Introduction to Iterative Clustering Analysis Using
iterClust

Hongxu Ding and Andrea Califano
Department of Systems Biology, Columbia University, New York, USA

November 6, 2019

Contents

1__Introduction| 1
[.1 General Work Flow] 2
(1.2 Internal Variables (IV) 2
(L3 Installationl o 2
1.4 Citingl e e e e 2

2 Data Preparation| 2

3__Define functions| 3

4__Run iterClust 4

(b Compare 1iterClust, PAM and Consensus Clustering] 5

1 Introduction

In a scenario where populations A, B1, B2 exist, pronounce differences between A and
B may mask subtle differences between B1 and B2. To solve this problem, so that het-
erogeneity can be better detected, clustering analysis needs to be performed iteratively,
so that, for example, in iteration 1, A and B are separated and in iteration 2, B1 and
B2 are separated . The iterClust() function in iterClust package provides an sta-
tistical framework for performing such iterative clustering analysis, which can be used
to, for instance discover cell populations using single cells RNA-Seq profiles, clustering
clinically-related patient gene expression profiles and solve general clustering problems.

1.1 General Work Flow

iterClust () organizes user-defined functions and parameters as follows:
ith Iteration Start =>
featureSelect (feature selection) =>
minFeatureSize (confirm enough features are selected) =>
clustHetero (confirm heterogeneity) =>
coreClust (generate several clustering schemes, only for heterogenous clusters) =>
clustEval (pick the optimal clustering scheme) =>
minClustSize (remove clusters with few observations) =>
obsEval (evaluate how each observations are clustered) =>
obsOutlier (remove poorly clustered observations) =>
results in Internal Variables (IV) =>
ith Iteration End

1.2 Internal Variables (IV)

iterClust () has the following IVs which can be used in user-defined functions:
cluster, a list with two elements, named cluster and feature, which are also list ob-
ject, organized by round of iterations, containing names of observations for each clusters
in this specific iteration, and features used to split clusters in previous iterations thereby
produce the current clusters organized as lists, respectively.
depth, an integer specifying current round of iteration.

1.3 Installation

iterClust depends on SummarizedEzperiment and Biobase. Running examples in iter-
Clust requires tsne, cluster, ConsensusClusterPlus and bcell Viper. To install iterClust,
from bioconductor

if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")
BiocManager: :install("iterClust")

1.4 Citing

2 Data Preparation

We applied iterClust () to a B-cell expression dataset included in beell Viper. We load
the two librarues first, followed by load and filter expression matrix and phenotype
annotation.

library(iterClust)

library(bcellViper)

data(bcellViper)

exp <- exprs(dset)

pheno <- as.character(dset@phenoData@data$description)

exp <- exp[, pheno 7inj, names (table(pheno)) [table (pheno) > 5]]
pheno <- pheno[pheno Jinj, names(table (pheno)) [table(pheno) > 5]]
dim(exp)

V V.V V V V VYV

[1] 6249 161

> table(pheno)

pheno
B-CLL BL DLCL HCL PEL pB-CLL pDLCL pFL pMCL
16 23 53 13 9 18 15 6 8

3 Define functions

We define functions needed for iterClust (), as well as load package cluster that these
functions needed.

> library(cluster)
In every iterations, all genes in the dataset were used for clustering analysis.
> featureSelect <- function(dset, iteration, feature) return(rownames (dset))

In every iterations, the core function for clustering is pam() in package cluster. We
searched through 2 to 5 clusters to find the optimal result.

> coreClust <- function(dset, iteration){

+ dist <- as.dist(1 - cor(dset))

+ range=seq(2, (ncol(dset)-1), by = 1)

+ clust <- vector("list", length(range))

+ for (i in 1:length(range)) clust[[i]] <- pam(dist, range[i])$clustering
+ return(clust)}

In every iterations, the core function for evaluating different clustering schemes is
silhouette() in package cluster. We considered clustering schemes with the high-
est average silhouette score as the optimal scheme. clust is the output for function
clustfun().

> clustEval <- function(dset, iteration, clust){

+ dist <- as.dist(1 - cor(dset))

+ clustEval <- vector("numeric", length(clust))

+ for (i in 1:length(clust)){

+ clustEval[i] <- mean(silhouette(clust[[i]], dist)[, "sil_width"])}
+ return(clustEval)}

In every iterations, clusters with average silhouette score greater than 0.15 were
considered as heterogenous and further splitted.

