Package ‘AnnotationForge’

February 16, 2026
Title Tools for building SQLite-based annotation data packages

Description Provides code for generating Annotation packages and
their databases. Packages produced are intended to be
used with AnnotationDbi.

biocViews Annotation, Infrastructure
URL https://bioconductor.org/packages/AnnotationForge

BugReports https://github.com/Bioconductor/AnnotationForge/issues
Version 1.53.0

License Artistic-2.0

Encoding UTF-8

Depends R (>= 3.5.0), methods, utils, BiocGenerics (>= 0.15.10),
Biobase (>= 1.17.0), AnnotationDbi (>= 1.33.14)

Imports DBI, RSQLite, XML, S4Vectors, RCurl

Suggests biomaRt, httr, GenomelnfoDb (>= 1.17.1), Biostrings, affy,
hgu95av2.db, human.db0, org.Hs.eg.db, Homo.sapiens, GO.db,
rmarkdown, BiocStyle, knitr, BiocManager, BiocFileCache, RUnit

VignetteBuilder knitr
BuildKeepEmpty TRUE

Collate makeAnnDbPkg.R sqlForge_utils.R sqlForge_baseMapBuilder.R
sqlForge_schemaGen.R sqlForge_tableBuilder.R
sqlForge_makeAnnPkgs.R sqlForge_wrapBaseDBPkgs.R
sqlForge_seqnames.R makeProbePackage.R makeOrgPackage.R
makeChipPackageFromDataFrames.R makeOrgPackageFromNCBI.R
NCBI_getters.R makeInparanoidDbs.R
test_AnnotationForge_package.R

Date 2024-10-28

git_url https://git.bioconductor.org/packages/AnnotationForge
git_branch devel

git_last_commit all3c77

git_last_commit_date 2025-10-29

https://bioconductor.org/packages/AnnotationForge
https://github.com/Bioconductor/AnnotationForge/issues

Repository Bioconductor 3.23
Date/Publication 2026-02-16

Author Marc Carlson [aut],
Hervé Pages [aut],
Madelyn Carlson [ctb] ('Creating probe packages' vignette translation
from Sweave to Rmarkdown / HTML),
Bioconductor Package Maintainer [cre]

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

available.dbOpkgs

Contents
available.dbOpkgs L 2
generateSeqnames.db Lo 3
getProbeDataAffy 5
getProbeData_11q e 6
makeAnnDbPkg 7
makeChipPackage 8
makeDBPackage 10
makelnpDb e e 11
makeOrgPackage 12
makeOrgPackageFromNCBI L oo 14
makeProbePackage 16
populateDB 17
wrapBaseDBPackages 19

Index 21

available.dbopkgs available.dbOpkgs
Description

Get the list of intermediate annotation data packages (.db0 data packages) that are currently avail-

able on the Bioconductor repositories for your version of R/Bioconductor.

Or get a list of schemas supported by AnnotationDbi.

Usage

available.dbopkgs()
available.dbschemas()
available.chipdbschemas()

generateSeqnames.db 3

Details

The SQLForge code uses a series of intermediate database packages that are necessary to build
updated custom annotation packages. These packages must be installed or updated if you want to
make a custom annotation package for a particular organism. These special intermediate packages
contain the latest freeze of the data needed to build custom annotation data packages and are easily
identified by the fact that they end with the special ".db0" suffix. This function will list all such
packages that are available for a specific version of bioconductor.

The available.dbschemas() and available.chipdbschemas() functions allow you to get a list of the
schema names that are available similar to how you can list the available ".db0" packages by using
available.dbOpkgs(). This list of shemas is useful (for example) when you want to build a new
package and need to know the name of the schema you want to use.

Value
A character vector containing the names of the available ".db0" data packages. Or a a character
vector listing the names of the available schemas.

Author(s)

Hervé Pages and Marc Carlson

Examples

Get the list of BSgenome data packages currently available:
available.dbopkgs()

Not run:
Make your choice and install like this:
library(BiocManager)
install("human.db@")

End(Not run)

Get the list of chip DB schemas:
available.chipdbschemas()

Get the list of ALL DB schemas:
available.dbschemas()

generateSegnames.db Generates the seqnames.db package and database

Description

This function is used to generate the seqnames.db package and it’s database from the csv files
contained in the template for this package within AnnotationForge. The csv files are converted into
database tables, and the DB is packaged into a new seqnames.db package.

