Package ‘SVEMnet’

November 9, 2025
Type Package

Title Self-Validated Ensemble Models with Lasso and Relaxed Elastic
Net Regression

Version 2.5.4
Date 2025-11-09

Description Implements Self-Validated Ensemble Mod-
els (SVEM; Lemkus et al. (2021) <doi:10.1016/j.chemolab.2021.104439>) using elastic net re-
gression via 'glmnet' (Friedman et al. (2010) <doi:10.18637/jss.v033.i01>). SVEM averages pre-
dictions from multiple models fitted to fractionally weighted boot-
straps of the data, tuned with anti-correlated validation weights. Supports Gaussian and bino-
mial responses. Also implements the randomized permutation whole-
model test for SVEM with Gaussian re-
sponses (Karl (2024) <doi:10.1016/j.chemolab.2024.105122>). Some parts of the pack-
age code were drafted with assistance from generative Al tools.

Depends R (>=4.0.0)

Imports glmnet (>=4.1-6), stats, cluster, ggplot2, rlang, lhs,
foreach, doParallel, doRNG, parallel, gamlss, gamlss.dist

Suggests covr, knitr, rmarkdown, testthat (>= 3.0.0), withr, vdiffr,
RhpcBLASct]

VignetteBuilder knitr
License GPL-2 | GPL-3
Encoding UTF-8
RoxygenNote 7.3.3
Config/testthat/edition 3
LazyData true
NeedsCompilation no

Author Andrew T. Karl [cre, aut] (ORCID:
<https://orcid.org/0000-0002-5933-8706>)

Maintainer Andrew T. Karl <akarl@asu.edu>
Repository CRAN
Date/Publication 2025-11-09 15:40:02 UTC

https://doi.org/10.1016/j.chemolab.2021.104439
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1016/j.chemolab.2024.105122
https://orcid.org/0000-0002-5933-8706

2 SVEMnet-package

Contents
SVEMnet-package e e e e 2
bigexp_formula L 4
bigexp_model_matrix e 5
DIgEXp_Prepare o v i i e e e e e e e e e 6
bigexp_terms 7
bigexp_train 10
coef.svem_model L e 11
glmnet_ with_cv oL 13
lipid_screen L 17
plot.svem_binomial oL 21
plotsvem_model 23
plot.svem_significance_test L. 24
predict.svem_model 25
Predict_Cv L e 28
Print.bigeXp_SPeC o v e e e e e e e e e 30
print.svem_significance_test L. e e 31
SVEMnet e e e e 31
SVEM_NONZETO . . & v v v v v e v e e e e e e e e e e e e e e e e e e e 37
svem_optimize_random L. L o e e e e e 39
svem_random_table_multi 45
svem_significance_test_parallel L oo o 48
with_bigexp_contrasts 53

Index 55

SVEMnet-package SVEMnet: Self-Validated Ensemble Models with Relaxed Lasso and
Elastic-Net Regression
Description

The SVEMnet package implements Self-Validated Ensemble Models (SVEM) using Elastic Net (in-
cluding lasso and ridge) regression via glmnet. SVEM averages predictions from multiple models
fitted to fractionally weighted bootstraps of the data, tuned with anti-correlated validation weights.
The package supports multi-response optimization with uncertainty-aware candidate generation for
iterative formulation and process development.

Details

A typical workflow is to fit models with SVEMnet (), optionally run a whole-model test (for ex-
ample, for response reweighting), and then call svem_optimize_random() to propose optimal and
exploration candidates for the next experimental round.

SVEMnet-package 3

Functions

SVEMnet Fit an SVEMnet model using Elastic Net regression.

predict.svem_model Predict method for SVEM models (optionally debiased, with intervals when
available).

coef.svem_model Averaged (optionally debiased) coefficients from an SVEM model.
svem_nonzero Bootstrap nonzero percentages for each coefficient, with an optional quick plot.
plot.svem_model Quick actual-versus-predicted plot for a fitted model.

bigexp_terms Build a deterministic expanded RHS (polynomials, interactions) with locked lev-
els/ranges.

bigexp_formula Reuse a locked expansion for another response to ensure identical factor space.

svem_random_table_multi Generate one shared random predictor table (with optional mixture
constraints) and get predictions from multiple SVEM models at those points.

svem_optimize_random Random-search optimizer for multiple responses with goals, weights, op-
tional CIs, and diverse PAM-medoids candidates.

svem_significance_test_parallel Parallel whole-model significance test (foreach + doParal-
lel) with optional mixture-group sampling.

plot.svem_significance_test Plot helper for visualizing multiple significance-test outputs.
glmnet_with_cv Convenience wrapper around repeated cv.glmnet () selection.

lipid_screen Example dataset for multi-response modeling and mixture-constrained optimiza-
tion demos.

Families

Supports Gaussian and binomial responses (logit link). For family = "binomial”, the response
must be 0/1 numeric or a two-level factor (first level treated as 0). Use predict(..., type =
"response”) for event probabilities or type = "class” for 0/1 labels (threshold = 0.5 by default).

Acknowledgments

OpenAI’s GPT models (ol-preview and GPT-5 Thinking via ChatGPT) were used to assist with
coding and roxygen documentation; all content was reviewed and finalized by the author.

Author(s)
Maintainer: Andrew T. Karl <akarl@asu.edu> (ORCID)

References

Gotwalt, C., & Ramsey, P. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference.
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/
ev-p/849873/redirect_from_archived_page/true

Karl, A. T. (2024). A randomized permutation whole-model test heuristic for Self-Validated Ensem-
ble Models (SVEM). Chemometrics and Intelligent Laboratory Systems, 249, 105122. doi:10.1016/
j-chemolab.2024.105122

https://orcid.org/0000-0002-5933-8706
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://doi.org/10.1016/j.chemolab.2024.105122
https://doi.org/10.1016/j.chemolab.2024.105122

4 bigexp_formula

Karl, A., Wisnowski, J., & Rushing, H. (2022). JMP Pro 17 Remedies for Practical Struggles with
Mixture Experiments. JMP Discovery Conference. doi:10.13140/RG.2.2.34598.40003/1

Lemkus, T., Gotwalt, C., Ramsey, P., & Weese, M. L. (2021). Self-Validated Ensemble Mod-
els for Design of Experiments. Chemometrics and Intelligent Laboratory Systems, 219, 104439.
doi:10.1016/j.chemolab.2021.104439

Xu, L., Gotwalt, C., Hong, Y., King, C. B., & Meeker, W. Q. (2020). Applications of the Fractional-
Random-Weight Bootstrap. The American Statistician, 74(4), 345-358. doi:10.1080/00031305.2020.1731599

Ramsey, P., Gaudard, M., & Levin, W. (2021). Accelerating Innovation with Space Filling Mixture
Designs, Neural Networks and SVEM. JMP Discovery Conference. https://community.jmp.
com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/
756841

Ramsey, P., & Gotwalt, C. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference -

Europe. https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-
ev-p/849647/redirect_from_archived_page/true

Ramsey, P., Levin, W., Lemkus, T., & Gotwalt, C. (2021). SVEM: A Paradigm Shift in Design and
Analysis of Experiments. JMP Discovery Conference - Europe. https://community.jmp.com/
t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/
756634

Ramsey, P., & McNeill, P. (2023). CMC, SVEM, Neural Networks, DOE, and Complexity: It’s All
About Prediction. JMP Discovery Conference.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

Meinshausen, N. (2007). Relaxed Lasso. Computational Statistics & Data Analysis, 52(1), 374-
393.

bigexp_formula Construct a formula for a new response using a bigexp_spec

Description

bigexp_formula() lets you reuse an existing expansion spec for multiple responses. It keeps the
right hand side locked but changes the response variable on the left hand side.

Usage

bigexp_formula(spec, response)

Arguments
spec A "bigexp_spec" object created by bigexp_terms().
response Character scalar giving the name of the new response column in your data. If

omitted, the original formula is returned unchanged.

https://doi.org/10.13140/RG.2.2.34598.40003/1
https://doi.org/10.1016/j.chemolab.2021.104439
https://doi.org/10.1080/00031305.2020.1731599
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634

bigexp_model_matrix 5

Value

A formula of the form response ~ rhs, where the right-hand side is taken from the locked expan-
sion stored in spec.

Examples

set.seed(1)

df2 <- data.frame(
y1 = rnorm(10),
y2 = rnorm(10),
X1 = rnorm(10),
X2 = rnorm(10)

)

spec2 <- bigexp_terms(
yl ~ X1 + X2,
data = df2,
factorial_order = 2,
polynomial_order = 2

)

f2 <- bigexp_formula(spec2, "y2")
f2

bigexp_model_matrix Build a model matrix using the spec’s stored contrasts

Description
bigexp_model_matrix() combines bigexp_prepare() and model.matrix() so that you can obtain a
design matrix that matches the locked spec, including any stored contrast settings.

Usage

bigexp_model_matrix(spec, data)

Arguments

spec A "bigexp_spec" object.

data A data frame to prepare and encode.
Value

The design matrix returned by model.matrix(), with columns ordered consistently with the spec and
its locked factor levels.

6 bigexp_prepare

Examples

set.seed(1)
df3 <- data.frame(
y = rnorm(10),

X1 = rnorm(10),
X2 = rnorm(10)
)
spec3 <- bigexp_terms(
y ~ X1 + X2,
data = df3,

factorial_order 2,
polynomial_order = 2

)

MM3 <- bigexp_model_matrix(spec3, df3)
dim(MM3)
head(colnames(MM3))

bigexp_prepare Prepare data to match a bigexp_spec

Description

bigexp_prepare() coerces a new data frame so that it matches a previously built bigexp_terms
spec. It:

* applies the locked factor levels for categorical predictors,

» enforces that continuous variables remain numeric, and

* optionally warns about or errors on unseen factor levels.

Usage
bigexp_prepare(spec, data, unseen = c("warn_na”, "error"))
Arguments
spec Object returned by bigexp_terms.
data New data frame (for example, training, test, or future batches).
unseen How to handle unseen factor levels in data: "warn_na” (default) maps unseen
levels to NA and issues a warning, or "error"” stops with an error if any unseen
levels are encountered.
Details

The goal is that model.matrix(spec$formula, data) (or bigexp_model_matrix) will produce
the same set of columns in the same order across all datasets prepared with the same spec, even if
some levels are missing in a particular batch.

bigexp_terms

Value
A list with two elements:

* formula: the expanded formula stored in the spec.

* data: a copy of the input data coerced to match the spec.

See Also

bigexp_terms, bigexp_model_matrix

Examples

set.seed(1)
train <- data.frame(
y = rnorm(10),

X1 = rnorm(10),
X2 = rnorm(10),
G = factor(sample(c("A", "B"), 10, replace = TRUE))

)

spec <- bigexp_terms(
y ~ X1 + X2 + G,

data = train,
factorial_order = 2,
polynomial_order = 2
)
newdata <- data.frame(
y = rnorm(5),
X1 = rnorm(5),
X2 = rnorm(5),
G = factor(sample(c("A", "B"), 5, replace = TRUE))
)
prep <- bigexp_prepare(spec, newdata)
str(prep$data)
bigexp_terms Create a deterministic expansion spec for wide polynomial and inter-
action models
Description

bigexp_terms() builds a specification object that:

* decides which predictors are treated as continuous or categorical,
* locks factor levels from the supplied data,
* records the contrast settings used when the model matrix is first built, and

* constructs a reusable right-hand side (RHS) string for a large expansion.

8 bigexp_terms

Usage

bigexp_terms(
formula,
data,
factorial_order = 3L,
discrete_threshold = 2L,
polynomial_order = 3L,
include_pc_2way = TRUE,
include_pc_3way = FALSE,
intercept = TRUE

)
Arguments
formula Main-effects formula of the form y ~ X1 + X2+ G or y ~ .. The right-hand side
should contain main effects only; do not include : (interactions), * (factorial
shortcuts), or I() powers here. The helper will generate interactions and poly-
nomial terms automatically.
data Data frame used to decide types and lock factor levels.

factorial_order

Integer >= 1. Maximum order of factorial interactions among the main effects.
For example, 1 gives main effects only, 2 gives up to two-way interactions, 3
gives up to three-way interactions, and so on.

discrete_threshold

Numeric predictors with at most this many unique finite values are treated as
categorical. Default is 2.

polynomial_order

Integer >= 1. Maximum polynomial degree for continuous predictors. A value

of 1 means only linear terms; 2 adds squares I(X*2); 3 adds cubes I(X*3); in

general, all powers I(X*k) for k from 2 up to polynomial_order are added.
include_pc_2way

Logical. If TRUE (default) and polynomial_order >= 2, include partial-cubic
two-way terms of the form Z:I(X*2).

include_pc_3way

Logical. If TRUE and polynomial_order >= 2, include partial-cubic three-way
terms I(X*2):Z:W.

intercept Logical. If TRUE (default), include an intercept in the expansion; if FALSE, the
generated RHS drops the intercept.
Details
The expansion can include:
» full factorial interactions among the listed main effects, up to a chosen order;

* polynomial terms I (X*k) for continuous predictors up to a chosen degree; and

* optional partial-cubic interactions of the form Z: I(X*2) and I(X"2):Z:W.

bigexp_terms 9

Predictor types are inferred from data:

* factors, characters, and logicals are treated as categorical;

» numeric predictors with at most discrete_threshold distinct finite values are treated as
categorical; and

* all other numeric predictors are treated as continuous, and their observed ranges are stored.
Once built, a "bigexp_spec” can be reused to create consistent expansions for new datasets via
bigexp_prepare, bigexp_formula, and bigexp_model_matrix. The RHS and contrast settings

are locked, so the same spec applied to different data produces design matrices with the same
columns in the same order (up to missing levels for specific batches).

