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AirQuality Air Quality Data Set (UCI)
Description

Measurements of air quality variables in an Italian city collected over several months in 2004—
2005. The data includes hourly averaged responses from chemical sensors embedded in an air
quality chemical multi-sensor device.

Usage

data(AirQuality)

Format

A data frame with 9358 observations on the following 15 variables. Some variable names use
parentheses, which may need to be quoted with backticks in R.

e Date: Date (in DD/MM/YYYY format)

e Time: Time (in HH.MM.SS format)

* CO.GT.: Carbon Monoxide concentration (mg/m3)

* PT@8.S1.CO.: Sensor 1 response

* NMHC.GT.: Non-methane hydrocarbons (ug/m3)

* C6H6.GT.: Benzene concentration (ug/m3)

* PT08.S2.NMHC.: Sensor 2 response

* NOx.GT.: Nitric oxide concentration (ppb)

* PT08.S3.NOx.: Sensor 3 response

* NO2.GT.: Nitrogen dioxide concentration (ug/m3)

* PT08.S4.N0O2.: Sensor 4 response

* PT08.S5.03.: Sensor 5 response

e T: Temperature (°C)
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* RH: Relative Humidity (%)
* AH: Absolute Humidity

Some variables contain missing values coded as -200.

Details

The dataset contains air quality data recorded in a densely populated area of an Italian city between
March 2004 and February 2005. The data were collected using an array of chemical sensors and
meteorological instruments.

This dataset is frequently used for tasks such as missing value imputation, time series analysis,
regression, and machine learning model evaluation.

Source

De Vito, S., Massera, E., Piga, M., Martinotto, L., & Di Francia, G. (2008).\ UCI Machine Learning
Repository: Air Quality Data Set.\ Available at: https://archive.ics.uci.edu/ml/datasets/
Air+Quality

References

De Vito, S., Massera, E., Piga, M., Martinotto, L., & Di Francia, G. (2008).\ Semi-Supervised
Learning Techniques in Artificial Olfaction: A Novel Approach to Classification Problems and
Drift Counteraction.\ IEEE Sensors Journal, 8(12), 2030-2038.

Examples

data(AirQuality)

# Replace missing values (-200) with NA
AirQuality[AirQuality == -200] <- NA

# Check if there are non-NA values before plotting
if (sum(!is.na(AirQuality$C0.GT.)) > @) {
plot(AirQuality$CO.GT., type = "1”, ylab = "CO (mg/m3)",

main = "Hourly CO Concentration”)
} else {
message(”No non-NA values in CO.GT. column to plot”)
3
calculate_errors calculate_errors Function
Description

This function calculates the Mean Squared Error (MSE) and relative error for factor loadings and
uniqueness estimates obtained from factor analysis.


https://archive.ics.uci.edu/ml/datasets/Air+Quality
https://archive.ics.uci.edu/ml/datasets/Air+Quality
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Usage

calculate_errors(data, A, D)

Arguments
data Matrix of SFM data.
A Matrix of true factor loadings.
D Matrix of true uniquenesses.
Value

A named vector containing:

MSEA Mean Squared Error for factor loadings.

MSED Mean Squared Error for uniqueness estimates.

LSA Relative error for factor loadings.

LSD Relative error for uniqueness estimates.
Examples

set.seed(123) # For reproducibility
# Define dimensions

n <- 10 # Number of samples

p <- 5 # Number of factors

# Generate matrices with compatible dimensions

A <- matrix(runif(p * p, -1, 1), nrow = p) # Factor loadings matrix (p x p)
D <- diag(runif(p, 1, 2)) # Uniquenesses matrix (p x p)

data <- matrix(runif(n * p), nrow = n) # Data matrix (n x p)

# Calculate errors (only if SOPC is installed)

if (requireNamespace("”SOPC"”, quietly = TRUE)) {
errors <- calculate_errors(data, A, D)
print(errors)

}

DFanPC Distributed Fan Principal Component Analysis

Description
This function performs distributed Fan-type principal component analysis on a numeric dataset split
across multiple nodes.

