
Simulating molecular regulatory networks

using qpgraph

Inma Tur1, Alberto Roverato2 and Robert Castelo1

February 26, 2014

1. Universitat Pompeu Fabra, Barcelona, Spain.

2. Università di Bologna, Bologna, Italy.

1 Introduction

The theoretical substrate used by qpgraph to estimate network models of molecular regulatory interactions is that of
graphical Markov models (GMMs). A useful way to understand the underpinnings of these models is to simulate them
and simulate data from them. More importantly, these simulated data may serve the purpose of verifying properties of
GMM estimation procedures, such as correctness or asymptotic behavior. Here we illustrate the functionalities of qpgraph
to perform these simulations. The interface provided by qpgraph tries to comply with the available functions in the base
R stats package for simulating data from probability distributions and the names of functions described below for the
purpose of simulating graphs, models and data follow the convention:

r<objectclass>(n, ...)

where <objectclass> refers to the class of object (in a broad sense, not just a formal S3 or S4 class) being simulated
and n is the number of observations to simulate. Except for the case of data, since the simulated observations are other
than R atomic types of objects, when n > 1, these functions return simulated observations in the form of a list with n
elements.

2 Simulation of graphs

An undirected graph G is a mathematical object defined by a pair of sets G = (V,E) where V = {1, . . . , p} is the
vertex set and E ⊆ (V × V) is the edge set. In the context of GMMs labeled undirected graphs are employed to
represent conditional (in)dependences among random variables (r.v.’s) X = {X1, . . . , Xp} indexed by the vertices in
V whose values occur on equal footing. Stepwise data generating processes can be represented by directed graphs. In
the context of GMMs one may also consider so-called marked graphs, which are graphs with marked vertices grouped
into two subsets, one associated to discrete variables and another to continuous ones. A graph with a single type of
vertices, i.e., that is not marked, it is also called pure. Diferent types of graphs determine different GMM classes. For
a comprehensive description of different GMM classes and more elaborate descriptions of the terminology and notation
used in this vignette the reader may consult the book of Lauritzen (1996).

The first step to simulate a GMM consists of simulating its associated graph. While there are many R packages that
provide procedures to simulate graphs, qpgraph provides its own minimal functionality for this purpose tailored to ease
the downstream simulation of GMMs. This functionality allows the user to simulate undirected graphs according to two
main criteria, the type of graph (pure or marked) and the type of model to simulate the random graph.

The simplest type of model to simulate random undirected graphs is the so-called Erdős-Rényi which is generated
by either including an edge between every pair of vertices with a pre-specified probability or drawing a graph uniformly
at random among those with a pre-specified number of edges. In the context of exploring the performance of GMM
structure estimation procedures under different degrees of sparseness of the underlying graph, it is handy to work with

1

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/stats/index.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 2

the so-called d-regular graphs (Harary, 1969). These are graphs with a constant degree vertex d which, in one hand,
make the graph density a linear function of d and, on the other hand, bound the smallest minimal separator between any
two vertices (Castelo and Roverato, 2006, see pg. 2646).

To specify the parameters that define one specific type of graph we want to simulate qpgraph provides the following
functions that build parameter objects which can be used afterwards to simulate graphs through a single call to the
function rgraphBAM():

> library(qpgraph)

> args(erGraphParam)

function (p = 4L, m = 4L, prob = NA_real_, labels = as.character(1:p))

NULL

> args(erMarkedGraphParam)

function (pI = 1L, pY = 3L, m = 4L, prob = NA_real_, Ilabels = paste0("I",

1:pI), Ylabels = paste0("Y", 1:pY))

NULL

> args(dRegularGraphParam)

function (p = 4L, d = 2L, exclude = as.integer(NULL), labels = as.character(1:p))

NULL

> args(dRegularMarkedGraphParam)

function (pI = 1L, pY = 3L, d = 2L, exclude = as.integer(NULL),

Ilabels = paste0("I", 1:pI), Ylabels = paste0("Y", 1:pY))

NULL

As we can see from their default values, a single call without arguments already define some small graphs on 5 vertices:

> erGraphParam()

Erdos-Renyi pure graph parameter object

No. of pure vertices: 4

No. of edges: 4

Vertex labels: 1, 2, 3, 4

> erMarkedGraphParam()

Erdos-Renyi marked graph parameter object

No. of marked vertices: 4

No. of dot (I) vertices: 1

No. of circle (Y) vertices: 3

No. of edges: 4

Dot (I) vertex labels: I1

Circle (Y) vertex labels: Y1, Y2, Y3

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 3

> dRegularGraphParam()

d-regular pure graph parameter object

No. of pure vertices: 4

Constant degree: 2

Vertex labels: 1, 2, 3, 4

> dRegularMarkedGraphParam()

d-regular marked graph parameter object

No. of marked vertices: 4

No. of dot (I) vertices: 1

No. of circle (Y) vertices: 3

Constant degree: 2

Dot (I) vertex labels: I1

Circle (Y) vertex labels: Y1, Y2, Y3

The objects returned by these functions belong to different S4 classes derived from the following two main ones, graph-
Param and markedGraphParam:

