Package 'ManlyMix'

September 23, 2024

September 23, 2024
Version 0.1.15.1
Date 2023-04-27
Title Manly Mixture Modeling and Model-Based Clustering
Depends R (>= 3.0.0)
LazyLoad yes
LazyData no
Description The utility of this package includes finite mixture modeling and model-based clustering through Manly mixture models by Zhu and Melnykov (2016) < DOI:10.1016/j.csda.2016.01.015>. It also provides capabilities for forward and backward model selection procedures.
License GPL (>= 2)
Author Xuwen Zhu [aut, cre], Volodymyr Melnykov [aut], Michael Hutt [ctb, cph] (NM optimization in c), Stephen Moshier [ctb, cph] (eigen calculations in c), Rouben Rostamian [ctb, cph] (memory allocation in c)
Maintainer Xuwen Zhu <xzhu20@cba.ua.edu></xzhu20@cba.ua.edu>
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-09-23 11:15:38 UTC
Duto I distriction 2024 07 23 11.15.30 0 10
Contents
ManlyMix-package acidity ais bankruptcy ClassAgree Manly.EM Manly.Kmeans Manly.model Manly.wodel Manly.overlap

2 ManlyMix-package

Manly	Mix-package	nite ixtur		odei	ling	g a	nd .	то	de	l-b	oas	ed	cli	ust	er	ing	b	as	ed	on	M	l an	ly
Index																							20
	seeds	 	 	 			•		•	•		•				•		٠	•				18
	Manly.var																						
	Manly.sim	 	 	 																			16
	Manly.select																						
	Manly.plot	 	 	 																			13

Description

The utility of this package includes finite mixture modeling and model-based clustering based on Manly mixtures as well as forward and backward model selection procedures.

Details

Package: ManlyMix
Type: Package
Version: 0.1.7
Date: 2016-12-01
License: GPL (>= 2)
LazyLoad: no

Function 'Manly.sim' simulates Manly mixture datasets.

Function 'Manly.overlap' estimates the pairwise overlaps for a Manly mixture.

Function 'Manly.EM' runs the EM algorithm for Manly mixture models.

Function 'Manly.select' runs forward and backward model selection procedures.

Function 'Manly.Kmeans' runs k-means model with Manly transformation.

Function 'Manly.var' produces the variance-covariance matrix of the parameter estimates from Manly mixture model.

Function 'Manly.plot' produces the density plot or contour plot of Manly mixture.

Function 'Manly.model' incorporates all Manly mixture related functionality.

Author(s)

Xuwen Zhu and Volodymyr Melnykov.

Maintainer: Xuwen Zhu <xuwen.zhu@louisville.edu>

acidity 3

References

Zhu, X. and Melnykov, V. (2016) "Manly Transformation in Finite Mixture Modeling", *Journal of Computational Statistics and Data Analysis*, doi:10.1016/j.csda.2016.01.015.

Maitra, R. and Melnykov, V. (2010) "Simulating data to study performance of finite mixture modeling and clustering algorithms", *Journal of Computational and Graphical Statistics*, 2:19, 354-376.

Melnykov, V., Chen, W.-C., and Maitra, R. (2012) "MixSim: An R Package for Simulating Data to Study Performance of Clustering Algorithms", *Journal of Statistical Software*, 51:12, 1-25.

Examples

```
set.seed(123)
K < -3; p < -4
X <- as.matrix(iris[,-5])</pre>
id.true \leftarrow rep(1:K, each = 50)
# Obtain initial memberships based on the K-means algorithm
id.km <- kmeans(X, K)$cluster
# Run the CEM algorithm for Manly K-means model
la <- matrix(0.1, K, p)</pre>
C <- Manly.Kmeans(X, id = id.km, la = la)</pre>
# Run the EM algorithm for a Gaussian mixture model based on K-means solution
G \leftarrow Manly.EM(X, id = id.km)
id.G <- G$id
# Run FORWARD SELECTION ('silent' is on)
F <- Manly.select(X, model = G, method = "forward", silent = TRUE)
# Run the EM algorithm for a full Manly mixture model based on Gaussian mixture solution
la <- matrix(0.1, K, p)</pre>
M \leftarrow Manly.EM(X, id = id.G, la = la)
# Run BACKWARD SELECTION ('silent' is off)
B <- Manly.select(X, model = M, method = "backward")</pre>
BICs <- c(G$bic, M$bic, F$bic, B$bic)
names(BICs) <- c("Gaussian", "Manly", "Forward", "Backward")</pre>
BICs
```

acidity

Acidity data

Description

Acidity index measured in a sample of 155 lakes in the Northeastern United States. The data are on the log scale.

