
Package ‘SpatialRDD’
January 20, 2025

Type Package

Title Conduct Multiple Types of Geographic Regression Discontinuity
Designs

Version 0.1.0

Description Spatial versions of Regression Discontinuity Designs (RDDs) are becoming increas-
ingly popular as tools for causal inference. However, conducting state-of-the-art analyses of-
ten involves tedious and time-consuming steps. This package offers comprehensive functionali-
ties for executing all required spatial and econometric tasks in a streamlined manner. More-
over, it equips researchers with tools for performing essential placebo and balancing checks com-
prehensively. The fact that researchers do not have to rely on 'APIs' of external 'GIS' software en-
sures replicability and raises the standard for spatial RDDs.

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

Imports dplyr, sf, ggplot2, rdrobust, lmtest, sandwich, cowplot,
magrittr, rlang, broom

RoxygenNote 7.2.3

Suggests knitr, tmap, rmarkdown, testthat, utils, kableExtra, lfe,
stargazer

VignetteBuilder knitr

URL https://axlehner.github.io/SpatialRDD/

BugReports https://github.com/axlehner/SpatialRDD/issues

NeedsCompilation no

Author Alexander Lehner [aut, cre] (<https://orcid.org/0000-0001-5885-5966>)

Maintainer Alexander Lehner <lehner@uchicago.edu>

Repository CRAN

Date/Publication 2023-08-08 15:30:05 UTC

1

https://axlehner.github.io/SpatialRDD/
https://github.com/axlehner/SpatialRDD/issues
https://orcid.org/0000-0001-5885-5966

2 assign_treated

Contents
assign_treated . 2
border_segment . 3
create_placebos . 4
cutoff2polygon . 5
cut_off . 6
discretise_border . 6
plotspatialrd . 7
points2line . 9
polygon_full . 9
polygon_treated . 10
printspatialrd . 10
shift_border . 11
spatialrd . 12

Index 15

assign_treated Let the package know which observations were treated

Description

Creates a vector with 0’s and 1’s to determine on which side of the cut-off each observation is. For
this it is useful to have a polygon that fully describes the "treated area". If you do not have such a
polygon there is a (preliminary and patchy) way implemented in the package via points2line and
cutoff2polygon that lets you go from points to line to "treated polygon" in a very crude way.

Usage

assign_treated(data, polygon, id = NA)

Arguments

data sf data frame containing point data (if you have polygons, convert first with
sf::st_centroid())

polygon sf object with polygon geometry that fully describes the area(s) that contain the
treated points

id string that represents the name of the column in the data that represents the
unique identifier for each observation

Value

A vector of type factor with 0’s and 1’s. Convert with as.numeric() if you want real numbers/integers.

Note

This is essentially a wrapper of sf::st_intersection.

border_segment 3

Examples

points_samp.sf <- sf::st_sample(polygon_full, 100) # create points
make it an sf object bc st_sample only created the geometry list-column (sfc):
points_samp.sf <- sf::st_sf(points_samp.sf)
add a unique ID to each observation:
points_samp.sf$id <- 1:nrow(points_samp.sf)
points_samp.sf$treated <- assign_treated(points_samp.sf, polygon_treated, id = "id")

border_segment Border Segment Creation for FE-estimation

Description

Creates n segments of a line (the RD cut-off) and assigns the closest border segment for each
observation in the sf data frame. Computationally these tasks are quite demanding when the sample
size is big and thus might take a few seconds to complete.

Usage

border_segment(data, cutoff, n = 10)

Arguments

data sf data frame containing point data

cutoff the RDD border in the form of a line (preferred) or borderpoints

n the number of segments to be produced

Value

a vector with factors, each category representing one segment

Examples

points_samp.sf <- sf::st_sample(polygon_full, 100) # create points
make it an sf object bc st_sample only created the geometry list-column (sfc):
points_samp.sf <- sf::st_sf(points_samp.sf)
points_samp.sf$segment10 <- border_segment(points_samp.sf, cut_off, 3)

4 create_placebos

create_placebos Multiple placebocheks unified in just one list or coefplot

Description

Unifies shift_border, cutoff2polygon, assign_treated in one function to carry out a myriad
of placebo checks at once. The output is either a data.frame (with or without geometry of the
respective placeboline) or a coefplot. Requires operations data.frame that contains all desired oper-
ations (columns shift.x, shift.y, scale, angle, orientation.1, orientation.2, endpoint.1, endpoint.2), if
you don’t need a certain operation just use default values (e.g. 0 for angle and 1 for scale), but the
column has to be there.