4 generateSeqnames.db

Usage
generateSegnames.db(version, outdir=".")
Arguments
version Character. Version number for the final package.
outdir Character. Path to output directory where the package is to be placed. By default
the current working directory will be used.
Details

The generateSeqgnames. db function allows users to regenerate the seqnames.db package from csv
sources contained in the currently installed AnnotationForge package. It is expected that the typical
user will not need to use this at all, but in case they do, we have made it available. We expect that
the more common use case is someone who wants to make some new chromosome conventions
available for the world. It is expected that this person will more typicalyl be charitable and want
to share their conventions, so they could share their .csv files with us and we would add them to
AnnotationForge, install the updated package and then run this function to make a new package.

The .csv files need to be formatted the same as the ones that are currently in the template in Anno-
tationForge. Examples of these .csv files can be found in AnnotationForge in the "inst/seqnames-
template/inst/extdata/dataFiles/" directory. Each file must be named after it’s corresponding genus
and species with an underscore separator and a .csv file extension. The 1st line of each file defines
columns that are the names of the corresponding naming conventions. And the chromosome names
are then listed below this header line such that the equivalent names for the different styles share
the same row.

So for example the 1st four rows of Mus_musculus look like this (but with only one newline at the
end of each row):

UCSC,NCBI,ensembl
chrl,1,1

chr2,2,2

chr3,3,3

etc.

Once you have your file ready your only need to place it in the same dir in AnnoationDbi (with
the other files), install AnnotationForge, and then run this function to generate a new seqnames.db
package. Of course, if you have a useful set of conventions or species to contribute, it would be
best if you gave your .csv files to the Bioconductor core team so that we can add these files to the
official version of AnnotationForge and so that they can occur in the official seqnames.db package.

Value

A new seqnames.db package, complete with all the latest data stored in the dataFiles subdirectory

Author(s)

Marc Carlson

getProbeDataAffy 5

Examples

Not run:
generateSeqgnames.db(version="1.0.0")

End(Not run)

getProbeDataAffy Read a data file describing the probe sequences on an Affymetrix
genechip

Description

Read a data file describing the probe sequences on an Affymetrix genechip

Usage

getProbeDataAffy(arraytype, datafile, pkgname = NULL, comparewithcdf = FALSE)

Arguments
arraytype Character. Array type (e.g. 'HG-U1334A’)
datafile Character with the filename of the input data file, or a connection (see example).
If omitted a default name is constructed from arraytype (for details you will
need to consult this function’s source code).
pkgname Character. Package name. If NULL the name is derived from arraytype.

comparewithcdf Logical. If TRUE, run a consistency check against a CDF package of the same

L)

name (what used to be Laurent’s "extraparanoia”.)

Details

This function serves as an interface between the (1) representation of array probe information data
in the packages that are generated by makeProbePackage and (2) the vendor- and possibly version-
specific way the data are represented in datafile.

datafile is a tabulator-separated file with one row per probe, and column names 'Probe X',
'Probe Y', 'Probe Sequence', and 'Probe.Set.Name'. See the vignette for an example.

Value
A list with three components
dataEnv an environment which contains the data frame with the probe sequences and the

other probe data.

symVal a named list of symbol value substitutions which can be used to customize the
man pages. See createPackage.

pkgname a character with the package name; will be the same as the function parameter
pkgname if it was specified; otherwise, the name is constructed from the param-
eter arraytype.

See Also

makeProbePackage

Examples

Please refer to the vignette

getProbeData_1lq

getProbeData_11q Read a 1lq file for an Affymetrix genechip

Description

Read a 1lq file for an Affymetrix genechip

Usage

getProbeData_11qg(arraytype, datafile, pkgname = NULL)

Arguments
arraytype Character. Array type (e.g. *Scerevisiaetiling)
datafile Character. The filename of the input data file. If omitted a default name is
constructed from arraytype (see this function’s source code).
pkgname Character. Package name. If NULL the name is derived from arraytype.
Details

This function serves as an interface between the (1) representation of array probe information data
in the packages that are generated by makeProbePackage and (2) the vendor- and possibly version-

specific way the data are represented in datafile.