Value
An object of class "bigexp_spec” with components:
e formula: expanded formula of the form y ~ <big expansion>, using the response from the
input formula.
* rhs: right-hand side expansion string (reusable for any response).
* vars: character vector of predictor names in the order discovered from the formula and data.

* is_cat: named logical vector indicating which predictors are treated as categorical (TRUE)

versus continuous (FALSE).
» levels: list of locked factor levels for categorical predictors.

* num_range: 2 x p numeric matrix of ranges for continuous variables (rows c("min”, "max")).

* settings: list of expansion settings, including factorial_order, polynomial_order, discrete_threshold,
include_pc_2way, include_pc_3way, intercept, and stored contrast information.

See Also

bigexp_prepare, bigexp_formula, bigexp_model_matrix, bigexp_train

Examples

Example 1: small design with one factor
set.seed(1)
df <- data.frame(

y = rnorm(20),

X1 = rnorm(20),
X2 = rnorm(20),
G = factor(sample(c("A", "B"), 20, replace = TRUE))

)

Two-way interactions and up to cubic terms in X1 and X2
spec <- bigexp_terms(
y ~ X1 + X2 + G,

data = df,
factorial_order = 2,
polynomial_order = 3

10 bigexp_train

print(spec)

Inspect the resulting design matrix
MM <- bigexp_model_matrix(spec, df)
dim(MM)

head(colnames(MM))

Example 2: pure main effects (no interactions, no polynomial terms)
spec_main <- bigexp_terms(

y ~ X1 + X2 + G,

data = df,

factorial_order 1, # main effects only

polynomial_order = 1 # no I(X*2) or higher
)

MM_main <- bigexp_model_matrix(spec_main, df)
head(colnames(MM_main))

bigexp_train Build a spec and prepare training data in one call

Description
bigexp_train() is a convenience wrapper around bigexp_terms() and bigexp_prepare(). It:

* Builds a deterministic expansion spec from the training data

* Immediately prepares that same data to match the locked types and levels

Usage
bigexp_train(formula, data, ...)
Arguments
formula Main-effects formula such as y ~ X1 + X2 + G or y ~ . Only main effects should
appear on the right hand side.
data Training data frame used to lock types and levels.
Additional arguments forwarded to bigexp_terms(), such as factorial_order, dis-
crete_threshold, polynomial_order, include_pc_2way, include_pc_3way, and in-
tercept.
Details

This is handy when you want a single object that contains both the spec and the expanded training
data ready to pass into a modeling function. For more control, you can call bigexp_terms() and
bigexp_prepare() explicitly instead.

coef.svem_model 11

Value

An object of class "bigexp_train" which is a list with components:

* spec: the "bigexp_spec" object returned by bigexp_terms()
o formula: the expanded formula spec$formula

* data: the prepared training data ready for modeling

Examples

set.seed(1)
df5 <- data.frame(
y = rnorm(20),

X1 = rnorm(20),
X2 = rnorm(20)
)
tr <- bigexp_train(
y ~ X1 + X2,
data = df5,
factorial_order = 2,

polynomial_order = 3

)

str(tr$data)
tr$formula

coef.svem_model Coefficients for SVEM Models

Description

Returns averaged coefficients from an svem_model.

Usage
S3 method for class 'svem_model’
coef(object, debiased = FALSE, ...)
Arguments
object An object of class svem_model.
debiased Logical; if TRUE and available (Gaussian fits), return parms_debiased instead

of parms. Default FALSE.
Unused (for S3 compatibility).

12 coef.svem_model

Details

For Gaussian models, you can optionally return the debiased coefficients (if available) via debiased
= TRUE. For Binomial models, debiased is ignored and the averaged coefficients are returned.

Value

A named numeric vector of coefficients (including intercept).

See Also

svem_nonzero for bootstrap nonzero percentages and a quick plot.

Examples

set.seed(1)

n <- 200

x1 <= rnorm(n)

x2 <= rnorm(n)

eps <- rnorm(n, sd = 0.3)

y_g <- 1 + 2xx1 - 0.5%x2 + eps
dat_g <- data.frame(y_g, x1, x2)

Small nBoot to keep runtime light in examples
fit_g <- SVEMnet(y_g ~ x1 + x2, data = dat_g, nBoot = 30, relaxed = TRUE)

Averaged coefficients
cc <- coef(fit_g)
head(cc)

Debiased (only if available for Gaussian fits)
ccd <- coef(fit_g, debiased = TRUE)
head(ccd)

Binomial example (@/1 outcome)
set.seed(2)

n <- 250

x1 <= rnorm(n)

x2 <= rnorm(n)

eta <- -0.4 + 1.1%x1 - 0.7*x2

p <- 1/(1+exp(-eta))

y_b <= rbinom(n, 1, p)

dat_b <- data.frame(y_b, x1, x2)

fit_b <- SVEMnet(y_b ~ x1 + x2, data = dat_b, family = "binomial”,
nBoot = 30, relaxed = TRUE)

Averaged coefficients (binomial)
coef (fit_b)

glmnet_with_cv 13

glmnet_with_cv Fit a glmnet Model with Repeated Cross-Validation

Description

Repeated K-fold cross-validation over a per-alpha lambda path, with a combined 1-SE rule across
repeats. Preserves fields expected by predict.svem_model / internal prediction helpers. Option-
ally uses glmnet’s built-in relaxed elastic net for both the warm-start path and each CV fit. When
relaxed = TRUE, the final coefficients are taken from a cv.glmnet () object at the chosen lambda
so that the returned model reflects the relaxed solution (including its chosen 7).

Usage

glmnet_with_cv(
formula,
data,
glmnet_alpha = c(0.5, 1),
standardize = TRUE,
nfolds = 10,
repeats = 5,
choose_rule = c("min", "1se"),
seed = NULL,
exclude = NULL,
relaxed = FALSE,
relax_gamma = NULL,

family = c("gaussian”, "binomial”),
)
Arguments
formula Model formula.
data Data frame containing the variables in the model.

glmnet_alpha Numeric vector of Elastic Net mixing parameters (alphas) in [@,1]; default
c(0.5, 1). When relaxed = TRUE, any alpha =@ (ridge) is dropped with a
warning.

standardize Logical passed to glmnet / cv.glmnet (default TRUE).

nfolds Requested number of CV folds (default 10). Internally constrained so that there
are at least about 3 observations per fold and at least 5 folds when possible.

repeats Number of independent CV repeats (default 5). Each repeat reuses the same
folds across all alphas for paired comparisons.

choose_rule Character; how to choose lambda within each alpha:

* "min": lambda minimizing the cross-validated criterion.

e "1se": largest lambda within 1 combined SE of the minimum, where the
SE includes both within- and between-repeat variability.

14 glmnet_with_cv

Default is "min”. In small-mixture simulations, the 1-SE rule tended to increase
RMSE on held-out data, so "min” is used as the default here.

seed Optional integer seed for reproducible fold IDs (and the ridge fallback, if used).

exclude Optional vector or function for glmnet’s exclude= argument. If a function,
cv.glmnet () applies it inside each training fold (requires glmnet >= 4.1-2).

relaxed Logical; if TRUE, call glmnet / cv.glmnet with relax = TRUE and optionally a
gamma path (default FALSE). If cv.glmnet(relax=TRUE) fails for a particular
repeat/alpha, the function retries that fit without relaxation; the number of such
fallbacks is recorded in meta$relax_cv_fallbacks.

relax_gamma Optional numeric vector passed as gamma=to glmnet /cv.glmnet when relaxed
= TRUE. If NULL, glmnet’s internal default gamma grid is used.

family Model family: either "gaussian” or "binomial”, or the corresponding stats: :gaussian()
/ stats: :binomial() family objects with canonical links. For Gaussian, y must
be numeric. For binomial, y must be 0/1 numeric, logical, or a factor with ex-
actly 2 levels (the second level is treated as 1). Non-canonical links are not
supported.

Additional arguments forwarded to both cv.glmnet () and glmnet (), for exam-
ple: weights, parallel, type.measure, intercept, maxit, lower.limits,
upper.limits, penalty.factor, offset, standardize.response, keep, etc.
If family is supplied here, it is ignored in favor of the explicit family argument.

Details

This function is a convenience wrapper around glmnet / cv.glmnet () that returns an object in the
same structural format as SVEMnet () (class "svem_model"). It is intended for:

* direct comparison of standard cross-validated glmnet fits to SVEMnet models, using the same
prediction/schema tools, or
* users who want a repeated-cv. glmnet () workflow without any SVEM weighting or bootstrap
ensembling.
It is not called internally by the SVEM bootstrap routines.

For each alpha in glmnet_alpha, the function:

1. Generates a set of CV fold IDs (shared across alphas and repeats).

2. Runs repeats independent cv.glmnet() fits, aligning lambda paths and aggregating the CV
curves.

3. Computes a combined SE at each lambda that accounts for both within-repeat and between-
repeat variability.

4. Applies choose_rule ("min” or "1se") to pick the lambda for that alpha.

The best alpha is then chosen by comparing these per-alpha scores.

If there are no predictors after model.matrix() (intercept-only model), the function returns an
intercept-only fit without calling glmnet, along with a minimal schema for safe prediction.

If all cv.glmnet() attempts fail for every alpha (a rare edge case), the function falls back to a
manual ridge (alpha = @) CV search over a fixed lambda grid and returns the best ridge solution.

glmnet_with_cv 15

For the Gaussian family, an optional calibration 1m(y ~ y_pred) is fit on the training data (when
there is sufficient variation), and both y_pred and y_pred_debiased are stored. For the binomial
family, y_pred is always on the probability (response) scale and debiasing is not applied.

The returned object inherits classes "svem_cv" and "svem_model" and is designed to be compatible
with SVEMnet’s prediction and schema utilities. It is a standalone, standard glmnet CV workflow
that does not use SVEM-style bootstrap weighting or ensembling.

Value

n o n

A list of class c("svem_cv", "svem_model”) with elements:

* parms Named numeric vector of coefficients (including " (Intercept)").
* glmnet_alpha Numeric vector of alphas searched.

* best_alpha Numeric; winning alpha.

* best_lambda Numeric; winning lambda.

* y_pred In-sample predictions from the returned coefficients (fitted values for Gaussian; prob-
abilities for binomial).

* debias_fit For Gaussian, an optional 1m(y ~ y_pred) calibration model; NULL otherwise.
e y_pred_debiased If debias_fit exists, its fitted values; otherwise NULL.

e cv_summary Named list (one per alpha) of data frames with columns: lambda, mean_cvm,
sd_cvm, se_combined, n_repeats, idx_min, idx_1se.

» formula Original modeling formula.
* terms Training terms object with environment set to baseenv ().
* training_X Training design matrix (without intercept column).

* actual_y Training response vector used for glmnet: numeric y for Gaussian, or 0/1 numeric
y for binomial.

* xlevels Factor and character levels seen during training (for safe prediction).
» contrasts Contrasts used for factor predictors during training.

e schemaListlist(feature_names, terms_str, xlevels, contrasts, terms_hash) for de-
terministic predict.

* note Character vector of notes (e.g., dropped rows, intercept-only path, ridge fallback, relaxed-
coefficient source).

¢ meta List with fields such as nfolds, repeats, rule, family, relaxed, relax_cv_fallbacks,
and cv_object (the final cv.glmnet object when relaxed = TRUE and keep = TRUE, other-
wise NULL).

Acknowledgments

OpenAI’'s GPT models (ol-preview and GPT-5 Thinking via ChatGPT) were used to assist with
coding and roxygen documentation; all content was reviewed and finalized by the author.

