Package 'SangerTools'

January 20, 2025

Type Package Title Tools for Population Health Management Analytics Version 1.0.2 Maintainer Asif Laldin <laldin.asif@gmail.com> **Description** Created for population health analytics and monitoring. The functions in this package work best when working with patient level Master Patient Indexlike datasets . Built to be used by NHS bodies and other health service providers. License AGPL (>= 3) **Encoding** UTF-8 LazyData true RoxygenNote 7.1.2 Imports ggplot2, dplyr, scales, janitor, readr, utils, ggthemes, magrittr, readxl, ggtext, DBI, odbc, rlang, tibble Suggests knitr, rmarkdown, testthat (>= 3.0.0), kableExtra Config/testthat/edition 3 VignetteBuilder knitr **Depends** R (>= 2.10) Language en-gb NeedsCompilation no Author Asif Laldin [aut, cre], Gary Hutson [aut] (<https://orcid.org/0000-0003-3534-6143>) **Repository** CRAN Date/Publication 2022-02-20 13:10:02 UTC

Contents

age_bandizer				 •																										2
age_bandizer_2				 •			•		•	•	•		•		 •			•		•							•	•		3
categorical_col_chart	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	 •			•	•	•	•	•	•	•	•	•	•	•	•	4

age_bandizer

cohort_processing	5
crude_rates	6
df_to_sql	6
excel_clip	7
master_patient_index	8
multiple_csv_reader	9
multiple_excel_reader	10
PopHealthData	11
scale_fill_sanger	12
show_brand_palette	12
show_extended_palette	13
split_and_save	13
standardised_rates_df	14
theme_sanger	15
uk_pop_standard	16
	17

Index

```
age_bandizer
```

Age Band Creation: Create a new column of 5 year Age Bands from an integer column

Description

Age Band Creation: Create a new column of 5 year Age Bands from an integer column

Usage

age_bandizer(df, Age_col)

Arguments

df	a tidy dataframe in standard Master Patient Index format ie SangerTools::PopHealthData
Age_col	a integer column within @param df NAs must be removed or imputed prior to running this function

Value

A dataframe with width ncol(df)+1, new column will be named Ageband and will be a factor with levels defined

```
library(SangerTools)
library(dplyr)
health_data <- SangerTools::PopHealthData</pre>
```

age_bandizer_2

Description

An alternative age banding function that allows users greater flexibility for defining band size. This function utilises Base R standard evaluation. The function currently supports band size of 2, 5, 10 & 20. The input,column, Age_col should be numeric and must not contain NAs; if either of these conditions is violated the function will terminate.

Usage

age_bandizer_2(df, Age_col, Age_band_size = 5)

Arguments

df	A dataframe with a numerical column denoting Age.
Age_col	A numerical column within 'df'; passed with quotation marks.
Age_band_size	The size of the Age band to use. Defaults to 5; will take values 2,5,10,20.

Value

A dataframe containing a new column 'Ageband' which has factor levels defined.

```
## Not run:
library(SangerTools)
df <- data.frame(Age = sample(x = 0:120, size = 100, replace = TRUE))
df_agebanded <- age_bandizer_2(
    df = df,
    Age_col = "Age",
    Age_band = 5
)
print(df_agebanded)
## End(Not run)
```

categorical_col_chart Plot Counts of Categorical Variables

Description

Create a ggplot2 column chart of categorical variables with labels, in ascending order. The plot will be customised using the provided theme theme_sanger, y-axis labels will have a comma for every third integer value. If the column provided to 'grouping_var' has more than approximately 5 values, you may need to consider rotating x axis labels using theme

A comprehensive explanation of ggplot2 customisation is available here

Usage

```
categorical_col_chart(df, grouping_var)
```

Arguments

df	A dataframe with categorical variables
grouping_var	a categorical variable by which to group the count by

Value

a ggplot2 object

```
library(SangerTools)
library(dplyr)
library(ggplot2)
# Group by Age Band
health_data <- SangerTools::PopHealthData
health_data %>%
   dplyr::filter(Smoker == 1) %>%
   SangerTools::categorical_col_chart(AgeBand) +
   labs(
      title = "Smoking Population by Age Band",
      subtitle = "Majority of Smokers are Working Aged ",
      x = NULL,
      y = "Patient Number"
)
```

cohort_processing Patient Cohort Re-Identification Processing

Description

Population Health Management commonly leads practitioners to identify a cohort that will have an intervention applied. As a rule of thumb most analysts will work with pseudonymised data sets. For targeted interventions patients require re-identification; this process is generally carried out by a third party organisation. As third party organisations work with many health care providers they have a strict set of requirements. This has been based around SW CSU's required formatting.

