Package 'DrDimont'

November 8, 2025

Type Package

Title Drug Response Prediction from Differential Multi-Omics Networks

Version 0.1.6

Description While it has been well established that drugs affect and help patients differently, personalized drug response predictions remain challenging. Solutions based on single omics measurements have been proposed, and networks provide means to incorporate molecular interactions into reasoning. However, how to integrate the wealth of information contained in multiple omics layers still poses a complex problem.

We present a novel network analysis pipeline, DrDimont, Drug response prediction from Differential analysis of multi-omics networks. It allows for comparative conclusions between two conditions and translates them into differential drug response predictions. DrDimont focuses on molecular interactions. It establishes condition-specific networks from correlation within an omics layer that are then reduced and combined into heterogeneous, multi-omics molecular networks. A novel semi-local, path-based integration step ensures integrative conclusions. Differential predictions are derived from comparing the condition-specific integrated networks. DrDimont's predictions are explainable, i.e., molecular differences that are the source of high differential drug scores can be retrieved. Our proposed pipeline leverages multi-omics data for differential predictions, e.g. on drug response, and includes prior information on interactions. The case study presented in the vignette uses data published by Krug (2020) <doi:10.1016/j.cell.2020.10.036>. The package license applies only to the software and explicitly not to the included data.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

LazyDataCompression xz

RoxygenNote 7.3.3

VignetteBuilder knitr

Imports igraph, dplyr, stringr, WGCNA, Rfast, readr, tibble, tidyr, magrittr, rlang, utils, stats, reticulate

Suggests GO.db, rmarkdown, knitr

2 Contents

Depends R (>= 3.5.0)

NeedsCompilation no

Author Katharina Baum [cre] (ORCID: https://orcid.org/0000-0001-7256-0566<>),

Pauline Hiort [aut] (ORCID: https://orcid.org/0000-0002-3530-7358),

Julian Hugo [aut] (ORCID: https://orcid.org/0000-0002-5474-8183),

Nataniel Müller [aut] (ORCID: https://orcid.org/0000-0002-0275-3992),

Justus Zeinert [aut] (ORCID: https://orcid.org/0000-0003-3918-0507)

Maintainer Katharina Baum <katharina.baum@fu-berlin.de>

Repository CRAN

Date/Publication 2025-11-08 13:00:02 UTC

Contents

Index

check_input	3
combined_graphs_example	4
compute_correlation_matrices	5
compute_drug_response_scores	6
correlation_matrices_example	7
determine_drug_targets	8
differential_graph_example	9
drdimont_settings	10
drug_gene_interactions	12
drug_response_scores_example	13
drug_target_edges_example	14
C = =C 1	15
generate_differential_score_graph	16
b = -b 1	17
generate_interaction_score_graphs	18
individual_graphs_example	19
install_python_dependencies	20
interaction_score_graphs_example	21
layers_example	21
make_connection	22
make_drug_target	23
make_layer	24
metabolite_data	26
metabolite_protein_interactions	26
mrna_data	27
phosphosite_data	28
protein_data	28
	29
run_pipeline	30

32

check_input 3

check_input

Check pipeline input data for required format

Description

Checks if input data is valid and formatted correctly. This function is a wrapper for other check functions to be executed as the first step of the DrDimont pipeline.

Usage

```
check_input(layers, inter_layer_connections, drug_target_interactions)
```

Arguments

```
layers [list] List of layers to check. Individual layers were created by make_layer and need to be wrapped in a list.

inter_layer_connections

[list] A list containing connections between layers. Each connection was created by make_connection and wrapped in a list.

drug_target_interactions

[list] A named list of the drug interaction data. Created by make_drug_target
```

Value

Character string vector containing error messages.

```
data(layers_example)
data(metabolite_protein_interactions)
data(drug_gene_interactions)
data
all_layers <- layers_example
all_inter_layer_connections = list(
   make_connection(from='mrna', to='protein', connect_on='gene_name', weight=1),
   make_connection(from='protein', to='phosphosite', connect_on='gene_name', weight=1),
   make_connection(from='protein', to='metabolite',
   connect_on=metabolite_protein_interactions, weight='combined_score'))
all_drug_target_interactions <- make_drug_target(</pre>
                                    target_molecules="protein",
                                    interaction_table=drug_gene_interactions,
                                    match_on="gene_name")
return_errors(check_input(layers=all_layers,
    inter_layer_connections=all_inter_layer_connections,
   drug_target_interactions=all_drug_target_interactions))
```

Description

Exemplary intermediate pipeline output: Combined graphs example data built by generate_combined_graphs. Combined graphs were built using the individual_graphs_example and:

Usage

```
combined_graphs_example
```

Format

A named list with 2 items.

graphs A named list with two groups.

groupA Graph associated with 'groupA'
groupB Graph associated with 'groupB'

annotations A dataframe of mappings of assigned node IDs to the user-provided component identifiers for all nodes in 'groupA' and 'groupB' together and all layers

both Dataframe

Details

```
inter_layer_connections = list( make_connection(from='mrna', to='protein', connect_on='gene_name',
weight=1), make_connection(from='protein', to='phosphosite', connect_on='gene_name',
weight=1), make_connection(from='protein', to='metabolite', connect_on=metabolite_protein_interaction
weight='combined_score'))
```

A subset of the original data by Krug et al. (2020) and randomly sampled metabolite data from layers_example was used to generate the correlation matrices, individual graphs, and combined graphs. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER- patients.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

```
compute_correlation_matrices
```

Computes correlation matrices for specified network layers

Description

Constructs and returns a correlation/adjacency matrices for each network layer and each group. The adjacency matrix of correlations is computed using cor. The handling of missing data can be specified. Optionally, the adjacency matrices of the correlations can be saved. Each node is mapped to the biological identifiers given in the layers and the mapping table is returned as 'annotations'.

