
bits.

MeilaMutualInformation() returns the mutual information, measured in bits.

30 MSTSegments

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Meila M (2007). “Comparing clusterings—an information based distance.” Journal of Multivariate
Analysis, 98(5), 873-895. doi:10.1016/j.jmva.2006.11.013.

Vinh NX, Epps J, Bailey J (2010). “Information theoretic measures for clusterings comparison:
variants, properties, normalization and correction for chance.” Journal of Machine Learning Re-
search, 11, 2837-2854. doi:10.1145/1553374.1553511.

Examples

Maximum variation = information content of each split separately

A <- TRUE

B <- FALSE

MeilaVariationOfInformation(c(A, A, A, B, B, B), c(A, A, A, A, A, A))
Entropy(c(3, 3) / 6) + Entropy(c(@, 6) / 6)

Minimum variation = 0
MeilaVariationOfInformation(c(A, A, A, B, B, B), c(A, A, A, B, B, B))

Not always possible for two evenly-sized splits to reach maximum

variation of information

Entropy(c(3, 3) /7 6) x 2 # =2

MeilaVariationOfInformation(c(A, A, A,B ,B, B), c(A, B, A, B, A, B)) # <2

Phylogenetically uninformative groupings contain spliting information
Entropy(c(1, 5) / 6)
MeilaVariationOfInformation(c(B, A, A, A, A, A), c(A, A, A, A, A, B))

MSTSegments Add minimum spanning tree to plot, colouring by stress

Description

To identify strain in a multidimensional scaling of distances, it can be useful to plot a minimum
spanning tree (Gower 1966; Smith 2022). Colouring each edge of the tree according to its strain
can identify areas where the mapping is stretched or compressed.

Usage
MSTSegments(mapping, mstEnds, ...)
StrainCol(

distances,
mapping,

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1145/1553374.1553511

MSTSegments 31

mstEnds = MSTEdges(distances),
palette = rev(hcl.colors(256L, "RdY1Bu"))
)
Arguments
mapping Two-column matrix giving x and y coordinates of plotted points.
mstEnds Two-column matrix identifying rows of mapping at end of each edge of the
MST, as output by TreeTools: :MSTEdges().
Additional arguments to segments().
distances Matrix or dist object giving original distances between each pair of points.
palette Vector of colours with which to colour edges.
Value

StrainCol() returns a vector in which each entry is selected from palette, with an attribute
logStrain denoting the logarithm of the mapped over original distance, shifted such that the me-
dian value is zero. Palette colours are assigned centred on the median value, with entries early in
palette assigned to edges in which the ratio of mapped distance to original distance is small.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Gower JC (1966). “Some distance properties of latent root and vector methods used in multivariate
analysis.” Biometrika, 53(3/4), 325-338. do0i:10.2307/2333639.

Smith MR (2022). “Robust analysis of phylogenetic tree space.” Systematic Biology, 71(5), 1255—
1270. doi:10.1093/sysbio/syab100.

See Also

Other tree space functions: Islands(), MapTrees(), MappingQuality(), SpectralEigens(),
cluster-statistics, median.multiPhylo()

Examples

set.seed(0)

library("TreeTools"”, quietly = TRUE)

distances <- ClusteringInfoDist(as.phylo(5:16, 8))
mapping <- cmdscale(distances, k = 2)

mstEnds <- MSTEdges(distances)

Set up blank plot

plot(mapping, asp = 1, frame.plot = FALSE, ann = FALSE, axes = FALSE,
type = "n")

Add MST

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.2307/2333639
https://doi.org/10.1093/sysbio/syab100

32

NNIDist

MSTSegments(mapping, mstEnds,
col = StrainCol(distances, mapping, mstEnds))

Add points at end so they overprint the MST
points(mapping)
PlotTools: :SpectrumLegend(

"bottomleft”,

legend = c("Extended”, "Median”, "Contracted"),
bty = "n", # No box

y.intersp = 2, # Expand in Y direction

palette = hcl.colors(256L, "RdY1Bu", rev = TRUE)
)

NNIDist Approximate Nearest Neighbour Interchange distance

Description

Use the approach of Li et al. (1996) to approximate the Nearest Neighbour Interchange distance
(Robinson 1971) between phylogenetic trees.

Usage

NNIDist(treel, tree2 = treel)

NNIDiameter(tree)
Arguments
treel, tree2 Single trees of class phylo to undergo comparison.
tree Object of supported class representing a tree or list of trees, or an integer speci-

fying the number of leaves in a tree/trees.

Details

In brief, this approximation algorithm works by identifying edges in one tree that do not match
edges in the second. Each of these edges must undergo at least one NNI operation in order to
reconcile the trees. Edges that match in both trees need never undergo an NNI operation, and divide
each tree into smaller regions. By "cutting" matched edges into two, a tree can be divided into a
number of regions that solely comprise unmatched edges.

These regions can be viewed as separate trees that need to be reconciled. One way to reconcile
these trees is to conduct a series of NNI operations that reduce a tree to a pectinate (caterpillar) tree,
then to conduct an analogue of the mergesort algorithm. This takes at most n log n + O(n) NNI
operations, and provides a loose upper bound on the NNI score. The maximum number of moves
for an n-leaf tree (OEIS A182136) can be calculated exactly for small trees (Fack et al. 2002); this
provides a tighter upper bound, but is unavailable for n > 12. NNIDiameter () reports the limits on
this bound.

https://oeis.org/A182136

NNIDist 33

& 9 10 11 12 13

Leaves: 7
7 10 12 15 18 21 ?

1 2 3 4
Diameter: 0 0 0 1

5 6
3 5
Value

NNIDist () returns, for each pair of trees, a named vector containing three integers:

* lower is a lower bound on the NNI distance, and corresponds to the RF distance between the
trees.

* tight_upper is an upper bound on the distance, based on calculated maximum diameters for
trees with < 13 leaves. NA is returned if trees are too different to employ this approach.

* loose_upper is a looser upper bound on the distance, using n log n + O(n).

NNIDiameter () returns a matrix specifying (bounds on) the diameter of the NNI distance metric
on the specified tree(s). Columns correspond to:

e liMin:
n—3

, a lower bound on the diameter (Li et al. 1996);

* fackMin: Lower bound on diameter following Fack et al. (2002), i.e.

log2N!/4

>

e min: The larger of 1iMin and fackMin;
e exact: The exact value of the diameter, where n < 13;

* 1iMax: Upper bound on diameter following Li ez al. (1996), i.e.
nlog2n + O(n)
» fackMax: Upper bound on diameter following Fack et al. (2002), i.e. (
N -2

) ceiling(
log 2n

— N,
¢ max: The smaller of 1iMax and fackMax;

where n is the number of leaves, and N the number of internal nodes, i.e.

n—2

34 NyeSimilarity

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Fack V, Lievens S, Van der Jeugt J (2002). “On the diameter of the rotation graph of binary coupling
trees.” Discrete Mathematics, 245(1-3), 1-18. doi:10.1016/S0012365X(01)004186.

Li M, Tromp J, Zhang L (1996). “Some notes on the nearest neighbour interchange distance.”
In Goos G, Hartmanis J, Leeuwen J, Cai J, Wong CK (eds.), Computing and Combinatorics, vol-
ume 1090, 343-351. Springer, Berlin, Heidelberg. ISBN 978-3-540-61332-9 978-3-540-68461-9,
doi:10.1007/3540613323_168.

Robinson DF (1971). “Comparison of labeled trees with valency three.” Journal of Combinato-
rial Theory, Series B, 11(2), 105-119. doi:10.1016/00958956(71)900207.

See Also

Other tree distances: HierarchicalMutualInfo(), JaccardRobinsonFoulds(), KendallColijn(),
MASTSize(), MatchingSplitDistance(), NyeSimilarity(), PathDist(), Robinson-Foulds,
SPRDist (), TreeDistance()

Examples

library("TreeTools"”, quietly = TRUE)
NNIDist(BalancedTree(7), PectinateTree(7))

NNIDist(BalancedTree(7), as.phylo(@:2, 7))
NNIDist(as.phylo(@:2, 7), PectinateTree(7))

NNIDist(list(bal = BalancedTree(7), pec = PectinateTree(7)),
as.phylo(0:2, 7))

CompareAll(as.phylo(30:33, 8), NNIDist)

NyeSimilarity Nye et al. (2006) tree comparison

Description

NyeSimilarity() and NyeSplitSimilarity() implement the Generalized Robinson—Foulds tree
comparison metric of Nye et al. (2006). In short, this finds the optimal matching that pairs each
branch from one tree with a branch in the second, where matchings are scored according to the size
of the largest split that is consistent with both of them, normalized against the Jaccard index. A
more detailed account is available in the vignettes.