Value

A list with three components

dataEnv an environment which contains the data frame with the probe sequences and the

other probe data.

symVal a named list of symbol value substitutions which can be used to customize the

man pages. See createPackage.

pkgname a character with the package name; will be the same as the function parameter
pkgname if it was specified; otherwise, the name is constructed from the param-

eter arraytype.

See Also

makeProbePackage

makeAnnDbPkg

Examples

makeProbePackage(

#it arraytype = "Scerevisiaetiling”,

maintainer= "Wolfgang Huber <huber@ebi.ac.uk>",
#it version = "1.1.0",

#it datafile = "S.cerevisiae_tiling.11q",

#i# importfun = "getProbeData_11q")

makeAnnDbPkg Create an SQLite-based annotation package

Description

Create an SQLite-based annotation package from an SQLite file.

Usage

makeAnnDbPkg(x, dbfile, dest_dir=".", no.man=FALSE, ...)
loadAnnDbPkgIndex(file)

Arguments
X A AnnDbPkgSeed object, a list, a string or a regular expression.
dbfile The path to the SQLite containing the annotation data for the package to build.
dest_dir The directory where the package will be created.
file The path to a DCF file containing the list of annotation packages to build.
no.man If TRUE then no man page is included in the package.
Extra args used for extra filtering.
See Also

AnnDbPkg-checker

Examples

With a "AnnDbPkgSeed” object:

seed <- new("AnnDbPkgSeed",
Package="hgu133a2.db",
Version="0.0.99",
PkgTemplate="HUMANCHIP.DB",
AnnObjPrefix="hgu133a2"

)

if (FALSE)
makeAnnDbPkg(seed, "path/to/hgul33a2.sqlite”)

With package names:
(Note that in this case makeAnnDbPkg() will use the package descriptions

8 makeChipPackage

found in the master index file ANNDBPKG-INDEX.TXT located in the
AnnotationDbi package.)
if (FALSE)

makeAnnDbPkg (c("hgud95av2.db", "hgul33a2.db"))

A character vector of length 1 is treated as a regular expression:
if (FALSE)
makeAnnDbPkg ("hgu.*x")
To make all the packages described in the master index:
if (FALSE)
makeAnnDbPkg("")
Extra args can be used to narrow down the roaster of packages to make:
if (FALSE) {
makeAnnDbPkg("", PkgTemplate="HUMANCHIP.DB"”, manufacturer="Affymetrix")
makeAnnDbPkg (" .*[3k]\\.db", species=c("Mouse”, "Rat"))

}
The master index file ANNDBPKG-INDEX.TXT can be loaded with:
loadAnnDbPkgIndex ()
makeChipPackage Making a chip package from annotations available from data.frame of
probes mapped to gene IDs and an existing org package.
Description

The makeChipPackage function allows the user to make an chip package from a data.frame that has
two columns to define a set of probes and the gene IDs that they map to as well as an org package
that contains data about those gene IDs (where the gene IDs can be used as a foreign key).

makeChipPackage is intended to be compatible with any org packages that are generated by makeOrgPackage
as well as most of the older legacy org packages that were based on more popular model organisms.

The one exception is the legacy org package for yeast org.Sc.sgd.db since its internal schema is

just too different from everything else.

Packages produced in this way can not support the older bimap objects unless they are pointing to
an older legacy org package. All packages should support select().

Usage

makeChipPackage (prefix,
probeFrame,
orgPkgName,
version,
maintainer,
author,
outputDir = ".",
tax_id,
genus,
species,
optionalAccessionsFrame=NULL)

makeChipPackage

Arguments

prefix

probeFrame

orgPkgName
version
maintainer
author
outputDir

tax_id

genus

species

The package name

data.frame with two columns. The 1st column are the probes and the second
column are genes (gene IDs). The gene IDs must be the main ID type for the
org package that is the named in the 3rd argument.

The name of the org package that you want to make the chip package to go with
What is the version number for this package? format: \’x.y.z\’

Who is the package maintainer? (must include email to be valid)

Who is the creator of this package?

A path where the package source should be assembled.