Usage

```
compute_correlation_matrices(layers, settings)
```

Arguments

layers [list] Named list with different network layers containing data and identifiers for

both groups (generated from make_layer)

settings [list] A named list containing pipeline settings. The settings list has to be ini-

tialized by drdimont_settings. Items in the named list can be adjusted as

desired.

Value

A nested named list with first-level elements 'correlation_matrices' and 'annotations'. The second level elements are 'groupA' and 'groupB' (and 'both' at 'annotations'). These contain a named list of matrix objects ('correlation_matrices') and dataframes ('annotations') mapping the graph node IDs to biological identifiers. The third level elements are the layer names given by the user.

Description

This function takes the differential graph (generated in generate_differential_score_graph), the a drug targets object (containing target node names and drugs and their targets; generated in determine_drug_targets) and the supplied drug-target interaction table (formatted in make_drug_target) to calculate the differential drug response score. The score is the mean or median of all differential scores of the edges adjacent to all drug target nodes of a particular drug.

Usage

```
compute_drug_response_scores(differential_graph, drug_targets, settings)
```

Arguments

differential_graph

iGraph graph object containing differential scores for all edges. (output of

generate_differential_score_graph)

drug_targets [list] Named list containing two elements ('target_nodes' and 'drugs_to_target_nodes').

'targets' from output of determine_drug_targets. 'target_nodes' is a vector containing network node names of the nodes that are targeted by the available drugs. 'drugs_to_target_nodes' is a dictionary-like list that maps drugs to the

nodes that they target.

settings [list] A named list containing pipeline settings. The settings list has to be ini-

tialized by drdimont_settings. Items in the named list can be adjusted as

desired.

Value

Dataframe containing drug name and associated differential (integrated) drug response score

drug_targets=drug_target_edges_example\$targets,
settings=example_settings)

correlation_matrices_example

Correlation matrices

Description

Exemplary intermediate pipeline output: Correlation matrices example data built by compute_correlation_matrices using layers_example data and settings:

Usage

```
correlation_matrices_example
```

Format

A named list with 2 items.

correlation_matrices A named list with two groups.

groupA Correlation matrices associated with 'groupA'

mrna Correlation matrix

protein Correlation matrix

phosphosite Correlation matrix

metabolite Correlation matrix

groupB same structure as 'groupA'

annotations A named list containing dataframes of mappings of assigned node IDs to the user-provided component identifiers for nodes in 'groupA' or 'groupB' and all nodes

groupA Annotations associated with 'groupA'

mrna Dataframe

protein Dataframe

phosphosite Dataframe

metabolite Dataframe

groupB same structure as 'groupA'

both same structure as 'groupA'

Details

```
settings <- drdimont_settings( handling_missing_data=list( default="pairwise.complete.obs",
mrna="all.obs"))</pre>
```

A subset of the original data from Krug et al. (2020) and randomly sampled metabolite data in layers_example was used to generate the correlation matrices. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER-patients.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

```
determine_drug_targets
```

Determine drug target nodes in network

Description

Finds node IDs of network nodes in 'graphs' that are targeted by a drug in 'drug_target_interactions'. Returns list of node ids and list of adjacent edges.

Usage

```
determine_drug_targets(graphs, annotations, drug_target_interactions, settings)
```

Arguments

graphs [list] A named list with elements 'groupA' and 'groupB' containing the com-

bined graphs of each group as iGraph object ('graphs' from output of generate_combined_graphs)

annotations [list] List of dataframes that map node IDs to identifiers. Contains 'both' with

unique identifiers across the whole data (output of generate_combined_graphs)

drug_target_interactions

[list] Named list specifying drug target interactions for drug response score com-

putation

settings [list] A named list containing pipeline settings. The settings list has to be ini-

tialized by drdimont_settings. Items in the named list can be adjusted as

desired.

Value

A named list with elements 'targets' and 'edgelists'. 'targets' is a named list with elements 'target_nodes' and 'drugs_to_target_nodes'. 'target_nodes' is a dataframe with column 'node_id' (unique node IDs in the iGraph object targeted by drugs) and columns 'groupA' and 'groupB' (bool values specifying whether the node is contained in the combined graph of the group). Element 'drugs_to_target_nodes' contains a named list mapping drug names to a vector of their target node IDs. 'edgelists' contains elements 'groupA' and 'groupB' containing each a list of edges adjacent to drug target nodes.

```
data(drug_gene_interactions)
data(combined_graphs_example)
example_settings <- drdimont_settings()</pre>
```

```
differential_graph_example

Differential graph
```

Description

Exemplary intermediate pipeline output: Differential score graph example data built by generate_differential_score_graphs using the interaction_score_graphs_example. Consists of one graph containing edge attributes: the differential correlation values as 'differential_score' and the differential interaction score as 'differential interaction score'.

