CRAN Package Check Results for Package CAST

Last updated on 2025-11-25 17:49:45 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.3 19.40 551.86 571.26 ERROR
r-devel-linux-x86_64-debian-gcc 1.0.3 13.02 380.56 393.58 ERROR
r-devel-linux-x86_64-fedora-clang 1.0.3 42.00 839.10 881.10 ERROR
r-devel-linux-x86_64-fedora-gcc 1.0.3 47.00 833.69 880.69 ERROR
r-devel-windows-x86_64 1.0.3 23.00 863.00 886.00 ERROR
r-patched-linux-x86_64 1.0.3 18.01 637.28 655.29 OK
r-release-linux-x86_64 1.0.3 18.60 643.51 662.11 OK
r-release-macos-arm64 1.0.3 OK
r-release-macos-x86_64 1.0.3 15.00 680.00 695.00 OK
r-release-windows-x86_64 1.0.3 19.00 616.00 635.00 OK
r-oldrel-macos-arm64 1.0.3 OK
r-oldrel-macos-x86_64 1.0.3 12.00 393.00 405.00 OK
r-oldrel-windows-x86_64 1.0.3 26.00 896.00 922.00 OK

Check Details

Version: 1.0.3
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘cast01-CAST-intro.Rmd’ using rmarkdown CAST package:CAST R Documentation '_<08>c_<08>a_<08>r_<08>e_<08>t' _<08>A_<08>p_<08>p_<08>l_<08>i_<08>c_<08>a_<08>t_<08>i_<08>o_<08>n_<08>s _<08>f_<08>o_<08>r _<08>S_<08>p_<08>a_<08>t_<08>i_<08>a_<08>l-_<08>T_<08>e_<08>m_<08>p_<08>o_<08>r_<08>a_<08>l _<08>M_<08>o_<08>d_<08>e_<08>l_<08>s _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: Supporting functionality to run 'caret' with spatial or spatial-temporal data. 'caret' is a frequently used package for model training and prediction using machine learning. CAST includes functions to improve spatial-temporal modelling tasks using 'caret'. It includes the newly suggested 'Nearest neighbor distance matching' cross-validation to estimate the performance of spatial prediction models and allows for spatial variable selection to selects suitable predictor variables in view to their contribution to the spatial model performance. CAST further includes functionality to estimate the (spatial) area of applicability of prediction models by analysing the similarity between new data and training data. Methods are described in Meyer et al. (2018); Meyer et al. (2019); Meyer and Pebesma (2021); Milà et al. (2022); Meyer and Pebesma (2022); Linnenbrink et al. (2023). The package is described in detail in Meyer et al. (2024). _<08>D_<08>e_<08>t_<08>a_<08>i_<08>l_<08>s: 'caret' Applications for Spatio-Temporal models _<08>A_<08>u_<08>t_<08>h_<08>o_<08>r(_<08>s): Hanna Meyer, Carles Milà, Marvin Ludwig, Jan Linnenbrink, Fabian Schumacher _<08>R_<08>e_<08>f_<08>e_<08>r_<08>e_<08>n_<08>c_<08>e_<08>s: • Meyer, H., Ludwig, L., Milà, C., Linnenbrink, J., Schumacher, F. (2024): The CAST package for training and assessment of spatial prediction models in R. arXiv, https://doi.org/10.48550/arXiv.2404.06978. • Linnenbrink, J., Milà, C., Ludwig, M., and Meyer, H.: kNNDM: k-fold Nearest Neighbour Distance Matching Cross-Validation for map accuracy estimation, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1308, 2023. • Milà, C., Mateu, J., Pebesma, E., Meyer, H. (2022): Nearest Neighbour Distance Matching Leave-One-Out Cross-Validation for map validation. Methods in Ecology and Evolution 00, 1– 13. • Meyer, H., Pebesma, E. (2022): Machine learning-based global maps of ecological variables and the challenge of assessing them. Nature Communications. 13. • Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods in Ecology and Evolution. 12, 1620– 1633. • Meyer, H., Reudenbach, C., Wöllauer, S., Nauss, T. (2019): Importance of spatial predictor variable selection in machine learning applications - Moving from data reproduction to spatial prediction. Ecological Modelling. 