The Taxonomy ID that represents your organism. (NCBI has a nice online
browser for finding the one you need)

Single string indicating the genus.

Single string indicating the species.

optionalAccessionsFrame

Value

If you want to also include accessions for your probes (not used for mapping
them) then you can include those here.

The path to the package that just created. This is useful for calling install.packages as the next step.

Author(s)
M. Carlson

Examples

if(interactive()){

1st lets list some authentic entrez gene IDs

genelds <- c(”1","10","100","1000","10000", "100008586")
probeNames <- paste("probe”, 1:length(genelds), sep="")
probefFrame <- data.frame(probes=probeNames, genes=genelds)

makeChipPackage(prefix="testChip',

probeFrame=probeFrame,
orgPkgName="org.Hs.eg.db"',
version='0.99.1",

maintainer='Some One <so@someplace.org>',
author="'Some One <so@someplace.org>',
outputDir=".",

tax_id='59729"',

genus="Homo",

species="'sapiens')

then you can call install.packages based on the return value
install.packages('./testChip.db', repos=NULL)

10

makeDBPackage

makeDBPackage

Creates a sqlite database, and then makes an annotation package with
it

Description

This function 1st creates a SQLite file useful for making a SQLite based annotation package by
using the correct popXXXCHIP_DB function. Next, this function produces an annotation package
featuring the sqlite database produced. All makeXXXXChip_DB functions REQUIRE that you
previously have installed the appropriate XXXX.db0 package. Call the function available.dbOpkgs()
to see what your options are, and then install the appropriate package with BiocManager::install().

Usage

makeDBPackage (schema, ...)

usage case with required arguments

B3

H ¥ H H

Arguments

schema

affy

prefix

fileName

otherSrc

chipMapSrc

makeDBPackage (schema, affy, prefix, fileName, baseMapType, version)

usage case with all arguments

makeDBPackage (schema, affy, prefix, fileName, otherSrc, chipMapSrc,
chipSrc, baseMapType, outputDir, version, manufacturer, chipName,
manufacturerUrl, author, maintainer)

String listing the schema that you want to use to make the DB. You can list
schemas with available.dbschemas()

Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix is the first part of the eventual desired package name. (ie. "prefix.db")

The path and filename for the file to be parsed. This can either be an affy csv
file or it can be a more classic file type.

The path and filenames to any other lists of IDs which might add information
about how a probe will map.

The path and filename to the intermediate database containing the mapping data
for allowed ID types and how these IDs relate to each other. If not provided,
then the appropriate source DB from the most current .db0 package will be used
instead.

makelnpDb 11

chipSrc The path and filename to the intermediate database containing the annotation
data for the sqlite to build. If not provided, then the appropriate source DB from
the most current .db0 package will be used instead.

baseMapType The type of ID that is used for the initial base mapping. If using a classic base
mapping file, this should be the ID type present in the fileName. This can be
any of the following values: "gb" = for genbank IDs "ug" = unigene IDs "eg"
= Entrez Gene IDs "refseq" = refseq IDs "gbNRef" = mixture of genbank and

refseq IDs
outputDir Where you would like the output files to be placed.
version What is the version number for the desired package.

manufacturer =~ Who made the chip being described.

chipName What is the name of the chip.
manufacturerUrl
URL for manufacturers website.
author List of authors involved in making the package.
maintainer List of package maintainers with email addresses for contact purposes.

Just used so we can have a wrapper function. Ignore this argument.

Examples

Not run:
##Build the hgu95av2.db package
makeDBPackage (
"HUMANCHIP_DB",
affy = TRUE,
prefix = "hgu95av2",
fileName = "~/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/HG_U95Av2_annot.csv.070824",
otherSrc = c(
EA="~/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/hgu95av2.EA. txt",
UMICH="~/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/hgu95av2_UMICH. txt"),
baseMapType = "gbNRef"”,
version = "1.0.0",
manufacturer = "Affymetrix”,
chipName = "hgu95av2”,
manufacturerUrl = "http://www.affymetrix.com"”)

End(Not run)

makeInpDb Builds an individual DB from online files at inparanoid that is in turn
meant for generating Inparanoid 8 based objects.