Usage

DFanPC(data, m, n1, K)
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Arguments
data A numeric matrix containing the total dataset.
m An integer specifying the number of principal components.
ni An integer specifying the length of each data subset.
K An integer specifying the number of nodes.
Value

A list with the following components:

AF List of estimated loading matrices for each node.
DF List of diagonal residual variance matrices for each node.
SigmahatF List of covariance matrices for each node.

Examples

set.seed(123)
data <- matrix(rnorm(500), nrow = 100, ncol = 5)
DFanPC(data = data, m = 3, n1 = 20, K = 5)

DGaoPC Distributed Gao Principal Component Analysis

Description
Performs distributed Gao-type principal component analysis on a numeric dataset split across mul-
tiple nodes.

Usage
DGaoPC(data, m, n1, K)

Arguments
data A numeric matrix containing the total dataset.
m An integer specifying the number of principal components for the first stage.
ni An integer specifying the length of each data subset.
K An integer specifying the number of nodes.
Value

A list with the following components:

AG1 List of estimated loading matrices for the first-stage components for each node.
AG2 List of estimated loading matrices for the second-stage components for each node.
DG3 List of diagonal residual variance matrices for each node.

sGhat List of covariance matrices of reconstructed data for each node.
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Examples

set.seed(123)
data <- matrix(rnorm(500), nrow = 100, ncol = 5)
DGaoPC(data = data, m = 3, n1 = 20, K = 5)

DGulPC Distributed Gul Principal Component Analysis

Description

Performs distributed Gul-type principal component analysis on a numeric dataset split across mul-
tiple nodes.

Usage

DGulPC(data, m, n1, K)

Arguments
data A numeric matrix containing the total dataset.
m An integer specifying the number of principal components for the first stage.
ni An integer specifying the length of each data subset.
K An integer specifying the number of nodes.
Value

A list with the following components:

AU1 List of estimated first-stage loading matrices for each node.
AU2 List of estimated second-stage loading matrices for each node.
DU3 List of diagonal residual variance matrices for each node.

shat List of covariance matrices of reconstructed data for each node.

Examples

set.seed(123)
data <- matrix(rnorm(500), nrow = 100, ncol = 5)
DGulPC(data = data, m = 3, n1 = 20, K = 5)
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DPC Distributed Principal Component Analysis

Description
Performs distributed principal component analysis on a numeric dataset split across multiple nodes.
Estimates loading matrices, residual variances, and covariance matrices for each node.

Usage

DPC(data, m, n1, K)

Arguments
data A numeric matrix containing the total dataset.
m An integer specifying the number of principal components.
ni An integer specifying the length of each data subset.
K An integer specifying the number of nodes.
Value

A list with the following components:

Ahat List of estimated loading matrices for each node.
Dhat List of diagonal residual variance matrices for each node.

Sigmahat List of covariance matrices for each node.

Examples

set.seed(123)
data <- matrix(rnorm(500), nrow = 100, ncol = 5)
DPC(data = data, m = 3, n1 = 20, K = 5)

DPPC Distributed Probabilistic Principal Component Analysis

Description

Performs distributed probabilistic principal component analysis (PPC) on a numeric dataset split
across multiple nodes. Estimates loading matrices, residual variances, and covariance matrices for
each node using a probabilistic approach.

Usage

DPPC(data, m, nl1, K)
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Arguments
data A numeric matrix containing the total dataset.
m An integer specifying the number of principal components.
ni An integer specifying the length of each data subset.
K An integer specifying the number of nodes.
Value

A list with the following components:

Apro List of estimated loading matrices for each node.
Dpro List of diagonal residual variance matrices for each node.

Sigmahatpro List of covariance matrices for each node.

Examples

set.seed(123)
data <- matrix(rnorm(500), nrow = 100, ncol = 5)
DPPC(data = data, m = 3, n1 = 20, K = 5)

DSPC Distributed Sparse Principal Component Analysis

Description

Performs distributed sparse principal component analysis (DSPC) on a numeric dataset split across
multiple nodes. Estimates sparse loading matrices, residual variances, and covariance matrices for
each node.