Usage

```
differential_graph_example
```

Format

An iGraph graph object.

Details

A subset of the original data by Krug et al. (2020) and randomly sampled metabolite data from layers_example was used to generate the correlation matrices, individual graphs, and combined graphs. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER- patients.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

10 drdimont_settings

drdimont_settings

Create global settings variable for DrDimont pipeline

Description

Allows creating a global 'settings' variable used in DrDimont's run_pipeline function and stepwise execution. Default parameters can be changed within the function call.

Usage

```
drdimont_settings(
  saving_path = tempdir(),
  save_data = FALSE,
  correlation_method = "spearman",
  handling_missing_data = "all.obs",
  reduction_method = "pickHardThreshold",
  r_squared_cutoff = 0.85,
  cut_vector = seq(0.2, 0.8, by = 0.01),
 mean_number_edges = NULL,
  edge_density = NULL,
  p_value_adjustment_method = "BH",
  reduction_alpha = 0.05,
  conda = FALSE,
 max_path_length = 3,
  num\_cpus = 1,
  int_score_mode = "auto",
  cluster_address = "auto",
 median_drug_response = FALSE,
  absolute_difference = FALSE,
)
```

Arguments

saving_path [string] Path to save intermediate output of DrDimont's functions. Default: temporary folder.

save_data [bool] Save intermediate data such as correlation_matrices, individual_graphs,

etc. during exectution of DrDimont. (default: FALSE)

correlation_method

["pearson"|"spearman"|"kendall"] Correlation method used for graph generation. Argument is passed to cor. (default: spearman)

handling_missing_data

["all.obs"|"pairwise.complete.obs"] Method for handling of missing data during correlation matrix computation. Argument is passed to cor. Can be a single character string if the same for all layers, else a named list mapping layer names to methods, e.g, handling_missing_data=list(mrna="all.obs", protein="pairwise.complete.o drdimont_settings 11

Layers may be omitted if a method is mapped to 'default', e.g, handling_missing_data=list(default-(default: all.obs)

reduction_method

["pickHardThreshold"|"p_value"] Reduction method for reducing networks. 'p_value' for hard thresholding based on the statistical significance of the computed correlation. 'pickHardThreshold' for a cutoff based on the scale-freeness criterion (calls pickHardThreshold). Can be a single character string if the same for all layers, else a named list mapping layer names to methods (see handling_missing_data setting). Layers may be omitted if a method is mapped to 'default'. (default: pickHardThreshold)

$r_squared_cutoff$

pickHardThreshold setting: [floatlnamed list] Minimum scale-free topology fitting index R^2 for reduction using pickHardThreshold. Can be a single float number if the same for all layers, else a named list mapping layer names to a cut-off (see handling_missing_data setting) or a named list in a named list mapping groupA or groupB and layer names to a cutoff, e.g., r_squared_cutoff=list(groupA=list(mrna=protein=0.8), groupB=list(mrna=0.9, protein=0.85)). Layers/groups may be omitted if a cutoff is mapped to 'default'. (default: 0.85)

cut_vector

pickHardThreshold setting: [sequence of floatlnamed list] Vector of hard threshold cuts for which the scale-free topology fit indices are calculated during reduction with pickHardThreshold. Can be a single regular sequence if the same for all layers, else a named list mapping layer names to a cut vector or a named list in a named list mapping groupA or groupB and layer names to a cut vector (see r_squared_cutoff setting). Layers/groups may be omitted if a vector is mapped to 'default'. (default: seq(0.2, 0.8, by = 0.01))

mean_number_edges

pickHardThreshold setting: [intlnamed list] Maximal mean number of edges threshold to find a suitable edge weight cutoff employing pickHardThreshold to reduce the network to at most the specified mean number of edges. Can be a single int number if the same for all layers, else a named list mapping layer names to a mean number of edges or a named list in a named list mapping groupA or groupB and layer names to a cutoff (see r_squared_cutoff setting). Attention: This parameter overwrites the 'r_squared_cutoff' and 'edge_density' parameters if not set to NULL. (default: NULL)

edge_density

pickHardThreshold setting: [floatlnamed list] Maximal network edge density to find a suitable edge weight cutoff employing pickHardThreshold to reduce the network to at most the specified edge density. Can be a single float number if the same for all layers, else a named list mapping layer names to a mean number of edges or a named list in a named list mapping groupA or groupB and layer names to a cutoff (see r_squared_cutoff setting). Attention: This parameter overwrites the 'r_squared_cutoff' parameter if not set to NULL. (default: NULL)

p_value_adjustment_method

p_value setting: ["holm"|"hochberg"|"hommel"|"bonferroni"|"BH"|"BY"|"fdr"|"none"] Correction method applied to p-values. Passed to p.adjust. (default: "BH")

reduction_alpha

p_value setting: [float] Significance value for correlation p-values during reduction. Not-significant edges are dropped. (default: 0.05)

conda [bool] Python installation in conda environment. Set TRUE if Python is installed

with conda. (default: FALSE)

max_path_length

computation. (default: 3)

num_cpus [int] Number of CPUs to use for parallel computation for interaction scores.