16 glmnet_with_cv

References

Gotwalt, C., & Ramsey, P. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference.
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/
ev-p/849873/redirect_from_archived_page/true

Karl, A. T. (2024). A randomized permutation whole-model test heuristic for Self-Validated Ensem-
ble Models (SVEM). Chemometrics and Intelligent Laboratory Systems, 249, 105122. doi:10.1016/
j-chemolab.2024.105122

Karl, A., Wisnowski, J., & Rushing, H. (2022). JMP Pro 17 Remedies for Practical Struggles with
Mixture Experiments. JMP Discovery Conference. doi:10.13140/RG.2.2.34598.40003/1

Lemkus, T., Gotwalt, C., Ramsey, P., & Weese, M. L. (2021). Self-Validated Ensemble Mod-
els for Design of Experiments. Chemometrics and Intelligent Laboratory Systems, 219, 104439.
doi:10.1016/j.chemolab.2021.104439

Xu, L., Gotwalt, C., Hong, Y., King, C. B., & Meeker, W. Q. (2020). Applications of the Fractional-
Random-Weight Bootstrap. The American Statistician, 74(4), 345-358. doi:10.1080/00031305.2020.1731599

Ramsey, P., Gaudard, M., & Levin, W. (2021). Accelerating Innovation with Space Filling Mixture
Designs, Neural Networks and SVEM. JMP Discovery Conference. https://community.jmp.
com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/
756841

Ramsey, P.,, & Gotwalt, C. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference -

Europe. https://community. jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-
ev-p/849647/redirect_from_archived_page/true

Ramsey, P., Levin, W., Lemkus, T., & Gotwalt, C. (2021). SVEM: A Paradigm Shift in Design and
Analysis of Experiments. JMP Discovery Conference - Europe. https://community.jmp.com/
t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/
756634

Ramsey, P., & McNeill, P. (2023). CMC, SVEM, Neural Networks, DOE, and Complexity: It’s All
About Prediction. JMP Discovery Conference.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

Meinshausen, N. (2007). Relaxed Lasso. Computational Statistics & Data Analysis, 52(1), 374-
393.

Examples

set.seed(123)

n <- 100; p <- 10

X <= matrix(rnorm(n * p), n, p)

beta <- c(1, -1, rep(Q, p - 2))

y <- as.numeric(X %x% beta + rnorm(n))
df_ex <- data.frame(y =y, X)

non nyn

colnames(df_ex) <- c("y", paste@("x", 1:p))

Gaussian example, vi-like behavior: choose_rule = "min"
fit_min <- glmnet_with_cv(

https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://doi.org/10.1016/j.chemolab.2024.105122
https://doi.org/10.1016/j.chemolab.2024.105122
https://doi.org/10.13140/RG.2.2.34598.40003/1
https://doi.org/10.1016/j.chemolab.2021.104439
https://doi.org/10.1080/00031305.2020.1731599
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634

lipid_screen 17

y ~ ., df_ex,
glmnet_alpha = 1,
nfolds = 5,

repeats = 1,
choose_rule = "min",
seed = 42,

family = "gaussian”

)

Gaussian example, relaxed path with gamma search
fit_relax <- glmnet_with_cv(

y ~ ., df_ex,

glmnet_alpha = 1,

nfolds = 5,

repeats = 1,

relaxed = TRUE,

seed = 42,

family = "gaussian”

Binomial example (numeric @/1 response)
set.seed(456)

n2 <- 150; p2 <- 8

X2 <- matrix(rnorm(n2 * p2), n2, p2)

beta2 <- c(1.0, -1.5, rep(@, p2 - 2))

linpred <- as.numeric(X2 %*% beta2)

prob <- plogis(linpred)

y_bin <- rbinom(n2, size = 1, prob = prob)
df_bin <- data.frame(y = y_bin, X2)
colnames(df_bin) <- c("y", paste@("x", 1:p2))

fit_bin <- glmnet_with_cv(
y ~ ., df_bin,
glmnet_alpha = c(0.5, 1),
nfolds = 5,
repeats = 2,
seed = 99,
family = "binomial”

lipid_screen Lipid formulation screening data

Description

An example dataset for modeling Potency, Size, and PDI as functions of formulation and process
settings. Percent composition columns are stored as proportions in [0, 1] (e.g., 4.19\ for demon-
stration of SVEMnet multi-response modeling and desirability-based random-search optimization.

18 lipid_screen

Usage

data(lipid_screen)

Format

A data frame with N rows and the following columns:

RunID character. Optional identifier.
PEG numeric. Proportion (0-1).
Helper numeric. Proportion (0-1).
Ionizable numeric. Proportion (0-1).
Cholesterol numeric. Proportion (0-1).
Ionizable_Lipid_Type factor.
N_P_ratio numeric.

flow_rate numeric.

Potency numeric. Response.

Size numeric. Response (e.g., nm).
PDI numeric. Response (polydispersity index).

Notes character. Optional free-text notes.

Details

This dataset accompanies examples showing:
* fitting three SVEM models (Potency, Size, PDI) on a shared expanded factor space viabigexp_terms()
and bigexp_formula(),

» random design generation using SVEM random-table helpers (for use with multi-response
optimization),

» multi-response optimization with svem_optimize_random() using Derringer—Suich desir-
abilities and weighted combining (combine = "geom” or combine = "mean”),

* returning both high-score optimal candidates and high-uncertainty exploration candidates,

* optional whole-model reweighting (WMT) of response weights via p-values, and exporting
per-row scores to the original data with original_data_scored.

Acknowledgments

OpenAI’s GPT models (ol-preview and GPT-5 Thinking via ChatGPT) were used to assist with
coding and roxygen documentation; all content was reviewed and finalized by the author.

Source

Simulated screening table supplied by the package author.

lipid_screen 19

References

Gotwalt, C., & Ramsey, P. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference.
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/
ev-p/849873/redirect_from_archived_page/true

Karl, A. T. (2024). A randomized permutation whole-model test heuristic for Self-Validated Ensem-
ble Models (SVEM). Chemometrics and Intelligent Laboratory Systems, 249, 105122. doi:10.1016/
j-chemolab.2024.105122

Karl, A., Wisnowski, J., & Rushing, H. (2022). JMP Pro 17 Remedies for Practical Struggles with
Mixture Experiments. JMP Discovery Conference. doi:10.13140/RG.2.2.34598.40003/1

Lemkus, T., Gotwalt, C., Ramsey, P., & Weese, M. L. (2021). Self-Validated Ensemble Mod-
els for Design of Experiments. Chemometrics and Intelligent Laboratory Systems, 219, 104439.
doi:10.1016/j.chemolab.2021.104439

Xu, L., Gotwalt, C., Hong, Y., King, C. B., & Meeker, W. Q. (2020). Applications of the Fractional-
Random-Weight Bootstrap. The American Statistician, 74(4), 345-358. doi:10.1080/00031305.2020.1731599

Ramsey, P., Gaudard, M., & Levin, W. (2021). Accelerating Innovation with Space Filling Mixture
Designs, Neural Networks and SVEM. JMP Discovery Conference. https://community.jmp.
com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/
756841

Ramsey, P.,, & Gotwalt, C. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference -

Europe. https://community. jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-
ev-p/849647/redirect_from_archived_page/true

Ramsey, P., Levin, W., Lemkus, T., & Gotwalt, C. (2021). SVEM: A Paradigm Shift in Design and
Analysis of Experiments. JMP Discovery Conference - Europe. https://community.jmp.com/
t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/
756634

Ramsey, P., & McNeill, P. (2023). CMC, SVEM, Neural Networks, DOE, and Complexity: It’s All
About Prediction. JMP Discovery Conference.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

Meinshausen, N. (2007). Relaxed Lasso. Computational Statistics & Data Analysis, 52(1), 374-
393.

Examples

1) Load the bundled dataset
data(lipid_screen)
str(lipid_screen)

2) Build a deterministic expansion using bigexp_terms()
Provide main effects only on the RHS; expansion width is controlled via arguments.
spec <- bigexp_terms(
Potency ~ PEG + Helper + Ionizable + Cholesterol +
Tonizable_Lipid_Type + N_P_ratio + flow_rate,
data = lipid_screen,

https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://doi.org/10.1016/j.chemolab.2024.105122
https://doi.org/10.1016/j.chemolab.2024.105122
https://doi.org/10.13140/RG.2.2.34598.40003/1
https://doi.org/10.1016/j.chemolab.2021.104439
https://doi.org/10.1080/00031305.2020.1731599
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634

20

factorial_order
polynomial_order
include_pc_2way =
include_pc_3way =

)

3,
3?

lipid_screen

up to 3-way interactions

include up to cubic terms I(X*2), I(X*3),
TRUE, # include partial cubic terms

FALSE

3) Reuse the same locked expansion for other responses
form_pot <- bigexp_formula(spec, "Potency")

form_siz <- bigexp_formula(spec, "Size")

form_pdi <- bigexp_formula(spec, "PDI")

4) Fit SVEM models with the shared factor space/expansion

set.seed(1)

fit_pot <- SVEMnet(form_pot, lipid_screen)
fit_siz <- SVEMnet(form_siz, lipid_screen)
fit_pdi <- SVEMnet(form_pdi, lipid_screen)

5) Collect models in a named list by response
objs <- list(Potency = fit_pot, Size = fit_siz, PDI = fit_pdi)

6) Define multi-response goals and weights (DS desirabilities under the hood)
Size (0.3), minimize PDI (0.1)

Maximize Potency
goals <- list(

Potency = list(goal

Size = list(goal

PDI = list(goal
)

(0.6), minimize

= "max”, weight
= "min"”, weight
= "min", weight

0.6),
0.3),
0.1)

Mixture constraints: components sum to 1, with bounds

mix <- list(list(
vars =

lower = c(0.01, 0.10
upper = c(0.05, 0.60
total = 1.0

))

7) Run random-search optimization (DS + optimal & exploration

set.seed(2)
opt_out <- svem_optimi
objects
goals
n
mixture_groups
level
k_candidates
top_frac

k_exploration_candidates =

exploration_top_frac
numeric_sampler
verbose

)

, 0.10, 0.10),
, 0.60, 0.60),

ze_random(
= objs,
= goals,
= 25000,
= mix,
= 0.95,
=5,
= 0.02,
5,
= 0.05,
= "random”,
= TRUE

c("PEG", "Helper”, "Ionizable", "Cholesterol”),

candidates)

Inspect optimal solution and candidates (scores and uncertainty included)

plot.svem_binomial 21

opt_out$best
opt_out$best_pred
opt_out$best_ci
head(opt_out$candidates)

Inspect exploration target and candidates
opt_out$exploration_best
head(opt_out$exploration_candidates)

8) Repeat with WMT reweighting using the original data (requires 'data')
Choose either "neglogl@" (aggressive) or "one_minus_p" (conservative).
set.seed(3)

opt_wmt <- svem_optimize_random(

objects = objs,
goals = goals,
data = lipid_screen, # used for WMT and original_data_scored
n = 25000,
mixture_groups = mix,
level = 0.95,
k_candidates =5,
top_frac =0.02,
k_exploration_candidates = 5,
exploration_top_frac = 0.05,
numeric_sampler = "random”,
reweight_by_wmt = TRUE,
wmt_transform = "neglogl@”,
verbose = TRUE

)

Compare weights and look at candidates under WMT
opt_wmt$weights_original

opt_wmt$weights_final

opt_wmt$wmt_p_values

head(opt_wmt$candidates)
head(opt_wmt$exploration_candidates)

Scored original data (predictions, desirabilities, score, uncertainty)
head(opt_wmt$original_data_scored)

plot.svem_binomial Plot Method for SVEM Binomial Models

Description
Diagnostics for svem_binomial fits from SVEMnet(. .., family = "binomial"). Produces one of:

* type = "calibration”: Reliability curve (binned average predicted probability vs observed
rate), with jittered raw points for context.
* type = "roc”: ROC curve with trapezoidal AUC in the title.

* type = "pr": Precision—Recall curve with step-wise Average Precision (AP).

22 plot.svem_binomial

Usage
S3 method for class 'svem_binomial'’
plot(
X,
type = c("calibration”, "roc", "pr"),
bins = 10,
jitter_width = 0.05,
)
Arguments
X An object of class svem_binomial.
type One of "calibration”, "roc”, or "pr"” (default "calibration”).
bins Integer number of equal-frequency bins for calibration (default 10).

jitter_width Vertical jitter amplitude for raw points in calibration (default @. 05).
Additional aesthetics passed to ggplot2: :geom_line() or ggplot2: :geom_point().

Details

For ROC/PR, simple one-class guards are used (returns a diagonal ROC and trivial PR). The func-
tion assumes binomial models store x$y_pred on the probability scale.

Value

A ggplot2 object.

Examples

Not run:
--- Binomial example: simulate, fit, and plot ----------------—oc———-
set.seed(2025)
n <- 600
x1 <= rnorm(n); x2 <- rnorm(n); x3 <- rnorm(n)
eta <- -0.4 + 1.1%x1 - 0.8%x2 + 0.5*x3
p_true <- plogis(eta)
y <- rbinom(n, 1, p_true)
dat_b <- data.frame(y, x1, x2, x3)

fit_b <- SVEMnet(
y ~ x1 + x2 + x3 + I(x1%2) + (x1 + x2 + x3)"2,

data = dat_b,
family = "pinomial”,
glmnet_alpha = c(1, 0.5),
nBoot = 60,
objective = "auto",
weight_scheme = "SVEM",
relaxed = TRUE

plot.svem_model 23

Calibration / ROC / PR
plot(fit_b, type = "calibration”, bins = 12)
plot(fit_b, type = "roc")
plot(fit_b, type = "pr")

End(Not run)

plot.svem_model Plot Method for SVEM Models (Gaussian / Generic)

Description

Plots actual versus predicted values for an svem_model. This is the default plot for models fit with

SVEMnet (..., family = "gaussian") and any other non-binomial models that share the svem_model
class.
Usage
S3 method for class 'svem_model'
plot(x, plot_debiased = FALSE, ...)
Arguments
X An object of class svem_model.

plot_debiased Logical; if TRUE, include debiased predictions (when available) as an additional
series. Default FALSE.