Usage

create_placebos(
data,
cutoff,
formula,
operations,
bw_dist,
coefplot = FALSE,
geometry = FALSE

)

Arguments

data sf data.frame that contains all units of observation

cutoff initial RD cutoff as an sj object

formula provide the formula you want to use for OLS, omit the treatetment dummy (if
you want a univariate regression just on "treated", then provide y ~ 1 as formula)

operations container that has all the information in it on how to change the border for each
placeboregression

bw_dist what is the distance for the bandwith (in CRS units, thus ideally metres)

coefplot provide coefplot instead of a data.frame

geometry set to TRUE if you want to plot all the lines of the used placebo borders

Value

either a coefplot or data.frame containing results of placebo regressions

Examples

points_samp.sf <- sf::st_sample(polygon_full, 100) # create points
make it an sf object bc st_sample only created the geometry list-column (sfc):
points_samp.sf <- sf::st_sf(points_samp.sf)
add a unique ID to each observation:

cutoff2polygon 5

points_samp.sf$id <- 1:nrow(points_samp.sf)
points_samp.sf$treated <- assign_treated(points_samp.sf, polygon_treated, id = "id")
operations.df <- data.frame(operation = c("shift"),

shift.x = c(0),
shift.y = c(0),
scale = 1,
angle = 0,
orientation.1 = c("west"),
orientation.2 = c("west"),
endpoint.1 = c(.8),
endpoint.2 = c(.2))

create_placebos(data = points_samp.sf, cutoff = cut_off,
formula = id ~ 1, operations = operations.df, bw_dist = 3000)

cutoff2polygon Create (treated) polygon from line

Description

Creates an approximation of a "treated/untreated polygon" to assign the status again to each obser-
vation after the border has been shifted. The function extends both ends of the provided cutoff to
the edge of the (imaginary) bounding box of the provided data (this ensures all observations will be
included). Key is that you provide a 2-tuple that indicates in which side of the bounding box each
end should go (1st element is the one with lower x-coordinate, i.e. leftern most). Always check the
output manually by plotting the polygon (e.g. with tm_shape(your.polygon) + tm_polygons()).
If the output polygon looks odd, a first check should be to just switch the elements from the orien-
tation vector around! See vignette(shifting_borders) for details and illustrative examples.

Usage

cutoff2polygon(data, cutoff, orientation = NA, endpoints = c(0, 0))

Arguments

data study dataset to determine the bounding box (so that all observations are covered
by the new polygons) in sf format

cutoff sf object of the (placebo) cut-off

orientation in which side of the bounding box does each of the extensions of the cutoff
go into? First element refers to endpoint of border with smaller x-coordinate
("westernmost") (takes two of "north", "east", "south", "west" in a vector, e.g.
c("west", "north"))

endpoints at what position on the edge should each polygon end? (vector with two numbers
between 0 and 1, where 0.5 e.g. means right in the middle of the respective edge)

Value

a polygon as an sf object

6 discretise_border

Examples

points_samp.sf <- sf::st_sample(polygon_full, 100) # create points
make it an sf object bc st_sample only created the geometry list-column (sfc):
points_samp.sf <- sf::st_sf(points_samp.sf)
add a unique ID to each observation:
points_samp.sf$id <- 1:nrow(points_samp.sf)
cutoff2polygon(data = points_samp.sf, cutoff = cut_off,
orientation = c("west", "west"), endpoints = c(.8, .2))

cut_off Dataset with boundaries and polygons for the SpatialRDD vignette.

Description

sf multilinestring representing a spatial RD cut-off

Usage

data(cut_off)

Format

A spatial data.frame of class sf

Source

Lehner, Alexander (2023) Culture, Institutions, and the Roots of Gender Inequality: 450 Years of
Portuguese Colonialism in India

discretise_border Split the RD cut-off into borderpoints

Description

Takes in a border in the form of a polyline (or borderpoints) and converts it into point data. These
points are later used to run separate non-parametric RD estimations which eventually allows to
visualise potential heterogeneous treatment effects alongside the cut-off.

plotspatialrd 7

Usage

discretise_border(
cutoff,
n = 10,
random = FALSE,
range = FALSE,
ymax = NA,
ymin = NA,
xmax = NA,
xmin = NA

)