> showClass("graphParam")

Class "graphParam" [package "qpgraph"]

Slots:

Name: p labels

Class: integer character

Known Subclasses: "erGraphParam", "dRegularGraphParam"

> showClass("markedGraphParam")

Class "markedGraphParam" [package "qpgraph"]

Slots:

Name: pI pY Ilabels Ylabels

Class: integer integer character character

Known Subclasses: "erMarkedGraphParam", "dRegularMarkedGraphParam"

While this level of detail is not crucial for the end-user, knowing the distinction between these two main types of graph
parameter objects, graphParam and markedGraphParam, may help to get more quickly acquainted with the type of
arguments we need in calls described below to simulate GMMs.

Finally, the function rgraphBAM() simulates one or more random graphs as objects of the class graphBAM defined
in the graph package. Its arguments are:

> args(rgraphBAM)

function (n, param, ...)

NULL

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/graph.html

Simulating networks using qpgraph 4

I1

I2Y1 Y2

Y3

Y4

Y5

Y6 Y7

Y8

Y9

Y10

Figure 1: A random 3-regular marked undirected graph.

where n is the number of graphs to simulate (default n=1) and param is an object generated by one of the previous
parameter functions. A couple of minimal examples are:

> rgraphBAM(erGraphParam())

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

> rgraphBAM(n=2, dRegularGraphParam())

[[1]]

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

[[2]]

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

In a slightly more ellaborate example, if we would like to simulate a d-regular graph on 2 discrete vertices and 5 continuous
ones with a constant degree d = 3, we would make the following call to rgraphBAM(), which we previously seed to
enable the reader reproducing the same graph shown here:

> set.seed(1234)

> g <- rgraphBAM(dRegularMarkedGraphParam(pI=2, pY=10, d=3))

> plot(g)

where the last plot function call is defined (overloaded) in the qpgraph package to ease plotting the graph which is
displayed in Figure 1. This function uses the plotting capabilities from the Rgraphviz package and further arguments,
such as layoutType, can be passed downstream to the Rgraphviz plotting function to fine tune the display of the graph.

3 Simulation of undirected Gaussian GMMs

Undirected Gaussian GMMs are multivariate normal models on continuous r.v.’s XV = {X1, . . . , Xp} determined by an
undirected graph G = (V,E) with V = {1, . . . , p} and E ⊆ (V × V). In particular, the zero-pattern of the inverse

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/Rgraphviz.html
http://bioconductor.org/packages/release/bioc/html/Rgraphviz.html

Simulating networks using qpgraph 5

covariance matrix corresponds to the missing edges in G (Lauritzen, 1996). Therefore, simulating this type of GMM
amounts to simulate a covariance matrix whose inverse matches the missing edges of a given, or simulated, undirected
graph in its zero pattern and whose scaled covariance matches a given marginal correlation on the cells corresponding to
present edges. This can be easily accomplished with qpgraph using the function rUGgmm:

> args(rUGgmm)

function (n, g, ...)

NULL

where n corresponds to the number of undirected Gaussian GMMs we want to simulate (default n=1 and g corresponds
to either a graphParam object, a graphBAM object or a matrix. This depends on whether we want to simulate both the
graph and the covariance matrix underlying the GMM, by providing a graphParam object, or we just want to simulate
the covariance matrix given a graph specified as either a graphBAM object, an squared and symmetric adjacency matrix
or a two-column matrix describing an edge set. Examples of these are the following:

> rUGgmm(dRegularGraphParam(p=4, d=2))

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

> rUGgmm(matrix(c(0, 1, 0, 1,

+ 1, 0, 1, 0,

+ 0, 1, 0, 1,

+ 1, 0, 1, 0), nrow=4, byrow=TRUE))

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

> rUGgmm(matrix(c(1, 2,

+ 2, 3,

+ 3, 4,

+ 4, 1), ncol=2, byrow=TRUE))

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

These three calls to rUGgmm() return objects of class UGgmm containing undirected Gaussian GMMs with an underlying
graph structure formed by a single undirected cycle on four vertices. The elements of an UGgmm object can be quickly
explored with the summary() function call:

> set.seed(12345)

> gmm <- rUGgmm(dRegularGraphParam(p=4, d=2))

> summary(gmm)

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

Graph density: 67%

Degree distribution of the undirected graph:

Min. 1st Qu. Median Mean 3rd Qu. Max.