Additional aesthetics passed to ggplot2: :geom_point().

Details

Points show fitted values against observed responses; the dashed line is the 45-degree identity. If
available and requested, debiased predictions are included as a second series.

This method assumes the fitted object stores the training response in $actual_y and in-sample
predictions in $y_pred, as produced by SVEMnet () and glmnet_with_cv().

Value

A ggplot2 object.

24 plot.svem_significance_test

Examples

Not run:
--- Gaussian example: simulate, fit, and plot -------------—-—------o——-
set.seed(2026)
n <- 300
X1 <= rnorm(n); X2 <- rnorm(n); X3 <- rnorm(n)
eps <~ rnorm(n, sd = 0.4)
y_g <= 1.2 + 2xX1 - 0.7*%X2 + 0.3*X3 + 1.1%(X1*X2) + 0.8*(X1"2) + eps
dat_g <- data.frame(y_g, X1, X2, X3)

fit_g <- SVEMnet(
y_g ~ (X1 + X2 + X3)*2 + I(X1*2) + I(X2*2),

data = dat_g,
family = "gaussian”,
glmnet_alpha = c(1, 0.5),
nBoot = 60,
objective = "auto"”,
weight_scheme = "SVEM",
relaxed = TRUE

)

Actual vs predicted (with and without debias overlay)
plot(fit_g, plot_debiased = FALSE)

plot(fit_g, plot_debiased = TRUE)

End(Not run)

plot.svem_significance_test
Plot SVEM significance test results for one or more responses

Description

Plots the Mahalanobis-like distances for original and permuted data from one or more SVEM sig-
nificance test results returned by svem_significance_test_parallel().

Usage
S3 method for class 'svem_significance_test'
plot(x, ..., labels = NULL)
Arguments
X An object of class svem_significance_test.
Optional additional svem_significance_test objects to include in the same
plot.
labels Optional character vector of labels for the responses. If not provided, the func-

tion uses inferred response names (from data_d$Response or x$response) and
ensures uniqueness.

predict.svem_model 25

Details

If additional svem_significance_test objects are provided via . . ., their distance tables ($data_d)
are stacked and plotted together using a shared x-axis grouping of "Response / Source” and a fill
aesthetic indicating "Original” vs "Permutation”.

Value

A ggplot?2 object showing the distributions of distances for original vs. permuted data, grouped by
response.

predict.svem_model Predict Method for SVEM Models (Gaussian and Binomial)

Description

Generate predictions from a fitted SVEM model (Gaussian or binomial), with optional bootstrap
uncertainty and family-appropriate output scales.

Usage
S3 method for class 'svem_model'’
predict(
object,
newdata,
type = c("response”, "link"”, "class"),
debias = FALSE,
se.fit = FALSE,
interval = FALSE,
level = 0.95,
agg = c("parms”, "mean"),
)
Arguments
object A fitted SVEM model (class svem_model; binomial models typically also inherit
svem_binomial). Created by SVEMnet ().
newdata A data frame of new predictor values.
type (Binomial only) One of:
* "response” (default): predicted probabilities in [0, 1].
e "link": linear predictor (log-odds).
e "class": 0/1 class labels (threshold 0. 5).
Ignored for Gaussian models.
debias (Gaussian only) Logical; default FALSE. If TRUE, apply the linear calibration fit

(y ~ y_pred) learned at training when available. Ignored (and internally set to
FALSE) for binomial.

26 predict.svem_model

se.fit Logical; if TRUE, return bootstrap standard errors computed from member pre-
dictions (requires coef_matrix). Not available for type = "class”.

interval Logical; if TRUE, return percentile confidence limits from member predictions
(requires coef_matrix). Not available for type = "class”.

level Confidence level for percentile intervals. Default @. 95.

agg Aggregation method for ensemble predictions. One of "parms” (default) or

"mean”; see Aggregation modes. For binomial models, predict() always uses
"mean” regardless of the input.

Currently unused.

Details
This unified method dispatches on object$family:

* Gaussian: returns predictions on the response (identity) scale. Optional linear calibration
(“debias™) learned at training may be applied.

* Binomial: supports glmnet-style type = "1ink"” | "response” | "class"”. No debiasing is
applied; "response” returns probabilities in [0, 1].

Uncertainty summaries (se.fit, interval) and all binomial predictions (and Gaussian agg =
"mean”) are based on per-bootstrap member predictions obtained from the coefficient matrix stored
in object$coef_matrix. If coef_matrix is NULL, these options are not supported.

Value
If se.fit = FALSE and interval = FALSE:

» Gaussian: a numeric vector of predictions (response scale).

e Binomial: a numeric vector for type = "response” (probabilities) or type = "link" (log-
odds), or an integer vector @/1 for type = "class”.

If se.fit and/or interval are TRUE (and type != "class"): a list with components:
» fit: predictions on the requested scale.

» se.fit: bootstrap standard errors (when se.fit = TRUE).

e lwr, upr: percentile confidence limits (when interval = TRUE).

Rows containing unseen or missing factor levels produce NA predictions (and NA SEs/intervals) with
a warning.

Design-matrix reconstruction

The function rebuilds the design matrix for newdata to exactly match training:

* Uses the training terms (with environment set to baseenv()).
» Harmonizes factor/character columns to training xlevels.

» Reuses stored per-factor contrasts when available; otherwise falls back to the current global
contrasts options.

predict.svem_model 27

» Zero-fills any columns present at training but absent in newdata, and reorders columns to
match training.

Rows containing unseen factor levels yield NA predictions (with a warning).

Aggregation modes

agg = "parms” (Gaussian only) Use the aggregated coefficients saved at fit time (object$parms;
for Gaussian with debias = TRUE, use object$parms_debiased).

agg = "mean” Average per-bootstrap member predictions (on the requested scale) and, for Gaussian
with debias = TRUE, apply the calibration to member predictions before aggregation. Requires
coef_matrix.

For binomial SVEM models, predict () always behaves as if agg = "mean”: predictions are aggre-
gated from member predictions on the requested scale (probability or link), and any user-specified
agg is ignored with a warning. The stored coefficient averages (parms, parms_debiased) are re-
tained for diagnostics but are not used in prediction.

Debiasing

For Gaussian fits only, if debias = TRUE and a calibration model 1Im(y ~ y_pred) was learned at
training, predictions (and, when applicable, member predictions) are transformed by that calibra-
tion. Binomial fits are never debiased, even if debias = TRUE is requested.

Uncertainty

When se. fit = TRUE, the returned standard errors are the row-wise standard deviations of member
predictions on the requested scale. When interval = TRUE, percentile intervals are computed from
member predictions on the requested scale, using the requested level. Both require coef_matrix.
For type = "class” (binomial), uncertainty summaries are not available.

See Also
SVEMnet

Examples

---- Gaussian example -----------------——---——--———-—————————
set.seed(1)

n <- 60

X1 <= rnorm(n); X2 <- rnorm(n); X3 <- rnorm(n)

y <=1+ 0.8%X1 - 0.6%xX2 + 0.2%X3 + rnorm(n, 0, 0.4)

dat <- data.frame(y, X1, X2, X3)

fit_g <- SVEMnet(

y ~ (X1 + X2 + X3)"2, dat,

nBoot = 40, glmnet_alpha = c(1, 0.5), relaxed = TRUE, family = "gaussian”
)

Aggregate-coefficient predictions (with/without debias)
p_g <- predict(fit_g, dat) # debias = FALSE (default)
p_gd <- predict(fit_g, dat, debias = TRUE) # apply calibration, if available

28 predict_cv

Mean-aggregation with uncertainty (requires coef_matrix)
out_g <- predict(fit_g, dat, debias = TRUE, agg = "mean”,

se.fit = TRUE, interval = TRUE, level = 0.9)
str(out_g)

---- Binomial example -—--—-—-—-—=———-———-——m
set.seed(2)

n <- 120

X1 <= rnorm(n); X2 <- rnorm(n); X3 <- rnorm(n)
eta <- -0.3 + 1.1%X1 - 0.8%X2 + 0.5*X1xX3

p <- plogis(eta)

yb <= rbinom(n, 1, p)

db <- data.frame(yb = yb, X1 = X1, X2 = X2, X3

X3)

fit_b <- SVEMnet(

yb ~ (X1 + X2 + X3)*2, db,

nBoot = 50, glmnet_alpha = c(1, 0.5), relaxed = FALSE, family = "binomial”
)

Probabilities, link, and classes

p_resp <- predict(fit_b, db, type = "response”)

p_link <- predict(fit_b, db, type = "link")

y_hat <- predict(fit_b, db, type = "class") # 0/1 labels (no SE/interval)

Mean-aggregation with uncertainty on probability scale
out_b <- predict(fit_b, db, type = "response”,

se.fit = TRUE, interval = TRUE, level = 0.9)
str(out_b)

predict_cv Predict for svem_cv objects (and convenience wrapper)

Description

Generate predictions from a fitted object returned by glmnet_with_cv().

Usage

predict_cv(object, newdata, debias = FALSE, strict = FALSE, ...)

S3 method for class 'svem_cv'
predict(object, newdata, debias = FALSE, strict = FALSE, ...)

predict_cv 29

Arguments
object A fitted object returned by glmnet_with_cv() (class "svem_cv").
newdata A data frame of new predictor values.
debias Logical; if TRUE and a debiasing fit is available, apply it. Has an effect only for
Gaussian models where debias_fit is present.
strict Logical; if TRUE, require an exact column-name match with the training design
(including intercept position) after alignment. Default FALSE.
Additional arguments (currently unused).
Details

The design matrix for newdata is rebuilt using the training terms (with environment set to baseenv()),
along with the saved factor x1levels and contrasts (stored on the object and cached in object$schema).
Columns are aligned robustly to the training order:

* Any training columns that model.matrix() drops for newdata (e.g., a factor collapses to a
single level) are added back as zero columns.

* Columns are reordered to exactly match the training order.

* Rows with unseen factor levels are warned about and return NA predictions.

For Gaussian fits (family = "gaussian”), the returned predictions are on the original response
(identity-link) scale. For binomial fits (family = "binomial”), the returned predictions are proba-
bilities in [@, 1] (logit-link inverted via plogis).

If debias = TRUE and a calibration fit Im(y ~ y_pred) exists with a finite slope, predictions are
linearly transformed as a + b * pred. Debiasing is only fitted and used for Gaussian models; for
binomial models the debias argument has no effect.

predict_cv() is a small convenience wrapper that simply calls the underlying S3 method predict. svem_cv (),
keeping a single code path for prediction from glmnet_with_cv() objects.

Value

A numeric vector of predictions on the response scale: numeric fitted values for Gaussian models;
probabilities in [0, 1] for binomial models.

Examples

set.seed(1)

n<-50; p<-5

X <= matrix(rnorm(n * p), n, p)

y <= X[, 1] - 0.5 * X[, 2] + rnorm(n)

df_ex <- data.frame(y = as.numeric(y), X)
colnames(df_ex) <- c("y", paste@("x", 1:p))

fit <- glmnet_with_cv(
y ~ ., df_ex,
glmnet_alpha = 1,
nfolds = 5,
repeats = 2,

30 print.bigexp_spec

seed = 9,
family =
)

"gaussian”

preds_raw <- predict_cv(fit, df_ex)
preds_db <- predict_cv(fit, df_ex, debias = TRUE)
cor(preds_raw, df_ex$y)

Binomial example (probability predictions on [0,1] scale)
set.seed(2)

n2 <- 80; p2 <- 4

X2 <- matrix(rnorm(n2 * p2), n2, p2)

eta2 <- X2[, 1] - 0.8 * X2[, 2]

pr2 <- plogis(eta2)

y2 <- rbinom(n2, size = 1, prob = pr2)

df_bin <- data.frame(y = y2, X2)

colnames(df_bin) <- c("y", pasteo("x", 1:p2))

fit_bin <- glmnet_with_cv(
y ~ ., df_bin,
glmnet_alpha = c(0.5, 1),
nfolds = 5,
repeats = 2,
seed = 11,
family = "binomial”

)

prob_hat <- predict_cv(fit_bin, df_bin)
summary (prob_hat)

print.bigexp_spec Print method for bigexp_spec objects

Description

This print method shows a compact summary of the expansion settings and the predictors that are
treated as continuous or categorical.