Usage

```
cohort_processing(
  df,
  Split_by,
  path,
  prefix = "DSCRO",
  com_code = "11M",
  date_format = "%Y%m%d",
  suffix = "_REID_V01"
)
```

Arguments

df	a tidy dataframe in standard Master Patient Index format ie SangerTools::PopHealthData.
Split_by	A column within df that will be used to split the patients and will also appear in the file name. Ideally should be a health organisation code such as GP Practice Code or Hospital Trust Code. Should only have alpha-numeric values
path	A file path to which the CSV files will be written
prefix	File name prefix, default is "DSCRO" See more here: NHS DSCRO
com_code	Commissioner Code, default is "11M"; Gloucestershire.
date_format	A date format passed internally to 'format(Sys.Date())'; will form part of file name to denote date of generation. You can read more about date formatting in R from R lang
suffix	A file name suffix, default is "_REID_V01", To be left as blank use "", without spaces.

Value

n number of CSV files written to the location specified by path argument.

crude_rates

Description

Calculate the crude prevalence of a health condition from a Master Patient Index like dataset

Usage

```
crude_rates(df, Condition, ...)
```

Arguments

df	a tidy dataframe in standard Master Patient Index format ie SangerTools::PopHealthData
Condition	A Health condition flag denoted by 1 & 0; where 1 denotes the patient being positive for the health condition
	Variables used to standardise by; Must always have Ageband, additional vari- ables are optional

Value

a tibble with Crude Prevalence Rates(Rate per 1,000) for each value included in ...

Examples

```
library(SangerTools)
library(dplyr)
health_data <- SangerTools::PopHealthData
glimpse(health_data)
# Generate crude prevalene rate stats
crude_prevalence <- SangerTools::crude_rates(health_data, Diabetes, Locality)
print(crude_prevalence)</pre>
```

```
df_to_sql
```

Dataframe to SQL

Description

DataFrame to SQL; Write your DataFrame or Tibble directly to SQL from R This wrapper function allows for the easy movement of your computed results in R to a SQL Database for saving. The function uses a ODBC driver to establish a connection. You will need to select a Database that your user has write-access to. The user credentials are the same as your OS login details; as such this function will most likely only work from you work computer.

Usage

```
df_to_sql(df, driver, server, database, sql_table_name, overwrite = FALSE, ...)
```

excel_clip

Arguments

df	A 'dataFrame' or 'tibble' ie PopHealthData.
driver	A driver for database ie "SQL Server"; must be passed in quotation.
server	The unique name of your database server; must be passed in quotation.
database	The name of the database to which you will write 'df'; must be passed in quota- tion.
<pre>sql_table_name</pre>	The name that 'df' will be referred to in SQL database; must be passed in quo- tation.
overwrite	If there is a SQL table with the same name whether it will be overwritten; defaults to FALSE.
	Function forwarding for additional functionality.

Value

A message confirming that a new table has been created in a SQL 'database'.

Examples

```
## Not run:
library(odbc)
library(DBI)
health_data <- SangerTools::PopHealthData
df_to_sql(
    df = health_data,
    driver = "SQL SERVER",
    database = "DATABASE",
    sql_table_name = "New Table Name",
    overwrite = FALSE
)
## End(Not run)
```

excel_clip

Dataframe or Tibble to Clipboard

Description

This function copies a data frame or tibble to your clipboard in a format that allows for a simple paste into excel whilst maintaining column and row structure. By default row_names has been set to FALSE.

Usage

```
excel_clip(df, row_names = FALSE, col_names = TRUE, ...)
```

Arguments

df	A dataframe or tibble
row_names	Set to FALSE for row.names not to be included
col_names	Set to TRUE for col.names to be included
	function forwarding for additional write.table functionality

Value

a data frame copied to your clipboard

master_patient_index Master Patient Index

Description

A fabricated Master Patient Index (MPI) inspired by Gloucestershire's population to be used with functions included in SangerTools

Usage

master_patient_index

Format

A tibble with 10,000 rows and 11 variables:

PseudoNHSNumber A Pseudonymised NHS Patient Identifier

Sex The identifiable sex of the patient

Smoker Health Condition Flag: 1 denotes if the patient is a smoker

Diabetes Health Condition Flag: 1 denotes if the patient has diabetes

Dementia Health Condition Flag: 1 denotes if the patient has dementia

Obesity Health Condition Flag: 1 denotes if the patient is Obese

Age Age of the patient

IMD_Decile The decile of indices of multiple deprivation: https://www.gov.uk/government/ statistics/english-indices-of-deprivation-2019

Ethnicity The identifiable ethnicity of the patient

- Locality The region where the patient lives sampled from Gloucestershire Clinical Commissioning Group
- **PrimaryCareNetwork** The network of General Practioners that the patient is registerd with sampled from Gloucestershire Clinical Commissioning Group

Source

Generated by Asif Laldin <a.laldin@nhs.net>, Feb-2022

multiple_csv_reader

Examples

```
library(dplyr)
data(master_patient_index)
# Convert diabetes data to factor'
master_patient_index %>%
glimpse()
```

multiple_csv_reader Read Multiple CSV files into R

Description

This function reads multiple CSVs in a directory must be same structure. This function reads multiple excel files into R after which all files are aggregated into a single data frame.

There are assumptions about they underlying files:

- All files must have column names for each column (The function will fail without this; later versions will amend this)
- All files have the same number of columns
- All files have the same column names
- All files should have data starting from the same row number
- All relevant data is stored in the same sheet in each of the files

Usage

```
multiple_csv_reader(file_path, sheet = 1, rows_to_skip = 0, col_names = TRUE)
```

Arguments

file_path	The Directory in which the files are located
sheet	Sheet to read. Either a string (the name of a sheet), or an integer (the position of the sheet). Defaults to the first sheet
rows_to_skip	The number of rows from the top to be excluded
col_names	If columns are named; defaults to TRUE

Value

a data frame object full of file paths

```
library(SangerTools)
file_path <- "my_file_path_where_csvs_are_stored"
if (length(SangerTools::multiple_csv_reader(file_path)) == 0) {
  message("This won't work without changing the variable input to a local file path with CSVs in")
}</pre>
```

multiple_excel_reader Read Multiple Excel files into R

Description

This function reads multiple excel files into R after which all files are aggregated into a single data frame.

There are assumptions about they underlying files:

- All files must have column names for each column (The function will fail without this; later versions will amend this)
- All files have the same number of columns
- All files have the same column names
- All files should have data starting from the same row number
- All relevant data is stored in the same sheet in each of the files

To understand more about the underlying function that 'multiple_excel_reader' wraps around Click Here

Usage

```
multiple_excel_reader(
   file_path,
   pattern = "*.xlsx",
   sheet = 1,
   rows_to_skip = 0,
   col_names = TRUE
)
```

Arguments

file_path	The Directory in which the files are located
pattern	The file extension of the files of which you are going to read. Defaults to "*.xlsx"
sheet	Sheet to read. Either a string (the name of a sheet), or an integer (the position of the sheet). Defaults to the first sheet
rows_to_skip	The number of rows from the top to be excluded
col_names	A boolean value to determine if column headers name are present in files. Currently only accepts TRUE

Value

a data frame object full of file paths

PopHealthData

Examples

```
## Not run:
combined_excel_files <- multiple_excel_reader("Inputs/", 1, TRUE)
## End(Not run)
```

PopHealthData PopHealthData - Population health data for testing functions

Description

Population Health NHS data to use with the package and allows the calculation of the various metrics.

Usage

PopHealthData

Format

A small dataset with 1000 observations (rows) and 8 columns, as described hereunder:

Sex The identifiable sex of the patient

Smoker Indicates if the patient is a smoker

Diabetes Flag to indicate if patient has a type of diabetes

AgeBand The age of the patient when they came into contact with the service

IMD_Decile The decile of indices of multiple deprivation: https://www.gov.uk/government/ statistics/english-indices-of-deprivation-2019

Ethnicity The identifiable ethnicity of the patient

Locality The region where the patient lives - sampled from Gloucestershire Clinical Commissioning Group

PrimaryCareNetwork The primary care network of the patient

scale_fill_sanger Branded discrete colour scale

Description

This anonymous function allows you to apply the Sanger Theme colours to your ggplot2 plot

Usage

scale_fill_sanger()