(default: 1)

int_score_mode ["auto"|"sequential"|"ray"] Interaction score sequential or parallel ("ray") com-

putation. For parallel computation, the Python library Ray is used. When set to

'auto', computation depends on the graph sizes. (default: "auto")

cluster_address

[string] (deprecated; will be removed in future versions) Local node IP address of Ray if executed on a cluster. On a cluster: Start ray with ray start --head --num-cpus 32 on the console before DrDimont execution. It should work with "auto", if it does not specify an IP address given by the ray start command.

(default: "auto")

median_drug_response

[bool] Computation of median (instead of mean) of a drug's targets differential

scores (default: FALSE)

absolute_difference

[bool] Computation of drug response scores based on absolute differential scores

(instead of the actual differential scores) (default: FALSE)

Supply additional settings.

Value

Named list of the settings for the pipeline

Examples

drug_gene_interactions

Drug-gene interactions

Description

Dataframe providing interactions of drugs with genes. The data was downloaded from The Drug Gene Interaction Database.

Usage

```
drug_gene_interactions
```

Format

A dataframe with 4 columns.

gene_name Gene names of targeted protein-coding genes.drug_name Drug-names with known interactions.drug_chembl_id ChEMBL ID of drugs.

Source

```
The Drug Gene Interaction Database: https://dgidb.org/
ChEMBL IDs: https://www.ebi.ac.uk/chembl
```

```
drug_response_scores_example

Drug response score
```

Description

Exemplary final pipeline output: Drug response score dataframe. This contains drugs and the calculated differential drug response score. The score was calculated by compute_drug_response_scores using differential_graph_example, drug_target_edges_example and

Usage

```
drug_response_scores_example
```

Format

Dataframe with two columns

drug_name Names of drugs

drug_response_scores Associated differential drug response scores

Details

```
drug_target_interaction <- make_drug_target(target_molecules='protein', interaction_table=drug_gene_i
match_on='gene_name')</pre>
```

A subset of the original data by Krug et al. (2020) and randomly sampled metabolite data from layers_example was used to generate the correlation matrices, individual graphs, combined graphs, interaction score graphs, and differential score graph. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER- patients. Drug-gene interactions were used from The Drug Gene Interaction Database.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

The Drug Gene Interaction Database: https://dgidb.org/

drug_target_edges_example

Drug target nodes in combined network

Description

Exemplary intermediate pipeline output: Drug targets detected in the combined graphs. A named list with elements 'targets' and 'edgelists'. This was created with determine_drug_targets using the combined_graphs_example and:

Usage

```
drug_target_edges_example
```

Format

A named list with 2 items.

targets A named list

target_nodes dataframe with column 'node_id' (unique node IDs in the graph targeted by drugs) and columns 'groupA' and 'groupB' (bool values specifying whether the node is contained in the combined graph of the group)

drugs_to_target_nodes Element 'drugs_to_target_nodes' contains a named list mapping drug names to a vector of their target node IDs.

edgelists Contains elements 'groupA' and 'groupB' containing each a dataframe of edges adjacent to drug target nodes each. Each edgelist dataframe contains columns 'from', 'to', and 'weight'.

Details

drug_target_interactions <- make_drug_target(target_molecules='protein', interaction_table=drug_gene_
match_on='gene_name')</pre>

Drug-gene interactions to calculate this output were used from The Drug Gene Interaction Database.

Source

The Drug Gene Interaction Database: https://dgidb.org/

```
generate_combined_graphs
```

Combines individual layers to a single graph

Description

Individual graphs created by generate_individual_graphs are combined to a single graph per group according to 'inter_layer_connections'. Returns a list of combined graphs along with their annotations.

Usage

```
generate_combined_graphs(
  graphs,
  annotations,
  inter_layer_connections,
  settings
)
```

Arguments

graphs [list] A named list (elements 'groupA' and 'groupB'). Each element contains a

list of iGraph objects ('graphs' from output of generate_individual_graphs).

annotations [list] A named list (elements 'groupA', 'groupB' and 'both'). Each element

contains a list of dataframes mapping each node IDs to identifiers. 'both' contains unique identifiers across the whole data. ('annotations' from output of

generate_individual_graphs)

inter_layer_connections

[list] Named list with specified inter-layer connections. Names are layer names

and elements are connections (make_connection).

settings [list] A named list containing pipeline settings. The settings list has to be ini-

tialized by drdimont_settings. Items in the named list can be adjusted as

desired.

Value

A named list (elements 'graphs' and sub-elements '\$groupA' and '\$groupB', and 'annotations' and sub-element 'both'). Contains the igraph objects of the combined network and their annotations for both groups.

```
data(individual_graphs_example)
data(metabolite_protein_interactions)
example_inter_layer_connections = list(make_connection(from='mrna', to='protein',
```

generate_differential_score_graph

Compute difference of interaction score of two groups

Description

Computes the absolute difference of interaction scores between the two groups. Returns a single graph with the differential score and the differential interaction score as edge attributes. The interaction score is computed by generate_interaction_score_graphs.

Usage

```
generate_differential_score_graph(interaction_score_graphs, settings)
```

Arguments

interaction_score_graphs

[list] Named list with elements 'groupA' and 'groupB' containing iGraph ob-

jects with weight and interaction_weight as edge attributes (output of generate_interaction_score_gr

settings

[list] A named list containing pipeline settings. The settings list has to be initialized by drdimont_settings. Items in the named list can be adjusted as

desired.

