CRAN Package Check Results for Package ltmle

Last updated on 2025-12-05 13:51:16 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.3-0 4.74 75.36 80.10 OK
r-devel-linux-x86_64-debian-gcc 1.3-0 3.23 46.57 49.80 ERROR
r-devel-linux-x86_64-fedora-clang 1.3-0 11.00 114.42 125.42 OK
r-devel-linux-x86_64-fedora-gcc 1.3-0 119.16 OK
r-devel-windows-x86_64 1.3-0 6.00 85.00 91.00 OK
r-patched-linux-x86_64 1.3-0 5.50 70.45 75.95 OK
r-release-linux-x86_64 1.3-0 4.03 72.31 76.34 OK
r-release-macos-arm64 1.3-0 OK
r-release-macos-x86_64 1.3-0 4.00 65.00 69.00 OK
r-release-windows-x86_64 1.3-0 6.00 86.00 92.00 OK
r-oldrel-macos-arm64 1.3-0 OK
r-oldrel-macos-x86_64 1.3-0 3.00 51.00 54.00 OK
r-oldrel-windows-x86_64 1.3-0 7.00 107.00 114.00 OK

Check Details

Version: 1.3-0
Check: tests
Result: ERROR Running ‘testthat.R’ [18s/18s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(ltmle) > > test_check("ltmle") seed set to 1 Failed with error: 'there is no package called 'SuperLearner'' Saving _problems/test-CheckInputs-132.R Failed with error: 'there is no package called 'SuperLearner'' Saving _problems/test-CheckInputs-133.R Failed with error: 'there is no package called 'SuperLearner'' Saving _problems/test-CheckInputs-134.R Estimator: tmle Estimate Std. Error CI 2.5% CI 97.5% p-value (Intercept) -3.5478 NA NA NA NA time 0.5402 NA NA NA NA switch.time NA NA NA NA NA deterministic.g.function is inconsistent with data. After setting Anodes to abar, the data looks like this: W A1 A2 Y 1 1.6973939 0 1 1 2 1.0638812 0 1 1 3 -0.7666166 0 1 0 4 0.3820076 0 1 0 5 0.2418959 0 1 1 6 -1.1327594 0 1 1 Estimator: tmle Call: ltmle(data = data, Anodes = "A", Ynodes = "Y", abar = 1, gbounds = c(0, 1), estimate.time = FALSE) Parameter Estimate: 0.60362 Estimated Std Err: 287.87 p-value: 0.99833 95% Conf Interval: (0, 1) Error in solve.default(a) : Lapack routine dgesv: system is exactly singular: U[2,2] = 0 Error in solve.default(a, b) : Lapack routine dgesv: system is exactly singular: U[2,2] = 0 Call: ltmle(data = data.frame(W, A, Y), Anodes = "A", Ynodes = "Y", abar = 1, estimate.time = F) TMLE Estimate: 0.5891077 Estimator: tmle Call: ltmle(data = data.frame(W, A, Y), Anodes = "A", Ynodes = "Y", abar = 1, estimate.time = F) Parameter Estimate: 0.58911 Estimated Std Err: 0.10025 p-value: 2.2363e-06 95% Conf Interval: (0.38408, 0.79414) Call: ltmle(data = data.frame(W, A, Y), Anodes = "A", Ynodes = "Y", abar = list(1, 0), estimate.time = F) Use summary(...) to get estimates, standard errors, p-values, and confidence intervals for treatment EYd, control EYd, additive effect, relative risk, and odds ratio. Estimator: tmle Call: ltmle(data = data.frame(W, A, Y), Anodes = "A", Ynodes = "Y", abar = list(1, 0), estimate.time = F) Treatment Estimate: Parameter Estimate: 0.58911 Estimated Std Err: 0.10025 p-value: 2.2363e-06 95% Conf Interval: (0.38408, 0.79414) Control Estimate: Parameter Estimate: 0.49873 Estimated Std Err: 0.19951 p-value: 0.018337 95% Conf Interval: (0.090676, 0.90678) Additive Treatment Effect: Parameter Estimate: 0.090378 Estimated Std Err: 0.22265 p-value: 0.68778 95% Conf Interval: (-0.36499, 0.54575) Relative Risk: Parameter Estimate: 1.1812 Est Std Err log(RR): 0.43379 p-value: 0.70384 95% Conf Interval: (0.48643, 2.8684) Odds Ratio: Parameter Estimate: 1.441 Est Std Err log(OR): 0.89643 p-value: 0.68658 95% Conf Interval: (0.23038, 9.0138) Call: ltmle(data = data.frame(W, A, Y), Anodes = "A", Ynodes = "Y", abar = 1, estimate.time = F) TMLE Estimate: 0.5891077 Estimator: tmle Call: ltmle(data = data.frame(W, A, Y), Anodes = "A", Ynodes = "Y", abar = 1, estimate.time = F) Parameter Estimate: 0.58911 Estimated Std Err: 0.10025 p-value: 2.2363e-06 95% Conf Interval: (0.38408, 0.79414) Call: ltmle(data = data.frame(W, A, Y), Anodes = "A", Ynodes = "Y", abar = list(1, 0), estimate.time = F) Use summary(...) to get estimates, standard errors, p-values, and confidence intervals for treatment EYd, control EYd, additive effect, relative risk, and odds ratio. Estimator: tmle Call: ltmle(data = data.frame(W, A, Y), Anodes = "A", Ynodes = "Y", abar = list(1, 0), estimate.time = F) Treatment Estimate: Parameter Estimate: 0.58911 Estimated Std Err: 0.10025 p-value: 2.2363e-06 95% Conf Interval: (0.38408, 0.79414) Control Estimate: Parameter Estimate: 0.49873 Estimated Std Err: 0.19951 p-value: 0.018337 95% Conf Interval: (0.090676, 0.90678) Additive Treatment Effect: Parameter Estimate: 0.090378 Estimated Std Err: 0.22265 p-value: 0.68778 95% Conf Interval: (-0.36499, 0.54575) Relative Risk: Parameter Estimate: 1.1812 Est Std Err log(RR): 0.43379 p-value: 0.70384 95% Conf Interval: (0.48643, 2.8684) Odds Ratio: Parameter Estimate: 1.441 Est Std Err log(OR): 0.89643 p-value: 0.68658 95% Conf Interval: (0.23038, 9.0138) Call: ltmle(data = data.frame(W, A, Y), Anodes = "A", Ynodes = "Y", abar = 1, estimate.time = F, gcomp = T) GCOMP Estimate: 0.6098368 Estimator: gcomp Warning: inference for gcomp is not accurate! It is based on TMLE influence curves. Call: ltmle(data = data.frame(W, A, Y), Anodes = "A", Ynodes = "Y", abar = 1, estimate.time = F, gcomp = T) Parameter Estimate: 0.60984 Estimated Std Err: 0.10069 p-value: 1.3631e-06 95% Conf Interval: (0.40391, 0.81576) [ FAIL 3 | WARN 153 | SKIP 6 | PASS 164 ] ══ Skipped tests (6) ═══════════════════════════════════════════════════════════ • On CRAN (4): 'test-(init).R:5:3', 'test-EstimateVariance.R:4:3', 'test-Weights.R:73:3', 'test-random.R:7:3' • empty test (2): 'test-AbarAndRegimes.R:84:1', 'test-print.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Failure ('test-CheckInputs.R:132:3'): cvControl requires correct names and makes a difference ── `ltmle(...)` threw an error with unexpected message. Expected match: "SL.cvControl must be a list" Actual message: "SuperLearner package is required if SL.library is not NULL or 'glm'" Backtrace: ▆ 1. ├─testthat::expect_error(...) at test-CheckInputs.R:132:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─ltmle::ltmle(...) 7. └─ltmle:::CreateInputs(...) 8. └─ltmle:::CheckInputs(...) ── Failure ('test-CheckInputs.R:133:3'): cvControl requires correct names and makes a difference ── `ltmle(...)` threw an error with unexpected message. Expected match: "The valid names for SL.cvControl are V, stratifyCV, shuffle. validRows is not currently supported." Actual message: "SuperLearner package is required if SL.library is not NULL or 'glm'" Backtrace: ▆ 1. ├─testthat::expect_error(...) at test-CheckInputs.R:133:3 2. │ └─testthat:::quasi_capture(...) 3. │ ├─testthat (local) .capture(...) 4. │ │ └─base::withCallingHandlers(...) 5. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 6. └─ltmle::ltmle(...) 7. └─ltmle:::CreateInputs(...) 8. └─ltmle:::CheckInputs(...) ── Error ('test-CheckInputs.R:134:3'): cvControl requires correct names and makes a difference ── Error in `CheckInputs(data, all.nodes, survivalOutcome, Qform, gform, gbounds, Yrange, deterministic.g.function, SL.library, SL.cvControl, regimes, working.msm, summary.measures, final.Ynodes, stratify, msm.weights, deterministic.Q.function, observation.weights, gcomp, variance.method, id)`: SuperLearner package is required if SL.library is not NULL or 'glm' Backtrace: ▆ 1. └─ltmle::ltmle(...) at test-CheckInputs.R:134:3 2. └─ltmle:::CreateInputs(...) 3. └─ltmle:::CheckInputs(...) [ FAIL 3 | WARN 153 | SKIP 6 | PASS 164 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.3-0
Check: HTML version of manual
Result: NOTE Skipping checking math rendering: package 'V8' unavailable Flavor: r-devel-linux-x86_64-debian-gcc