4 ais

Usage

```
data(acidity)
```

Format

A data vector with 155 observations on the acidity index.

Details

The data was first analysed by Crawford et al. (1994).

References

Crawford, S. L. (1994) An application of the Laplace method to finite mixture distribution, Journal of the American Statistical Association, 89, 259-267.

Examples

```
data(acidity)
```

ais

Australian Institute of Sport data

Description

Data on 102 male and 100 female athletes collected at the Australian Institute of Sport, courtesy of Richard Telford and Ross Cunningham.

Usage

```
data(ais)
```

Format

A data frame with 202 observations on the following 13 variables.

```
sex Factor with levels: female, male;
```

RCC Red cell count;

WCC White cell count;

Hc Hematocrit;

Hg Hemoglobin;

Fe Plasma ferritin concentration;

BMI Body Mass Index;

bankruptcy 5

```
SSF Sum of skin folds;
Bfat Body fat percentage;
LBM Lean body mass;
Ht Height, cm;
Wt Weight, kg
```

Details

The data have been made publicly available in connection with the book by Cook and Weisberg (1994).

References

Cook and Weisberg (1994) An Introduction to Regression Graphics, John Wiley & Sons, New York.

Examples

data(ais)

bankruptcy

Bankruptcy data

Description

The data set contain the ratio of retained earnings (RE) to total assets, and the ratio of earnings before interests and taxes (EBIT) to total assets of 66 American firms recorded in the form of ratios. Half of the selected firms had filed for bankruptcy.

Usage

data(bankruptcy)

Format

A data frame with the following variables:

Y The status of the firm: 0 bankruptcy or 1 financially sound;

RE Ratio of retained earnings to total assets;

EBIT Ratio of earnings before interests and taxes to total assets

References

Altman E.I. (1968) Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, *J Finance* **23**(4): 589-609

6 ClassAgree

Examples

```
data(bankruptcy)
```

ClassAgree

Calculates the confusion matrix and number of misclassifications

Description

Calculates the confusion matrix and number of misclassifications.

Usage

```
ClassAgree(est.id, trueid)
```

Arguments

est.id estimated membership vector
trueid true membership vector

Value

```
set.seed(123)

K <- 3; p <- 4

X <- as.matrix(iris[,-5])
id.true <- rep(1:K, each = 50)

# Obtain initial memberships based on the K-means algorithm
id.km <- kmeans(X, K)$cluster

ClassAgree(id.km, id.true)</pre>
```

Manly.EM 7

Manly.EM	EM algorithm for Manly mixture model
----------	--------------------------------------

Description

Runs the EM algorithm for a Manly mixture model with specified initial membership and transformation parameters.

Usage

```
Manly.EM(X, id = NULL, la = NULL, tau = NULL, Mu = NULL, S = NULL, tol = 1e-5, max.iter = 1000)
```

Arguments

Χ	dataset matrix (n x p)
id	initial membership vector (length n)
la	initial transformation parameters (K x p)
tau	initial vector of mixing proportions (length K)
Mu	initial matrix of mean vectors (K x p)
S	initial array of covariance matrices (p x p x K)
tol	tolerance level
max.iter	maximum number of iterations

Details

Runs the EM algorithm for a Manly mixture model for a provided dataset. Manly mixture model assumes that a multivariate Manly transformation applied to each component allows to reach near-normality. A user has a choice to specify either initial id vector 'id' and transformation parameters 'la' or initial mode parameters 'la', 'tau', 'Mu', and 'S'. In the case when transformation parameters are not provided, the function runs the EM algorithm without any transformations, i.e., it is equivalent to the EM algorithm for a Gaussian mixtuire model. If some transformation parameters have to be excluded from the consideration, in the corresponding positions of matrix 'la', the user has to specify value 0. Notation: n - sample size, p - dimensionality of the dataset X, K - number of mixture components.