Value

iGraph object with 'differential_score' and 'differential_interaction_score' as edge attributes

```
data(interaction_score_graphs_example)
example_settings <- drdimont_settings()</pre>
```

```
generate_individual_graphs
```

Builds graphs from specified network layers

Description

Constructs and returns two graphs for each network layer, where nodes correspond to the rows in the measurement data. Graphs are initially complete and edges are weighted by correlation values of the measurements across columns. The number of edges is then reduced by either a threshold on the p-value of the correlation or a minimum scale-free fit index.

Usage

```
generate_individual_graphs(correlation_matrices, layers, settings)
```

Arguments

correlation_matrices

[list] List of correlation matrices generated with compute_correlation_matrices

layers

[list] Named list with different network layers containing data and identifiers for

both groups (generated from make_layer)

settings

[list] A named list containing pipeline settings. The settings list has to be initialized by drdimont_settings. Items in the named list can be adjusted as

desired.

Value

A nested named list with first-level elements 'graphs' and 'annotations'. The second level elements are 'groupA' and 'groupB' (and 'both' at 'annotations'). These contain a list of iGraph objects ('graphs') and dataframes ('annotations') mapping the graph node IDs to biological identifiers. The third level elements are layer names given by the user.

generate_interaction_score_graphs

Computes interaction score for combined graphs

Description

Writes the input data (combined graphs for both groups in 'gml' format and lists of edges adjacent to drug targets for both groups in 'tsv' format) to files and calls a Python script for calculating the interaction scores. Output files written by the Python script are two graphs in 'gml' format containing the interaction score as an additional 'interaction_weight' edge attribute. These are loaded and returned in a named list. ATTENTION: Data exchange via files is mandatory and takes a long time for large data. Interaction score computation is expensive and slow because it involves finding all simple paths up to a certain length between source and target node of the drug target edges. Don't set the parameter 'max_path_length' in drdimont_settings to a large value and only consider this step if your graphs have approximately 2 million edges or less. The Python script is parallelized using Ray. Use the drdimont_settings parameter 'int score mode' to force sequential or parallel computation. Refer to the Ray documentation if you encounter problems with running the Python script in parallel. DISCLAIMER: Depending on the operating system Python comes pre-installed or has to be installed manually. Use DrDimont's install_python_dependencies to install a virtual Python or conda environment containing the required Python packages. You can use the parameter 'conda' in drdimont_settings to specify if Python packages were installed with conda ('conda=TRUE'), else a virtual environment installed with pip is assumed (default: 'conda=FALSE').

Usage

```
generate_interaction_score_graphs(graphs, drug_target_edgelists, settings)
```

Arguments

graphs [list] A named list with elements 'groupA' and 'groupB' containing the com-

bined graphs of each group as iGraph object ('graphs' from output of generate_combined_graphs)

drug_target_edgelists

[list] A named list (elements 'groupA' and 'groupB'). Each element contains the list of edges adjacent to drug targets as a dataframe (columns 'from', 'to'

and 'weight'). 'edgelists' from output of determine_drug_targets

settings [list] A named list containing pipeline settings. The settings list has to be ini-

tialized by drdimont_settings. Items in the named list can be adjusted as

desired.

Value

A named list (elements 'groupA' and 'groupB'). Each element contains an iGraph object containing the interaction scores as interaction_weight attributes.

Examples

Description

Exemplary intermediate pipeline output: Individual graphs example data built by generate_individual_graphs. Graphs were created from correlation_matrices_example and reduced by the 'pickHardThreshold' reduction method. Used settings were:

Usage

```
individual_graphs_example
```

Format

```
A named list with 2 items.

graphs A named list with two groups.

groupA Graphs associated with 'groupA'

mrna Graph

protein Graph

phosphosite Graph

metabolite Graph

groupB same structure as 'groupA'
```

annotations A named list containing dataframes of mappings of assigned node IDs to the user-provided component identifiers for nodes in 'groupA' or 'groupB' and all nodes

```
groupA Annotations associated with 'groupA'
mrna Dataframe
protein Dataframe
phosphosite Dataframe
metabolite Dataframe
groupB same structure as 'groupA'
both same structure as 'groupA'
```

Details

```
settings <- drdimont_settings( reduction_method=list(default="pickHardThreshold"),
r_squared=list( default=0.8, groupA=list(metabolite=0.45), groupB=list(metabolite=0.15)),
cut_vector=list( default=seq(0.3, 0.7, 0.01), metabolite=seq(0.1, 0.65, 0.01)))</pre>
```

A subset of the original data by Krug et al. (2020) and randomly sampled metabolite data from layers_example was used to generate the correlation matrices and individual graphs. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER- patients.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

install_python_dependencies

Installs python dependencies needed for interaction score computation

Description

Uses pip (default) or conda as specified to install all required Python modules. The Python packages are installed into a virtual Python or conda environment called 'r-DrDimont'. The following requirements are installed: numpy, tqdm, python-igraph and ray. The environment is created with reticulate.