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 6

2 2 2 2 2 2

Distribution of marginal correlations for present edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.5418 0.6479 0.7664 0.7513 0.8697 0.9305

Distribution of partial correlations for present edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.801300 -0.541700 -0.448200 -0.424900 -0.331300 -0.002032

and the individual elements that are available to the user can be accessed as if it were a list object:

> class(gmm)

[1] "UGgmm"

attr(,"package")

[1] "qpgraph"

> names(gmm)

[1] "X" "p" "g" "mean" "sigma"

> gmm$X

[1] "1" "2" "3" "4"

> gmm$p

[1] 4

> gmm$g

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

> gmm$mean

[1] 0 0 0 0

> gmm$sigma

4 x 4 Matrix of class "dspMatrix"

1 2 3 4

1 1.1854830 0.8235687 1.0001179 0.5684209

2 0.8235687 0.9152916 0.8022581 0.6299566

3 1.0001179 0.8022581 0.9745280 0.5531579

4 0.5684209 0.6299566 0.5531579 0.9285910

http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 7

1 2

3 4

Figure 2: A 4-cycle undirected graph.

We can also directly plot the UGgmm object to see the underlying undirected graph and, in this particular example, note
how the zeroes of the inverse covariance match the missing edges shown in Figure 2.

> plot(gmm)

> round(solve(gmm$sigma), digits=1)

1 2 3 4

1 6.3 0.0 -6.4 0.0

2 0.0 4.9 -3.2 -1.4

3 -6.4 -3.2 10.3 0.0

4 0.0 -1.4 0.0 2.0

Further arguments to rUGgmm() can be the desired mean marginal correlation derived from the cells of the covariance
matrix that match the present edges in the underlying graph (rho=0.5), the minimum tolerance at which the iterative
matrix completion algorithm that builds the covariance matrix stops (tol=0.001) and whether the function should report
progress on the calculations (verbose=FALSE). It is important to set the latter argument verbose=TRUE when we want
to simulate an undirected Gaussian GMM with more than, let’s say, 200 vertices, since around that number of vertices
and beyond the simulation of the covariance matrix becomes computationally demanding, specially when the underlying
graph is not very sparse. Further technical information on the algorithms employed to simulate the covariance matrix can
be found in the help pages of the qpgraph functions qpG2Sigma(), qpRndWishart(), qpIPF() and qpHTF() which are
called by the procedures described here.

Finally, to simulate multivariate normal observations from the undirected Gaussian GMM we just need to use the
rmvnorm() function from the mvtnorm package which is overloaded in the qpgraph package to take directly an UGgmm
object, as follows:

> rmvnorm(10, gmm)

1 2 3 4

[1,] 1.8209417 0.88946232 1.30148670 -0.06070478

[2,] 0.4547396 -0.17284425 0.08572976 0.80925523

[3,] 1.1567846 1.05187826 1.36086906 0.03842467

[4,] -1.0642792 -1.19510974 -0.22223979 -0.82868521

[5,] 0.8335093 0.85359162 0.61019337 0.97922260

[6,] 3.5213501 2.99941731 3.14734950 1.62046190

[7,] -0.1902282 -0.18087539 -0.68800805 1.19066113

[8,] -1.0381680 -0.36524370 -1.48826505 -1.08372949

[9,] 1.5811468 1.10591729 1.56304508 -0.47558265

[10,] -0.0948250 -0.02186436 -0.53433593 -0.45614962

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/mvtnorm.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 8

Note that with sufficient data we can directly recover the zero-pattern of the inverse covariance matrix:

> set.seed(123)

> X <- rmvnorm(10000, gmm)

> round(solve(cov(X)), digits=1)

1 2 3 4

1 6.4 0.0 -6.5 0.0

2 0.0 4.8 -3.2 -1.4

3 -6.5 -3.2 10.2 0.0

4 0.0 -1.4 0.0 2.0

> round(solve(gmm$sigma), digits=1)

1 2 3 4

1 6.3 0.0 -6.4 0.0

2 0.0 4.9 -3.2 -1.4

3 -6.4 -3.2 10.3 0.0

4 0.0 -1.4 0.0 2.0

However, such a sample size would be exceptional and for more limited sample size but still with p < n the user may use
the qpgraph function qpPAC() which performs zero-partial correlation tests and when p� n, then the user may estimate
non-rejection rates Castelo and Roverato (2006) with the qpNrr() function and simplify the saturated model such that
it may become possible to apply qpPAC().

Obviously, gene expression data, either from microarrays or log-transformed count data, are far from being multivariate
normal. However, many available methods for estimating molecular regulatory networks from expression data, such as
qpgraph, make such an assumption and simulating data from undirected Gaussian GMMs can help us to test these
methods under a controlled experiment, learning their basic properties and obvious pitfalls with such a clean data.