Arguments

cutoff sf object of the RD cut-off in the form of a line (not preferred, but also bound-
arypoints are possible)

n the number of borderpoints to be created

random whether they are randomly chosen (not desireable in most cases)

range default = FALSE, if there is a specific range (N-S or E-W) for which the points
are to be drawn (useful in order to exclude sparse borderpoints with little/no
oberservations around because the non-parametric RD estimation will fail)

ymax if range = TRUE: y coordinates

ymin if range = TRUE: y coordinates

xmax if range = TRUE: x coordinates

xmin if range = TRUE: x coordinates

Value

an sf object with selected (and evenly spaced) borderpoints

Examples

borderpoints <- discretise_border(cutoff = cut_off, n = 10)

plotspatialrd Plot SpatialRD output

Description

Produces plot of GRDDseries and optionally of a map that visualises every point estimate in space.

Usage

plotspatialrd(SpatialRDoutput, map = FALSE)

8 plotspatialrd

Arguments

SpatialRDoutput

spatial object that is produced by an estimation with spatialrd

map TRUE/FALSE depending on whether mapplot is desired (make sure to set spatial.objcet
= TRUE in the spatialrd function)

Value

plots produced with ggplot2

Examples

points_samp.sf <- sf::st_sample(polygon_full, 1000) # create points
make it an sf object bc st_sample only created the geometry list-column (sfc):
points_samp.sf <- sf::st_sf(points_samp.sf)
add a unique ID to each observation:
points_samp.sf$id <- 1:nrow(points_samp.sf)
assign treatment:
points_samp.sf$treated <- assign_treated(points_samp.sf, polygon_treated, id = "id")
first we define a variable for the number of "treated" and control
NTr <- length(points_samp.sf$id[points_samp.sf$treated == 1])
NCo <- length(points_samp.sf$id[points_samp.sf$treated == 0])
the treated areas get a 10 percentage point higher literacy rate
points_samp.sf$education[points_samp.sf$treated == 1] <- 0.7
points_samp.sf$education[points_samp.sf$treated == 0] <- 0.6
and we add some noise, otherwise we would obtain regression coeffictions with no standard errors
points_samp.sf$education[points_samp.sf$treated == 1] <- rnorm(NTr, mean = 0, sd = .1) +

points_samp.sf$education[points_samp.sf$treated == 1]
points_samp.sf$education[points_samp.sf$treated == 0] <- rnorm(NCo, mean = 0, sd = .1) +

points_samp.sf$education[points_samp.sf$treated == 0]

create distance to cutoff
points_samp.sf$dist2cutoff <- as.numeric(sf::st_distance(points_samp.sf, cut_off))

points_samp.sf$distrunning <- points_samp.sf$dist2cutoff
give the non-treated one's a negative score
points_samp.sf$distrunning[points_samp.sf$treated == 0] <- -1 *
points_samp.sf$distrunning[points_samp.sf$treated == 0]

create borderpoints
borderpoints.sf <- discretise_border(cutoff = cut_off, n = 10)
borderpoints.sf$id <- 1:nrow(borderpoints.sf)

finally, carry out estimation alongside the boundary:
results <- spatialrd(y = "education", data = points_samp.sf, cutoff.points = borderpoints.sf,
treated = "treated", minobs = 20, spatial.object = FALSE)

plotspatialrd(results)

points2line 9

points2line Convert borderpoints to a line

Description

Small function that connects dots and makes them one line which can later be used as a cutoff for
the RD.

Usage

points2line(borderpoints, crs)

Arguments

borderpoints a set of points on a boundary
crs set the coordinate reference system (CRS)

Value

a line as an sf object

Examples

points_samp.sf <- sf::st_sample(polygon_full, 2) # create points
make it an sf object bc st_sample only created the geometry list-column (sfc):
points_samp.sf <- sf::st_sf(points_samp.sf)
points2line(points_samp.sf, crs = sf::st_crs(points_samp.sf))

polygon_full Dataset with boundaries and polygons for the SpatialRDD vignette.

Description

sf multipolygon

Usage

data(polygon_full)

Format

A spatial data.frame of class sf

Source

Lehner, Alexander (2023) Culture, Institutions, and the Roots of Gender Inequality: 450 Years of
Portuguese Colonialism in India

10 printspatialrd

polygon_treated Dataset with boundaries and polygons for the SpatialRDD vignette.