Description

This is really meant to be used by AnnotationHubData for eventual exposure through the Anno-
tationHub. Users who are interested in Inparanoid 8 should look for the relevant objects to be in
AnnotationHub. This function is just a database builder that allows us to put the data up there. So
this is not really intended for use by end users.

12 makeOrgPackage

Usage

makeInpDb(dir, dataDir)

Arguments
dir the full path to the online Inparanpoid 8 resource.
dataDir directory where the source inparanoid.sqlite DB is
Value

A SQLite DB is produced but this is not returned from the function. loadDb is expected to be used
by AnnotationHub to convert these into objects after the sqlite DB is downloaded from the hub
server.

Author(s)
M. Carlson

Examples

There are paths to resource data for each set of files at Inparanoid.

This is how you can turn those files inta sqlite DB.

if(interactive()){

db <- makeInpDb(
dir="http://inparanoid.sbc.su.se/download/current/Orthologs/A.aegypti/"”,
dataDir=tempdir())

3
makeOrgPackage Making an organism package from annotations available from a set of
named data.frames.
Description

The makeOrgPackage function allows the user to make an organism package from any collection
of data frames that are united by a common gene ID.

Usage

makeOrgPackage(.. .,
version,
maintainer,
author,
outputDir=getwd(),
tax_id,
genus=NULL,
species=NULL,
goTable=NULL,
verbose=TRUE)

makeOrgPackage

Arguments

version
maintainer
author
outputDir

tax_id

genus
species

goTable

verbose

Value

13

A set of data.frames containing annotation data. Each of these arguments must
be named. Those names will become the names of the tables in the final database.
Also, there are no rownames for these data.frames, and the colnames are the
names that will be used as extractable fields in the final package. In other words
they will be what comes back when you call columns and keytypes Finally,
the 1st column of every data.frame must be labeled GID, and correspond to a
gene ID that is universal for the entire set of data.frames. The GID is how the
different tables will be joined internally

What is the version number for this package? format: \’x.y.z\’
Who is the package maintainer? (must include email to be valid)
Who is the creator of this package?

A path where the package source should be assembled.

The Taxonomy ID that represents your organism. (NCBI has a nice online
browser for finding the one you need)

Single string indicating the genus.
Single string indicating the species.

By default, this is NULL, but if one of your ’...” data.frames has GO annota-
tions, then this name will be the name of that argument. When you specify this,
makeOrgPackage will process that data.frame to remove extra GO terms (that
are too new for the current GO.db) and also will generate a table for GOALL
data (based on ancestor terms for each mapping from GO.db) and for each on-
tology. This table will also be checked to make sure that it has exactly THREE
columns, that must be named GID, GO and EVIDENCE. These must correspond
to the gene IDs, GO IDs and evidence codes respectively. GO IDs should be for-
matted like this to work with other DBs in the project: 'GO: XXXXXXX\’.

When TRUE progress messages are displayed.

The path to the package that just created. This is useful for calling install.packages as the next step.

Author(s)
M. Carlson

Examples

if(interactive()){

Makes an organism package for Zebra Finch data.frames:
finchFile <- system.file("extdata”,"finch_info.txt",package="AnnotationForge")
finch <- read.table(finchFile,sep="\t")

not that this is how it should always be, but that it xcould* be this way.
fSym <- finch[,c(2,3,9)]
fSym <- fSym[fSym[,2]!="-",]

14 makeOrgPackageFromNCBI

fSym <- fSym[fSym[,3]!="-",]
colnames(fSym) <- c("GID","SYMBOL","GENENAME")

fChr <- finch[,c(2,7)]
fChr <- fChr[fChr[,2]!="-",]
colnames(fChr) <- c("GID","CHROMOSOME")

finchGOFile <- system.file("extdata”,"GO_finch.txt",package="AnnotationForge")
fGO <- read.table(finchGOFile,sep="\t")

fGO <- fGOLfGOL[,2]!="",1]

fGO <- fGO[LfGO[,3]!="",1]

colnames(fGO) <- c("GID","GO","EVIDENCE")

makeOrgPackage (gene_info=fSym, chromosome=fChr, go=fGO,
version="0.1",
maintainer="Some One <so@someplace.org>",
author="Some One <so@someplace.org>",
outputDir = "."
tax_id="59729",
genus="Taeniopygia”,
species="guttata",
goTable="go")

then you can call install.packages based on the return value
install.packages("./org.Tguttata.eg.db", repos=NULL)

3

makeOrgPackageFromNCBI
Make an organism package from annotations available from NCBI.