4 Simulation of homogeneous mixed GMMs

Mixed GMMs are GMMs for multivariate data defined by mixed discrete and continuous r.v.’s, X = {I, Y } where
I = {I1, . . . , IpI

} denote discrete r.v.’s and Y = {Y1, . . . , YpY
} denote continuous ones. This class of GMMs are

determined by marked graphs G = (V,E) with p marked vertices V = ∆ ∪ Γ where ∆ = {1, . . . , pI} are plotted with
dots and index the discrete r.v.’s in I and Γ = {1, . . . , pY } are denoted by circles and index the continuous r.v.’s in Y .

In the context of molecular regulatory networks and, particularly, of genetical genomics data where we associate
discrete r.v.’s to genotypes and continuous ones to expression profiles, we make the assumption that discrete genotypes
affect gene expression and not the other way around. Under this assumption, we will consider the underlying graph G
not only with mixed vertices but also with mixed edges, where some are directed and represented by arrows and some are
undirected. More concretely G will be a partially-directed graph with arrows pointing from discrete vertices to continuous
ones and undirected edges between continuous vertices. From this restricted definition of a partially-directed graph it
follows inmediately that there are no semi-directed (direction preserving) cycles and allows one to interpret these GMMs
also as chain graphs, which are graphs formed by undirected subgraphs connected by directed edges (Lauritzen, 1996).
Currently, the graph and Rgraphviz packages, in which qpgraph relies to handle and plot graph objects, do not directly
allow one to define and work with partially-directed graphs. However, in the functionality described below qpgraph tries
to hide to the user complications derived from this fact.

A second important assumption qpgraph makes is that the joint distribution of the r.v.’s in X is a conditional
Gaussian distribution (also known as CG-distribution) by which continuous r.v.’s follow a multivariate normal distribution
N|Γ|(µ(i),Σ(i)) conditioned on the joint levels i ∈ I from the discrete variables in I.

A third and final assumption is that the conditional covariance matrix is constant across i ∈ I, the joint levels of I,
i.e., Σ(i) ≡ Σ. This implies that we are actually simulating the so-called homogeneous mixed GMMs. In the context of
genetical genomics data, this assumption implies that genotype alleles affect only the mean expression level of genes and
not the correlations between them.

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/graph.html
http://bioconductor.org/packages/release/bioc/html/Rgraphviz.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 9

Two restrictions currently constain further the type of mixed GMMs we can simulate with qpgraph. The first one
is that discrete variables are simulated under marginal independence between them and the second one is that every
continuous variable cannot be associated to more than one discrete variable. As we shall see below, the first restriction
does not apply when simulating expression quantitative trait loci data in experimental crosses, as genotype marker data is
simulated by another package, the qtl ackage (Broman et al., 2003). We are working to remove the second restriction in
the near future and enable multiple discrete variables having linear additive effects and interaction effects, on a common
continuous variable.

Similarly to how we did it with undirected Gaussian GMMs, simulating mixed GMMs is done with a call to the function
rHMgmm():

> args(rHMgmm)

function (n, g, ...)

NULL

where n corresponds to the number of mixed GMMs we want to simulate (default n=1 and g corresponds to either
a markedGraphParam object, a graphBAM object or a matrix. Note that the first assumption made before enables
specifying the underlying partially-directed graph just as we did for an undirected one, since directed edges are completely
determined by the vertex type at their endpoints (discrete to continuous). Examples of these are the following:

> rHMgmm(dRegularMarkedGraphParam(pI=1, pY=3, d=2))

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 4 edges.

> rHMgmm(matrix(c(0, 1, 0, 1,

+ 1, 0, 1, 0,

+ 0, 1, 0, 1,

+ 1, 0, 1, 0), nrow=4, byrow=TRUE), I=1)

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 4 edges.

> rHMgmm(matrix(c(1, 2,

+ 2, 3,

+ 3, 4,

+ 4, 1), ncol=2, byrow=TRUE), I=1)

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 4 edges.

These three calls to rHMgmm() return objects of class HMgmm containing homogenous mixed GMMs with an underlying
graph structured formed by one discrete vertex pointing to two continous ones which are themselves forming an undirected
connected component with a fourth vertex, all together forming an undirected cycle on four vertices. Just as with UGgmm
objects, the elements of an HMgmm object can be quickly explored with the summary() function call:

> set.seed(12345)

> gmm <- rHMgmm(dRegularMarkedGraphParam(pI=1, pY=3, d=2))

> summary(gmm)

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/qtl/index.html

Simulating networks using qpgraph 10

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 2 edges.