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1016/S0012-365X%2801%2900418-6
https://doi.org/10.1007/3-540-61332-3_168
https://doi.org/10.1016/0095-8956%2871%2990020-7
https://ms609.github.io/TreeDist/articles/Robinson-Foulds.html#generalized-robinson-foulds-distances
https://ms609.github.io/TreeDist/articles/Generalized-RF.html#nye-et-al--tree-similarity-metric

NyeSimilarity
Usage
NyeSimilarity(
treel,
tree2 = NULL,

)

similarity = TRUE,

normalize = FALSE,

normalizeMax = !is.logical(normalize),
reportMatching = FALSE,

diag = TRUE

NyeSplitSimilarity(

splitst,

splits2,

nTip = attr(splits1, "nTip"),
reportMatching = FALSE

Arguments

treel, tree2

similarity

normalize

normalizeMax

reportMatching

diag

35

Trees of class phylo, with leaves labelled identically, or lists of such trees to

undergo pairwise comparison. Where implemented, tree2 = NULL will compute
distances between each pair of trees in the list treel using a fast algorithm based

on Day (1985).

difference.

Logical specifying whether to report the result as a tree similarity, rather than a

If a numeric value is provided, this will be used as a maximum value against

which to rescale results. If TRUE, results will be rescaled against a maximum
value calculated from the specified tree sizes and topology, as specified in the

"Normalization" section below. If FALSE, results will not be rescaled.

When calculating similarity, normalize against the maximum number of splits

that could have been present (TRUE), or the number of splits that were actually
observed (FALSE)? Defaults to the number of splits in the better-resolved tree;
set normalize = pmin. int to use the number of splits in the less resolved tree.

score.

splits1, splits2

Logical specifying whether to return the clade matchings as an attribute of the

Logical specifying whether to return similarities along the diagonal, i.e. of each
tree with itself. Applies only if tree2 is a list identical to tree1, or NULL.

Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup

(TRUE) or outgroup (FALSE) of the respective split.

nTip (Optional) Integer specifying the number of leaves in each split.

36 NyeSimilarity

Details

The measure is defined as a similarity score. If similarity = FALSE, the similarity score will be
converted into a distance by doubling it and subtracting it from the number of splits present in both
trees. This ensures consistency with JaccardRobinsonFoulds.

Note that NyeSimilarity(treel, tree2) isequivalent to, but slightly faster than, JaccardRobinsonFoulds
(treel, tree2, k=1, allowConflict = TRUE).

Value

NyeSimilarity() returns an array of numerics providing the distances between each pair of trees
in treel and tree2, or splits1 and splits2.

Normalization

If normalize = TRUE and similarity = TRUE, then results will be rescaled from zero to one by
dividing by the mean number of splits in the two trees being compared.

You may wish to normalize instead against the number of splits present in the smaller tree, which
represents the maximum value possible for a pair of trees with the specified topologies (normalize
= pmin.int); the number of splits in the most resolved tree (normalize = pmax.int); or the maxi-
mum value possible for any pair of trees with n leaves, n - 3 (normalize = TreeTools: :NTip(treel)
- 3L).

If normalize = TRUE and similarity = FALSE, then results will be rescaled from zero to one by
dividing by the total number of splits in the pair of trees being considered.

Trees need not contain identical leaves; scores are based on the leaves that trees hold in common.
Check for unexpected differences in tip labelling with setdiff(TipLabels(treel), TipLabels(tree2)).

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Day WHE (1985). “Optimal algorithms for comparing trees with labeled leaves.” Journal of Clas-
sification, 2(1), 7-28. doi:10.1007/BF01908061.

Nye TMW, Lio P, Gilks WR (2006). “A novel algorithm and web-based tool for comparing two al-
ternative phylogenetic trees.” Bioinformatics, 22(1), 117-119. doi:10.1093/bioinformatics/bti720.

See Also

Other tree distances: HierarchicalMutualInfo(), JaccardRobinsonFoulds(), KendallColijn(),
MASTSize(),MatchingSplitDistance(),NNIDist(),PathDist(), Robinson-Foulds, SPRDist(),
TreeDistance()

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1007/BF01908061
https://doi.org/10.1093/bioinformatics/bti720

PathDist 37

Examples

library("TreeTools")

NyeSimilarity(BalancedTree(8), PectinateTree(8))
VisualizeMatching(NyeSimilarity, BalancedTree(8), PectinateTree(8))
NyeSimilarity(as.phylo(@:5, nTip = 8), PectinateTree(8))
NyeSimilarity(as.phylo(@:5, nTip = 8), similarity = FALSE)

PathDist Path distance

Description

Calculate the path distance between rooted or unrooted trees.

Usage

PathDist(treel, tree2 = NULL)

Arguments
treel, tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison. Where implemented, tree2 = NULL will compute
distances between each pair of trees in the list treel using a fast algorithm based
on Day (1985).
Details

This function is a faster alternative to the function path.dist () in the phangorn package, which can
crash if the internal representation of trees does not conform to certain (unspecified) expectations,
and which treats all trees as unrooted.

The path distance is calculated by tabulating the cladistic difference (= topological distance) be-
tween each pair of tips in each tree. A precursor to the path distance (Farris 1969) took the mean
squared difference between the elements of each tree’s tabulation (Farris, 1973); the method used
here is that proposed by Steel and Penny (1993), which takes the square root of this sum. Other
precursor measures are described in Williams and Clifford (1971) and Phipps (1971).

If a root node is present, trees are treated as rooted. To avoid counting the root edge twice, use
UnrootTree(tree) before calculating the path distance.

Use of the path distance is discouraged as it emphasizes shallow relationships at the expense of
deeper (and arguably more fundamental) relationships (Farris 1973).

Value

PathDist () returns a vector or distance matrix of distances between trees.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

38 Plot3

References

Day WHE (1985). “Optimal algorithms for comparing trees with labeled leaves.” Journal of Clas-
sification, 2(1), 7-28. doi:10.1007/BF01908061.

Farris JS (1969). “A successive approximations approach to character weighting.” Systematic Biol-
ogy, 18(4), 374-385. doi:10.2307/2412182.

Farris JS (1973). “On comparing the shapes of taxonomic trees.” Systematic Zoology, 22(1), 50-54.
doi:10.2307/2412378.

Phipps JB (1971). “Dendrogram topology.” Systematic Zoology, 20(3), 306. doi:10.2307/2412343.

Steel MA, Penny D (1993). “Distributions of tree comparison metrics—some new results.” System-
atic Biology, 42(2), 126—141. doi:10.1093/sysbio/42.2.126.

Williams WT, Clifford HT (1971). “On the comparison of two classifications of the same set of
elements.” Taxon, 20(4), 519-522. doi:10.2307/1218253.
See Also

Other tree distances: HierarchicalMutualInfo(), JaccardRobinsonFoulds(), KendallColijn(),
MASTSize(),MatchingSplitDistance(),NNIDist(),NyeSimilarity(), Robinson-Foulds, SPRDist(),
TreeDistance()

Examples

library("TreeTools")

Treating the two edges to the root node as distinct
PathDist(BalancedTree(7), PectinateTree(7))

Counting those two edges once
PathDist(UnrootTree(BalancedTree(7)), UnrootTree(PectinateTree(7)))

PathDist(BalancedTree(7), as.phylo(0:2, 7))
PathDist(as.phylo(@:2, 7), PectinateTree(7))

PathDist(list(bal = BalancedTree(7), pec = PectinateTree(7)),
as.phylo(0:2, 7))

PathDist(as.phylo(30:33, 8))

Plot3 Pseudo-3D plotting

https://doi.org/10.1007/BF01908061
https://doi.org/10.2307/2412182
https://doi.org/10.2307/2412378
https://doi.org/10.2307/2412343
https://doi.org/10.1093/sysbio/42.2.126
https://doi.org/10.2307/1218253

Plot3 39

Description

Plot3() displays three-dimensional data in two dimensions, reflecting the third dimension with
point scaling, overlap and fogging. Points with a lower z value are smaller than, fainter than, and
overlapped by points with a higher value.