Usage
S3 method for class 'bigexp_spec'
print(x, ...)

Arguments
X A "bigexp_spec" object.

Unused.

print.svem_significance_test 31

print.svem_significance_test
Print Method for SVEM Significance Test

Description

Prints the median p-value from an object of class svem_significance_test.

Usage

S3 method for class 'svem_significance_test'

print(x, ...)
Arguments

X An object of class svem_significance_test.

Additional arguments (unused).
SVEMnet Fit an SVEMnet Model (with optional relaxed elastic net)

Description

Wrapper for glmnet (Friedman et al. 2010) to fit an ensemble of Elastic Net models using the Self-
Validated Ensemble Model method (SVEM; Lemkus et al. 2021), with an option to use glmnet’s
built-in relaxed elastic net (Meinshausen 2007). Supports searching over multiple alpha values in
the Elastic Net penalty.

Usage

SVEMnet (
formula,
data,
nBoot = 200,
glmnet_alpha = c(0.5, 1),
weight_scheme = c("SVEM", "FRW_plain"”, "Identity"),
objective = c("auto”, "wAIC", "wBIC", "wSSE"),
auto_ratio_cutoff = 1.3,
relaxed = TRUE,
response = NULL,
unseen = c("warn_na”, "error"),
family = c("gaussian”, "binomial”),

32 SVEMnet

Arguments
formula A formula specifying the model to be fitted, OR a bigexp_spec created by
bigexp_terms().
data A data frame containing the variables in the model.
nBoot Number of bootstrap iterations (default 200).

glmnet_alpha Elastic Net mixing parameter(s). May be a vector with entries in the range
between 0 and 1, inclusive, where alpha = 1 is Lasso and alpha = 0 is Ridge.
Defaults to c(0.5, 1).

weight_scheme Character; weighting scheme used to generate bootstrap training and validation
weights (default "SVEM"). One of:

* "SVEM": Self-Validated Ensemble Model weights. For each bootstrap, in-
dependent U; ~ Uniform(0, 1) are drawn and converted to anti-correlated
FRW copies w™" = —log U; and w4 = —log(1 — Uj;), each rescaled
to have mean 1. This is the default and implements the SVEM scheme of
Lemkus et al.

* "FRW_plain": Fractional-random—weight (FRW) regression without self-
validation. A single FRW weight vector w; = —log U; (rescaled to mean
1) is used for both training and validation. This reproduces the fractional-
random-weight bootstrap regression of Xu et al. (2020) and related work,
with one weighted fit and no self-validation split.

e "Identity"”: Uses unit weights for both training and validation (no resam-
pling). This is primarily useful with nBoot =1 when you want a single
glmnet fit whose penalty is chosen via the selected information criterion
(WAIC/wBIC/wSSE), while still using SVEMnet’s formula expansion and
diagnostics.

objective Objective used to pick lambda on each bootstrap path (default "auto”). One of
"auto”, "wAIC", "wBIC", or "wSSE".

auto_ratio_cutoff
Single cutoff for the automatic rule when objective = "auto"” (default 1.3). Let
r =n_X / p_X, where n_X is the number of training rows and p_X is the number
of predictors in the model matrix after dropping the intercept column. If r >=
auto_ratio_cutoff, SVEMnet uses wAIC; otherwise it uses wBIC.

relaxed Logical, TRUE or FALSE (default TRUE). When TRUE (for family = "gaussian”),
use glmnet’s relaxed elastic net path and select both lambda and relaxed gamma
on each bootstrap. When FALSE, fit the standard glmnet path. Note: if relaxed
= TRUE and glmnet_alpha includes O (ridge), alpha = 0 is dropped. For family
= "binomial”, relaxed fits are currently disabled for stability: SVEMnet be-
haves as if relaxed = FALSE, and a warning is issued if relaxed = TRUE is re-
quested.

response Optional character. When formula is a bigexp_spec, this names the response
column to use on the LHS; defaults to the response stored in the spec.

unseen How to treat unseen factor levels when formula is a bigexp_spec: "warn_na"
(default; convert to NA with a warning) or "error” (stop).

SVEMnet 33

family Character scalar specifying the model family. One of "gaussian” (default) or
"binomial”. SVEMnet currently assumes the canonical identity link for Gaus-
sian and the canonical logit link for binomial. For "binomial”, the response
must be numeric 0/1, logical, or a factor with exactly two levels (the second
level is treated as 1).

Additional args passed to glmnet() (e.g., penalty.factor, lower.limits,
upper.limits, offset, standardize.response, etc.). Any user-supplied weights
are ignored so SVEM can supply its own bootstrap weights. Any user-supplied
standardize is ignored; SVEMnet always uses standardize = TRUE.

Details
You can pass either:

* astandard model formula, e.g. y ~ X1 + X2 + X3 + [(X172) + (X1 + X2 + X3)"2

* abigexp_spec created by bigexp_terms(), in which case SVEMnet will prepare the data deter-
ministically (locked types/levels) and, if requested, swap the response to fit multiple indepen-
dent responses over the same expansion.

In many applications, SVEMnet () is used as part of a closed-loop optimization workflow: models are
fit on current experimental data, whole-model tests (WMT) are optionally used to reweight response
goals, and then svem_optimize_random() proposes both optimal and exploration candidates for
the next experimental round. See the 1ipid_screen help page for a worked example.

SVEM applies fractional bootstrap weights to training data and anti-correlated weights for valida-
tion when weight_scheme = "SVEM". For each bootstrap, glmnet paths are fit for each alpha in
glmnet_alpha, and the lambda (and, if relaxed = TRUE, relaxed gamma) minimizing a weighted
validation criterion is selected.

Weighting schemes. With weight_scheme = "SVEM" (the default), SVEMnet uses the fractional-
random-weight (FRW) construction with an explicit self-validation split: for each bootstrap repli-
cate and observation i, a shared U; ~ Uniform(0, 1) is drawn and converted into anti-correlated
train/validation copies w!™" = —log U; and w}*d = —log(1 — U;), each rescaled so that their
mean is 1. This keeps all rows in every fit while inducing a stable out-of-bag—style validation set
for selecting A (and, if used, the relaxed).

With weight_scheme = "FRW_plain”, SVEMnet instead uses a single FRW weight vector w; =
—log U; for both training and validation (one weighted fit, no self-validation split). It is included
mainly for historical comparison and method-teaching; for small-sample prediction we recommend
the default "SVEM" scheme.

Finally, weight_scheme = "Identity"” sets both training and validation weights to 1. In combi-
nation with nBoot = 1, this effectively wraps a single glmnet fit and chooses A (and, for Gaussian
models, the relaxed) by the chosen information criterion (WAIC or wBIC), without any bootstrap
variation. This can be useful when you want classical AIC/BIC selection on top of a deterministic
expansion, but do not want or need ensembling.

Predictors are always standardized internally via glmnet: :glmnet(. .., standardize = TRUE).

When relaxed = TRUE and family = "gaussian”, coef(fit, s = lambda, gamma = g) is used to
obtain the coefficient path at each relaxed gamma in the internal grid (by default c(0.2, 0.6, 1)).
Metrics are computed from validation-weighted errors and model size is taken as the number of
nonzero coefficients including the intercept (support size), keeping selection consistent between

34

SVEMnet

standard and relaxed paths. For family = "binomial”, relaxed fits are currently disabled for nu-
merical stability, so only the standard glmnet path is used even if relaxed = TRUE.

Automatic objective rule ("auto"”): This function uses a single ratio cutoff, auto_ratio_cutoff,
applied to r = n_X / p_X, where p_X is computed from the model matrix with the intercept column
removed. If r >= auto_ratio_cutoff the selection criterion is WAIC; otherwise it is wBIC.

Implementation notes for safety:

» The training terms object is stored with environment set to baseenv() to avoid accidental
lookups in the calling environment.

* A compact schema (feature names, xlevels, contrasts) is stored to let predict() reconstruct
the design matrix deterministically.

* A lightweight sampling schema (numeric ranges and factor levels for raw predictors) is cached
to enable random-table generation without needing the original data.

For family = "gaussian”, the loss used in validation is a weighted SSE, and wAIC/wBIC are
computed from a Gaussian log-likelihood proxy.

For family = "binomial”, the validation loss is the weighted binomial deviance, and wAIC/wBIC
are computed as deviance + 2 * k or deviance + log(n_eff) * k, where k is the number of active
parameters (1 for the intercept plus the number of nonzero parameters) and n_eff is the effective
validation size. The response must be numeric 0/1 or a two-level factor; internally it is converted to
0/1.

Value

An object of class svem_model with elements:

* parms: averaged coefficients (including intercept).

* parms_debiased: averaged coefficients adjusted by the calibration fit.

e debias_fit: Im(y ~ y_pred) calibration model used for debiasing (or NULL).

» coef_matrix: per-bootstrap coefficient matrix.

* nBoot, glmnet_alpha, best_alphas, best_lambdas, weight_scheme, relaxed.

* best_relax_gammas: per-bootstrap relaxed gamma chosen (NA if relaxed = FALSE).

* objective_input, objective_used, objective (same as objective_used), auto_used,
auto_decision, auto_rule.

* dropped_alpha@_for_relaxed: whether alpha = 0 was removed because relaxed = TRUE.

* schema: list(feature_names, terms_str, xlevels, contrasts, terms_hash) for safe pre-
dict.

e sampling_schema: list(predictor_vars, var_classes, num_ranges =rbind(min=..., max=...
for numeric raw predictors, factor_levels =list(...) for factor/character raw predictors).

e diagnostics: list with k_summary (median and IQR of selected size), fallback_rate,
n_eff_summary, alpha_freq, relax_gamma_freq.

e actual_y, training_X,y_pred, y_pred_debiased, nobs, nparm, formula, terms, xlevels,
contrasts.

» used_bigexp_spec: logical flag indicating whether a bigexp_spec was used.

SVEMnet 35

Acknowledgments

OpenAI’s GPT models (ol-preview and GPT-5 Thinking via ChatGPT) were used to assist with
coding and roxygen documentation; all content was reviewed and finalized by the author.

References

Gotwalt, C., & Ramsey, P. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference.

https://community. jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/
ev-p/849873/redirect_from_archived_page/true

Karl, A. T. (2024). A randomized permutation whole-model test heuristic for Self-Validated Ensem-
ble Models (SVEM). Chemometrics and Intelligent Laboratory Systems, 249, 105122. doi:10.1016/
j.chemolab.2024.105122

Karl, A., Wisnowski, J., & Rushing, H. (2022). JMP Pro 17 Remedies for Practical Struggles with
Mixture Experiments. JMP Discovery Conference. doi:10.13140/RG.2.2.34598.40003/1

Lemkus, T., Gotwalt, C., Ramsey, P., & Weese, M. L. (2021). Self-Validated Ensemble Mod-
els for Design of Experiments. Chemometrics and Intelligent Laboratory Systems, 219, 104439.
doi:10.1016/j.chemolab.2021.104439

Xu, L., Gotwalt, C., Hong, Y., King, C. B., & Meeker, W. Q. (2020). Applications of the Fractional-
Random-Weight Bootstrap. The American Statistician, 74(4), 345-358. doi:10.1080/00031305.2020.1731599

Ramsey, P.,, Gaudard, M., & Levin, W. (2021). Accelerating Innovation with Space Filling Mixture
Designs, Neural Networks and SVEM. JMP Discovery Conference. https://community.jmp.
com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/
756841

Ramsey, P., & Gotwalt, C. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference -

Europe. https://community. jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-
ev-p/849647/redirect_from_archived_page/true

Ramsey, P., Levin, W., Lemkus, T., & Gotwalt, C. (2021). SVEM: A Paradigm Shift in Design and
Analysis of Experiments. JMP Discovery Conference - Europe. https://community.jmp.com/
t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/
756634

Ramsey, P., & McNeill, P. (2023). CMC, SVEM, Neural Networks, DOE, and Complexity: It’s All
About Prediction. JMP Discovery Conference.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

Meinshausen, N. (2007). Relaxed Lasso. Computational Statistics & Data Analysis, 52(1), 374-
393.