411, 108815. • Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauß, T. (2018): Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software 101: 1-9. _<08>S_<08>e_<08>e _<08>A_<08>l_<08>s_<08>o: Useful links: • <https://github.com/HannaMeyer/CAST> • <https://hannameyer.github.io/CAST/> • Report bugs at <https://github.com/HannaMeyer/CAST/issues/> Quitting from cast01-CAST-intro.Rmd:51-57 [unnamed-chunk-3] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `library()`: ! there is no package called 'tmap' --- Backtrace: ▆ 1. └─base::library(tmap) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'cast01-CAST-intro.Rmd' failed with diagnostics: there is no package called 'tmap' --- failed re-building ‘cast01-CAST-intro.Rmd’ --- re-building ‘cast02-plotgeodist.Rmd’ using rmarkdown trying URL 'https://geodata.ucdavis.edu/climate/worldclim/2_1/base/wc2.1_10m_bio.zip' Content type 'application/zip' length 49869449 bytes (47.6 MB) ================================================== downloaded 47.6 MB [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast02-plotgeodist.Rmd’ --- re-building ‘cast03-CV.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast03-CV.Rmd’ --- re-building ‘cast04-AOA-tutorial.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast04-AOA-tutorial.Rmd’ --- re-building ‘cast05-parallel.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast05-parallel.Rmd’ SUMMARY: processing the following file failed: ‘cast01-CAST-intro.Rmd’ Error: Vignette re-building failed. Execution halted Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc

Version: 1.0.3
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building ‘cast01-CAST-intro.Rmd’ using rmarkdown CAST package:CAST R Documentation '_<08>c_<08>a_<08>r_<08>e_<08>t' _<08>A_<08>p_<08>p_<08>l_<08>i_<08>c_<08>a_<08>t_<08>i_<08>o_<08>n_<08>s _<08>f_<08>o_<08>r _<08>S_<08>p_<08>a_<08>t_<08>i_<08>a_<08>l-_<08>T_<08>e_<08>m_<08>p_<08>o_<08>r_<08>a_<08>l _<08>M_<08>o_<08>d_<08>e_<08>l_<08>s _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: Supporting functionality to run 'caret' with spatial or spatial-temporal data. 'caret' is a frequently used package for model training and prediction using machine learning. CAST includes functions to improve spatial-temporal modelling tasks using 'caret'. It includes the newly suggested 'Nearest neighbor distance matching' cross-validation to estimate the performance of spatial prediction models and allows for spatial variable selection to selects suitable predictor variables in view to their contribution to the spatial model performance. CAST further includes functionality to estimate the (spatial) area of applicability of prediction models by analysing the similarity between new data and training data. Methods are described in Meyer et al. (2018); Meyer et al. (2019); Meyer and Pebesma (2021); Milà et al. (2022); Meyer and Pebesma (2022); Linnenbrink et al. (2023). The package is described in detail in Meyer et al. (2024). _<08>D_<08>e_<08>t_<08>a_<08>i_<08>l_<08>s: 'caret' Applications for Spatio-Temporal models _<08>A_<08>u_<08>t_<08>h_<08>o_<08>r(_<08>s): Hanna Meyer, Carles Milà, Marvin Ludwig, Jan Linnenbrink, Fabian Schumacher _<08>R_<08>e_<08>f_<08>e_<08>r_<08>e_<08>n_<08>c_<08>e_<08>s: • Meyer, H., Ludwig, L., Milà, C., Linnenbrink, J., Schumacher, F. (2024): The CAST package for training and assessment of spatial prediction models in R. arXiv, https://doi.org/10.48550/arXiv.2404.06978. • Linnenbrink, J., Milà, C., Ludwig, M., and Meyer, H.: kNNDM: k-fold Nearest Neighbour Distance Matching Cross-Validation for map accuracy estimation, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1308, 2023. • Milà, C., Mateu, J., Pebesma, E., Meyer, H. (2022): Nearest Neighbour Distance Matching Leave-One-Out Cross-Validation for map validation. Methods in Ecology and Evolution 00, 1– 13. • Meyer, H., Pebesma, E. (2022): Machine learning-based global maps of ecological variables and the challenge of assessing them. Nature Communications. 13. • Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods in Ecology and Evolution. 