Usage
Plot3(
X,
y = NULL,
z = NULL,
pch = par("pch"),
col = par("col"),
bg = NA,
cex =1,
axes = TRUE,
frame.plot = axes,
plot.bg = NA,
fog = 1/2,
shrink = 1/2,
add = FALSE,
)
Arguments
X, Y, Z Coordinates of points to plot.

bg, cex, col, pch, add, axes, frame.plot, ...
Parameters passed to plot.default().

plot.bg Colour with which to fill plot area, used as fog colour.

fog Numeric from zero (no fading) to one (furthest points are invisible) specifying
amount to fade distant points.

shrink Numeric specifying degree to which size of plotted point should reflect z posi-
tion. @ denotes no scaling; if 1, furthest point will have zero size.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

Examples

Plot3(1:10, 1:10, 1:10, cex = 7, pch = 16, axes = FALSE, asp = 1)

Extreme values of fog and shrink will cause smallest z values to

become invisible.

Plot3(1:10, 1:10, 1:10, cex = 7, pch = 16, axes = FALSE, asp = 1,
fog = 1, shrink = 1)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

40 ReduceTrees

ReduceTrees Collapse areas of agreement between two trees

Description
ReduceTrees () reduces trees according to the tree reduction rules of Allen and Steel (2001):

* Collapse identical pendant subtrees;

» Compress equivalent internal chains.

Usage

ReduceTrees(treel, tree2, check = TRUE)

Arguments
treel, tree2 Single trees of class phylo to undergo comparison.
check Logical specifying whether to validate input. Specify FALSE and you will en-
counter undefined behaviour if trees are not binary phylo objects with identical
leaf labels, rooted on leaf 1.
Value

ReduceTrees() returns a list of two trees, corresponding to treel and tree?2 after any identical
groupings have been collapsed, with tree edges listed in postorder; or NULL if the trees are equiva-
lent.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

Examples

treel <- TreeTools::BalancedTree(9)
tree2 <- TreeTools::PectinateTree(9)

Set graphical parameters
oPar <- par(mai = rep(0.1, 4), mfrow = c(2, 2))

plot(treel)
plot(tree2)

Reduce trees by collapsing identical clades
confl <- ReduceTrees(treel, tree2)

plot(confl[[1]])
plot(confl[[2]11)

Restore graphical parameters
par (oPar)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

Robinson-Foulds 41

Robinson-Foulds Robinson—Foulds distances, with adjustments for phylogenetic infor-
mation content

Description

RobinsonFoulds() calculates the Robinson—Foulds distance (Robinson and Foulds 1981), or the
corresponding similarity measure. InfoRobinsonFoulds () weights splits according to their phylo-
genetic information content (§2.1 in Smith 2020). Optionally, the matching between identical splits
may reported. Generalized Robinson—Foulds distances (see TreeDistance()) are better suited to
most use cases (Smith 2020, 2022).

Usage
InfoRobinsonFoulds(
treel,
tree2 = NULL,

similarity = FALSE,

normalize = FALSE,

reportMatching = FALSE
)

InfoRobinsonFouldsSplits(
splitst,
splits2,
nTip = attr(splits1, "nTip"),
reportMatching = FALSE

)
RobinsonFoulds(
treel,
tree2 = NULL,

similarity = FALSE,

normalize = FALSE,

reportMatching = FALSE
)

RobinsonFouldsMatching(
treel,
tree2,
similarity = FALSE,
normalize = FALSE,

)

RobinsonFouldsSplits(
splitst,

42

splits2,

Robinson-Foulds

nTip = attr(splitsl, "nTip"),
reportMatching = FALSE

)

Arguments

treel, tree2

similarity

normalize

reportMatching

splits1, splits2

nTip

Details

Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison. Where implemented, tree2 = NULL will compute
distances between each pair of trees in the list treel using a fast algorithm based
on Day (1985).

Logical specifying whether to report the result as a tree similarity, rather than a
difference.

If a numeric value is provided, this will be used as a maximum value against
which to rescale results. If TRUE, results will be rescaled against a maximum
value calculated from the specified tree sizes and topology, as specified in the
"Normalization" section below. If FALSE, results will not be rescaled.

Logical specifying whether to return the clade matchings as an attribute of the
score.

Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

(Optional) Integer specifying the number of leaves in each split.

Not used.

RobinsonFoulds() calculates the standard Robinson—Foulds distance, i.e. the number of splits that
occur in one tree but not the other. InfoRobinsonFoulds() calculates the tree similarity or distance
by summing the phylogenetic information content of all splits that are (or are not) identical in both
trees. Consequently, splits that are more likely to be identical by chance alone make a smaller
contribution to overall tree distance, because their similarity is less remarkable.

Rapid comparison between multiple pairs of trees employs the Day (1985) linear-time algorithm.

Value

RobinsonFoulds() and InfoRobinsonFoulds() return an array of numerics providing the dis-
tances between each pair of trees in treel and tree2, or splits1 and splits2.

If reportMatching = TRUE, the pairScores attribute returns a logical matrix specifying whether
each pair of splits is identical.

Functions

* RobinsonFouldsMatching(): Matched splits, intended for use with VisualizeMatching().

Robinson-Foulds 43

Normalization

* RobinsonFoulds() is normalized against the total number of splits that are present.

* InfoRobinsonFoulds() is normalized against the sum of the phylogenetic information of all
splits in each tree, treated independently.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Day WHE (1985). “Optimal algorithms for comparing trees with labeled leaves.” Journal of Clas-
sification, 2(1), 7-28. doi:10.1007/BF01908061.

Robinson DF, Foulds LR (1981). “Comparison of phylogenetic trees.” Mathematical Biosciences,
53(1-2), 131-147. doi:10.1016/00255564(81)900432.

Smith MR (2020). “Information theoretic Generalized Robinson-Foulds metrics for comparing
phylogenetic trees.” Bioinformatics, 36(20), 5007-5013. doi:10.1093/bioinformatics/btaa614.

Smith MR (2022). “Robust analysis of phylogenetic tree space.” Systematic Biology, 7T1(5), 1255—
1270. doi:10.1093/sysbio/syab100.

See Also

Display paired splits: VisualizeMatching()

Other tree distances: HierarchicalMutualInfo(), JaccardRobinsonFoulds(), KendallColijn(),
MASTSize(),MatchingSplitDistance(),NNIDist(),NyeSimilarity(),PathDist(), SPRDist(),
TreeDistance()

Examples

For BalancedTree, PectinateTree, as.phylo:
library("TreeTools"”, quietly = TRUE)

balanced7 <- BalancedTree(7)

pectinate7 <- PectinateTree(7)

RobinsonFoulds(balanced7, pectinate7)

RobinsonFoulds(balanced7, pectinate7, normalize = TRUE)
VisualizeMatching(RobinsonFouldsMatching, balanced7, pectinate7)

InfoRobinsonFoulds(balanced7, pectinate7)
VisualizeMatching(InfoRobinsonFoulds, balanced7, pectinate7)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1007/BF01908061
https://doi.org/10.1016/0025-5564%2881%2990043-2
https://doi.org/10.1093/bioinformatics/btaa614
https://doi.org/10.1093/sysbio/syab100

44 SpectralEigens

SpectralEigens Eigenvalues for spectral clustering

Description

Spectral clustering emphasizes nearest neighbours when forming clusters; it avoids some of the
issues that arise from clustering around means / medoids.

Usage

SpectralEigens(D, nn = 10L, nEig = 2L)

SpectralClustering(D, nn = 10L, nEig = 2L)

Arguments
D Square matrix or dist object containing Euclidean distances between data points.
nn Integer specifying number of nearest neighbours to consider
nEig Integer specifying number of eigenvectors to retain.