Value

la	matrix of the estimated transformation parameters $(K \ x \ p)$
tau	vector of mixing proportions (length K)
Mu	matrix of the estimated mean vectors (K x p)
S	array of the estimated covariance matrices (p x p x K)
gamma	matrix of posterior probabilities (n x K)
id	estimated membership vector (length n)

8 Manly.Kmeans

11	log likelihood value
bic	Bayesian Information Criterion
iter	number of EM iterations run
flag	convergence flag (0 - success, 1 - failure)

See Also

Manly.select

Examples

```
set.seed(123)

K <- 3; p <- 4

X <- as.matrix(iris[,-5])
id.true <- rep(1:K, each = 50)

# Obtain initial memberships based on the K-means algorithm
id.km <- kmeans(X, K)$cluster

# Run the EM algorithm for a Gaussian mixture model based on K-means solution
A <- Manly.EM(X, id.km)
id.Gauss <- A$id

ClassAgree(id.Gauss, id.true)

# Run the EM algorithm for a Manly mixture model based on Gaussian mixture solution
la <- matrix(0.1, K, p)
B <- Manly.EM(X, id.Gauss, la)
id.Manly <- B$id

ClassAgree(id.Manly, id.true)</pre>
```

Manly.Kmeans

k-means algorithm with Manly transformation

Description

Runs the CEM algorithm for k-means clustering with specified initial membership and transformation parameters.

Usage

```
Manly.Kmeans(X, id = NULL, la = NULL, Mu = NULL, S = NULL,
initial = "k-means", K = NULL, nstart = 100, method = "ward.D",
tol = 1e-5, max.iter = 1000)
```

Manly.Kmeans 9

Arguments

Χ	dataset matrix (n x p)
id	initial membership vector (length n)
la	initial transformation parameters (K x p)
Mu	initial matrix of mean vectors (K x p)
S	initial vector of variances (K)
initial	initialization strategy of the EM algorithm ("k-means" - partition obtained by k-means clustering, "hierarchical" - partition obtained by hierarchical clustering)
K	number of clusters for the k-means initialization
nstart	number of random starts for the k-means initialization
method	linkage method for the hierarchical initialization
tol	tolerance level
max.iter	maximum number of iterations

Details

Runs the CEM algorithm for k-means clustering with Manly transformation for a provided dataset. The model assumes that a multivariate Manly transformation applied to each component allows to reach near-normality. A user has a choice to specify either initial id vector 'id' and transformation parameters 'la' or initial mode parameters 'la', 'Mu', and 'S'. In the case when transformation parameters are not provided, the function runs the EM algorithm without any transformations, i.e., it is equivalent to the EM algorithm for a k-means model. If some transformation parameters have to be excluded from the consideration, in the corresponding positions of matrix 'la', the user has to specify value 0. Notation: n - sample size, p - dimensionality of the dataset X, K - number of mixture components.

Value

la	matrix of the estimated transformation parameters $(K \ x \ p)$
Mu	matrix of the estimated mean vectors (K x p)
S	array of the estimated covariance matrices (K)
id	estimated membership vector (length n)
iter	number of EM iterations run
flag	convergence flag (0 - success, 1 - failure)

See Also

Manly.EM

Manly.model

Examples

```
set.seed(123)

K <- 3; p <- 4

X <- as.matrix(iris[,-5])
id.true <- rep(1:K, each = 50)

# Obtain initial memberships based on the traditional K-means algorithm
id.km <- kmeans(X, K)$cluster

# Run the CEM algorithm for k-means with Manly transformation based on traditional k-means solution
la <- matrix(0.1, K, p)
B <- Manly.Kmeans(X, id.km, la)
id.Manly <- B$id

ClassAgree(id.Manly, id.true)</pre>
```

Manly.model

Manly mixture model

Description

Runs all the functionality of a Manly mixture model.