Graph density: 33% (all edges) 33% (mixed edges) 67% (continuous edges)

Degree distribution of the vertices in the graph:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2 2 2 2 2 2

Distribution of marginal correlations for present continuous edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4189 0.5338 0.6487 0.6487 0.7637 0.8786

Distribution of partial correlations for present continuous edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.8581 -0.6973 -0.5366 -0.5366 -0.3758 -0.2151

Distribution of additive linear effects for present mixed edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

and again the individual elements that are available to the user can be accessed as if it were a list object:

> class(gmm)

[1] "HMgmm"

attr(,"package")

[1] "qpgraph"

> names(gmm)

[1] "X" "I" "Y" "p" "pI" "pY" "g" "mean" "sigma"

[10] "a" "eta2"

> gmm$X

[1] "I1" "Y1" "Y2" "Y3"

> gmm$I

[1] "I1"

> gmm$Y

[1] "Y1" "Y2" "Y3"

> gmm$p

[1] 4

http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 11

> gmm$pI

[1] 1

> gmm$pY

[1] 3

> gmm$g

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

> gmm$mean()

Y1 Y2 Y3

1 0.3986118 0.3841448 0.4720734

2 1.0683179 1.3841448 1.4720734

> gmm$sigma

3 x 3 Matrix of class "dspMatrix"

Y1 Y2 Y3

Y1 0.3986118 0.3841448 0.4720734

Y2 0.3841448 2.1100639 0.4549402

Y3 0.4720734 0.4549402 0.7242007

> gmm$a

Y1 Y2 Y3

NA 1 1

> gmm$eta2

Y1 Y2 Y3

NA 0.1042990 0.2427387

We can also directly plot the HMgmm object and qpgraph will use the necessary instructions from the graph and Rgraphviz
libraries to display a partially-directed graph as the one shown in Figure 3.

> plot(gmm)

Further arguments to rHMgmm() are all we described previously for the rUGgmm() function plus the desired additive
linear effect (a=1) of the discrete levels (alleles in the genetics context) on the continuous variables (genes in the genetics
context). To simulate conditional multivariate normal observations from the homogeneous mixed GMM we use the
rcmvnorm() function, which uses its pure continuous counterpart rmvnorm() from the mvtnorm package, but which is
defined in the qpgraph package as it needs to calculate the corresponding conditional mean vectors µ(i):

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/graph.html
http://bioconductor.org/packages/release/bioc/html/Rgraphviz.html
http://cran.fhcrc.org/web/packages/mvtnorm/index.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 12

I1 Y1

Y2 Y3

Figure 3: Homogeneous mixed graphical (chain) model with one discrete variable and three continuous ones forming an
undirected cycle on four vertices.

> rcmvnorm(10, gmm)

I1 Y1 Y2 Y3

1 1 0.66198361 0.094328943 0.6979703

2 1 0.12979232 -3.134052166 0.3582079

3 1 0.04754938 1.993608956 -0.2496359

4 1 0.27016817 1.343430076 0.1956097

5 1 -0.06246891 0.729378026 0.6335642

6 1 -0.49304015 -0.005166403 -0.8654300

7 2 1.11204359 0.834429062 1.6277974

8 1 0.18225669 -0.535477921 0.6243208

9 1 0.41240220 -0.939490542 1.2208614

10 2 1.10679371 -0.026301970 1.4526119

Note that with sufficient data we can directly recover the zero-pattern of the inverse conditional covariance matrix:

> set.seed(123)

> X <- rcmvnorm(10000, gmm)

> csigma <- (1/10000)*sum(X[, gmm$I] == 1)*cov(X[X[, gmm$I]==1, gmm$Y]) +

+ (1/10000)*sum(X[, gmm$I] == 2)*cov(X[X[, gmm$I]==2, gmm$Y])

> round(solve(csigma), digits=1)

Y1 Y2 Y3

Y1 11.7 -0.5 -7.2

Y2 -0.5 0.6 0.0

Y3 -7.2 0.0 6.1

> round(solve(gmm$sigma), digits=1)

Y1 Y2 Y3

Y1 11.5 -0.6 -7.2

Y2 -0.6 0.6 0.0

Y3 -7.2 0.0 6.1

and that the sample sample mean vectors and additive effects approach the ones specified in the model according to the
mixed associations between the discrete and continuous variables:

http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 13

> smean <- apply(X[, gmm$Y], 2, function(x, i) tapply(x, i, mean), X[, gmm$I])

> smean

Y1 Y2 Y3

1 0.3915091 0.3603138 0.4634108

2 1.0598057 1.4064285 1.4682895

> gmm$mean()

Y1 Y2 Y3

1 0.3986118 0.3841448 0.4720734

2 1.0683179 1.3841448 1.4720734

> abs(smean[1,] - smean[2,])

Y1 Y2 Y3

0.6682966 1.0461146 1.0048787

> gmm$a

Y1 Y2 Y3

NA 1 1

5 Simulation of eQTL models of experimental crosses

We illustrate in this section how we can use qpgraph in conjunction with the qtl package (Broman et al., 2003) to
simulate expression quantatitve trait loci (eQTL) models of experimental crosses and data from them. This functionality
employs the previously described procedures to simulate an homogeneous mixed GMM that represents the underlying
model of regulatory cis-eQTL, trans-eQTL and gene-gene associations, although this fact appears hidden to the user.