Description

The makeOrgPackageFromNCBI function allows the user to make an organism package from NCBI
annotations available from the NCBI.

Usage

makeOrgPackageFromNCBI (
version=,
maintainer,
author,
outputDir=getwd(),
tax_id,
genus=NULL,
species=NULL,
NCBIFilesDir=getwd(),

makeOrgPackageFromNCBI 15

databaseOnly=FALSE,
useDeprecatedStyle=FALSE,
rebuildCache=TRUE,
verbose=TRUE,
ensemblVersion=NULL)

Arguments
version Package version in ’x.y.z’ format.
maintainer Package maintainer followed by email
author Creator of package.
outputDir Path where the package source should be assembled.
tax_id The Taxonomy ID that represents the organism.
genus Single string indicating the genus.
species Single string indicating the species.

NCBIFilesDir When a path is given, the files used to create the DB are saved locally.
databaseOnly =~ When TRUE, a DB is created without the package infrastructure. Used for
OrgDb packages hosted on AnnotationHub.
useDeprecatedStyle
Legacy support for older package style with bimaps.

rebuildCache When TRUE, the files used to create the DB are refreshed (i.e., re-downloaded)
if the timestamp is greater than 24 hours old. When FALSE, the temporary
NCBI.sqlite DB and final package are re-generated from local files in outputDir.
Used internally and for testing.

verbose When TRUE, status messages are printed.

ensemblVersion Ensmbl version to use. When NULL, uses the current version.

Details

makeOrgPackageFromNCBI downloads multiple files and assembles a 33 GB database in NCBIFilesDir.
The first time the function is run it may take well over an hour; subsequent calls reuse files from the
cache and are much faster. The default behavior of makeOrgPackageFromNCBI attempts to refresh

the cached files each day (suppress with rebuildCache = FALSE).

The files that are downloaded from NCBI may take longer to download than the default timeout
permits. We encourage users to set a options(timeout=xxx) to encourage the files to finish down-
loading. Adjust the timelimit according to download speed and capacity.

Depending on the organism, the database file could reach up to 49 G. You will need ~62G free for
downloading files and creating the largest database as of February 2022.

Some orgDbs are already provided through AnnotationHub. See package AnnotationHub: : AnnotationHub

Value

Nothing returned to the R session. Just creates an organism annotation package.

16

Author(s)
M. Carlson

Examples

Not run:

makeProbePackage

Makes an organism package for Zebra Finch from NCBI:

makeOrgPackageFromNCBI(version = "0.1",

author = "Some One <so@someplace.org>",
maintainer = "Some One <so@someplace.org>",
outputDir = ".",
tax_id = "59729",
genus = "Taeniopygia”,
species = "guttata")
End(Not run)
makeProbePackage Make a package with probe sequence related data for microarrays

Description

Make a package with probe sequence related data for microarrays

Usage

makeProbePackage (arraytype,
importfun = "getProbeDataAffy”,

maintainer,
version,
species,
pkgname = NULL,
outdir = ".",
quiet = FALSE,
check = TRUE, build = TRUE, unlink = TRUE, ...)
Arguments
arraytype Character. Name of array type (typically a vendor’s name like "HG-U133A").
importfun Character. Name of a function that can read the probe sequence data e.g. from a
file. See getProbeDataAffy for an example.
maintainer Character. Name and email address of the maintainer.
version Character. Version number for the package.
species Character. Species name in the format Genus_species (e.g., Homo_sapiens)

populateDB 17

pkgname Character. Name of the package. If missing, a name is created from arraytype.
outdir Character. Path where the package is to be written.

quiet Logical. If TRUE do not print statements on progress on the console

check Logical. If TRUE call R CMD check on the package

build Logical. If TRUE call R CMD build on the package

unlink Logical. If TRUE unlink (remove) the check directory (only relevant if check=TRUE)

Further arguments that get passed along to importfun

Details

See vignette.