Examples
set.seed(42)
n <- 30

X1 <= rnorm(n)
X2 <= rnorm(n)

https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://doi.org/10.1016/j.chemolab.2024.105122
https://doi.org/10.1016/j.chemolab.2024.105122
https://doi.org/10.13140/RG.2.2.34598.40003/1
https://doi.org/10.1016/j.chemolab.2021.104439
https://doi.org/10.1080/00031305.2020.1731599
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634

36

SVEMnet

X3 <= rnorm(n)

eps <- rnorm(n, sd = 0.5)

y <=1 + 2%XT - 1.5%X2 + 0.5%X3 + 1.2x(X1*X2) + 0.8*%(X1*2) + eps
dat <- data.frame(y, X1, X2, X3)

Minimal hand-written expansion
mod_relax <- SVEMnet(
y o~ (X1 + X2 + X3)72 + I(X172) + I(X2*2),

data = dat,
glmnet_alpha = c(1, 0.5),
nBoot =75,
objective = "auto”,
weight_scheme = "SVEM",
relaxed = FALSE

)

pred_in_raw <- predict(mod_relax, dat, debias = FALSE)
pred_in_db <- predict(mod_relax, dat, debias = TRUE)

Big expansion (full factorial + polynomial surface + partial-cubic crosses)
Build once, reuse for one or more responses

spec <- bigexp_terms(
y ~ X1 + X2 + X3,
data = dat,
factorial_order = 3, # up to 3-way interactions among X1, X2, X3
polynomial_order = 3, # include I(X*3) for each continuous predictor
include_pc_3way = FALSE

Fit using the spec (auto-prepares data)
fit_y <- SVEMnet(

spec, dat,

glmnet_alpha = c(1, 0.5),
nBoot = 50,
objective = "auto”,
weight_scheme = "SVEM",
relaxed = FALSE

)

A second, independent response over the same expansion
set.seed(99)

dat$y2 <- 0.5 + 1.4xX1 - 0.6%X2 + 0.2*X3 + rnorm(n, @, 0.4)
fit_y2 <- SVEMnet(

spec, dat, response = "y2",
glmnet_alpha = c(1, 0.5),
nBoot = 50,
objective = "auto”,
weight_scheme = "SVEM",
relaxed = FALSE

svem_nonzero 37

pl <- predict(fit_y, dat)
p2 <- predict(fit_y2, dat, debias = TRUE)

Show that a new batch expands identically under the same spec
newdat <- data.frame(

y =Y,

X1 = X1 + rnorm(n, @, 0.05),

X2 = X2 + rnorm(n, @, 0.05),

X3 = X3 + rnorm(n, @, 0.05)

)
prep_new <- bigexp_prepare(spec, newdat)
stopifnot(identical(

colnames(model .matrix(spec$formula, bigexp_prepare(spec, dat)$data)),
colnames(model .matrix(spec$formula, prep_new$data))

))
preds_new <- predict(fit_y, prep_new$data)

#' ## ---- Binomial example --------—-————————--——m
set.seed(2)

n <- 120

X1 <= rnorm(n); X2 <- rnorm(n); X3 <- rnorm(n)
eta <- -0.3 + 1.1%X1 - 0.8%X2 + 0.5*X1xX3

p <- plogis(eta)

yb <= rbinom(n, 1, p)

db <- data.frame(yb = yb, X1 = X1, X2 = X2, X3

X3)

fit_b <- SVEMnet(

yb ~ (X1 + X2 + X3)*2, db,

nBoot = 50, glmnet_alpha = c(1, 0.5), relaxed = FALSE, family = "binomial”
)

Probabilities, link, and classes

p_resp <- predict(fit_b, db, type = "response”)

p_link <- predict(fit_b, db, type = "link")

y_hat <- predict(fit_b, db, type = "class") # 0/1 labels (no SE/interval)

Mean-aggregation with uncertainty on probability scale
out_b <- predict(fit_b, db, type = "response”,

se.fit = TRUE, interval = TRUE, level = 0.9)
str(out_b)

svem_nonzero Coefficient Nonzero Percentages (SVEM)

38 svem_nonzero

Description

Calculates the percentage of bootstrap iterations in which each coefficient (excluding the intercept)
is nonzero, using a small tolerance. Optionally draws a quick ggplot2 summary and/or prints a
compact table.

Usage

svem_nonzero(object, tol = 1e-07, plot = TRUE, print_table = TRUE, ...)
Arguments

object An object of class svem_model.

tol Numeric tolerance for "nonzero" (default 1e-7).

plot Logical; if TRUE, draws a quick ggplot summary (default TRUE).

print_table Logical; if TRUE, prints a compact table (default TRUE).
Unused.

Details

This function summarizes variable selection stability across SVEM bootstrap refits. It expects
object$coef_matrix to contain the per-bootstrap coefficients (including an intercept column).

Value
Invisibly returns a data frame with columns:

e Variable

e Percent of Bootstraps Nonzero

See Also

coef.svem_model for averaged (optionally debiased) coefficients.

Examples
- Gaussian demo ----------
set.seed(10)
n <- 220

x1 <= rnorm(n)

x2 <= rnorm(n)

x3 <= rnorm(n)

eps <- rnorm(n, sd = 0.4)

y <= 0.7 + 1.5%x1 - 0.8%*x2 + 0.05*x3 + eps
dat <- data.frame(y, x1, x2, x3)

fit <- SVEMnet(y ~ (x1 + x2 + x3)*2, data = dat, nBoot = 40, relaxed = TRUE)

Table + plot
nz <- svem_nonzero(fit, tol = 1e-7, plot = TRUE, print_table = TRUE)

svem_optimize_random 39

head(nz)

—————-———- Binomial demo ----------
set.seed(11)

n <- 260

x1 <= rnorm(n)

x2 <= rnorm(n)

x3 <= rnorm(n)

1p <= -0.3 + 0.9*%x1 - 0.6*%x2 + 0.2*x3
p <= 1/(1+exp(-1p))

y <= rbinom(n, 1, p)

dat_b <- data.frame(y, x1, x2, x3)

fit_b <- SVEMnet(y ~ x1 + x2 + x3, data = dat_b,
family = "binomial”, nBoot = 40, relaxed = TRUE)

Plot optional; still summarizes the bootstrap selection frequencies
svem_nonzero(fit_b, plot = TRUE, print_table = TRUE)

svem_optimize_random Random-search optimizer with desirabilities, WMT reweighting, ClIs,
optimal + exploration candidates, and scored originals

Description

Draw random points via svem_random_table_multi, map each response to a desirability in [0, 1]
using Derringer—Suich (DS) curves, combine them into a single score, optionally reweight response
importances by whole-model test (WMT) p-values, and return: the best design, diverse high-score
optimal candidates (PAM medoids of the top fraction), and a second set of exploration candidates
that target high predicted uncertainty. Medoids are rows of the sampled table, so all candidates are
feasible under sampling and mixture constraints. If data is provided, the function also returns that
same table augmented with per-row predictions, DS terms, the combined score, and an uncertainty
measure.

Usage

svem_optimize_random(
objects,
goals,
data = NULL,
n = 50000,
mixture_groups = NULL,
level = 0.95,
top_frac = 0.02,
k_candidates = 5,
verbose = TRUE,
combine = c("geom”, "mean"),

40

svem_optimize_random

numeric_sampler = c("random”, "maximin"”, "uniform”),
reweight_by_wmt = FALSE,
wmt_transform = c("neglogli@”, "one_minus_p"),

wmt_control =

list(seed = 123),

k_exploration_candidates = 5,
exploration_top_frac = 0.05

Arguments

objects

goals

data

n

mixture_groups

level

top_frac

k_candidates

verbose

combine

numeric_sampler

reweight_by_wmt

Named list of svem_model objects (from SVEMnet()). Names are treated as re-
sponse identifiers (typically matching the left-hand sides of the model formulas).

non s on

Named list per response. Each entry must include: goal (one of "max”, "min",

"target”) and a nonnegative weight. For goal = "target”, also provide target.

Optional per-response DS controls: for "max”/"min”: lower_acceptable (L),
upper_acceptable (U), shape (>=0); for "target"”: tol (symmetric) or tol_left/tol_right,
and shape_left/shape_right. If anchors or tolerances are not provided, robust

defaults are inferred from the sampled responses using the 2nd-98th percentile

range.

Optional data frame used when reweight_by_wmt = TRUE and to produce original_data_scored.
If reweight_by_wmt = TRUE and data is not supplied (or is not a data frame),

the function stops. Each model’s stored formula is evaluated on data for the

WMT via svem_significance_test_parallel(). Any mixture_groups are

forwarded.

Number of random samples to draw.

Optional mixture constraints forwarded to svem_random_table_multi(). Each
group may include vars, lower, upper, and total.

Confidence level for percentile intervals. Default: 0. 95.

Fraction in (@, 1] of highest-score rows to cluster for optimal candidates. De-
fault: 0.02.

Number of diverse optimal candidates (medoids) to return. If @, no optimality
clustering is performed. Default: 5.

Logical; print a compact summary of the run and results.

How to combine per-response desirabilities. Use "geom” for weighted geometric
mean (default) or "mean” for weighted arithmetic mean. For combine = "geom”,
a small floor is applied before logging to avoid log(0).

Sampler for non-mixture numeric predictors passed to svem_random_table_multi().

One of "random” (default), "maximin”, or "uniform”. "random” uses lhs: : randomLHS ()
when available, otherwise plain runif ().

Logical; if TRUE, compute whole-model p-values (WMT) for each response on
data and downweight responses with weak factor relationships before scoring.
Requires data. Not allowed if any responses are binomial.

svem_optimize_random 41

wmt_transform Transformation used to turn p-values into multipliers when reweight_by_wmt
= TRUE. One of "neglog1@"”, "one_minus_p". Multipliers are floored internally
to avoid zeroing weights and then renormalized to sum to one with the user
weights.

wmt_control Optional list to override WMT defaults passed to svem_significance_test_parallel().
Recognized entries: nPoint, nSVEM, nPerm, percent, nBoot, glmnet_alpha,
weight_scheme, objective, auto_ratio_cutoff, relaxed, verbose, nCore,
seed, spec, response, use_spec_contrasts. By default, svem_optimize_random()
uses wmt_control = list(seed = 123), so WMT calls are reproducible; you
can override this by passing your own wmt_control (with or without a seed).
k_exploration_candidates
Number of diverse exploration candidates (medoids) to return. If @, no explo-
ration clustering is performed. Default: 5.
exploration_top_frac
Fraction in (@, 1] of rows with the largest uncertainty measure to cluster for
exploration candidates. Default: @.@5.

Details
A typical closed-loop workflow for formulation or process optimization is:

1. Fit one or more SVEMnet () models for responses of interest.
2. Optionally run whole-model testing (WMT) to reweight response goals.
3. Call svem_optimize_random() to generate:
* high-scoring "optimal" candidates for immediate testing, and
* high-uncertainty exploration candidates to improve the models.
4. Run these candidates in the lab, append the new data, refit the models, and repeat as needed.

See the package vignette for a full worked example of this closed-loop workflow.

Multi-response scoring. Each response is mapped to a DS desirability d,. € [0, 1]. Anchors L
and U (and target-band tolerances) default to robust values derived from the sampled 2nd-98th
percentile range when not supplied. Desirabilities are combined across responses using either a
weighted arithmetic mean (combine = "mean”) or a weighted geometric mean (combine = "geom"),
with a small fixed floor applied inside the log to avoid 1log(@).

Whole-model reweighting (WMT). When reweight_by_wmt = TRUE, each response receives a
multiplier from its whole-model p-value computed by svem_significance_test_parallel() on
data. Final weights are proportional to the product of the user weight and the multiplier, then
renormalized to sum to one. Supported transforms: "neglog10” (aggressive) and "one_minus_p"
(conservative). Multipliers are floored internally.

Uncertainty and exploration. The uncertainty_measure is the weighted sum of robustly nor-
malized CI widths across responses (each width normalized using the sampled 2nd-98th percentile
range, then weighted by the final weights). The largest row is the exploration target; PAM medoids
over the top exploration_top_frac by this measure are returned as exploration candidates. Both
optimal and exploration candidate tables include score and uncertainty_measure.

Implementation notes. Point predictions use ensemble-mean aggregation (agg = "mean”) with debias
= FALSE, both inside svem_random_table_multi() and in the candidate summaries. Percentile CIs
use agg = "mean”. The geometric combiner uses a fixed floor of 1e-6; the WMT multiplier floor is
1e-3. For binomial responses, fits and CI bounds are clamped to [0, 1].

42 svem_optimize_random

Value
A list with the following components:
best One-row data frame at the winning design with predictors, per-response predictions, per-
response percentile Cls (if available), the combined score, and uncertainty_measure.
best_idx Row index of the selected best design in the sampled table.
best_x Predictors at the best design.
best_pred Named numeric vector of predicted responses at best_x.
best_ci Data frame of percentile limits at best_x.

candidates Data frame of k_candidates diverse optimal candidates (medoids; existing rows)
with predictors, predictions, percentile Cls, the combined score, and uncertainty_measure;
NULL if k_candidates = 0.

exploration_best One-row data frame at the exploration target, with predictors, per-response pre-
dictions, percentile CIs, score, and uncertainty_measure.

exploration_best_idx Row index with the largest uncertainty_measure.
exploration_best_x Predictors at the exploration target.
exploration_best_pred Predicted responses at exploration_best_x.
exploration_best_ci Percentile CIs at exploration_best_x.

exploration_candidates Data frame of k_exploration_candidates diverse high-uncertainty can-

didates (medoids; existing rows) with predictors, predictions, percentile Cls, uncertainty_measure,

and score; NULL if k_exploration_candidates = @.

score_table Sampled table with responses, per-response desirabilities, weighted terms, optional
log-weighted terms (when combine = "geom”), CI widths, normalized CI widths, weighted CI
widths, the uncertainty_measure, and final score.

original_data_scored If datais provided: data augmented with predicted responses, per-response
desirabilities, combined score, and uncertainty_measure. Otherwise NULL.

weights_original User-provided weights normalized to sum to one before WMT reweighting.
weights_final Final weights after WMT multipliers and renormalization.

wmt_p_values Named vector of per-response whole-model p-values when reweight_by_wmt =
TRUE; otherwise NULL.

wmt_multipliers Named vector of per-response WMT multipliers when reweight_by_wmt = TRUE;
otherwise NULL.

goals Data frame describing each response goal, weight, target, and echoing original and final
weights and (when applicable) WMT information.