Value

SpectralEigens() returns spectral eigenvalues that can then be clustered using a method of choice.

Author(s)

Adapted by MRS from script by Nura Kawa

See Also

Other tree space functions: Islands(),MSTSegments(),MapTrees(),MappingQuality(), cluster-statistics,
median.multiPhylo()

Examples
library("TreeTools"”, quietly = TRUE)
trees <- as.phylo(0:18, nTip = 8)

distances <- ClusteringInfoDistance(trees)

eigens <- SpectralEigens(distances)

Perform clustering:

clusts <- KMeansPP(dist(eigens), k = 3)

plot(eigens, pch = 15, col = clusts$cluster)
plot(cmdscale(distances), pch = 15, col = clusts$cluster)

https://rpubs.com/nurakawa/spectral-clustering

SplitEntropy 45

SplitEntropy Entropy of two splits

Description

Calculate the entropy, joint entropy, entropy distance and information content of two splits, treating
each split as a division of n leaves into two groups. Further details are available in a vignette,
MacKay (2003) and Meila (2007).

Usage

SplitEntropy(splitl, split2 = splitl)

Arguments
split1, split2 Logical vectors listing leaves in a consistent order, identifying each leaf as a
member of the ingroup (TRUE) or outgroup (FALSE) of the split in question.
Value
A numeric vector listing, in bits:

* H1 The entropy of split 1;

* H2 The entropy of split 2;

* H12 The joint entropy of both splits;

* I The mutual information of the splits;

* Hd The entropy distance (variation of information) of the splits.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References
MacKay DJC (2003). Information Theory, Inference, and Learning Algorithms. Cambridge Uni-
versity Press, Cambridge. https://www.inference.org.uk/itprnn/book.pdf.

Meila M (2007). “Comparing clusterings—an information based distance.” Journal of Multivariate
Analysis, 98(5), 873-895. doi:10.1016/j.jmva.2006.11.013.
See Also

Other information functions: SplitSharedInformation(), TreeInfo

Examples

A <- TRUE
B <- FALSE
SplitEntropy(c(A, A, A, B, B, B), c(A, A, B, B, B, B))

https://ms609.github.io/TreeDist/articles/information.html
https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://www.inference.org.uk/itprnn/book.pdf
https://doi.org/10.1016/j.jmva.2006.11.013

46 SplitSharedInformation

SplitsCompatible Are splits compatible?

Description

Determine whether splits are compatible (concave); i.e. they can both occur on a single tree.

Usage

SplitsCompatible(splitl, split2)

Arguments
splitl, split2 Logical vectors listing leaves in a consistent order, identifying each leaf as a
member of the ingroup (TRUE) or outgroup (FALSE) of the split in question.
Value
SplitsCompatible() returns a logical specifying whether the splits provided are compatible with
one another.
Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

Examples
A <- TRUE
B <- FALSE
SplitsCompatible(c(A, A, A, B, B, B),
c(A, A, B, B, B, B))
SplitsCompatible(c(A, A, A, B, B, B),
c(A, A, B, B, B, A)

SplitSharedInformation
Shared information content of two splits

Description

Calculate the phylogenetic information shared, or not shared, between two splits. See the accom-
panying vignette for definitions.

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://ms609.github.io/TreeDist/articles/information.html
https://ms609.github.io/TreeDist/articles/information.html

SplitSharedInformation 47

Usage

SplitSharedInformation(n, A1, A2 = A1)

SplitDifferentInformation(n, A1, A2 = A1)

TreesConsistentWithTwoSplits(n, A1, A2 = A1)

LnTreesConsistentWithTwoSplits(n, A1, A2 = A1)

Log2TreesConsistentWithTwoSplits(n, A1, A2 = Al)

Log2TreesConsistentWithTwoSplits(n, A1, A2 = A1)
Arguments
n Integer specifying the number of leaves
A1, A2 Integers specifying the number of taxa in A/ and A2, once the splits have been
arranged such that A/ fully overlaps with A2.
Details

Split S7 divides n leaves into two splits, Al and BI. Split S2 divides the same leaves into the splits
A2 and B2.

Splits must be named such that A7 fully overlaps with A2: that is to say, all taxa in A/ are also in
A2, or vice versa. Thus, all taxa in the smaller of A7/ and A2 also occur in the larger.

Value

TreesConsistentWithTwoSplits() returns the number of unrooted bifurcating trees consistent
with two splits.

SplitSharedInformation() returns the phylogenetic information that two splits have in common
(Meila 2007), in bits.

SplitDifferentInformation() returns the amount of phylogenetic information distinct to one of
the two splits, in bits.

Functions

SplitDifferentInformation(): Different information between two splits.
TreesConsistentWithTwoSplits(): Number of trees consistent with two splits.
LnTreesConsistentWithTwoSplits(): Natural logarithm of TreesConsistentWithTwoSplits().
Log2TreesConsistentWithTwoSplits(): Base two logarithm of TreesConsistentWithTwoSplits().
Log2TreesConsistentWithTwoSplits(): Base 2 logarithm of TreesConsistentWithTwoSplits().

Author(s)

Martin R. Smith (martin.smith @durham.ac.uk)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

48

References

SPRDist

Meila M (2007). “Comparing clusterings—an information based distance.” Journal of Multivariate

Analysis, 98(5), 873-895. doi:10.1016/j.jmva.2006.11.013.

See Also

Other information functions: SplitEntropy(), TreeInfo

Examples

Eight leaves, labelled A to H.

Split 1: ABCD|EFGH

Split 2: ABC|DEFGH

Let A1 = ABCD (four taxa), and A2 = ABC (three taxa).
A1 and A2 overlap (both contain ABC).

TreesConsistentWithTwoSplits(n = 8, A1 = 4, A2 = 3)
SplitSharedInformation(n = 8, Al = 4, A2 = 3)
SplitDifferentInformation(n = 8, A1 = 4, A2 = 3)

If splits are identical, then their shared information is the same

as the information of either split:
SplitSharedInformation(n = 8, A1 = 3, A2 = 3)
TreeTools::SplitInformation(3, 5)

SPRDist Approximate the Subtree Prune and Regraft (SPR) distance.

Description

SPRDist () calculates an upper bound on the SPR distance between trees using the heuristic method
of de Oliveira Martins et al. (2008). Other approximations are available (e.g. Hickey et al. 2008,

Goloboff 2008, Whidden and Matsen 2018).

Usage

SPRDist(treel, tree2 = NULL, method = "deOliveira”,
S3 method for class 'phylo’

SPRDist(treel, tree2 = NULL, method = "deOliveira”,
S3 method for class 'list'

SPRDist(treel, tree2 = NULL, method = "deOliveira”,
S3 method for class 'multiPhylo'

SPRDist(treel, tree2 = NULL, method = "deOliveira”,

symmetric)

symmetric)

symmetric)

symmetric)

https://doi.org/10.1016/j.jmva.2006.11.013

SPRDist 49

Arguments
treel, tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison. Where implemented, tree2 = NULL will compute
distances between each pair of trees in the list tree1 using a fast algorithm based
on Day (1985).
method Character specifying which method to use to approximate the SPR distance.
Currently defaults to "deOliveira”, the only available option; a new method
will eventually become the default.
symmetric Ignored (redundant after fix of phangorn#97).
Value

SPRDist () returns a vector or distance matrix of distances between trees.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Day WHE (1985). “Optimal algorithms for comparing trees with labeled leaves.” Journal of Clas-
sification, 2(1), 7-28. doi:10.1007/BF01908061.

Goloboff PA (2008). “Calculating SPR distances between trees.” Cladistics, 24(4), 591-597.
doi:10.1111/5.10960031.2007.00189.x.

Hickey G, Dehne F, Rau-Chaplin A, Blouin C (2008). “SPR distance computation for unrooted
trees.” Evolutionary Bioinformatics, 4, EBO-S419. doi:10.4137/EBO.S419.