Important note for Windows users: Building and checking packages requires some tools outside
of R (e.g. a Perl interpreter). While these tools are standard with practically every Unix, they
do not come with MS-Windows and need to be installed separately on your computer. See http:
//www.murdoch-sutherland.com/Rtools. If you just want to build probe packages, you will not
need the compilers, and the "Windows help" stuff is optional.

Examples

filename <- system.file("extdata", "HG-U95Av2_probe_tab.gz",
package="AnnotationDbi")
outdir <- tempdir()

me <- "Wolfgang Huber <huber@ebi.ac.uk>"
makeProbePackage ("HG-U95Av2",
datafile = gzfile(filename, open="r"),
outdir = outdir,
maintainer = me,
version ="0.0.1",
species = "Homo_sapiens”,
check = FALSE)
dir(outdir)
populateDB Populates an SQLite DB with and produces a schema definition
Description

Creates SQLite file useful for making a SQLite based annotation package. Also produces the
schema file which details the schema for the database produced.

Usage
populateDB(schema, ...)

wusage case with required arguments
populateDB(schema, prefix, chipSrc, metaDataSrc)

http://www.murdoch-sutherland.com/Rtools
http://www.murdoch-sutherland.com/Rtools

18

populateDB

wusage case with all possible arguments
populateDB(schema, affy, prefix, fileName, chipMapSrc, chipSrc,
metaDataSrc, otherSrc, baseMapType, outputDir, printSchema)

Arguments

schema

affy

prefix

fileName

chipMapSrc

chipSrc

metaDataSrc

otherSrc

baseMapType

outputDir

printSchema

String listing the schema that you want to use to make the DB. You can list
schemas with available.dbschemas()

Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix is the first part of the eventual desired package name. (ie. "prefix.sqlite")

The path and filename for the mapping file to be parsed. This can either be
an affy csv file or it can be a more classic file type. This is only needed when
making chip packages.

The path and filename to the intermediate database containing the mapping data
for allowed ID types and how these IDs relate to each other. If not provided,
then the appropriate source DB from the most current .db0 package will be used
instead.

The path and filename to the intermediate database containing the annotation
data for the sqlite to build. If not provided, then the appropriate source DB from
the most current .db0 package will be used instead.

Either a named character vector containing pertinent information about the meta-
data OR the path and filename to the intermediate database containing the meta-
data information for the package.

If this is a custom package, then it must be a named vector with the following
fields:

metaDataSrc <- ¢(DBSCHEMA="the DB schema", ORGANISM="the organ-
ism", SPECIES="the species", MANUFACTURER="the manufacturer", CHIP-
NAME-="the chipName", MANUFACTURERURL="the manufacturerUrl")

The path and filenames to any other lists of IDs which might add information
about how a probe will map.

The type of ID that is used for the initial base mapping. If using a classic base
mapping file, this should be the ID type present in the fileName. This can be
any of the following values: "gb" = for genbank IDs "ug" = unigene IDs "eg"
= Entrez Gene IDs "refseq" = refseq IDs "gbNRef" = mixture of genbank and
refseq IDs

Where you would like the output files to be placed.

Boolean to indicate whether or not to produce an output of the schema (default
is FALSE).

Just used so we can have a wrapper function. Ignore this argument.

wrapBaseDBPackages

Examples

Not run:

##Set up the metadata

my_metaDataSrc <- c(DBSCHEMA="the DB schema”,
ORGANISM="the organism”,
SPECIES="the species”,
MANUFACTURER="the manufacturer”,
CHIPNAME="the chipName",
MANUFACTURERURL="the manufacturerUrl")

##Builds the org.Hs.eg sqlite:

populateDB(
"HUMAN_DB",
prefix="org.Hs.eg",
chipSrc = "~/proj/mcarlson/sqliteGen/annosrc/db/chipsrc_human.sqlite”,

metaDataSrc = my_metaDataSrc,
printSchema=TRUE)

##Builds hgu95av2.sqlite:

populateDB(
"HUMANCHIP_DB",
affy=TRUE,
prefix="hgu95av2",
fileName="~/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/HG_U95Av2.na27.annot.csv",
metaDataSrc=my_metaDataSrc,
baseMapType="gbNRef")

##Builds the ag.sqlite:
populateDB("ARABIDOPSISCHIP_DB",
affy=TRUE,
prefix="ag",
metaDataSrc=my_metaDataSrc)