Binomial handling

For responses fit with family = "binomial”, this function expects predictions on the probability
scale. Predicted fits and percentile CI bounds (when available) are internally clamped to [0, 1]
before desirability and uncertainty calculations. To protect current Gaussian behavior, no link-
scale transforms are applied. Reweighting via WMT is not supported when any responses are
binomial; if reweight_by_wmt = TRUE and at least one response is binomial, the function stops
with an informative error.

svem_optimize_random 43

Acknowledgments

OpenATI’s GPT models (ol-preview and GPT-5 Thinking via ChatGPT) were used to assist with
coding and roxygen documentation; all content was reviewed and finalized by the author.

References

Gotwalt, C., & Ramsey, P. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference.
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/
ev-p/849873/redirect_from_archived_page/true

Karl, A. T. (2024). A randomized permutation whole-model test heuristic for Self-Validated Ensem-
ble Models (SVEM). Chemometrics and Intelligent Laboratory Systems, 249, 105122. doi:10.1016/
j-chemolab.2024.105122

Karl, A., Wisnowski, J., & Rushing, H. (2022). JMP Pro 17 Remedies for Practical Struggles with
Mixture Experiments. JMP Discovery Conference. doi:10.13140/RG.2.2.34598.40003/1

Lemkus, T., Gotwalt, C., Ramsey, P., & Weese, M. L. (2021). Self-Validated Ensemble Mod-
els for Design of Experiments. Chemometrics and Intelligent Laboratory Systems, 219, 104439.
doi:10.1016/j.chemolab.2021.104439

Xu, L., Gotwalt, C., Hong, Y., King, C. B., & Meeker, W. Q. (2020). Applications of the Fractional-
Random-Weight Bootstrap. The American Statistician, 74(4), 345-358. doi:10.1080/00031305.2020.1731599

Ramsey, P., Gaudard, M., & Levin, W. (2021). Accelerating Innovation with Space Filling Mixture
Designs, Neural Networks and SVEM. JMP Discovery Conference. https://community.jmp.
com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/
756841

Ramsey, P.,, & Gotwalt, C. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference -

Europe. https://community. jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-
ev-p/849647/redirect_from_archived_page/true

Ramsey, P., Levin, W., Lemkus, T., & Gotwalt, C. (2021). SVEM: A Paradigm Shift in Design and
Analysis of Experiments. JMP Discovery Conference - Europe. https://community.jmp.com/
t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/
756634

Ramsey, P., & McNeill, P. (2023). CMC, SVEM, Neural Networks, DOE, and Complexity: It’s All
About Prediction. JMP Discovery Conference.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

Meinshausen, N. (2007). Relaxed Lasso. Computational Statistics & Data Analysis, 52(1), 374-
393.

See Also

SVEMnet (), svem_random_table_multi(), predict.svem_model ()

https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://doi.org/10.1016/j.chemolab.2024.105122
https://doi.org/10.1016/j.chemolab.2024.105122
https://doi.org/10.13140/RG.2.2.34598.40003/1
https://doi.org/10.1016/j.chemolab.2021.104439
https://doi.org/10.1080/00031305.2020.1731599
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634

44 svem_optimize_random

Examples

--- Larger Gaussian-only example ---

set.seed(1)

n <- 120

X1 <= runif(n); X2 <- runif(n)

F <- factor(sample(c("lo”,"hi"), n, TRUE))

y1 <= 1 + 1.5%X1 - 0.8%X2 + 0.4x(F=="hi") + rnorm(n, 0, 0.2)
y2 <= 0.7 + 0.4xX1 + 0.4*X2 - 0.2*%(F=="hi") + rnorm(n, 0, 0.2)
dat <- data.frame(yl, y2, X1, X2, F)

ml <- SVEMnet(yl ~ X1 + X2 + F, dat, nBoot = 30, family = "gaussian")
m2 <- SVEMnet(y2 ~ X1 + X2 + F, dat, nBoot = 30, family = "gaussian")
objs <- list(yl =ml, y2 = m2)

goals <- list(

y1 = list(goal = "max", weight = 0.6),
y2 = list(goal = "target”, weight = 0.4, target = 0.9)
)
out <- svem_optimize_random(
objects = objs,
goals = goals,
n = 5000,
level = 0.95,
k_candidates = 5,
top_frac =0.02,
k_exploration_candidates = 5,
exploration_top_frac = 0.01,
numeric_sampler = "random”,
verbose = TRUE
)
out$best
head(out$candidates)

out$exploration_best
head(out$exploration_candidates)

Optional: reweight goals by whole-model p-values (Gaussian-only).
out_wmt <- svem_optimize_random(

objects = objs,

goals = goals,

data = dat,

n = 5000,

level = 0.95,
k_candidates =5,

top_frac =0.02,
k_exploration_candidates = 5,
exploration_top_frac = 0.01,
numeric_sampler = "random”,
reweight_by_wmt = TRUE,
wmt_transform = "neglogl@”,
verbose = TRUE

svem_random_table multi 45

out_wmt$weights_original
out_wmt$weights_final
out_wmt$wmt_p_values
head(out_wmt$candidates)
head(out_wmt$exploration_candidates)
head(out_wmt$original_data_scored)

--- Smaller mixed example: one Gaussian + one Binomial (probability scale) ---
set.seed(42)
n <- 80

X1 <= runif(n); X2 <- runif(n); G <- factor(sample(c(”"lo",”hi"), n, TRUE))

Gaussian response
yg <- 2 + 1.1%X1 - 0.7%X2 + 0.5%(G=="hi") + rnorm(n, @, 0.25)

Binomial response (probability via logistic link)
eta <- -0.3 + 1.2%X1 - 0.4%X2 + 0.6%(G=="hi")

p <= 1/(1 + exp(-eta))

yb <= rbinom(n, 1, p)

dmix <- data.frame(yg, yb, X1, X2, G)

mg <- SVEMnet(yg ~ X1 + X2 + G, dmix, nBoot = 30, family = "gaussian")
mb <- SVEMnet(yb ~ X1 + X2 + G, dmix, nBoot = 30, family = "binomial”, relaxed = FALSE)

objs_mix <- list(yg = mg, yb = mb)
goals_mix <- list(

yg = list(goal

n "

max", weight = 0.5),

yb = list(goal = "max", weight = @.5) # maximize event probability
)
out_mix <- svem_optimize_random(

objects = objs_mix,

goals = goals_mix,

n = 3000,

level = 0.95,

k_candidates = 3,

top_frac = 0.03,

numeric_sampler = "random”,

reweight_by_wmt = FALSE, # required when any response is binomial

verbose = TRUE

)
out_mix$best
head(out_mix$candidates)

svem_random_table_multi
Generate a Random Prediction Table from Multiple SVEMnet Models
(no refit)

svem_random_table_multi

Description

Samples the original predictor factor space cached in fitted svem_model objects and computes pre-
dictions from each model at the same random points. Intended for multiple responses built over
the same factor space and a deterministic factor expansion (so that a shared sampling schema is
available).

Usage

svem_random_table_multi(
objects,
n = 1000,
mixture_groups = NULL,
debias = FALSE,
range_tol = 1e-08,

numeric_sampler = c("random”, "maximin”, "uniform")
)
Arguments
objects A list of fitted svem_model objects returned by SVEMnet (). Each object must
contain $sampling_schema produced by the updated SVEMnet() implementa-
tion. A single model is also accepted and treated as a length-one list.
n Number of random points to generate. Default is 1000.

mixture_groups Optional list of mixture constraint groups. Each group is a list with elements
vars, lower, upper, total (see Notes on mixtures).

debias Logical; if TRUE, apply each model’s calibration during prediction when avail-
able (for Gaussian fits). Default is FALSE.

range_tol Numeric tolerance for comparing numeric ranges across models. Default is
1e-8.

numeric_sampler
Sampler for non-mixture numeric predictors: "random” (default), "maximin”,

or "uniform”. If "random” is selected and the lhs package is available, 1hs: : randomLHS ()

is used; otherwise plain runif ().

Details

Predictions are computed via predict.svem_model(..., agg = "mean"), i.e. by averaging per-
bootstrap member predictions on the requested scale. No refitting is performed.

All models must share an identical predictor schema:

e The same predictor_vars in the same order
* The same var_classes for each predictor
* Identical factor levels and level order

¢ Numeric ranges that match within range_tol

The function stops with an informative error message if any of these checks fail.

Models may be Gaussian or binomial; binomial predictions are returned on the probability scale by
default.

svem_random_table multi 47

Value

A list with three data frames:

* data: the sampled predictor settings, one row per random point.
* pred: one column per response, aligned to data rows.
e all: cbind(data, pred) for convenience.

Each prediction column is named by the model’s response (left-hand side). If a response name
would collide with a predictor name, " .pred” is appended.

Sampling strategy

Non-mixture numeric variables are sampled using a selectable method:

* "random”: random Latin hypercube when lhs is available, else independent uniforms on each
range.

* "maximin”: maximin Latin hypercube (more space-filling; slower).

* "uniform”: independent uniform draws within numeric ranges (fastest).

Mixture variables (if any) are sampled jointly within each specified group using a truncated Dirichlet
so that elementwise bounds and the total sum are satisfied. Categorical variables are sampled from
cached factor levels. The same random predictor table is fed to each model so response columns
are directly comparable.

Notes on mixtures

Each mixture group should list only numeric-like variables. Bounds are interpreted on the original
scale of those variables. If total equals the sum of lower bounds, the sampler returns the lower-
bound corner for that group. Infeasible constraints (i.e., sum(lower) > total or sum(upper) <
total) produce an error.

See Also

SVEMnet, predict.svem_model

Examples

set.seed(1)

n <- 60

X1 <= runif(n); X2 <- runif(n)

A <= runif(n); B <- runif(n); C <- pmax(@, 1 - A - B)
F <- factor(sample(c("lo","hi"), n, TRUE))

Gaussian responses
yl <=1 + 2%X1 - X2 + 3*A + 1.5%B + 0.5%C + (F=="hi") + rnorm(n, 0, 0.3)
y2 <- 0.5 + 0.8*X1 + 0.4%xX2 + rnorm(n, @, 0.2)

Binomial response (probability via logistic link)
eta <- -0.5 + 1.2%X1 - 0.7*X2 + 0.8%(F=="hi") + 0.6%*A
p <- 1/ (1 + exp(-eta))

48

yb <= rbinom(n, size = 1, prob = p)

d <- data.frame(yl, y2, yb, X1, X2, A, B, C,
fitl <- SVEMnet(yl ~ X1 + X2 +

fit2 <- SVEMnet(y2 ~ X1 + X2 +
fitb <- SVEMnet(yb ~ X1 + X2 +

A+B+C+F,
A+B+C+F,
A+B+C+F,

Mixture constraint for A, B, C that sum to 1
mix <- list(list(vars = c("A","B","C"),

lower = c(0,0,0),

upper = c(1,1,1),

total = 1))

Fast random sampler (shared predictor table; predictions bound as

tab_fast <- svem_random_table_multi(

F

d, nBoot
d, nBoot
d, nBoot

svem_significance_test_parallel

49, family = "gaussian")

40, family = "gaussian")

49, family = "binomial")
columns)

objects = list(yl = fitl1, y2 = fit2, yb = fitb),
n = 2000,

mixture_groups = mix,

debias = FALSE,

numeric_sampler = "random”

)
head(tab_fast$all)

Check that the binomial predictions are on [0,1]

range(tab_fast$preds$yb)

Uniform sampler (fastest)
tab_uni <- svem_random_table_multi(

objects = list(yl = fitl1, y2 = fit2, yb = fitb),
n = 2000,

debias = FALSE,

numeric_sampler = "uniform”

)
head(tab_uni$all)

svem_significance_test_parallel

SVEM Significance Test with Mixture Support (Parallel Version)

Description

Whole-model significance test for continuous (Gaussian) SVEM fits, with support for mixture factor

groups and parallel SVEM refits.