Usage

DSPC(data, m, gamma, n1, K)

Arguments
data A numeric matrix containing the total dataset.
m An integer specifying the number of principal components.
gamma A numeric value specifying the sparsity parameter for SPC.
ni An integer specifying the length of each data subset.

K An integer specifying the number of nodes.
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Value
A list with the following components:

Aspro List of sparse loading matrices for each node.
Dspro List of diagonal residual variance matrices for each node.

Sigmahatpro List of covariance matrices for each node.

Examples

set.seed(123)
data <- matrix(rnorm(500), nrow = 100, ncol = 5)
DSPC(data = data, m = 3, gamma = .03, nl1 = 20, K = 5)

factor.tests Factor Model Testing with Wald, GRS, PY tests and FDR control

Description
Performs comprehensive factor model testing including joint tests (Wald, GRS, PY), individual
asset t-tests, and False Discovery Rate control.

Usage

factor.tests(ret, fac, g.fdr = 0.05)

Arguments
ret A T x N matrix representing the excess returns of N assets at T time points.
fac A T x K matrix representing the returns of K factors at T time points.
q.fdr The significance level for FDR (False Discovery Rate) testing, defaulting to 5%.
Value

A list containing the following components:

alpha N-vector of estimated alphas for each asset

tstat N-vector of t-statistics for testing individual alphas
pval N-vector of p-values for individual alpha tests
Wald Wald test statistic for joint alpha significance
p_Wald p-value for Wald test

GRS GRS test statistic (finite-sample F-test)

p_GRS p-value for GRS test

PY Pesaran and Yamagata test statistic

p_PY p-value for PY test
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reject_fdr Logical vector indicating which assets have significant alphas after FDR correc-
tion
fdr_p Adjusted p-values using Benjamini-Hochberg procedure
power_proxy Number of significant assets after FDR correction
Examples

set.seed(42)

T <- 120
N <- 25
K<-3

fac <- matrix(rnorm(T x K), T, K)

beta <- matrix(rnorm(N * K), N, K)

alpha <- rep(@, N)

alpha[1:3] <- 0.4 / 100 # 3 non-zero alphas
eps <- matrix(rnorm(T * N, sd = 0.02), T, N)
ret <- alpha + fac %*% t(beta) + eps

results <- factor.tests(ret, fac, q.fdr = 0.05)

# View results

cat("Wald test p-value:"”, results$p_Wald, "\n")
cat("GRS test p-value:", results$p_GRS, "\n")
cat("PY test p-value:"”, results$p_PY, "\n")

cat("Significant assets after FDR:", results$power_proxy, "\n")
Nutrimouse Nutrimouse: Gene, Lipid and Grouping Data
Description

A data frame containing gene expression, lipid measurements, and grouping variables (diet and
genotype) for 40 mice from a nutrigenomics study.

Usage

data(Nutrimouse)

Format
A data frame with 40 observations on 143 variables:
* 120 numeric variables for gene expression

* 21 numeric variables for lipid measurements

* 2 categorical variables: diet and genotype
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Details

This dataset was created for integrative analysis of transcriptomic and lipidomic responses of mice
to different diets and genotypes.

All numeric variables (genes and lipids) are centered and scaled. The categorical variables indicate
the experimental design: five diet types and two genotypes.

This format is convenient for regression, classification, and dimension reduction techniques requir-
ing a single data frame.

Source

Extracted from the mixOmics package, based on: \ Martin, P. G. P, et al. (2007). A systems biology
approach to the study of gene expression and lipid metabolism in mice fed high-fat diets. Journal
of Lipid Research, 48(2), 360-377.

References

Gonzilez, 1., Déjean, S., Martin, P. G. P., and Baccini, A. (2009). CCA: An R package to extend
canonical correlation analysis. Journal of Statistical Software, 23(12), 1-14.