> clustHetero <- function(clustEval, iteration){
+ return(clustEval > Oxiteration+0.15)}

In every iterations, the core function for evaluating each observation is silhouette ()
in package cluster. clust is the output for function clustfun().

> obsEval <- function(dset, clust, iteration){
+ dist <- as.dist(1 - cor(dset))
+ obsEval <- vector("numeric", length(clust))

+ return(silhouette(clust, dist)[, "sil_width"])}

In every iterations, observations with silhouette score smaller than -1 were considered
as outlier observations.

> obsOutlier <- function(obsEval, iteration) return(obsEval < O*iteration-1)

4 Run iterClust

iterClust () was run with the above defined functions. Then we showed how the results
of iterClust() are organized.

> ¢ <- iterClust(exp, maxIter=3, minFeatureSize=100, minClustSize=5)
> names(c)

[1] "cluster" "feature" "clustEval" "obsEval"
> names (c$cluster)

[1] "Iteri" "Iter2"

> names (c$cluster$Iterl)

[1] "Clusterl" "Cluster2" "Cluster3" "Cluster4" "Clusterb"

> c$cluster$Iiteri$Clusterl

[1] "GSM44075" "GSM44078" "GSM44080" "GSM44081" "GSM44082" "GSM44083"
[7] "GSM44084" "GSM44088" "GSM44089" "GSM44091" "GSM44092" "GSM44094"
[13] "GSM44095" "GSM44246" "GSM44247" "GSM44248" "GSM44249" "GSM44250"
[19] "GSM44251" "GSM44252" "GSM44261" "GSM44264" "GSM44265" "GSM44266"
[25] "GSM44267" "GSM44268" "GSM44269" "GSM44076" "GSM44077" "GSM44079"
[31] "GSM44090" "GSM44093" "GSM44192" "GSM44244" "GSM44245" "GSM44253"
[37] "GSM44254" "GSM44255" "GSM44256" "GSM44257" "GSM44258" "GSM44259"
[43] "GSM44291" "GSM44292"

> names (c$feature)
[1] "Iterl" "Iter2"

> names (c$feature$Iteri)
[1] "OriginalDataset"

> names(c$feature$lter?2)

[1] "ClusterlinIterl" "Cluster2inlIterl" "Cluster3inIterl" "Cluster4inIterl"
[6] "Cluster5inIteri"
> c$feature$Iter2$Clusterlinlteri[1:10]
[1] "ADA" "CDH2" "MED6" "NR2E3" "ACOT8" "ABI1" "GNPDA1"
[8] "TANK" "HGC6.3" "Clorf68"

5 Compare iterClust, PAM and Consensus Cluster-
ing

In this section, we compared the performance of iterClust() with another clustering
framework ConsensusClusterPlus() as well as their underlying clustering algorithm
pam().

> library(ConsensusClusterPlus)
> set.seed(1)

> consensusClust = ConsensusClusterPlus(exp, maxK = 10,

+ reps = 100, clusterAlg = "pam",

+ distance = "pearson'", plot = FALSE)
> ICL <- calcICL(consensusClust, plot = FALSE)

> ICL <- sapply(2:10, function(k, ICL){

+ 8 <- ICL$clusterConsensus|[grep(k, ICL$clusterConsensus[, "k"]),

+ "clusterConsensus'"]

+

mean(s[is.finite(s)])}, ICL=ICL)

We first projected the data on 2D-tSNE space for later visualization purpose.

> library(tsne)

> dist <- as.dist(1 - cor(exp))

> set.seed(1)

> tsne <- tsne(dist, perplexity = 20, max_iter = 500)

Then we compared iterClust(), pam() and ConsensusClusterPlus().