Description

sf multipolygon

Usage

data(polygon_treated)

Format

A spatial data.frame of class sf

Source

Lehner, Alexander (2023) Culture, Institutions, and the Roots of Gender Inequality: 450 Years of
Portuguese Colonialism in India

printspatialrd Print spatialrd output

Description

Preliminary function, styling with e.g. kable and kableExtra has to be done by the user individu-
ally. You could also just use the package of your choice to print out columns of the output from
spatialrd.

Usage

printspatialrd(SpatialRDoutput)

Arguments

SpatialRDoutput

output file from the spatialrd function

Value

A table with results from the spatialrd function

shift_border 11

Examples

points_samp.sf <- sf::st_sample(polygon_full, 1000) # create points
make it an sf object bc st_sample only created the geometry list-column (sfc):
points_samp.sf <- sf::st_sf(points_samp.sf)
add a unique ID to each observation:
points_samp.sf$id <- 1:nrow(points_samp.sf)
assign treatment:
points_samp.sf$treated <- assign_treated(points_samp.sf, polygon_treated, id = "id")
first we define a variable for the number of "treated" and control
NTr <- length(points_samp.sf$id[points_samp.sf$treated == 1])
NCo <- length(points_samp.sf$id[points_samp.sf$treated == 0])
the treated areas get a 10 percentage point higher literacy rate
points_samp.sf$education[points_samp.sf$treated == 1] <- 0.7
points_samp.sf$education[points_samp.sf$treated == 0] <- 0.6
and we add some noise, otherwise we would obtain regression coeffictions with no standard errors
points_samp.sf$education[points_samp.sf$treated == 1] <- rnorm(NTr, mean = 0, sd = .1) +

points_samp.sf$education[points_samp.sf$treated == 1]
points_samp.sf$education[points_samp.sf$treated == 0] <- rnorm(NCo, mean = 0, sd = .1) +

points_samp.sf$education[points_samp.sf$treated == 0]

create distance to cutoff
points_samp.sf$dist2cutoff <- as.numeric(sf::st_distance(points_samp.sf, cut_off))

points_samp.sf$distrunning <- points_samp.sf$dist2cutoff
give the non-treated one's a negative score
points_samp.sf$distrunning[points_samp.sf$treated == 0] <- -1 *
points_samp.sf$distrunning[points_samp.sf$treated == 0]

create borderpoints
borderpoints.sf <- discretise_border(cutoff = cut_off, n = 10)
borderpoints.sf$id <- 1:nrow(borderpoints.sf)

finally, carry out estimation alongside the boundary:
results <- spatialrd(y = "education", data = points_samp.sf, cutoff.points = borderpoints.sf,
treated = "treated", minobs = 20, spatial.object = FALSE)
printspatialrd(results)

shift_border Shift, shrink/grow, and rotate borders around

Description

This functions takes in a border and can either shift, shrink, or rotate it. All of them can be done
together as well. This usually takes a bit of trial and error, so make sure to plot the result each time.
For a detailed walk through check out the according vignette: vignette(shifting_borders).

12 spatialrd

Usage

shift_border(
border,
operation = c("shift", "scale", "rotate"),
shift = c(0, 0),
scale = 1,
angle = 0

)

Arguments

border sf object with line geometry

operation "shift", "rotate", "scale" - or a combination of them

shift if operation = "shift", shift distance in CRS units (if UTM it is metres) for x
and y coordinates as c(dist_x, dist_y)

scale if operation = "scale", provide shrinkage/growth factor: e.g. .9 to shrink by
10perc. and 1.1 to increase by 10perc.

angle if operation = "rotate", provide angle in degrees

Value

a new border in the form of an sf object

Examples

shift_border(border = cut_off, operation = c("shift", "scale"),
shift = c(-5000, -3000), scale = .85)

shift_border(border = cut_off, operation = "rotate", angle = 10)

spatialrd non-parametric Spatial RD / GRD

Description

This function loops over all boundary points and locally estimates a non-parametric RD (using local
linear regression) using the rdrobust function from the rdrobust package from Calonico, Catta-
neo, Titiunik (2014). It takes in the discretized cutoff point file (the RDcutoff, a linestring chopped
into parts by the discretise_border function) and the sf object (which essentially is just a con-
ventional data.frame with a geometry() column) containing all the observations (treated and un-
treated). The treated indicator variable has to be assigned before (potentially with assign_treated)
and be part of the sf object as a column.

spatialrd 13

Usage

spatialrd(
y,
data,
cutoff.points,
treated,
minobs = 50,
bwfix_m = NA,
sample = FALSE,
samplesize = NA,
sparse.exclusion = FALSE,
store.CIs = FALSE,
spatial.object = TRUE,
...