12, 1620– 1633. • Meyer, H., Reudenbach, C., Wöllauer, S., Nauss, T. (2019): Importance of spatial predictor variable selection in machine learning applications - Moving from data reproduction to spatial prediction. Ecological Modelling. 411, 108815. • Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauß, T. (2018): Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software 101: 1-9. _<08>S_<08>e_<08>e _<08>A_<08>l_<08>s_<08>o: Useful links: • <https://github.com/HannaMeyer/CAST> • <https://hannameyer.github.io/CAST/> • Report bugs at <https://github.com/HannaMeyer/CAST/issues/> Quitting from cast01-CAST-intro.Rmd:51-57 [unnamed-chunk-3] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `library()`: ! there is no package called 'tmap' --- Backtrace: ▆ 1. └─base::library(tmap) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'cast01-CAST-intro.Rmd' failed with diagnostics: there is no package called 'tmap' --- failed re-building ‘cast01-CAST-intro.Rmd’ --- re-building ‘cast02-plotgeodist.Rmd’ using rmarkdown trying URL 'https://geodata.ucdavis.edu/climate/worldclim/2_1/base/wc2.1_10m_bio.zip' Content type 'application/zip' length 49869449 bytes (47.6 MB) ================================================== downloaded 47.6 MB [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast02-plotgeodist.Rmd’ --- re-building ‘cast03-CV.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast03-CV.Rmd’ --- re-building ‘cast04-AOA-tutorial.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast04-AOA-tutorial.Rmd’ --- re-building ‘cast05-parallel.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast05-parallel.Rmd’ SUMMARY: processing the following file failed: ‘cast01-CAST-intro.Rmd’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.0.3
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building ‘cast01-CAST-intro.Rmd’ using rmarkdown CAST package:CAST R Documentation '_<08>c_<08>a_<08>r_<08>e_<08>t' _<08>A_<08>p_<08>p_<08>l_<08>i_<08>c_<08>a_<08>t_<08>i_<08>o_<08>n_<08>s _<08>f_<08>o_<08>r _<08>S_<08>p_<08>a_<08>t_<08>i_<08>a_<08>l-_<08>T_<08>e_<08>m_<08>p_<08>o_<08>r_<08>a_<08>l _<08>M_<08>o_<08>d_<08>e_<08>l_<08>s _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: Supporting functionality to run 'caret' with spatial or spatial-temporal data. 'caret' is a frequently used package for model training and prediction using machine learning. CAST includes functions to improve spatial-temporal modelling tasks using 'caret'. It includes the newly suggested 'Nearest neighbor distance matching' cross-validation to estimate the performance of spatial prediction models and allows for spatial variable selection to selects suitable predictor variables in view to their contribution to the spatial model performance. CAST further includes functionality to estimate the (spatial) area of applicability of prediction models by analysing the similarity between new data and training data. Methods are described in Meyer et al. (2018); Meyer et al. (2019); Meyer and Pebesma (2021); Milà et al. (2022); Meyer and Pebesma (2022); Linnenbrink et al. (2023). The package is described in detail in Meyer et al. (2024). _<08>D_<08>e_<08>t_<08>a_<08>i_<08>l_<08>s: 'caret' Applications for Spatio-Temporal models _<08>A_<08>u_<08>t_<08>h_<08>o_<08>r(_<08>s): Hanna Meyer, Carles Milà, Marvin Ludwig, Jan Linnenbrink, Fabian Schumacher _<08>R_<08>e_<08>f_<08>e_<08>r_<08>e_<08>n_<08>c_<08>e_<08>s: • Meyer, H., Ludwig, L., Milà, C., Linnenbrink, J., Schumacher, F. (2024): The CAST package for training and assessment of spatial prediction models in R. arXiv, https://doi.org/10.48550/arXiv.2404.06978. • Linnenbrink, J., Milà, C., Ludwig, M., and Meyer, H.: kNNDM: k-fold Nearest Neighbour Distance Matching Cross-Validation for map accuracy estimation, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1308, 2023. • Milà, C., Mateu, J., Pebesma, E., Meyer, H. (2022): Nearest Neighbour Distance Matching Leave-One-Out Cross-Validation for map validation. Methods in Ecology and Evolution 00, 1– 13. • Meyer, H., Pebesma, E. (2022): Machine learning-based global maps of ecological variables and the challenge of assessing them. Nature Communications. 13. • Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods in Ecology and Evolution. 12, 1620– 1633. • Meyer, H., Reudenbach, C., Wöllauer, S., Nauss, T. (2019): Importance of spatial predictor variable selection in machine learning applications - Moving from data reproduction to spatial prediction. Ecological Modelling. 411, 108815. • Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauß, T. (2018): Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software 101: 1-9. _<08>S_<08>e_<08>e _<08>A_<08>l_<08>s_<08>o: Useful links: • <https://github.com/HannaMeyer/CAST> • <https://hannameyer.github.io/CAST/> • Report bugs at <https://github.com/HannaMeyer/CAST/issues/> Quitting from cast01-CAST-intro.Rmd:51-57 [unnamed-chunk-3] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `library()`: ! there is no package called 'tmap' --- Backtrace: ▆ 1. └─base::library(tmap) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'cast01-CAST-intro.Rmd' failed with diagnostics: there is no package called 'tmap' --- failed re-building ‘cast01-CAST-intro.Rmd’ --- re-building ‘cast02-plotgeodist.Rmd’ using rmarkdown Quitting from cast02-plotgeodist.Rmd:243-248 [unnamed-chunk-17] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `names(predictors_global) <- c(paste0("bio_", 1:19))`: ! attempt to set an attribute on NULL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'cast02-plotgeodist.Rmd' failed with diagnostics: attempt to set an attribute on NULL --- failed re-building ‘cast02-plotgeodist.Rmd’ --- re-building ‘cast03-CV.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast03-CV.Rmd’ --- re-building ‘cast04-AOA-tutorial.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast04-AOA-tutorial.Rmd’ --- re-building ‘cast05-parallel.Rmd’ using rmarkdown [WARNING] Deprecated: --highlight-style. Use --syntax-highlighting instead. --- finished re-building ‘cast05-parallel.Rmd’ SUMMARY: processing the following files failed: ‘cast01-CAST-intro.Rmd’ ‘cast02-plotgeodist.Rmd’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.0.3
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building 'cast01-CAST-intro.Rmd' using rmarkdown trying URL 'https://geodata.ucdavis.edu/climate/worldclim/2_1/base/wc2.1_10m_bio.zip' Content type 'application/zip' length 49869449 bytes (47.6 MB) ================================================== downloaded 47.6 MB trying URL 'https://geodata.ucdavis.edu/climate/worldclim/2_1/base/wc2.1_10m_elev.zip' Content type 'application/zip' length 1332437 bytes (1.3 MB) ================================================== downloaded 1.3 MB --- finished re-building 'cast01-CAST-intro.Rmd' --- re-building 'cast02-plotgeodist.Rmd' using rmarkdown Quitting from cast02-plotgeodist.Rmd:243-248 [unnamed-chunk-17] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `names(predictors_global) <- c(paste0("bio_", 1:19))`: ! attempt to set an attribute on NULL ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'cast02-plotgeodist.Rmd' failed with diagnostics: attempt to set an attribute on NULL --- failed re-building 'cast02-plotgeodist.Rmd' --- re-building 'cast03-CV.Rmd' using rmarkdown --- finished re-building 'cast03-CV.Rmd' --- re-building 'cast04-AOA-tutorial.Rmd' using rmarkdown --- finished re-building 'cast04-AOA-tutorial.Rmd' --- re-building 'cast05-parallel.Rmd' using rmarkdown --- finished re-building 'cast05-parallel.Rmd' SUMMARY: processing the following file failed: 'cast02-plotgeodist.Rmd' Error: Vignette re-building failed. Execution halted Flavor: r-devel-windows-x86_64