Whidden C, Matsen FA (2018). “Efficiently Inferring Pairwise Subtree Prune-and-Regraft Adja-
cencies between Phylogenetic Trees.” 2018 Proceedings of the Meeting on Analytic Algorithmics
and Combinatorics (ANALCO), 77-91. doi:10.1137/1.9781611975062.8.

de Oliveira Martins L, Leal E, Kishino H (2008). “Phylogenetic detection of recombination with a
Bayesian prior on the distance between trees.” PLoS One, 3(7), €2651. doi:10.1371/journal.pone.0002651.

See Also

Exact calculation with TBRDist functions USPRDist () and ReplugDist().

phangorn function SPR.dist() employs the de Oliveira Martins et al. (2008) algorithm but can
crash when sent trees of certain formats, and tends to have a longer running time.

Other tree distances: HierarchicalMutualInfo(), JaccardRobinsonFoulds(), KendallColijn(),
MASTSize(),MatchingSplitDistance(),NNIDist(),NyeSimilarity(),PathDist(), Robinson-Foulds,
TreeDistance()

https://github.com/KlausVigo/phangorn/issues/97
https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1007/BF01908061
https://doi.org/10.1111/j.1096-0031.2007.00189.x
https://doi.org/10.4137/EBO.S419
https://doi.org/10.1137/1.9781611975062.8
https://doi.org/10.1371/journal.pone.0002651
https://ms609.github.io/TBRDist/reference/TreeRearrangementDistances.html

50 StartParallel

Examples

library("TreeTools"”, quietly = TRUE)

Compare single pair of trees
SPRDist(BalancedTree(7), PectinateTree(7))

Compare all pairs of trees
SPRDist(as.phylo(30:33, 8))

Compare each tree in one list with each tree in another
SPRDist(BalancedTree(7), as.phylo(0:2, 7))
SPRDist(as.phylo(@:2, 7), PectinateTree(7))

SPRDist(list(bal = BalancedTree(7), pec = PectinateTree(7)),
as.phylo(0:2, 7))

StartParallel Calculate distances in parallel

Description

Accelerate distance calculation by employing multiple CPU workers.
Usage

StartParallel(...)

SetParallel(cl)

GetParallel(cl)

StopParallel(quietly = FALSE)

Arguments
Parameters to pass to makeCluster().
cl An existing cluster.
quietly Logical; if TRUE, do not warn when no cluster was running.
Details

"TreeDist" parallelizes the calculation of tree to tree distances via the parCapply () function, using
a user-defined cluster specified in options(”"TreeDist-cluster”).

StartParallel() calls parallel: :makeCluster () and tells "TreeDist" to use the created cluster.
SetParallel() tells "TreeDist" to use a pre-existing or user-specified cluster.

StopParallel() stops the current TreeDist cluster.

TreeDistance 51

Value

StartParallel() and SetParallel() return the previous value of options("TreeDist-cluster™).
GetParallel() returns the currently specified cluster.

StopParallel() returns TRUE if a cluster was destroyed, FALSE otherwise.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

Examples

if (interactive()) { # Only run in terminal
library("TreeTools"”, quietly = TRUE)
nCores <- ceiling(parallel::detectCores() / 2)
StartParallel(nCores) # Takes a few seconds to set up processes
GetParallel()
ClusteringInfoDistance(as.phylo(@:6, 100))
StopParallel() # Returns system resources

TreeDistance Information-based generalized Robinson—Foulds distances

Description

Calculate tree similarity and distance measures based on the amount of phylogenetic or clustering
information that two trees hold in common, as proposed in Smith (2020).

Usage

TreeDistance(treel, tree2 = NULL)

SharedPhylogeneticInfo(
treel,
tree2 = NULL,
normalize = FALSE,
reportMatching = FALSE,

diag = TRUE
)
DifferentPhylogeneticInfo(
treel,
tree2 = NULL,

normalize = FALSE,
reportMatching = FALSE

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

TreeDistance

PhylogeneticInfoDistance(
treel,
tree2 = NULL,
normalize = FALSE,
reportMatching = FALSE

)
ClusteringInfoDistance(
treel,
tree2 = NULL,

normalize = FALSE,
reportMatching = FALSE
)

ExpectedVariation(treel, tree2, samples = 10000)

MutualClusteringInfo(
treel,
tree2 = NULL,
normalize = FALSE,
reportMatching = FALSE,
diag = TRUE

)

SharedPhylogeneticInfoSplits(
splitst,
splits2,
nTip = attr(splitsl, "nTip"),
reportMatching = FALSE

)

MutualClusteringInfoSplits(
splitst,
splits2,
nTip = attr(splits1, "nTip"),
reportMatching = FALSE

)
MatchingSplitInfo(
treel,
tree2 = NULL,

normalize = FALSE,
reportMatching = FALSE,
diag = TRUE

)

MatchingSplitInfoDistance(
treel,

TreeDistance 53

tree2 = NULL,

normalize = FALSE,

reportMatching = FALSE
)

MatchingSplitInfoSplits(
splitst,
splits2,
nTip = attr(splits1, "nTip"),
reportMatching = FALSE

)
Arguments
treel, tree2 Trees of class phylo, with leaves labelled identically, or lists of such trees to
undergo pairwise comparison. Where implemented, tree2 = NULL will compute
distances between each pair of trees in the list tree1 using a fast algorithm based
on Day (1985).
normalize If a numeric value is provided, this will be used as a maximum value against

which to rescale results. If TRUE, results will be rescaled against a maximum
value calculated from the specified tree sizes and topology, as specified in the
"Normalization" section below. If FALSE, results will not be rescaled.
reportMatching Logical specifying whether to return the clade matchings as an attribute of the
score.
diag Logical specifying whether to return similarities along the diagonal, i.e. of each
tree with itself. Applies only if tree2 is a list identical to tree1, or NULL.
samples Integer specifying how many samplings to obtain; accuracy of estimate increases
with sqrt(samples).
splitsT, splits2
Logical matrices where each row corresponds to a leaf, either listed in the same
order or bearing identical names (in any sequence), and each column corre-
sponds to a split, such that each leaf is identified as a member of the ingroup
(TRUE) or outgroup (FALSE) of the respective split.

nTip (Optional) Integer specifying the number of leaves in each split.

Details

Generalized Robinson—Foulds distances calculate tree similarity by finding an optimal matching
that the similarity between a split on one tree and its pair on a second, considering all possible ways
to pair splits between trees (including leaving a split unpaired).

The methods implemented here use the concepts of entropy and information (MacKay 2003) to
assign a similarity score between each pair of splits.

The returned tree similarity measures state the amount of information, in bits, that the splits in two
trees hold in common when they are optimally matched, following Smith (2020). The complemen-
tary tree distance measures state how much information is different in the splits of two trees, under
an optimal matching. Where trees contain different tips, tips present in one tree but not the other are
removed before each comparison (as by definition, the trees neither hold information in common
nor differ regarding these tips).

https://ms609.github.io/TreeDist/articles/Robinson-Foulds.html#generalized-robinson-foulds-distances
https://ms609.github.io/TreeDist/articles/information.html

54 TreeDistance

Value

If reportMatching = FALSE, the functions return a numeric vector specifying the requested simi-
larities or differences.

If reportMatching = TRUE, the functions additionally return an integer vector listing the index of
the split in tree2 that is matched with each split in treel in the optimal matching. Unmatched
splits are denoted NA. Use VisualizeMatching() to plot the optimal matching.

TreeDistance() simply returns the clustering information distance (it is an alias of ClusteringInfoDistance()).

Concepts of information

The phylogenetic (Shannon) information content and entropy of a split are defined in a separate
vignette.

Using the mutual (clustering) information (Meila 2007; Vinh et al. 2010) of two splits to quantify

their similarity gives rise to the Mutual Clustering Information measure (MutualClusteringInfo(),
MutualClusteringInfoSplits()); the entropy distance gives the Clustering Information Distance

(ClusteringInfoDistance()). This approach is optimal in many regards, and is implemented

with normalization in the convenience function TreeDistance().

Using the amount of phylogenetic information common to two splits to measure their similarity
gives rise to the Shared Phylogenetic Information similarity measure (SharedPhylogeneticInfo(),
SharedPhylogeneticInfoSplits()). The amount of information distinct to each of a pair of splits
provides the complementary Different Phylogenetic Information distance metric (DifferentPhylogeneticInfo()).