)

Arguments

y The name of the dependent variable in the points frame in the form of a string

data sf data.frame with points that describe the observations

cutoff.points sf object of borderpoints (provided by user or obtained with discretise_border)

treated column that contains the treated dummy (as string)

minobs the minimum amount of observations in each estimation for the point estimate
to be included (default is 50)

bwfix_m fixed bandwidth in meters (in case you want to impose one yourself)

sample draw a random sample of points (default is FALSE)

samplesize if random, how many points
sparse.exclusion

in case we want to try to exclude sparse border points before the estimation
(should reduce warnings)

store.CIs set TRUE of confidence intervals should be stored

spatial.object return a spatial object (deafult is TRUE, needed if you want to plot the point
estimates on a map)?

... in addition you can use all options in rdrobust

Details

This function nests rdrobust. All its options (aside from running variable x and cutoff c) are
available here as well (e.g. bw selection, cluster level, kernel, weights). Check the documentation in
the rdrobust package for details. (bandwidth selection default in rdrobust is bwselect = ’mserd’)

To visualise the output, use plotspatialrd for a graphical representation. You can use printspatialrd
(or an R package of your choice) for a table output. .

Value

a data.frame or spatial data.frame (sf object) in case spatial.object = TRUE (default)

14 spatialrd

References

Calonico, Cattaneo and Titiunik (2014): Robust Nonparametric Confidence Intervals for Regression-
Discontinuity Designs, Econometrica 82(6): 2295-2326.

Examples

points_samp.sf <- sf::st_sample(polygon_full, 1000) # create points
make it an sf object bc st_sample only created the geometry list-column (sfc):
points_samp.sf <- sf::st_sf(points_samp.sf)
add a unique ID to each observation:
points_samp.sf$id <- 1:nrow(points_samp.sf)
assign treatment:
points_samp.sf$treated <- assign_treated(points_samp.sf, polygon_treated, id = "id")
first we define a variable for the number of "treated" and control
NTr <- length(points_samp.sf$id[points_samp.sf$treated == 1])
NCo <- length(points_samp.sf$id[points_samp.sf$treated == 0])
the treated areas get a 10 percentage point higher literacy rate
points_samp.sf$education[points_samp.sf$treated == 1] <- 0.7
points_samp.sf$education[points_samp.sf$treated == 0] <- 0.6
and we add some noise, otherwise we would obtain regression coeffictions with no standard errors
points_samp.sf$education[points_samp.sf$treated == 1] <- rnorm(NTr, mean = 0, sd = .1) +

points_samp.sf$education[points_samp.sf$treated == 1]
points_samp.sf$education[points_samp.sf$treated == 0] <- rnorm(NCo, mean = 0, sd = .1) +

points_samp.sf$education[points_samp.sf$treated == 0]

create distance to cutoff
points_samp.sf$dist2cutoff <- as.numeric(sf::st_distance(points_samp.sf, cut_off))

points_samp.sf$distrunning <- points_samp.sf$dist2cutoff
give the non-treated one's a negative score
points_samp.sf$distrunning[points_samp.sf$treated == 0] <- -1 *
points_samp.sf$distrunning[points_samp.sf$treated == 0]

create borderpoints
borderpoints.sf <- discretise_border(cutoff = cut_off, n = 10)
borderpoints.sf$id <- 1:nrow(borderpoints.sf)

finally, carry out estimation alongside the boundary:
results <- spatialrd(y = "education", data = points_samp.sf, cutoff.points = borderpoints.sf,
treated = "treated", minobs = 20, spatial.object = FALSE)

Index

∗ datasets
cut_off, 6
polygon_full, 9
polygon_treated, 10

assign_treated, 2, 4, 12

border_segment, 3

create_placebos, 4
cut_off, 6
cutoff2polygon, 2, 4, 5

discretise_border, 6, 12, 13

plotspatialrd, 7, 13
points2line, 2, 9
polygon_full, 9
polygon_treated, 10
printspatialrd, 10, 13

rdrobust, 13

shift_border, 4, 11
spatialrd, 8, 10, 12

15

	assign_treated
	border_segment
	create_placebos
	cutoff2polygon
	cut_off
	discretise_border
	plotspatialrd
	points2line
	polygon_full
	polygon_treated
	printspatialrd
	shift_border
	spatialrd
	Index