Usage

```
install_python_dependencies(package_manager = "pip")
```

Arguments

```
package_manager
["pip"|"conda"] Package manager to use (default: pip)
```

Value

No return value, called to install python dependencies

Description

Exemplary intermediate pipeline output: Interaction score graphs example data built by generate_interaction_score_grausing combined_graphs_example and drug_target_edges_example. A named list (elements 'groupA' and 'groupB'). Each element contains an iGraph object containing edge attributes: the correlation values as 'weight' and the interaction score as 'interactionweight'.

Usage

interaction_score_graphs_example

Format

A named list with 2 items.

groupA iGraph graph object containing the interaction score as weight for groupA. **groupB**

Details

A subset of the original data by Krug et al. (2020) and randomly sampled metabolite data from layers_example was used to generate the correlation matrices, individual graphs, and combined graphs. They were created from data stratified by estrogen receptor (ER) status: 'groupA' contains data of ER+ patients and 'groupB' of ER- patients. Drug-gene interactions were used from The Drug Gene Interaction Database.

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

The Drug Gene Interaction Database: https://dgidb.org/

layers_example

Formatted layers object

Description

Exemplary intermediate pipeline output containing a correctly formatted layers list.

Usage

layers_example

22 make_connection

Format

A list with 4 items. Each layer list contains 2 groups and a 'name' element. Each group contains 'data' and 'identifiers'. The structure for one individual layer:

group A Data associated with 'group A'

data Raw data. Components (e.g. genes or proteins) in columns, samples in rows **identifiers** Dataframe containing one column per ID

groupB Data associated with 'groupB'

data see above

identifiers see above

name Name of the layer

Details

List containing four layer items created by make_layer. Each layer contains 'data' and 'identifiers' stratified by group and a 'name' element giving the layer name. The data contained in this example refers to mRNA, protein, phosphosite, and metabolite layers. The mRNA, protein, and phosphosite data was adapted and reduced from Krug et al. (2020), containing data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). The metabolite data was sampled randomly to generate distributions similar to those reported, e.g., in Terunuma et al. (2014). The 'data' elements contain the raw data with samples as columns and molecular entities as rows. The 'identifiers' elements contain layer-specific identifiers for the molecular entities, e.g, gene_name.

Source

Terunuma, Atsushi et al. "MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis." The Journal of Clinical Investigation vol. 124,1 (2014): 398-412. doi:10.1172/JCI71180

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

make_connection

Specify connection between two individual layers

Description

Helper function to transform input data to the required pipeline input format. This helper function creates a list that specifies the connection between two layers. The connection can be based on IDs present in the identifiers of both layer or an interaction table containing a mapping of the connections and edge weights. Additionally, the supplied input is checked. Allows easy conversion of raw data into the structure accepted by run_pipeline.

__IMPORTANT:__ If a connection is established based on id this ID has to be present in the identifiers of both layers, they have to be named identically and the IDs have to be formatted identically as these are matched by an inner join operation (refer to make_layer).

make_drug_target 23

Usage

```
make_connection(from, to, connect_on, weight = 1, group = "both")
```

Arguments

from	[string] Name of the layer from which the connection should be established
to	[string] Name of the layer to which the connection should be established
connect_on	[stringltable] Specifies how the two layers should be connected. This can be based on a mutual ID or a table specifying interactions. Mutual ID: Character string specifying the name of an identifier that is present in both layers (e.g., 'NCBI ID' to connect proteins and mRNA). Interaction table: A table mapping two identifiers of two layers. The columns have exactly the same names as the identifiers of the layers. The table has to contain an additional column specifying the weight between two components/nodes (see 'weight' argument)
weight	[intlstring] Specifies the edge weight between the layers. This can be supplied as a number applied to every connection or a column name of the interaction table. Fixed weight: A umber specifying the weight of every connection between the layers. Based on interaction table: Character string specifying the name of a column in the table passed as the 'by' parameter which is used as edge weight. (default: 1)
group	["A" "B" "both"] Group for which to apply the connection. One of 'both', 'A' or 'B'. (default: "both")

Value

A named list (i.e., an inter-layer connection), that can be supplied to run_pipeline.

24 make_layer

Description

Function to transform input data to required input format for run_pipeline. Here the data that is needed to define drug-target interactions is formatted. When the reformatted output is passed to run_pipeline as drug_target_interactions argument, the differential integrated drug response score can be calculated for all the supplied drugs in interaction_table.

Usage

```
make_drug_target(target_molecules, interaction_table, match_on)
```

Arguments

target_molecules

[string] Name of layer containing the drug targets. This name has to match the corresponding named item in the list of layers supplied to run_pipeline.

interaction_table

[data.frame] Has to contain two columns. A column called 'drug_name' containing names or identifiers of drugs. And a column with a name that matches an identifier in the layer supplied in 'target_molecules'. Additional columns will be ignored in the pipeline. For example, if drugs target proteins and an identifier called 'ncbi_id' was supplied in layer creation of the protein layer (see make_layer), this column should be called 'ncbi_id' and contain the corresponding IDs of protein-drug targets. Any other ID present in the constructed layer could also be used.

match_on

[string] Column name of the dataframe supplied in 'interaction_table' that is used for matching drugs and target nodes in the graph (e.g. 'ncbi_id').

Value

Named list of the input parameters in input format of run_pipeline.