Usage

```
Manly.model(X, K = 1:5, Gaussian = FALSE, initial = "k-means",
nstart = 100, method = "ward.D", short.iter = 5,
select = "none", silent = TRUE, plot = FALSE, var1 = NULL,
var2 = NULL, VarAssess = FALSE, conf.CI = NULL, overlap = FALSE, N = 1000,
tol = 1e-5, max.iter = 1000, ...)
```

Arguments

Χ	dataset matrix (n x p)
K	number of components tested
Gaussian	whether Gaussian mixture models are run or not
initial	initialization strategy of the EM algorithm ("k-means" - partition obtained by k-means clustering, "hierarchical" - partition obtained by hierarchical clustering, "emEM" - parameters estimated by the emEM algorithm)
nstart	number of random starts for the k-means or the emEM initialization
method	linkage method for the hierarchical initialization
short.iter	number of short emEM iterations to run
select	control to run Manly.select or not ("none" - do not run Manly.select, "forward" - run forward selection, "backward" - run backward selection)

Manly.model 11

silent	control the output from Manly.select
plot	control to construct the density or contour plot or not
var1	x-axis variable for contour plot or variable for density plot
var2	y-axis variable for contour plot
VarAssess	run the variability assessment of the Manly mixture model or not
conf.CI	specify the confidence level of parameter estimates
overlap	estimate the overlap of Manly mixture components or not
N	number of Monte Carlo simulations to run in the Manly.overlap function
tol	tolerance level
max.iter	maximum number of iterations
	further arguments related to Manly.plot

Details

Wrapper function that incorporates all functionality associated with Manly mixture modeling.

Value

Model	best mixture model obtained
VarAssess	estimated variance-covariance matrix for model parameter estimates
Overlap	estimated overlap of Manly mixture components

See Also

Manly.EM

```
set.seed(123)

K <- 3; p <- 4

X <- as.matrix(iris[,-5])
id.true <- rep(1:K, each = 50)

Obj <- Manly.model(X, K = 1:5, initial = "emEM", nstart = 1, short.iter = 5)</pre>
```

Manly.overlap

Manly.overlap	Estimates the overlap for a Manly mixture
---------------	---

Description

Estimates the pairwise overlap matrix for a Manly mixture by simulating samples based on user-specified parameters.

Usage

```
Manly.overlap(tau, Mu, S, la, N = 1000)
```

Arguments

la	matrix of transformation parameters (K x p)
tau	vector of mixing proportions (length K)
Mu	matrix of mean vectors (K x p)
S	array of covariance matrices (p x p x K)
N	number of samples simulated

Details

Estimates the pairwise overlap matrix for a Manly mixture. Overlap is defined as sum of two misclassification probabilities.

Value

OmegaMap	matrix of misclassification probabilities (K x K); OmegaMap[i,j] is the probability that X coming from the i-th component is classified to the j-th component.
BarOmega	value of average overlap.
MaxOmega	value of maximum overlap.

References

Maitra, R. and Melnykov, V. (2010) "Simulating data to study performance of finite mixture modeling and clustering algorithms", *Journal of Computational and Graphical Statistics*, 2:19, 354-376.

Melnykov, V., Chen, W.-C., and Maitra, R. (2012) "MixSim: An R Package for Simulating Data to Study Performance of Clustering Algorithms", *Journal of Statistical Software*, 51:12, 1-25.

Manly.plot

Examples

```
#set.seed(123)
#sets the number of components, dimensionality and sample size
K <- 3
p <- 2

#sets the mixture parameters
tau <- c(0.25, 0.3, 0.45)
Mu <- matrix(c(4.5,4,5,7,8,5.5),3)
la <- matrix(c(0.2,0.5,0.3,0.25,0.35,0.4),3)
S <- array(NA, dim = c(p,p,K))
S[,,1] <- matrix(c(0.4,0,0,0.4),2)
S[,,2] <- matrix(c(1,-0.2,-0.2,0.6),2)
S[,,3] <- matrix(c(2,-1,-1,2),2)

#computes the overlap
A <- Manly.overlap(tau, Mu, S, la)
print(A)</pre>
```

Manly.plot

Density plot or contour plot for Manly mixture model

Description

Provides a contour plot or a density plot for the fitted data with Manly mixture model.