More concretely, the qpgraph package defines an object class called eQTLcross which basically holds a genetic
map of the genotype markers (as defined by the map class in the qtl package from Broman et al., 2003) and an
homogeneous mixed GMM defining the underlying molecular regulatory network that connects genotypes with genes and
genes themselves, where we use the term gene to refer to a gene expression profile.

In a similar vein to the way we simulated before graphs and GMMs, we need to create a parameter object that defines
the main features of the eQTL model we want to simulate. This is done through the function eQTLcrossParam() which
by default defines some minimal eQTL model:

> eQTLcrossParam()

eQTL backcross parameter object defining 20 markers,

20 genes, 20 cis-eQTL and 0 trans-eQTL.

cis-eQTL associations occur within 1.0 cM of a gene

and all eQTL are located at 0.0 cM from a marker.

Gene network parameters are defined by a

d-regular pure graph parameter object

No. of pure vertices: 20

Constant degree: 2

Vertex labels: g1, g2, g3, g4, g5, g6 ...

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/qtl/index.html

Simulating networks using qpgraph 14

> args(eQTLcrossParam)

function (map = do.call("class<-", list(list(`1` = do.call("class<-",

list(do.call("names<-", list(seq(0, 100, length.out = 20),

paste0("m", 1:20))), "A"))), "map")), type = "bc", genes = 20,

cis = 1, trans = as.integer(NULL), cisr = 1, d2m = 0, networkParam = dRegularGraphParam())

NULL

To simulate an eQTLcross object qpgraph provides the function reQTLcross() giving as first argument the number of
eQTLcross objects we want to simulate and a eQTLcrossParam object:

> reQTLcross(n=2, eQTLcrossParam())

[[1]]

eQTL backcross model with 20 markers, 20 genes,

20 eQTL and 20 gene-gene expression associations.

[[2]]

eQTL backcross model with 20 markers, 20 genes,

20 eQTL and 20 gene-gene expression associations.

When the first argument n is omitted, then n=1 is assumed by default. Other arguments to reQTLcross() are the
mean marginal correlation between genes (rho=0.5), the magnitude of the linear additive effect of the simulated eQTL
associations (a=1), the minimum tolerance of the matrix completion algorithm that is involved in the construction of the
conditional covariance matrix (tol=0.001) and whether progress on the calculations should be shown verbose=FALSE.

To simulate a larger eQTLcross object we load an example genetic map object called map10 from the qtl package
(Broman et al., 2003):

> data(map10, package="qtl")

> class(map10)

[1] "map"

> head(lapply(map10, head))

$`1`

D1M1 D1M2 D1M3 D1M4 D1M5 D1M6

0.000000 9.769231 19.538462 29.307692 39.076923 48.846154

$`2`

D2M1 D2M2 D2M3 D2M4 D2M5 D2M6

0.00000 10.36364 20.72727 31.09091 41.45455 51.81818

$`3`

D3M1 D3M2 D3M3 D3M4 D3M5 D3M6

0.000000 9.933333 19.866667 29.800000 39.733333 49.666667

$`4`

D4M1 D4M2 D4M3 D4M4 D4M5 D4M6

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/qtl/index.html

Simulating networks using qpgraph 15

0.0 10.5 21.0 31.5 42.0 52.5

$`5`

D5M1 D5M2 D5M3 D5M4 D5M5 D5M6

0.00000 10.22222 20.44444 30.66667 40.88889 51.11111

$`6`

D6M1 D6M2 D6M3 D6M4 D6M5 D6M6

0.000 9.375 18.750 28.125 37.500 46.875

and using it in combination with a larger number of genes (100) we can easily simulate this larger eQTLcross object:

> eqtl <- reQTLcross(eQTLcrossParam(map=map10, genes=100))

> class(eqtl)

[1] "eQTLcross"

attr(,"package")

[1] "qpgraph"

> eqtl

eQTL backcross model with 187 markers, 100 genes,

100 eQTL and 100 gene-gene expression associations.

which, as we can see, it corresponds a backcross model with 100 genes each of them associated to a cis-eQTL, and with
a certain underlying gene network embedded into an homogeneous mixed GMM that forms part of this object and which
can be accessed as follows:

> eqtl$model

Homogeneous mixed graphical Markov model

with 100 discrete and 100 continuous r.v., and 200 edges.