##Builds yeast2.sqglite:

populateDB(
"YEASTCHIP_DB",
affy=TRUE,
prefix="yeast2",
fileName="~/proj/mcarlson/sqliteGen/srcFiles/yeast2/Yeast_2.na27.annot.csv",
metaDataSrc=metaDataSrc)

End(Not run)

19

wrapBaseDBPackages Wrap up all the Base Databases into Packages for distribution

20 wrapBaseDBPackages

Description
Creates extremely simple packages from the base database files for distribution. This is a conve-
nience function for wrapping up these packages in a consistent way each time.

Usage

wrapBaseDBPackages(dbPath, destDir, version)

Arguments
dbPath dbPath is just the path to the location of the latest intermediate sqlite source files.
These files are then used to make base DB packages.
destDir destination path for the newly minted packages.
version version number to stamp onto these newly minted packages.
Examples
Not run:
##Make all of the intermediate DBs and place the new packages right here.
wrapBaseDBPackages(dbPath, destDir = ".")

End(Not run)

Index

* 10
getProbeData_11q, 6
getProbeDataAffy, 5
makeProbePackage, 16

x classes
makeAnnDbPkg, 7

* manip
available.dbopkgs, 2
generateSegnames.db, 3

+* methods
makeAnnDbPkg, 7

+ utilities
getProbeData_11q, 6
getProbeDataAffy, 5
makeAnnDbPkg, 7
makeDBPackage, 10
makeProbePackage, 16
populateDB, 17
wrapBaseDBPackages, 19

AnnDbPkg-checker, 7

AnnDbPkgSeed (makeAnnDbPkg), 7

AnnDbPkgSeed-class (makeAnnDbPkg), 7

available.chipdbschemas
(available.db@pkgs), 2

available.dbopkgs, 2

available.dbschemas
(available.db@pkgs), 2

class:AnnDbPkgSeed (makeAnnDbPkg), 7
createPackage, 5, 6

generateSegnames.db, 3
getProbeData_11q, 6
getProbeDataAffy, 5, 16

loadAnnDbPkgIndex (makeAnnDbPkg), 7

makeAnnDbPkg, 7
makeAnnDbPkg , AnnDbPkgSeed-method
(makeAnnDbPkg), 7

21

makeAnnDbPkg, character-method
(makeAnnDbPkg), 7
makeAnnDbPkg, list-method
(makeAnnDbPkg), 7
makeChipPackage, 8
makeDBPackage, 10
makeInpDb, 11
makeOrgPackage, 12
makeOrgPackageFromNCBI, 14
makeProbePackage, 5, 6, 16

popBOVINECHIPDB (populateDB), 17
popBOVINEDB (populateDB), 17
popCANINECHIPDB (populateDB), 17
popCANINEDB (populateDB), 17
popCHICKENCHIPDB (populateDB), 17
popCHICKENDB (populateDB), 17
popECOLICHIPDB (populateDB), 17
popECOLIDB (populateDB), 17
popFLYCHIPDB (populateDB), 17
popFLYDB (populateDB), 17
popHUMANCHIPDB (populateDB), 17
popHUMANDB (populateDB), 17
popMALARIADB (populateDB), 17
pPOpMOUSECHIPDB (populateDB), 17
popMOUSEDB (populateDB), 17
popPIGCHIPDB (populateDB), 17
popPIGDB (populateDB), 17
popRATCHIPDB (populateDB), 17
popRATDB (populateDB), 17
populateDB, 17

popWORMCHIPDB (populateDB), 17
popWORMDB (populateDB), 17
popYEASTDB (populateDB), 17
popYEASTNCBIDB (populateDB), 17
popZEBRAFISHCHIPDB (populateDB), 17
popZEBRAFISHDB (populateDB), 17

wrapBaseDBPackages, 19

	available.db0pkgs
	generateSeqnames.db
	getProbeDataAffy
	getProbeData_1lq
	makeAnnDbPkg
	makeChipPackage
	makeDBPackage
	makeInpDb
	makeOrgPackage
	makeOrgPackageFromNCBI
	makeProbePackage
	populateDB
	wrapBaseDBPackages
	Index