The Matching Split Information measure (MatchingSplitInfo(),MatchingSplitInfoSplits())
defines the similarity between a pair of splits as the phylogenetic information content of the most
informative split that is consistent with both input splits; MatchingSplitInfoDistance() is the
corresponding measure of tree difference. (More information here.)

Conversion to distances

To convert similarity measures to distances, it is necessary to subtract the similarity score from a
maximum value. In order to generate distance metrics, these functions subtract the similarity twice
from the total information content (SPI, MSI) or entropy (MCI) of all the splits in both trees (Smith
2020).

Normalization

If normalize = TRUE, then results will be rescaled such that distance ranges from zero to (in prin-
ciple) one. The maximum distance is the sum of the information content or entropy of each split
in each tree; the maximum similarity is half this value. (See Vinh ef al. (2010, table 3) and Smith
(2020) for alternative normalization possibilities.)

Note that a distance value of one (= similarity of zero) will seldom be achieved, as even the most
different trees exhibit some similarity. It may thus be helpful to rescale the normalized value such
that the expected distance between a random pair of trees equals one. This can be calculated with
ExpectedVariation(); or see package ’TreeDistData’ for a compilation of expected values under
different metrics for trees with up to 200 leaves.

Alternatively, use normalize = pmax or pmin to scale against the information content or en-
tropy of all splits in the most (pmax) or least (pmin) informative tree in each pair. To calculate

https://ms609.github.io/TreeDist/articles/information.html
https://ms609.github.io/TreeDist/articles/information.html
https://ms609.github.io/TreeDist/articles/Generalized-RF.html
https://ms609.github.io/TreeDistData/reference/randomTreeDistances.html

TreeDistance 55

the relative similarity against a reference tree that is known to be "correct", use normalize =
SplitwiseInfo(trueTree) (SPI, MSI) or ClusteringEntropy(trueTree) (MCI). For worked
examples, see the internal function NormalizeInfo(), which is called from distance functions with
the parameter how = normalize. .

Distances between large trees

To balance memory demands and runtime with flexibility, these functions are implemented for trees

with up to 2048 leaves. To analyse trees with up to 8192 leaves, you will need to a modified version

of the package: install.packages("BigTreeDist"”, repos = "https://ms6@9.github.io/packages/")
Use library("BigTreeDist") instead of library("TreeDist") to load the modified package —

or prefix functions with the package name, e.g. BigTreeDist: : TreeDistance().

As an alternative download method, uninstall TreeDist and TreeTools using remove. packages(),

then use devtools: :install_github("ms609/TreeTools”, ref = "more-leaves"”) toinstall the

modified TreeTools package; then, install TreeDist using devtools: :install_github("ms609/TreeDist",
ref = "more-leaves"”). (TreeDist will need building from source after the modified TreeTools

package has been installed, as its code links to values set in the TreeTools source code.)

Trees with over 8192 leaves require further modification of the source code, which the maintainer
plans to attempt in the future; please comment on GitHub if you would find this useful.

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

Day WHE (1985). “Optimal algorithms for comparing trees with labeled leaves.” Journal of Clas-
sification, 2(1), 7-28. doi:10.1007/BF01908061.

MacKay DJC (2003). Information Theory, Inference, and Learning Algorithms. Cambridge Uni-
versity Press, Cambridge. https://www.inference.org.uk/itprnn/book.pdf.

Meila M (2007). “Comparing clusterings—an information based distance.” Journal of Multivariate
Analysis, 98(5), 873-895. doi:10.1016/j.jmva.2006.11.013.

Smith MR (2020). “Information theoretic Generalized Robinson-Foulds metrics for comparing
phylogenetic trees.” Bioinformatics, 36(20), 5007-5013. doi:10.1093/bioinformatics/btaa614.

Vinh NX, Epps J, Bailey J (2010). “Information theoretic measures for clusterings comparison:
variants, properties, normalization and correction for chance.” Journal of Machine Learning Re-
search, 11, 2837-2854. doi:10.1145/1553374.1553511.

See Also

Other tree distances: HierarchicalMutualInfo(), JaccardRobinsonFoulds(), KendallColijn(),
MASTSize(),MatchingSplitDistance(),NNIDist(),NyeSimilarity(),PathDist(), Robinson-Foulds,
SPRDist()

https://github.com/ms609/TreeTools/issues/141
https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1007/BF01908061
https://www.inference.org.uk/itprnn/book.pdf
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1093/bioinformatics/btaa614
https://doi.org/10.1145/1553374.1553511

56 Treelnfo

Examples

treel <- ape::read.tree(text="((((a, b), c), d), (e, (f, (g, h))));")
tree2 <- ape::read.tree(text="(((a, b), (c, d)), ((e,), (g, h)));"
tree3 <- ape::read.tree(text="((((h, b), c), d), (e, (f, (g, a))));")

Best possible score is obtained by matching a tree with itself
DifferentPhylogeneticInfo(treel, treel) # @, by definition
SharedPhylogeneticInfo(treel, treel)

SplitwiseInfo(treel) # Maximum shared phylogenetic information

Best possible score is a function of tree shape; the splits within
balanced trees are more independent and thus contain less information
SplitwiseInfo(tree2)

How similar are two trees?

SharedPhylogeneticInfo(treel, tree2) # Amount of phylogenetic information in common
attr(SharedPhylogeneticInfo(treel, tree2, reportMatching = TRUE), "matching")
VisualizeMatching(SharedPhylogeneticInfo, treel, tree2) # Which clades are matched?

DifferentPhylogeneticInfo(treel, tree2) # Distance measure
DifferentPhylogeneticInfo(tree2, treel) # The metric is symmetric

Are they more similar than two trees of this shape would be by chance?
ExpectedVariation(treel, tree2, sample=12)["DifferentPhylogeneticInfo”, "Estimate”]

Every split in treel conflicts with every split in tree3

Pairs of conflicting splits contain clustering, but not phylogenetic,
information

SharedPhylogeneticInfo(treel, tree3) # = 0

MutualClusteringInfo(treel, tree3) # > 0

Distance functions internally convert trees to Splits objects.

Pre-conversion can reduce run time if the same trees will feature in
multiple comparisons

splitsl <- TreeTools::as.Splits(treel)

splits2 <- TreeTools::as.Splits(tree2)

SharedPhylogeneticInfoSplits(splits1, splits2)
MatchingSplitInfoSplits(splitsl, splits2)
MutualClusteringInfoSplits(splits1, splits2)

Treelnfo Information content of splits within a tree

Description

Sum the entropy (ClusteringEntropy()), clustering information content (ClusteringInfo()),
or phylogenetic information content (SplitwiseInfo()) across each split within a phylogenetic
tree, or the consensus of a set of phylogenetic trees (ConsensusInfo()). This value will be greater
than the total information content of the tree where a tree contains multiple splits, as these splits are
not independent and thus contain mutual information that is counted more than once

Treelnfo

Usage

57

SplitwiseInfo(x, p = NULL, sum = TRUE)

ClusteringEntropy(x, p = NULL, sum = TRUE)

ClusteringInfo(x, p = NULL, sum = TRUE)

S3 method for class 'phylo'
ClusteringEntropy(x, p = NULL, sum = TRUE)

S3 method for class 'list'

ClusteringEntropy(x, p = NULL, sum

TRUE)

S3 method for class 'multiPhylo'

ClusteringEntropy(x, p = NULL, sum

TRUE)

S3 method for class 'Splits'

ClusteringEntropy(x, p = NULL, sum

TRUE)

S3 method for class 'phylo'

ClusteringInfo(x, p = NULL, sum

TRUE)

S3 method for class 'list'
ClusteringInfo(x, p = NULL, sum = TRUE)

S3 method for class 'multiPhylo’
ClusteringInfo(x, p = NULL, sum = TRUE)

S3 method for class 'Splits'
ClusteringInfo(x, p = NULL, sum = TRUE)

ConsensusInfo(trees, info = "phylogenetic”, p = 0.5, check.tips = TRUE)

Arguments

X

p

sum

trees

info

check.tips

A tree of class phylo, a list of trees, or a multiPhylo object.

Scalar from 0.5 to 1 specifying minimum proportion of trees that must contain
a split for it to appear within the consensus.