Examples

data(Nutrimouse)

# View structure
str(Nutrimouse)

# Boxplot of a gene across diets
boxplot(Nutrimouse[,1] ~ Nutrimouse$diet, main = "Gene 1 Expression by Diet")

# PCA on all numeric variables (excluding factors)
nutri_numeric <- Nutrimouse[, sapply(Nutrimouse, is.numeric)]
pca_result <- prcomp(nutri_numeric, scale. = TRUE)

# PCA plot
plot(pca_result$x[,1:2], col = as.numeric(Nutrimouse$diet), pch = 19)
legend("topright”, legend = levels(Nutrimouse$diet), col = 1:5, pch = 19)

Parkinsons_Features Parkinson’s Disease Voice Features Dataset

Description

A dataset containing biomedical voice measurements from people with Parkinson’s disease and
healthy controls. The goal is to analyze voice signal features for detecting and monitoring Parkin-
son’s disease.
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Usage

Parkinsons_Features

data(Parkinsons_Features)

Format

A data frame with 5,876 observations on 22 variables. Each row corresponds to a voice recording
from a subject.

subject_id
age

sex
test_time
motor_UPDRS
total_UPDRS
Jitter
Shimmer

NHR

HNR

RPDE

DFA

PPE

Identifier for the subject (factor or character)

Age of the subject (numeric)

Sex of the subject (factor: Male/Female)

Time of test (numeric, days since baseline)

Unified Parkinson’s Disease Rating Scale motor score (numeric)
Total UPDRS score (numeric)

Measure of frequency variation (numeric)

Measure of amplitude variation (numeric)
Noise-to-harmonics ratio (numeric)

Harmonics-to-noise ratio (numeric)

Recurrence period density entropy (numeric)

Detrended fluctuation analysis (numeric)

Pitch period entropy (numeric)

Additional voice signal features and measurements (numeric)

All features are numerical except for identifiers and categorical variables.

Details

This dataset was collected from subjects with Parkinson’s disease and healthy controls. Multiple
biomedical voice measurements were recorded over time to evaluate disease progression.

The features include various jitter, shimmer, noise, and entropy measures extracted from sustained
vowel phonations.

The dataset is widely used for classification and regression models aiming to predict Parkinson’s
disease severity or presence.

Source

UCI Machine Learning Repository: Parkinson’s Disease Classification Data Set\https://archive.
ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring

References

Tsanas, A., Little, M.A., McSharry, PE., & Ramig, L.O. (2010). Accurate telemonitoring of Parkin-
son’s disease progression by noninvasive speech tests. IEEE Transactions on Biomedical Engineer-
ing, 57(4), 884-893.


https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring
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Examples

data(Parkinsons_Features)

if (all(startsWith(names(Parkinsons_Features), "V"))) {
colnames(Parkinsons_Features) <- Parkinsons_Features[1, ]
Parkinsons_Features <- Parkinsons_Features[-1, ]

}
Parkinsons_Features[] <- lapply(Parkinsons_Features, type.convert, as.is = TRUE)
summary (Parkinsons_Features$motor_UPDRS)

boxplot(motor_UPDRS ~ sex, data = Parkinsons_Features,
main = "Motor UPDRS by Sex"”, ylab = "Motor UPDRS")

SFM The SFM function is to generate Skew Factor Models data.

Description
The function supports various distribution types for generating the data, including: Skew-Normal
Distribution, Skew-Cauchy Distribution, Skew-t Distribution.

Usage

SFM(n, p, m, xi, omega, alpha, distribution_type)

Arguments

n Sample size.
Sample dimensionality.

m Number of factors.

xi A numerical parameter used exclusively in the "Skew-t" distribution, represent-
ing the distribution’s xi parameter.

omega A numerical parameter representing the omega parameter of the distribution,
which affects the degree of skewness in the distribution.

alpha A numerical parameter representing the alpha parameter of the distribution,

which influences the shape of the distribution.
distribution_type
The type of distribution.

Value

A list containing:

data A matrix of generated data.
A A matrix representing the factor loadings.