Examples

make_layer

Creates individual molecular layers from raw data and unique identifiers

Description

Helper function to transform input data to required pipeline input format. Additionally, the supplied input is checked. Allows easy conversion of raw data into the structure accepted by run_pipeline.

make_layer 25

Usage

```
make_layer(
  name,
  data_groupA,
  data_groupB,
  identifiers_groupA,
  identifiers_groupB)
```

Arguments

```
name [string] Name of the layer.

data_groupA, data_groupB
    [data.frame] Dataframe containing raw molecular data
```

[data.frame] Dataframe containing raw molecular data of each group (each stratum). Analyzed components (e.g. genes) in columns, samples (e.g. patients) in rows.

 $identifiers_groupA, identifiers_groupB$

[data.frame] Dataframe containing component identifiers (columns) of each component (rows) in the same order as the molecular dataframe of each group. These identifiers are used to (a) interconnect graphs and (b) match drugs to drug targets. Must contain a column 'type' which identifies the nature of the component (e.g., "protein")

Value

Named list containing the supplied data for each group (i.e., the data set for one layer), that can be supplied to run_pipeline and 'name' giving the name of the layer. Each sub-list contains the 'data' and the 'identifiers'.

metabolite_data

Metabolomics data

Description

Metabolomics analysis of breast cancer patient data sampled randomly to generate distributions similar to those reported (e.g., in Terunuma et al. (2014)). The data is stratified by estrogen receptor (ER) expression status ('groupA' = ER+, 'groupB' = ER-). The data was reduced to 50 metabolites. For each group, a dataframe is given containing the raw data with the metabolites as rows and the samples as columns. The first three columns contain the metabolite identifiers (biochemical_name, metabolon_id and pubchem_id).

Usage

metabolite_data

Format

groupA ER+ data; data.frame: first three columns contain metabolite identifiers biochemical_name, metabolon_id and pubchem_id; other columns are samples containing the quantified metabolite data per metabolite

groupB ER- data; data.frame: first three columns contain metabolite identifiers biochemical_name, metabolon_id and pubchem_id; other columns are samples containing the quantified metabolite data per metabolite

Source

Terunuma, Atsushi et al. "MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis." The Journal of Clinical Investigation vol. 124,1 (2014): 398-412. doi:10.1172/JCI71180

```
https://www.metabolon.com
```

Pubchem IDs: https://pubchem.ncbi.nlm.nih.gov

MetaboAnalyst: https://www.metaboanalyst.ca/faces/upload/ConvertView.xhtml

metabolite_protein_interactions

Metabolite protein interaction data

Description

Dataframe providing interactions of metabolites and proteins. The data was taken from the STITCH Database.

Usage

metabolite_protein_interactions

mrna_data 27

Format

A dataframe with 3 columns.

pubchem_id Pubchem IDs defining interacting metabolites
gene_name gene names defining interacting proteins
combined_score Score describing the strength of metabolite-protein interaction

Source

STITCH DB: https://stitch-db.org/

Pubchem IDs: https://pubchem.ncbi.nlm.nih.gov

STRING DB: https://string-db.org/

mrna_data

mRNA expression data

Description

mRNA analysis of breast cancer patient data from Krug et al. (2020) (data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC)). The data is stratified by estrogen receptor (ER) expression status ('groupA' = ER+, 'groupB' = ER-). The data was reduced to 50 genes. For each group, a dataframe is given containing the raw data with the mRNA/gene as rows and the samples as columns. The first column contains the gene identifiers (gene_name).

Usage

mrna_data

Format

groupA ER+ data; data.frame: first column contains mRNA/gene identifier gene_name; other columns are samples containing the quantified mRNA data per gene

groupB ER- data; data.frame: first column contains mRNA/gene identifier gene_name; other columns are samples containing the quantified mRNA data per gene

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

28 protein_data

phosphosite_data

Phosphosite data

Description

Phosphosite analysis of breast cancer patient data from Krug et al. (2020) (data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC)). The data is stratified by estrogen receptor (ER) expression status ('groupA' = ER+, 'groupB' = ER-). The data was reduced to 50 genes. For each group, a dataframe is given containing the raw data with the phosphosites as rows and the samples as columns. The first three columns contain the phosphosite and protein identifiers (site_id, ref_seq and gene_name).

Usage

phosphosite_data

Format

groupA ER+ data; data.frame: first three columns contain phosphosite and protein identifiers site_id, ref_seq and gene_name; other columns are samples containing the quantified phosphosite data per phosphosite

groupB ER- data; data.frame: first three columns contain phosphosite and protein identifiers site_id, ref_seq and gene_name; other columns are samples containing the quantified phosphosite data per phosphosite

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

protein_data

Protein data

Description

Protein analysis of breast cancer patients data from Krug et al. (2020) (data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC)). The data is stratified by estrogen receptor (ER) expression status ('groupA' = ER+, 'groupB' = ER-). The data was reduced to 50 genes. For each group a dataframe is given containing the raw data with the proteins as rows and the samples as columns. The first two columns contain the protein identifiers (ref_seq and gene_name).