Logical: if TRUE, sum the information content of each split to provide the total
splitwise information content of the tree.

List of phylo objects, optionally with class multiPhylo.

Abbreviation of "phylogenetic" or "clustering", specifying the concept of infor-
mation to employ.

Logical specifying whether to renumber leaves such that leaf numbering is con-
sistent in all trees.

58 Treelnfo

Value
SplitwiseInfo(), ClusteringInfo() and ClusteringEntropy() return the splitwise informa-
tion content of the tree — or of each split in turn, if sum = FALSE — in bits.

ConsensusInfo() returns the splitwise information content of the majority rule consensus of trees.

Clustering information

Clustering entropy addresses the question "how much information is contained in the splits within a
tree". Its approach is complementary to the phylogenetic information content, used in SplitwiseInfo().
In essence, it asks, given a split that subdivides the leaves of a tree into two partitions, how easy it

is to predict which partition a randomly drawn leaf belongs to (Meila2007; Vinh et al. 2010).

Formally, the entropy of a split S that divides n leaves into two partitions of sizes a and b is given
by H(S) = - a/nlog a/n - b/n log b/n.

Base 2 logarithms are conventionally used, such that entropy is measured in bits. Entropy denotes
the number of bits that are necessary to encode the outcome of a random variable: here, the random
variable is "what partition does a randomly selected leaf belong to".

An even split has an entropy of 1 bit: there is no better way of encoding an outcome than using one
bit to specify which of the two partitions the randomly selected leaf belongs to.

An uneven split has a lower entropy: membership of the larger partition is common, and thus less
surprising; it can be signified using fewer bits in an optimal compression system.

If this sounds confusing, let’s consider creating a code to transmit the cluster label of two randomly
selected leaves. One straightforward option would be to use

* 00 = "Both leaves belong to partition A"

* 11 = "Both leaves belong to partition B"

* 01

’First leaf in A, second in B*

10 = "First leaf in B, second in A€

This code uses two bits to transmit the partition labels of two leaves. If partitions A and B are
equiprobable, this is the optimal code; our entropy — the average information content required per
leaf —is 1 bit.

Alternatively, we could use the (suboptimal) code

* 0 = "Both leaves belong to partition A"
* 111 = "Both leaves belong to partition B"
* 101 ="First leaf in A, second in B¢

110 = ’First leaf in B, second in A ¢

If A is much larger than B, then most pairs of leaves will require just a single bit (code @). The ad-
ditional bits when 1+ leaf belongs to B may be required sufficiently rarely that the average message
requires fewer than two bits for two leaves, so the entropy is less than 1 bit. (The optimal coding
strategy will depend on the exact sizes of A and B.)

As entropy measures the bits required to transmit the cluster label of each leaf (Vinh2010: p. 2840),
the information content of a split is its entropy multiplied by the number of leaves.

Treelnfo 59

Phylogenetic information

Phylogenetic information expresses the information content of a split in terms of the probability
that a uniformly selected tree will contain it (Thorley et al. 1998).

Consensus information

The information content of splits in a consensus tree is calculated by interpreting support values
(i.e. the proportion of trees containing each split in the consensus) as probabilities that the true tree
contains that split, following Smith (2022).

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

References

l

Smith MR (2022). “Using information theory to detect rogue taxa and improve consensus trees.’
Systematic Biology, syab099. doi:10.1093/sysbio/syab099.

Thorley JL, Wilkinson M, Charleston M (1998). “The information content of consensus trees.”
In Rizzi A, Vichi M, Bock H (eds.), Advances in Data Science and Classification, 91-98. Springer,
Berlin. doi:10.1007/9783642722530_12.

Vinh NX, Epps J, Bailey J (2010). “Information theoretic measures for clusterings comparison:
variants, properties, normalization and correction for chance.” Journal of Machine Learning Re-
search, 11, 2837-2854. doi:10.1145/1553374.1553511.

See Also

An introduction to the phylogenetic information content of a split is given in SplitInformation()
and in a package vignette.

Other information functions: SplitEntropy(), SplitSharedInformation()

Examples

library("TreeTools”, quietly = TRUE)

SplitwiseInfo(PectinateTree(8))

tree <- read.tree(text = "(a, b, (c, (d, e, (f, £)0.8))0.9);")
SplitwiseInfo(tree)

SplitwiseInfo(tree, TRUE)

Clustering entropy of an even split = 1 bit
ClusteringEntropy(TreeTools::as.Splits(c(rep(TRUE, 4), rep(FALSE, 4))))

Clustering entropy of an uneven split < 1 bit
ClusteringEntropy(TreeTools::as.Splits(c(rep(TRUE, 2), rep(FALSE, 6))))

treel <- TreeTools::BalancedTree(8)
tree2 <- TreeTools::PectinateTree(8)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk
https://doi.org/10.1093/sysbio/syab099
https://doi.org/10.1007/978-3-642-72253-0_12
https://doi.org/10.1145/1553374.1553511
https://ms609.github.io/TreeTools/reference/SplitInformation.html
https://ms609.github.io/TreeDist/articles/information.html

60 VisualizeMatching

ClusteringInfo(treel)
ClusteringEntropy(treel)
ClusteringInfo(list(one = treel, two = tree2))

ClusteringInfo(treel) + ClusteringInfo(tree2)
ClusteringEntropy(treel) + ClusteringEntropy(tree2)
ClusteringInfoDistance(treel, tree2)
MutualClusteringInfo(treel, tree2)

Clustering entropy with uncertain splits

tree <- ape::read.tree(text = "(a, b, (c, (d, e, (f, £)0.8))0.9);")
ClusteringInfo(tree)

ClusteringInfo(tree, TRUE)

Support-weighted information content of a consensus tree

set.seed(0)

trees <- list(RandomTree(8), RootTree(BalancedTree(8), 1), PectinateTree(8))
cons <- consensus(trees, p = 0.5)

p <- SplitFrequency(cons, trees) / length(trees)

plot(cons)
LabelSplits(cons, signif(SplitwiseInfo(cons, p, sum = FALSE), 4))
ConsensusInfo(trees)

LabelSplits(cons, signif(ClusteringInfo(cons, p, sum = FALSE), 4))
ConsensusInfo(trees, "clustering”)

VisualizeMatching Visualize a matching

Description

Depict the splits that are matched between two trees using a specified Generalized Robinson—Foulds
similarity measure.

Usage

VisualizeMatching(
Func,
treel,
tree2,
setPar = TRUE,
precision = 3L,
Plot = plot.phylo,
matchZeros = TRUE,
plainEdges = FALSE,
edge.cex = par("cex"),
value.cex = edge.cex * 0.8,
edge.frame = "rect”,
edge.width = 1,

https://ms609.github.io/TreeDist/articles/Generalized-RF.html

VisualizeMatching

edge.color

Arguments

Func
treel, tree2

setPar

precision

Plot

matchZeros

plainEdges

edge.cex

value. cex

edge. frame

61

"black”,

Function used to construct tree similarity.
Trees of class phylo, with identical leaf labels.

Logical specifying whether graphical parameters should be set to display trees
side by side.

Integer specifying number of significant figures to display when reporting match-
ing scores.

Function to use to plot trees.

Logical specifying whether to pair splits with zero similarity (TRUE), or leave
them unpaired (FALSE).

Logical specifying whether to plot edges with a uniform width and colour (TRUE),
or whether to draw edge widths according to the similarity of the associated
splits (FALSE).

Character expansion for edge labels. If FALSE, suppress edge labels.

Character expansion for values on edge labels. If FALSE, values are not dis-
played.

Character specifying the kind of frame to be printed around the text of the edge

n o n

labels. Choose an abbreviation of "rect”, "circle”, or "none”.

edge.width, edge.color, ...

Details

Additional parameters to send to Plot ().

Note that when visualizing a Robinson—Foulds distance (using Func = RobinsonFouldsMatching),
matched splits are assigned a similarity score of 1, which is deducted from the total number of
splits to calculate the Robinson—Foulds distance. Unmatched splits thus contribute one to total tree

distance.