D A diagonal matrix representing the unique variances.
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Examples

library(MASS)
library(SOPC)
library(sn)

SOPC

library(matrixcalc)

library(psych)
n <- 100

p <- 10
m<-5
xi <=5

omega <- 2
alpha <- 5

distribution_type <- "Skew-Normal Distribution”
X <- SFM(n, p, m, xi, omega, alpha, distribution_type)

SOPC

The sparse online principal component can not only process online
data sets, but also obtain a sparse solution of online data sets.

Description

The sparse online principal component can not only process online data sets, but also obtain a sparse
solution of online data sets.

Usage

SOPC(data, m, gamma, eta)

Arguments

data
m
gamma

eta

Value

Aso,Dso

is a highly correlated online data set
is the number of principal component
is a sparse parameter

is the proportion of online data to total data
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SPC The sparse principal component can obtain sparse solutions of the
eigenmatrix to better explain the relationship between principal com-
ponents and original variables.

Description
The sparse principal component can obtain sparse solutions of the eigenmatrix to better explain the
relationship between principal components and original variables.

Usage

SPC(data, m, gamma)

Arguments

data is a highly correlated data set

m is the number of principal component

gamma is a sparse parameter
Value

As,Ds

wines Piedmont wines data

Description

Data refer to chemical properties of 178 specimens of three types of wine produced in the Piedmont
region of Italy.

Usage

data(wines)

Format

A data frame with 178 observations on the following 28 variables.

wine wine name (categorical, levels: Barbera, Barolo, Grignolino)
alcohol alcohol percentage (numeric)
sugar sugar-free extract (numeric)
acidity fixed acidity (numeric)

tartaric tartaric acid (numeric)
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Details

malic
uronic

pH

ash
alcal_ash
potassium
calcium
magnesium
phosphate
cloride
phenols
flavanoids
nonflavanoids
proanthocyanins
colour

hue

OD_dw
0OD_f1
glycerol
butanediol
nitrogen
proline
methanol

malic acid (numeric)

uronic acids (numeric)

pH (numeric)

ash (numeric)

alcalinity of ash (numeric)
potassium (numeric)

calcium (numeric)

magnesium (numeric)
phosphate (numeric)

chloride (numeric)

total phenols (numeric)
flavanoids (numeric)
nonflavanoid phenols (numeric)
proanthocyanins (numeric)
colour intensity (numeric)

hue (numeric)

OD3g0/O D35 of diluted wines (numeric)
ODsgy /0O D35 of flavanoids (numeric)
glycerol (numeric)
2,3-butanediol (numeric)

total nitrogen (numeric)

proline (numeric)

methanol (numeric)

wines

The data represent 27 chemical measurements on each of 178 wine specimens belonging to three
types of wine produced in the Piedmont region of Italy. The data have been presented and examined
by Forina et al. (1986) and were freely accessible from the PARVUS web-site until it was active.
These data or, more often, a subset of them are now available from various places, including some
R packages. The present dataset includes all variables available on the PARVUS repository, which
are the variables listed by Forina ef al. (1986) with the exception of ‘Sulphate’. Moreover, it reveals
the undocumented fact that the original dataset appears to include also the vintage year; see the final
portion of the ‘Examples’ below.

Source

Forina, M., Lanteri, S. Armanino, C., Casolino, C., Casale, M. and Oliveri, P. v-PARVUS 2008: an
extendible package of programs for esplorative data analysis, classification and regression analysis.
Dip. Chimica e Tecnologie Farmaceutiche ed Alimentari, Universita di Genova, Italia. Web-site
(not accessible as of 2014): ‘http://www.parvus.unige.it’

References

Forina M., Armanino C., Castino M. and Ubigli M. (1986). Multivariate data analysis as a discrim-
inating method of the origin of wines. Vitis 25, 189-201.
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Examples

data(wines)

pairs(wines[,c(2,3,16:18)]1, col=as.numeric(wines$wine))
#

code <- substr(rownames(wines), 1, 3)

table(wines$wine, code)

#

year <- as.numeric(substr(rownames(wines), 6, 7))
table(wines$wine, year)

# coincides with Table 1(a) of Forina et al. (1986)

17
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