Usage

svem_significance_test_parallel(
formula,

svem_significance_test_parallel 49

data,

mixture_groups = NULL,
nPoint = 2000,

nSVEM = 10,

nPerm = 150,
percent = 90,
nBoot = 100,

glmnet_alpha

=c(),

weight_scheme = c("SVEM"),

objective = c("auto”, "wAIC", "wBIC", "wSSE"),
auto_ratio_cutoff = 1.3,

relaxed = FALSE,

verbose = TRUE,

nCore = parallel::detectCores() - 1,

seed = NULL,
spec = NULL,

response = NULL,
use_spec_contrasts = TRUE,

Arguments

formula

data

mixture_groups

nPoint

nSVEM

nPerm

percent

nBoot
glmnet_alpha
weight_scheme

objective

A formula specifying the model to be tested. If spec is provided, the right-hand
side is ignored and replaced by the locked expansion in spec.

A data frame containing the variables in the model.

Optional list describing one or more mixture factor groups. Each element of the
list should be a list with components vars (character vector of column names),
lower (numeric vector of lower bounds of the same length as vars), upper (nu-
meric vector of upper bounds of the same length), and total (scalar specifying
the sum of the mixture variables). All mixture variables must be included in
vars, and no variable can appear in more than one mixture group. Defaults to
NULL.

Number of random points in the factor space (default: 2000).

Number of SVEM fits on the original (unpermuted) data used to summarize the
observed surface (default: 10).

Number of SVEM fits on permuted responses used to build the null reference
distribution (default: 150).

Percentage of variance to capture in the SVD (default: 90).

Number of bootstrap iterations within each SVEM fit (default: 100).
The alpha parameter(s) for glmnet (default: c(1)).

Weighting scheme for SVEM (default: "SVEM"). Passed to SVEMnet ().

Objective used inside SVEMnet() to pick the bootstrap path solution. One of
"auto"”, "wAIC", "wBIC", or "wSSE" (default: "auto"). Note: "wGIC" is no
longer supported.

50

svem_significance_test_parallel

auto_ratio_cutoff
Single cutoff for the automatic rule when objective = "auto” (default 1. 3).
Withr =n_X/ p_X,if r >= auto_ratio_cutoff wAIC is used; otherwise wBIC.
Passed through to SVEMnet ().

relaxed Logical; default FALSE. When TRUE, inner SVEMnet () fits use glmnet’s relaxed
elastic net path and select both lambda and relaxed gamma on each bootstrap.
When FALSE, the standard glmnet path is used. This value is passed through
to SVEMnet (). Note: if relaxed = TRUE and glmnet_alpha includes 0, ridge
(alpha = 0) is dropped by SVEMnet () for relaxed fits.

verbose Logical; if TRUE, display progress messages (default: TRUE).

nCore Number of CPU cores for parallel processing. Defaultis parallel: :detectCores()

- 1, with a floor of 1.

seed Optional integer seed for reproducible parallel RNG (default: NULL). When sup-
plied, the master RNG kind is set to "L'Ecuyer-CMRG" with sample.kind =
"Rounding”, and doRNG: : registerDoRNG() is used so that the %dorng% loops
are reproducible regardless of scheduling.

spec Optional bigexp_spec created by bigexp_terms(). If provided, the test reuses
its locked expansion. The working formula becomes bigexp_formula(spec,
response_name), where response_name is taken from response if supplied,

otherwise from the left-hand side of formula. Categorical sampling uses spec$levels

and numeric sampling prefers spec$num_range when available.

response Optional character name for the response variable to use when spec is supplied.
If omitted, the response is taken from the left-hand side of formula.
use_spec_contrasts
Logical; default TRUE. When spec is supplied and use_spec_contrasts = TRUE,
the function replays spec$settings$contrasts_options on the parallel work-
ers for deterministic coding.

Additional arguments passed to SVEMnet () and then to glmnet () (for example:

penalty.factor, offset, lower.limits, upper.limits, standardize.response,

etc.). The relaxed setting is controlled by the relaxed argument of this func-
tion and any relaxed value passed via . . . is ignored with a warning.

Details

The test follows Karl (2024): it generates a space-filling grid in the factor space, fits multiple SVEM
models on the original data and on permuted responses, standardizes predictions on the grid, reduces
them via an SVD-based low-rank representation, and summarizes each fit by a Mahalanobis-type
distance in the reduced space. A flexible SHASHo distribution is then fit to the permutation dis-
tances and used to obtain a whole-model p-value for the observed surface.

All SVEM refits (for the original and permuted responses) are run in parallel using foreach +
doParallel. Random draws (including permutations and evaluation-grid sampling) are made re-
producible across workers using doRNG together with RNGkind ("L 'Ecuyer-CMRG", sample.kind
= "Rounding") when a seed is supplied.

The function can optionally reuse a deterministic, locked expansion built with bigexp_terms().
Provide spec (and optionally response) to ensure that categorical levels, contrasts, and the polyno-
mial/interaction structure are identical across repeated calls and across multiple responses sharing
the same factor space.

svem_significance_test_parallel 51

Although the implementation calls SVEMnet () internally and will technically run for any supported
family, the significance test is designed for continuous (Gaussian) responses and should be inter-
preted in that setting.

Value
A list of class svem_significance_test with components:

* p_value: the median whole-model p-value over original SVEM fits.
* p_values: vector of p-values for each original SVEM fit.

* d_Y: distances for the original SVEM fits.

e d_pi_Y: distances for the permutation fits.

e distribution_fit: the fitted SHASHo distribution object.

* data_d: data frame of distances and source labels, suitable for plotting.

Acknowledgments

OpenAI’s GPT models (ol-preview and GPT-5 Thinking via ChatGPT) were used to assist with
coding and roxygen documentation; all content was reviewed and finalized by the author.

References

Gotwalt, C., & Ramsey, P. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference.
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/
ev-p/849873/redirect_from_archived_page/true

Karl, A. T. (2024). A randomized permutation whole-model test heuristic for Self-Validated Ensem-
ble Models (SVEM). Chemometrics and Intelligent Laboratory Systems, 249, 105122. doi:10.1016/
j.chemolab.2024.105122

Karl, A., Wisnowski, J., & Rushing, H. (2022). JMP Pro 17 Remedies for Practical Struggles with
Mixture Experiments. JMP Discovery Conference. doi:10.13140/RG.2.2.34598.40003/1

Lemkus, T., Gotwalt, C., Ramsey, P., & Weese, M. L. (2021). Self-Validated Ensemble Mod-
els for Design of Experiments. Chemometrics and Intelligent Laboratory Systems, 219, 104439.
doi:10.1016/j.chemolab.2021.104439

Xu, L., Gotwalt, C., Hong, Y., King, C. B., & Meeker, W. Q. (2020). Applications of the Fractional-
Random-Weight Bootstrap. The American Statistician, 74(4), 345-358. doi:10.1080/00031305.2020.1731599

Ramsey, P., Gaudard, M., & Levin, W. (2021). Accelerating Innovation with Space Filling Mixture

Designs, Neural Networks and SVEM. JMP Discovery Conference. https://community.jmp.
com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/

756841

Ramsey, P., & Gotwalt, C. (2018). Model Validation Strategies for Designed Experiments Using

Bootstrapping Techniques With Applications to Biopharmaceuticals. JMP Discovery Conference -

Europe. https://community. jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-
ev-p/849647/redirect_from_archived_page/true

Ramsey, P., Levin, W., Lemkus, T., & Gotwalt, C. (2021). SVEM: A Paradigm Shift in Design and
Analysis of Experiments. JMP Discovery Conference - Europe. https://community.jmp.com/

https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849873/redirect_from_archived_page/true
https://doi.org/10.1016/j.chemolab.2024.105122
https://doi.org/10.1016/j.chemolab.2024.105122
https://doi.org/10.13140/RG.2.2.34598.40003/1
https://doi.org/10.1016/j.chemolab.2021.104439
https://doi.org/10.1080/00031305.2020.1731599
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Accelerating-Innovation-with-Space-Filling-Mixture-Designs/ev-p/756841
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/Model-Validation-Strategies-for-Designed-Experiments-Using/ev-p/849647/redirect_from_archived_page/true
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634

52 svem_significance_test_parallel

t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/
756634

Ramsey, P., & McNeill, P. (2023). CMC, SVEM, Neural Networks, DOE, and Complexity: It’s All
About Prediction. JMP Discovery Conference.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

Meinshausen, N. (2007). Relaxed Lasso. Computational Statistics & Data Analysis, 52(1), 374-
393.

See Also

bigexp_terms, bigexp_formula

Examples

set.seed(1)

Small toy data with a 3-component mixture A, B, C
n <- 40
sample_trunc_dirichlet <- function(n, lower, upper, total) {
k <- length(lower)
stopifnot(length(upper) == k, total >= sum(lower), total <= sum(upper))
avail <- total - sum(lower)
if (avail <= @) return(matrix(rep(lower, each = n), nrow = n))
out <- matrix(NA_real_, n, k)
i <= 1L
while (i <= n) {
g <- rgamma(k, 1, 1)
w <- g / sum(g)
x <- lower + avail * w
if (all(x <= upper + 1e-12)) { out[i,] <- x; i <-1i + 1L }
}
out

}

lower <- c(0.10, 0.20, 0.05)

upper <- c(0.60, 0.70, 0.50)

total <- 1.0

ABC <- sample_trunc_dirichlet(n, lower, upper, total)

A <- ABC[, 1]; B <- ABC[, 2]; C <- ABC[, 3]

X <= runif(n)

F <- factor(sample(c("red”, "blue"), n, replace = TRUE))

y <= 2 + 3*xA + 1.5%B + 1.2%C + 0.5%X + 1x(F == "red"”) + rnorm(n, sd = 0.3)
dat <- data.frame(y =y, A=A, B=B, C=C, X=X, F=F)

mix_spec <- list(list(
vars = c("A", "B", "C"),
lower = lower,
upper = upper,
total = total

D)

https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634
https://community.jmp.com/t5/Abstracts/SVEM-A-Paradigm-Shift-in-Design-and-Analysis-of-Experiments-2021/ev-p/756634

with_bigexp_contrasts 53

Parallel significance test (default relaxed = FALSE)
res <- svem_significance_test_parallel(
y~A+B+C+X+F,

data = dat,

mixture_groups = mix_spec,

glmnet_alpha = c(1),

weight_scheme = "SVEM",

objective = "auto”,

auto_ratio_cutoff = 1.3,

relaxed = FALSE, # default, shown for clarity
nCore =2,

seed = 123,

verbose = FALSE

)

print(res$p_value)

with_bigexp_contrasts Evaluate code with the spec’s recorded contrast options

Description

with_bigexp_contrasts() temporarily restores the contrasts options that were active when the spec
was built, runs a block of code, and then restores the original options. This is useful when a model-
ing function uses the global options("contrasts") to decide how to encode factors.

Usage

with_bigexp_contrasts(spec, code)

Arguments
spec A "bigexp_spec" object with stored contrasts_options in settings.
code Code to evaluate with temporarily restored options.

Examples

set.seed(1)
df4 <- data.frame(

y rnorm(10),

X1 = rnorm(10),

G factor(sample(c("A", "B"), 10, replace = TRUE))
)

spec4 <- bigexp_terms(
y ~ X1 +G,
data df4,
factorial_order = 2,

54

polynomial_order = 2

)

with_bigexp_contrasts(spec4, {
mm4 <- model.matrix(spec4$formula, df4)
head(mm4)

»

with_bigexp_contrasts

Index

* SVEM methods
predict.svem_model, 25

+ datasets
lipid_screen, 17

* package
SVEMnet-package, 2

bigexp_formula, 3,4, 9, 52
bigexp_model_matrix, 5,6, 7, 9
bigexp_prepare, 6, 9
bigexp_terms, 3,6, 7,7, 52
bigexp_train, 9, 10

coef.svem_model, 3, 11, 38
glmnet_with_cv, 3, 13
lipid_screen, 3, 17

plot.svem_binomial, 21
plot.svem_model, 3, 23
plot.svem_significance_test, 3, 24
predict.svem_cv (predict_cv), 28
predict.svem_model, 3, 25, 47
predict.svem_model(), 43
predict_cv, 28
print.bigexp_spec, 30
print.svem_significance_test, 31

svem_nonzero, 3, 12, 37
svem_optimize_random, 3, 39
svem_random_table_multi, 3, 45
svem_random_table_multi(), 43
svem_significance_test_parallel, 3,48
SVEMnet, 3, 27, 31,47

SVEMnet (), 43

SVEMnet-package, 2

with_bigexp_contrasts, 53

55

	SVEMnet-package
	bigexp_formula
	bigexp_model_matrix
	bigexp_prepare
	bigexp_terms
	bigexp_train
	coef.svem_model
	glmnet_with_cv
	lipid_screen
	plot.svem_binomial
	plot.svem_model
	plot.svem_significance_test
	predict.svem_model
	predict_cv
	print.bigexp_spec
	print.svem_significance_test
	SVEMnet
	svem_nonzero
	svem_optimize_random
	svem_random_table_multi
	svem_significance_test_parallel
	with_bigexp_contrasts
	Index