A dot plot describing the eQTL associations along the given genetic map can be obtained by calling the plot function
with the eQTLcross object as argument. In Figure 4 we see on the right panel such a plot, and on the left panel the
genetic map plotted by the plot function defined in the qtl package (Broman et al., 2003) to plot genetic maps.

> par(mfrow=c(1,2))

> plot(map10)

> plot(eqtl, main="eQTL model with cis-associations only")

A somewhat more complex eQTL model with trans associations can be simulated by using the trans argument as
follows:

> set.seed(123)

> eqtl <- reQTLcross(eQTLcrossParam(map=map10, genes=100,

+ cis=0.5, trans=c(5, 5)), a=5)

In this call, cis=0.5 indicates that 50% of the genes should have cis-eQTL associations and among the remaining ones,
10 will be associated to two trans-eQTL affecting 5 genes each of the two. We have also increased the default additive
linear effect from the default value a=1 to a=5 which corresponds to a very strong linear additive effect from genotype
markers on gene expression. We can examine the cis and trans associations of the eQTLcross object with the ciseQTL()

and transeQTL() functions:

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/qtl/index.html

Simulating networks using qpgraph 16

120

100

80

60

40

20

0

Chromosome

Lo
ca

tio
n

(c
M

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

Genetic map eQTL model with cis−associations only

eQTL location
G

en
e

lo
ca

tio
n

1 2 3 4 5 6 8 9 11 13 15 17 19

1

2

3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
X

Figure 4: A genetic map simulated with the qtl package (Broman et al., 2003) on the left, and on the right, an eQTL
model simulated using the genetic map with the qpgraph package.

> head(ciseQTL(eqtl))

chrom location QTL gene a

1 1 29.30769 QTL1 g2 5

2 1 68.38462 QTL2 g3 5

3 1 78.15385 QTL3 g5 5

4 2 31.09091 QTL4 g7 5

5 2 51.81818 QTL5 g9 5

6 2 62.18182 QTL6 g10 5

> transeQTL(eqtl)

chrom location QTL gene a

1 11 40 QTL29 g15 5

2 11 40 QTL29 g27 5

3 11 40 QTL29 g39 5

4 11 40 QTL29 g41 5

5 11 40 QTL29 g49 5

6 13 30 QTL34 g23 5

7 13 30 QTL34 g37 5

8 13 30 QTL34 g48 5

9 13 30 QTL34 g52 5

10 13 30 QTL34 g99 5

and examine where the eQTL associations occur and what genes map to trans-eQTL, as shown in Figure 5.

> plot(eqtl, main="eQTL model with trans-eQTL")

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 17

eQTL model with trans−eQTL

eQTL location

G
en

e
lo

ca
tio

n

1 2 3 4 5 6 8 9 11 13 15 17 19

1

2

3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
X

Figure 5: An eQTL model including trans-acting associations simulated using the genetic map from Fig. 4.

Using this eQTLcross object we can simulate data from the corresponding experimental cross with the function
sim.cross() from the qtl package (Broman et al., 2003) but which is overloaded in qpgraph to plug the eQTL
associations into the corresponding genetic loci:

> set.seed(123)

> cross <- sim.cross(map10, eqtl)

> cross

This is an object of class "cross".

It is too complex to print, so we provide just this summary.

Backcross

No. individuals: 100

No. phenotypes: 100

Percent phenotyped: 100

No. chromosomes: 20

Autosomes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

X chr: X

Total markers: 187

No. markers: 14 12 13 9 10 9 8 9 9 9 9 8 9 8 9 8 9 7 7 11

Percent genotyped: 100

Genotypes (%): AA:49.6 AB:50.4

Note that here, the genotype data is simulated by the procedures implemented in the qtl package (Broman et al., 2003)
and qpgraph adds to that simulation the eQTL and gene network associations. Thus, while the rHMgmm() function
described in the previous section, does not simulate correlated discrete variables, here the genotypes will be correlated

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 18

according to the input arguments of the sim.cross() function in qtl (mainly, the map.function argument that converts
genetic distances into recombination fractions) and which can be passed through the previous call to sim.cross().

Let’s focus on a specific simulated eQTL, concretely on the second one of the following list:

> allcis <- ciseQTL(eqtl)

> allcis[allcis$chrom==1,]

chrom location QTL gene a

1 1 29.30769 QTL1 g2 5

2 1 68.38462 QTL2 g3 5

3 1 78.15385 QTL3 g5 5

> gene <- allcis[2, "gene"]

> chrom <- allcis[2, "chrom"]

> location <- allcis[2, "location"]

Find out the genes connected to gene g3 in the underlying regulatory network:

> connectedGenes <- graph::inEdges(gene, eqtl$model$g)[[1]]

> connectedGenes <- connectedGenes[connectedGenes %in% eqtl$model$Y]

> connectedGenes

[1] "g17" "g47"