Usage

```
Manly.plot(X, var1 = NULL, var2 = NULL, model = NULL, x.slice = 100,
y.slice = 100, x.mar = 1, y.mar = 1, col = "lightgrey", ...)
```

Arguments

Χ	dataset matrix (n x p)
var1	x-axis variable for contour plot or variable for density plot
var2	y-axis variable for contour plot
model	fitted Manly mixture model
x.slice	number of slices in the first variable sequence in the contour
y.slice	number of slices in the second variable sequence in the contour
x.mar	value to be subtracted/added to the smallest/largest observation in the x-axis
y.mar	value to be subtracted/added to the smallest/largest observation in the y-axis
col	color of the contour lines
	further arguments related to contour and hist

14 Manly.select

Details

Provides the contour plot or density plot for the fitted data by Manly mixture model.

See Also

Manly.EM

Examples

```
set.seed(123)

K <- 2; p <- 2
X <- as.matrix(faithful)

# Obtain initial memberships based on the K-means algorithm
id.km <- kmeans(X, K)$cluster

# Run the EM algorithm for a Manly mixture model based on K-means solution
la <- matrix(0.1, K, p)
B <- Manly.EM(X, id.km, la)

Manly.plot(X, model = B, var1 = 1, x.mar = 1, y.mar = 2,
xaxs="i", yaxs="i", xaxt="n", yaxt="n", xlab="",
ylab = "", nlevels = 10, drawlabels = FALSE,
lwd = 3.2, col = "lightgrey", pch = 19)</pre>
```

Manly.select

Manly transformation selection

Description

Runs forward or backward model selection procedures for finding the optimal model in terms of BIC.

Usage

```
Manly.select(X, model, method, tol = 1e-5, max.iter = 1000, silent = FALSE)
```

Arguments

Χ	dataset matrix (n x p)	
model	list containing parameters of the initial model	
method	model selection method (options 'forward' and 'backward')	
tol	tolerance level	
max.iter	maximum number of iterations	
silent	output control	

Manly.select 15

Details

Runs Manly forward and backward model selection procedures for a provided dataset. Forward and backward selection can be started from any ManlyMix object provided in 'model'. Manly transformation parameters are provided in matrix 'model\$la'. If some transformations are not needed for specific components, zeros have to be specified in corresponding position. When all transformation parameters are set to zero, Manly mixture model degenerates to a Gaussian mixture model. Notation: n - sample size, p - dimensionality of the dataset X, K - number of mixture components.

Value

la	matrix of the estimated transformation parameters $(K \times p)$
tau	vector of mixing proportions (length K)
Mu	matrix of the estimated mean vectors (K x p)
S	array of the estimated covariance matrices (p x p x K)
gamma	matrix of posterior probabilities (n x K)
id	estimated membership vector (length n)
11	log likelihood value
bic	Bayesian Information Criterion
iter	number of EM iterations run
flag	convergence flag (0 - success, 1 - failure)

See Also

Manly.EM

```
set.seed(123)

K <- 3; p <- 4

X <- as.matrix(iris[,-5])
id.true <- rep(1:K, each = 50)

# Obtain initial memberships based on the K-means algorithm
id.km <- kmeans(X, K)$cluster

# Run the EM algorithm for a Gaussian mixture model based on K-means solution
G <- Manly.EM(X, id = id.km)
id.G <- G$id

# Run FORWARD SELECTION ('silent' is on)
F <- Manly.select(X, model = G, method = "forward", silent = TRUE)

# Run the EM algorithm for a full Manly mixture model based on Gaussian mixture solution
la <- matrix(0.1, K, p)
M <- Manly.EM(X, id = id.G, la = la)

# Run BACKWARD SELECTION ('silent' is off)</pre>
```

16 Manly.sim

```
B <- Manly.select(X, model = M, method = "backward")
BICs <- c(G$bic, M$bic, F$bic, B$bic)
names(BICs) <- c("Gaussian", "Manly", "Forward", "Backward")
BICs</pre>
```

Manly.sim

Simulates Manly mixture dataset

Description

Simulates Manly mixture dataset given the mixture parameters and sample size.

Usage

```
Manly.sim(n, la, tau, Mu, S)
```

Arguments

n	sample size
la	matrix of transformation parameters (K x p)
tau	vector of mixing proportions (length K)
Mu	matrix of mean vectors (K x p)
S	array of covariance matrices (p x p x K)

Details

Simulates a Manly mixture dataset. Manly mixture data points are computed from back-transforming Gaussian distributed data points using user-specified transformation parameters 'la'.