Usage

protein_data

return_errors 29

Format

groupA ER+ data; data.frame: first two columns contain protein identifiers ref_seq and gene_name; other columns are samples containing the quantified proteomics data per protein

groupB ER- data; data.frame: first two columns contain protein identifiers ref_seq and gene_name; other columns are samples containing the quantified proteomics data per protein

Source

Krug, Karsten et al. "Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy." Cell vol. 183,5 (2020): 1436-1456.e31. doi:10.1016/j.cell.2020.10.036

return_errors

Return detected errors in the input data

Description

Throws an error in case errors have been passed to the function. Messages describing the detected errors are printed.

Usage

```
return_errors(errors)
```

Arguments

errors

[string] Character string vector containing error messages.

Value

No return value, writes error messages to console

30 run_pipeline

run_pipeline

Execute all DrDimont pipeline steps sequentially

Description

This wrapper function executes all necessary steps to generate differential integrated drug response scores from the formatted input data. The following input data is required (and detailed below):

- * Layers of stratified molecular data.
- * Additional connections between the layers.
- * Interactions between drugs and nodes in the network.
- * Settings for pipeline execution.

As this function runs through all steps of the DrDimont pipeline it can take a long time to complete, especially if the supplied molecular data is rather large. Several prompts will be printed to supply information on how the pipeline is proceeding. Calculation of the interaction score by <code>generate_interaction_score_graphs</code> requires saving large-scale graphs to file and calling a Python script. This handover may take time.

Eventually a dataframe is returned containing the supplied drug name and its associated differential drug response score computed by DrDimont.

Usage

```
run_pipeline(
  layers,
  inter_layer_connections,
  drug_target_interactions,
  settings
)
```

Arguments

layers

[list] Named list with different network layers containing data and identifiers for both groups. The required input format is a list with names corresponding to the content of the respective layer (e.g., "protein"). Each named element has to contain the molecular data and corresponding identifiers formatted by make_layer.

run_pipeline 31

inter_layer_connections

[list] A list with specified inter-layer connections. This list contains one or more elements defining individual inter-layer connections created by make_connection.

drug_target_interactions

[list] A list specifying drug-target interactions for drug response score computation. The required input format of this list is created by make_drug_target. The drug response score is calculated for all drugs contained in this object.

settings

[list] A named list containing pipeline settings. The settings list has to be initialized by drdimont_settings. Items in the named list can be adjusted as desired.

Value

Dataframe containing drug name and associated differential integrated drug response score. If Python is not installed or the interaction score computation fails for some other reason, NULL is returned instead.

```
data(drug_gene_interactions)
data(metabolite_protein_interactions)
data(layers_example)
example_inter_layer_connections = list(make_connection(from='mrna', to='protein',
                                           connect_on='gene_name', weight=1),
                                       make_connection(from='protein', to='phosphosite',
                                           connect_on='gene_name', weight=1),
                                       make_connection(from='protein', to='metabolite',
                                           connect_on=metabolite_protein_interactions,
                                           weight='combined_score'))
example_drug_target_interactions <- make_drug_target(target_molecules='protein',
                                        interaction_table=drug_gene_interactions,
                                        match_on='gene_name')
example_settings <- drdimont_settings(</pre>
                        handling_missing_data=list(
                            default="pairwise.complete.obs",
                            mrna="all.obs"),
                        reduction_method="pickHardThreshold",
                        r_squared=list(default=0.65, metabolite=0.1),
                        cut_vector=list(default=seq(0.2, 0.65, 0.01)))
run_pipeline(
   layers=layers_example,
   inter_layer_connections=example_inter_layer_connections,
   drug_target_interactions=example_drug_target_interactions,
   settings=example_settings)
```

Index

```
* datasets
    combined_graphs_example, 4
    correlation_matrices_example, 7
    differential_graph_example, 9
    drug_gene_interactions, 12
    drug_response_scores_example, 13
    drug_target_edges_example, 14
    individual_graphs_example, 19
    interaction_score_graphs_example,
        21
    layers_example, 21
    metabolite_data, 26
    metabolite_protein_interactions,
        26
    mrna_data, 27
    phosphosite_data, 28
    protein_data, 28
check_input, 3
combined_graphs_example, 4, 14, 21
compute_correlation_matrices, 5, 7, 17
compute_drug_response_scores, 6, 13
cor, 5, 10
correlation_matrices_example, 7, 19
determine_drug_targets, 6, 8, 14, 18
differential_graph_example, 9, 13
drdimont_settings, 5, 6, 8, 10, 15–18, 31
drug_gene_interactions, 12
drug_response_scores_example, 13
drug_target_edges_example, 13, 14, 21
generate_combined_graphs, 4, 8, 15, 18
generate_differential_score_graph, 6, 9,
        16
generate_individual_graphs, 15, 17, 19
generate_interaction_score_graphs, 12,
        16, 18, 21, 30
individual_graphs_example, 4, 19
```

```
install_python_dependencies, 18, 20
interaction_score_graphs_example, 9, 21
layers_example, 4, 7, 9, 13, 20, 21, 21
make_connection, 3, 15, 22, 31
make_drug_target, 3, 6, 23, 31
make_layer, 3, 5, 17, 22, 24, 24, 30
metabolite_data, 26
metabolite_protein_interactions, 26
mrna_data, 27
p.adjust, 11
phosphosite_data, 28
pickHardThreshold, 11
protein_data, 28
return_errors, 29
run_pipeline, 10, 22-25, 30
```