Now, using the qtl package (Broman et al., 2003) and its scanone() function, we perform a simple QTL analysis by
marker regression using the expression profiles from genes g3, g17, g47 as phenotypes1:

> library(qtl)

> out.mr <- scanone(cross, method="mr", pheno.col=c(gene, connectedGenes))

By using the plotting functionalities of the qtl package (Broman et al., 2003) we can examine the LOD score profile of
these three genes on chromosome 1 where the eQTL of gene g3 is located:

> plot(out.mr, chr=chrom, ylab="LOD score", lodcolumn=1:3, col=c("black", "blue", "red"), lwd=2)

> abline(v=allcis[allcis$gene == gene, "location"])

> legend("topright", names(out.mr)[3:5], col=c("black", "blue", "red"), lwd=2, inset=0.05)

We can observe in Figure 6 that not only the directly associated gene g3 seems to have an eQTL at position 68.4 cM,
but also the genes g17, g47 connected to g3 in the underlying gene network. Using a permutation procedure implemented
in qtl , we calculate LOD score threholds that yield genome-wide statistical significant eQTL associations:

> out.perm <- scanone(cross, method="mr", pheno.col=c(gene, connectedGenes),

+ n.perm=100, verbose=FALSE)

> summary(out.perm, alpha=c(0.05, 0.10))

LOD thresholds (100 permutations)

g3 g17 g47

5% 2.70 2.61 2.64

10% 2.47 2.33 2.39

and examine which genotype markers yield such significant associations to these the expression profiles of these genes:

1Note that when we load below the qtl package (Broman et al., 2003), the definition of sim.cross() in qpgraph gets masked by the
original definition of this function in qtl . This means we would need, from that point on, to use the notation qpgraph::sim.cross() to call
the qpgraph definition of this function unless we detach qtl from the search path

http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/qtl/index.html
http://cran.fhcrc.org/web/packages/qtl/index.html
http://cran.fhcrc.org/web/packages/qtl/index.html
http://cran.fhcrc.org/web/packages/qtl/index.html
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/qtl/index.html
http://bioconductor.org/packages/release/bioc/html/qpgraph.html
http://cran.fhcrc.org/web/packages/qtl/index.html

Simulating networks using qpgraph 19

0 20 40 60 80 100 120

0

5

10

15

20

25

30

35

Map position (cM)

LO
D

 s
co

re

g3
g17
g47

Figure 6: Profile of LOD scores for three genes with direct and indirect eQTL.

> summary(out.mr, perms=out.perm, alpha=0.05)

chr pos g3 g17 g47

D1M8 1 68.4 35.80 11.303 8.163

D9M5 9 39.5 4.27 0.925 17.015

D13M4 13 30.0 2.92 15.386 0.703

Notice that the directly associated gene g3 as well as the indirectly associated ones g17, g47 have genome-wide significant
LOD scores on the same eQTL located at 68.4 cM in chromosome 1.

6 Session information

> toLatex(sessionInfo())

� R version 3.0.2 Patched (2013-12-18 r64484), i386-w64-mingw32
� Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C, LC_TIME=English_United States.1252

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, utils
� Other packages: AnnotationDbi 1.24.0, Biobase 2.22.0, BiocGenerics 0.8.0, DBI 0.2-7, RSQLite 0.11.4,

Rgraphviz 2.6.0, annotate 1.40.0, genefilter 1.44.0, graph 1.40.1, org.EcK12.eg.db 2.10.1, qpgraph 1.18.9,
qtl 1.30-4

� Loaded via a namespace (and not attached): BiocStyle 1.0.0, GGBase 3.24.0, IRanges 1.20.6, Matrix 1.1-2,
XML 3.98-1.1, lattice 0.20-24, mvtnorm 0.9-9997, snpStats 1.12.0, splines 3.0.2, stats4 3.0.2, survival 2.37-7,
tools 3.0.2, xtable 1.7-1

http://bioconductor.org/packages/release/bioc/html/qpgraph.html

Simulating networks using qpgraph 20

References

Broman, K. W., Wu, H., Sen, S., and Churchill, G. A. (2003). R/qtl: Qtl mapping in experimental crosses. Bioinformatics,
19(7):889–90.

Castelo, R. and Roverato, A. (2006). A robust procedure for gaussian graphical model search from microarray data with
p larger than n. J Mach Learn Res, 7:2621–2650.

Harary, F. (1969). Graph theory. Addison-Wesley.

Lauritzen, S. (1996). Graphical models. Oxford University Press.

http://bioconductor.org/packages/release/bioc/html/qpgraph.html

	1 Introduction
	2 Simulation of graphs
	3 Simulation of undirected Gaussian GMMs
	4 Simulation of homogeneous mixed GMMs
	5 Simulation of eQTL models of experimental crosses
	6 Session information