> par (mfrow =

xlab
main

+ + + + + + +

c(1, 2))
> for (j in 1:length(c$cluster)){

COL <- structure(rep(l, ncol(exp)), names =
for (i in 1:length(c$cluster[[jl])) COL[c$cluster[[jl][[i]]] <- i+1
plot(tsnel, 1], tsnel[, 2], cex = 0, cex.lab = 1.5,

IlDiml "’ ylab = HDim2H’
paste("iterClust, iter=", j, sep = ""))

iterClust, iter=1

v | i O%rs
-
o _|
-
(q\N]
g Y
o o |
— oepl 2;
HekEY
o e i
— e
! T T T T T
-20 -10 0 10 20

Dim1

Dim2

10 15

5

0

-10

text (tsne[, 1], tsne[, 2], labels = pheno, cex =
legend("topleft", legend = "Outliers", fill =

colnames (exp))

0.5, col =
1, bty = "Il")}

iterClust, iter=2

] O%rs

blet g
3Bt

oL BRI
DLCH

DLCL: oL

Ouehiclie) aipts

DBSEE
g el
DLOpERtC

L
S S
I

T T T
-10 0 10 20

Dim1

Figure 1: Result of iterClust()

COL)

> par (mfrow = c(1, 2))
> for (j in 1:length(c$cluster)){
plot(tsnel, 1], tsnel, 2], cex = 0, cex.lab = 1.5,
xlab = "Diml", ylab = "Dim2",
main = paste("PAM, k=", length(c$cluster[[j]]), sep = ""))
text (tsne[, 1], tsnel[, 2], labels = pheno, cex = 0.5,
col = pam(dist, k = length(c$cluster[[jl]))$clustering)?}

+ + + + +

PAM, k=5 I
o o | W
- —
a] a B HCL
N n — BL N o - N
- 5 R
D D o dDLCL ‘vﬂ.?j"g;DLCL E‘;» ‘
R Lﬁn
3 BUEL :
T BL
T ! T : | | :
20 5 10 o 10 20
Dim1

Figure 2: Result of PAM() with same number of clusters given by iterClust ()

> par (mfrow = c(2, 2))
> plot(c(2:10), ICL, xlab = "#Clusters", ylab = "Cluster Consensus Score",

+ col = c(2, rep(1, 8)), ylim = ¢(0.8, 1),

+ cex.lab = 1.5, pch = 16, main = "")

> plot(tsnel[, 1], tsne[, 2], cex = 0, cex.lab = 1.5,

+ xlab = "Dim1", ylab = "Dim2",main = "Consensus Clustering+PAM, k=2")
> text(tsne[, 1], tsne[, 2], labels = pheno,

+ cex = 0.5, col = consensusClust[[2]]$consensusClass)

> plot(c(2:10), ICL, xlab = "#Clusters", ylab = "Cluster Consensus Score",
+ col = c(rep(1, 5), 2, 1, 1), ylim = c(0.8, 1),

+ cex.lab = 1.5, pch = 16, main = "")

> plot(tsne[, 1], tsne[, 2], cex = 0, cex.lab = 1.5,

+ xlab = "Dim1", ylab = "Dim2",main = "Consensus Clustering+PAM, k=7")
> text(tsnel[, 1], tsne[, 2], labels = pheno, cex = 0.5,

+ col = consensusClust[[7]]$consensusClass)

Consensus Clustering+PAM, k=2

8
% — o | {'igéi
D
[o _|
g o = L
(2]
% ° o~ o ELL
3 % = e
5 8 . g
o POLEDLCL
O s] .
% o UI') | MCL
> piREE
= ofet
O 8 4 s | ﬁ‘
S T T T T ! T T T T T
2 4 6 8 10 -20 -10 0 10 20
#Clusters Dim1

Consensus Clustering+PAM, k=7

8
% o 5 o
D
[o _|
g9 o = et
(2]
C N BL
Qo o = 5t
7] g 1 = LauL
g [a) A %
O 0 peL ot
S 0 -
O o
D
=)
o 34 S .
S T T T T ! T T T T T
2 4 6 8 10 -20 -10 0 10 20
#Clusters Dim1

Figure 3: Result of ConsensusClusterPlus()

The results showed that iterClust () can distinguish subtle differences between puri-
fied and unpurified B-cells (pDLCL VS DLCL, B-CLL VS pB-CLL), which cannot be dis-
tinguished by pam () and ConsensusClusterPlus(). Also, pam() and ConsensusClusterPlus()
falsely separated a homogenous cluster containing DLCL samples (DLCL samples are
known to have subpopulations and this is one subpopulation).

10

	Introduction
	General Work Flow
	Internal Variables (IV)
	Installation
	Citing

	Data Preparation
	Define functions
	Run iterClust
	Compare iterClust, PAM and Consensus Clustering