Value

A custom colour filled ggplot2 plot

Examples

```
library(SangerTools)
library(dplyr)
library(ggplot2)
# Group by Age Band
health_data <- SangerTools::PopHealthData
health_data %>%
   dplyr::filter(Smoker == 1) %>%
   SangerTools::categorical_col_chart(AgeBand) +
   labs(
      title = "Smoking Population by Age Band",
      subtitle = "Majority of Smokers are Working Aged ",
      x = NULL,
      y = "Patient Number"
)+
   scale_fill_sanger()
```

show_brand_palette Brand Colour Palette

Description

Displays a brand colour palette for showing the hex codes associated with brand

Usage

show_brand_palette()

Value

a Base R plot object

Examples

```
library(scales)
library(SangerTools)
show_brand_palette()
```

show_extended_palette Extended Brand Colour Palette

Description

Displays extended brand colour palette for charting

Usage

```
show_extended_palette()
```

Value

a Base R plot object

Examples

```
library(scales)
library(SangerTools)
show_extended_palette()
```

split_and_save Split & Save

Description

A simpler alternative to cohort_processing. Will split a data frame and save as a csv

Usage

```
split_and_save(df, Split_by, path, prefix = NULL)
```

Arguments

df	A 'dataFrame' or 'tibble' ie PopHealthData.
Split_by	A column within df that will be used to split the patients and will also appear in the file name. Ideally should be a health organisation code such as GP Practice Code or Hospital Trust Code. Should only have alpha-numeric values
path	A file path to which the CSV files will be written
prefix	File name prefix

Value

n number of CSV files written to the location specified by path argument.

Examples

```
## Not run:
split_and_save(
    df = pseudo_data,
    Split_by = "Locality",
    file_path = "Inputs/",
    prefix = NULL
)
## End(Not run)
```

standardised_rates_df Standardised Prevalence Rates.

Description

Standardisation will be performed for all unique values in the column passed to 'split_by'. If input data frame does not contain age bands or age bands are not of class factor, it is recommended to use age_bandizer or age_bandizer_2. After the function has run, the output can be copied using excel_clip or written to a database using df_to_sql. Alternatively, if you are interested in seeing the effects of age confounding; consider joining the outputs of this function with the output from crude_rates using a left_join

Usage

```
standardised_rates_df(
    df,
    Split_by,
    Condition,
    Population_Standard,
    Granular = FALSE,
    ...
}
```

```
)
```

Arguments

df	a tidy data frame in standard Master Patient Index format ie SangerTools::PopHealthData
Split_by	A column name within df for which the standardised rates will be calculated for.
Condition	A Health condition flag denoted by 1 & 0; where 1 denotes the patient being positive for the health condition.

14

theme_sanger

Population_Sta	ndard
	Population Standard Weight used for Standardising; default set to NULL; which denotes use of Age Structure of df.
Granular	Takes a boolean value. If set to TRUE will output a tibble with Standardised Rates using values provided in 'Split_col' and ''By default is set to FALSE.
	Variables used to standardise by; Must always have Age band for age standardi- sation, additional variables are optional and should be passed separated by com- mas.

Value

A tibble containing standardised Prevalence Rates by specified group.

Examples

theme_sanger

Customised ggplot2 Theme

Description

A customised ggplot2 theme for the SangerTools package

Usage

```
theme_sanger()
```

Value

A customised ggplot2 plot

Examples

```
library(SangerTools)
library(ggthemes)
library(ggplot2)
library(ggtext)
categorical_col_chart(SangerTools::PopHealthData, Locality) +
  theme_sanger()+
  labs(title = "Categorical Column Chart",
    x = "Locality",
    y = "Number of Patients")+
    scale_fill_sanger()
```

uk_pop_standard Data set of 2018 UK Population

Description

Data is taken from ONS and is split into 5 year age band

Usage

uk_pop_standard

Format

A tibble with 29 rows and 2 variables:

UK_Population dbl Year price was recorded

Ageband 5 Year age band for population

Source

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates

16

Index

* datasets master_patient_index, 8 PopHealthData, 11 $\mathsf{uk_pop_standard}, \mathbf{16}$ age_bandizer, 2, 14 age_bandizer_2, 3, 14 categorical_col_chart,4 cohort_processing, 5, 13 crude_rates, 6, 14 df_to_sql, 6, 14 excel_clip, 7, 14 left_join, 14 master_patient_index, 8 multiple_csv_reader, 9 $\texttt{multiple} _ \texttt{excel} _ \texttt{reader}, 10$ PopHealthData, 11 scale_fill_sanger, 12 show_brand_palette, 12 show_extended_palette, 13 split_and_save, 13 standardised_rates_df, 14 theme, 4 theme_sanger, 4, 15

 $uk_pop_standard,\, 16$