Value

VisualizeMatching() invisibly returns the matching of splits between treel and tree2 (i.e.
Func(treel, tree2, reportMatching = TRUE))

Author(s)

Martin R. Smith (martin.smith@durham.ac.uk)

https://orcid.org/0000-0001-5660-1727
mailto:martin.smith@durham.ac.uk

62 VisualizeMatching

Examples

treel <- TreeTools::BalancedTree(6)
tree2 <- TreeTools::PectinateTree(6)

VisualizeMatching(RobinsonFouldsMatching, treel, tree2)
matching <- VisualizeMatching(SharedPhylogeneticInfo, treel, tree2,
matchZeros = FALSE)

attributes(matching)

Index

* cluster functions
cluster-statistics, 4
KMeansPP, 18

+ information functions
SplitEntropy, 45
SplitSharedInformation, 46
Treelnfo, 56

* pairwise tree distances
CompareAll, 6

x tree distances
HierarchicalMutualInfo, 8
JaccardRobinsonFoulds, 13
KendallColijn, 16
MASTSize, 24
MatchingSplitDistance, 25
NNIDist, 32
NyeSimilarity, 34
PathDist, 37
Robinson-Foulds, 41
SPRDist, 48
TreeDistance, 51

* tree space functions
cluster-statistics, 4
Islands, 12
MappingQuality, 21
MapTrees, 22
median.multiPhylo, 27
MSTSegments, 30
SpectralEigens, 44

AHMI (HierarchicalMutualInfo), 8
AllSplitPairings, 3

ape: :consensus(), 28

as.HPart (HPart), 10
as.phylo.HPart (HPart), 10

cluster-statistics, 4
ClusteringEntropy (Treelnfo), 56
ClusteringInfo (Treelnfo), 56
ClusteringInfoDist (TreeDistance), 51

63

ClusteringInfoDistance (TreeDistance),
51

ClusteringInfoDistance(), 28

CompareAll, 6

ConsensusInfo (TreeInfo), 56

DifferentPhylogeneticInfo
(TreeDistance), 51
DisplayMatching (VisualizeMatching), 60
DistanceFromMedian
(cluster-statistics), 4
DistFromMed (cluster-statistics), 4

EHMI (HierarchicalMutualInfo), 8
Entropy, 7
ExpectedVariation (TreeDistance), 51

GetParallel (StartParallel), 50

HierarchicalMutualInfo, 8, 15, 18, 25, 27,
34, 36, 38, 43,49, 55

HierarchicalMutualInfo(), 10

HMI (HierarchicalMutualInfo), 8

HPart, 8, 10

InfoRobinsonFoulds (Robinson-Foulds), 41

InfoRobinsonFouldsSplits
(Robinson-Foulds), 41

is.HPart (HPart), 10

Islands, 5, 12, 21, 24, 28, 31, 44

JaccardRobinsonFoulds, 10, 13, 18, 25, 27,
34, 36, 38, 43,49, 55

JaccardSplitSimilarity
(JaccardRobinsonFoulds), 13

KCDiameter (KendallColijn), 16

KCVector (KendallColijn), 16

KendallColijn, 10, 15,16, 25, 27, 34, 36, 38,
43,49, 55

kmeans, I8, 19

64

KMeansPP, 5, 18

LAPJV, 19

LnTreesConsistentWithTwoSplits
(SplitSharedInformation), 46

Log2TreesConsistentWithTwoSplits
(SplitSharedInformation), 46

mad, 5
makeCluster(), 50
MappingQuality, 5, 12, 21, 24, 28, 31,44
MapTrees, 5, 12, 21,22, 28, 31, 44
MASTInfo (MASTSize), 24
MASTSize, 10, 15, 18,24, 27, 34, 36, 38, 43,
49,55
MatchingSplitDistance, 10, 15, 18, 25, 25,
34, 36, 38, 43,49, 55
MatchingSplitDistanceSplits
(MatchingSplitDistance), 25
MatchingSplitInfo (TreeDistance), 51
MatchingSplitInfoDistance
(TreeDistance), 51
MatchingSplitInfoSplits (TreeDistance),
51
MeanCentDist (cluster-statistics), 4
MeanCentroidDist (cluster-statistics), 4
MeanCentroidDistance
(cluster-statistics), 4
MeanMSTEdge (cluster-statistics), 4
MeanNN (cluster-statistics), 4
median.multiPhylo, 5, 12, 21, 24,27, 31, 44
MeilaMutualInformation
(MeilaVariationOfInformation),
29
MeilaVariationOfInformation, 29
MSTSegments, 5, 12, 21, 24, 28, 30, 44
MutualClusteringInfo (TreeDistance), 51
MutualClusteringInformation
(TreeDistance), 51
MutualClusteringInfoSplits
(TreeDistance), 51

NNIDiameter (NNIDist), 32

NNIDist, 10, 15, 18, 25, 27, 32, 36, 38, 43, 49,
55

NormalizeInfo(), 55

Ntropy (Entropy), 7

NyeSimilarity, 10, 15, 18, 25, 27, 34, 34, 38,
43,49, 55

INDEX

NyeSimilarity(), 15
NyeSplitSimilarity (NyeSimilarity), 34

parCapply(), 50

path.dist(), 6, 37

PathDist, 10, 15, 18, 25, 27, 34, 36, 37, 43,
49,55

PathVector (KendallColijn), 16

phangorn: :mast(), 25

phylo, 16

PhylogeneticInfoDistance
(TreeDistance), 51

plot.default(), 39

plot.HPart (HPart), 10

plot.phylo, 11

Plot3, 38

PlotMatching (VisualizeMatching), 60

pmax, 54

pmin, 54

print.HPart (HPart), 10

Project (MapTrees), 22

ProjectionQuality (MappingQuality), 21

ReduceTrees, 40

Robinson-Foulds, 41

RobinsonFoulds (Robinson-Foulds), 41

RobinsonFouldsInfo (Robinson-Foulds), 41

RobinsonFouldsMatching
(Robinson-Foulds), 41

RobinsonFouldsSplits (Robinson-Foulds),
41

segments(), 31
SelfHMI (HierarchicalMutualInfo), 8
SetParallel (StartParallel), 50
SharedPhylogeneticInfo (TreeDistance),
51
SharedPhylogeneticInfoSplits
(TreeDistance), 51
SpectralClustering (SpectralEigens), 44
SpectralEigens, 5, 12, 21, 24, 28, 31, 44
SplitDifferentInformation
(SplitSharedInformation), 46
SplitEntropy, 45, 48, 59
SplitsCompatible, 46
SplitSharedInformation, 45, 46, 59
SplitVector (KendallColijn), 16
SplitwiseInfo (Treelnfo), 56
SplitwiseInfo(), 58

INDEX

SPR.dist(), 49

SPRDist, 10, 15, 18, 25, 27, 34, 36, 38, 43, 48,
55

StartParallel, 50

StopParallel (StartParallel), 50

StrainCol (MSTSegments), 30

SumOfRanges (cluster-statistics), 4

SumOfVariances (cluster-statistics), 4

SumOfVars (cluster-statistics), 4

TreeDistance, 10, 15, 18, 25, 27, 34, 36, 38,
43,49, 51

TreeDistance(), 41

Treelnfo, 45, 48, 56

TreesConsistentWithTwoSplits
(SplitSharedInformation), 46

TreeTools: :ConsensusWithout(), 28

TreeTools: :MSTEdges (), 31

vapply(), 6

VisualiseMatching (VisualizeMatching),
60

VisualizeMatching, 60

VisualizeMatching(), 42, 43, 54

	AllSplitPairings
	cluster-statistics
	CompareAll
	Entropy
	HierarchicalMutualInfo
	HPart
	Islands
	JaccardRobinsonFoulds
	KendallColijn
	KMeansPP
	LAPJV
	MappingQuality
	MapTrees
	MASTSize
	MatchingSplitDistance
	median.multiPhylo
	MeilaVariationOfInformation
	MSTSegments
	NNIDist
	NyeSimilarity
	PathDist
	Plot3
	ReduceTrees
	Robinson-Foulds
	SpectralEigens
	SplitEntropy
	SplitsCompatible
	SplitSharedInformation
	SPRDist
	StartParallel
	TreeDistance
	TreeInfo
	VisualizeMatching
	Index