Value

```
X the simulated Manly mixture dataset
id the simulated membership of the data
```

```
set.seed(123)  
#sets the number of components, dimensionality and sample size K <- 3  
p <- 2  
n <- 1000  
#sets the parameters to simulate data from tau <- c(0.25, 0.3, 0.45)  
Mu <- matrix(c(12,4,4,12,4,10),3)
```

Manly.var 17

```
la <- matrix(c(1.2,0.5,1,0.5,0.5,0.7),3)

S <- array(NA, dim = c(p,p,K))

S[,,1] <- matrix(c(4,0,0.4),2)

S[,,2] <- matrix(c(5,-1,-1,3),2)

S[,,3] <- matrix(c(2,-1,-1,2),2)

#use function Manly.sim to simulate dataset with membership A <- Manly.sim(n, la, tau, Mu, S)

#plot the data

plot(A$X, col = A$id)
```

Manly.var

Variability assessment of Manly mixture model

Description

Runs the variability assessment for a Manly mixture model.

Usage

```
Manly.var(X, model = NULL, conf.CI = NULL)
```

Arguments

X dataset matrix (n x p)

model Manly mixture model

conf.CI confidence level, say 95 percent confidence

Details

Returns the estimated variance-covariance matrix and confidence intervals for model parameter estimates.

Value

V variance-covariance matrix.

CI confidence intervals for each parameter.

See Also

Manly.EM

18 seeds

Examples

```
#Use iris dataset
K <- 3; p <- 4
X <- as.matrix(iris[,-5])

#Use k-means clustering result
#all skewness parameters set to be 0.1 as the initialization of the EM algorithm
id.km <- kmeans(X, K)$cluster
la <- matrix(0.1, K, p)

#Run the EM algorithm with Manly mixture model
M.EM <- Manly.EM(X, id.km, la)

# Run the variability assessment
Manly.var(X, M.EM, conf.CI = 0.95)</pre>
```

seeds

Wheat kernel Data

Description

The examined group comprised kernels belonging to three different varieties of wheat: Kama, Rosa and Canadian, 70 elements each, randomly selected for the experiment. High quality visualization of the internal kernel structure was detected using a soft X-ray technique. Studies were conducted using combine harvested wheat grain originating from experimental fields, explored at the Institute of Agrophysics of the Polish Academy of Sciences in Lublin.

Usage

data(seeds)

Format

A data frame with 210 observations on the following 7 variables.

V1 Area A;

V2 Perimeter P;

V3 Compactness;

V4 Length of kernel;

V5 Width of kernel;

V6 Asymmetry coefficient;

V7 Length of kernel groove;

V8 Seed species: 1, 2, 3

seeds 19

References

M. Charytanowicz, J. Niewczas, P. Kulczycki, P.A. Kowalski, S. Lukasik, S. Zak (2010), *A Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images*. Information Technologies in Biomedicine, Ewa Pietka, Jacek Kawa, Springer-Verlag, Berlin-Heidelberg.

Examples

data(seeds)

Index

* CEM algorithm	bankruptcy, 5
Manly.Kmeans, 8	
* Contour plot	ClassAgree, 6
Manly.plot, 13	contour, <i>13</i>
* Data simulation	L:-+ 12
Manly.sim, 16	hist, <i>13</i>
* EM algorithm	Manly.EM, 7
ClassAgree, 6	Manly.Kmeans, 8
Manly.EM, 7	Manly.model, 10
Manly.select, 14	Manly.overlap, 12
* Forward and backward selection	Manly.plot, <i>11</i> , 13
ClassAgree, 6	Manly.select, 14
Manly.EM, 7	Manly.sim, 16
Manly.select, 14	Manly.var, 17
* Manly mixture	ManlyMix-package, 2
ClassAgree, 6	
Manly.EM, 7	seeds, 18
Manly.model, 10	
Manly.overlap, 12	
Manly.plot, 13	
Manly.select, 14	
Manly.sim, 16	
Manly.var, 17	
* Manly transformation	
Manly.Kmeans, 8	
* Overlap	
Manly.overlap, 12	
* Variability assessment	
Manly.var, 17	
* datasets	
acidity, 3	
ais, 4	
bankruptcy, 5	
seeds, 18	
* k-means	
Manly.Kmeans, 8	
acidity, 3	
ais, 4	