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1 Introduction

This document gives a brief introduction to the flagme package, which is designed to process, visualise and sta-
tistically analyze sets of GC-MS samples. The ideas discussed here were originally designed with GC-MS-based
metabolomics in mind, but indeed some of the methods and visualizations could be useful for LC-MS data sets.
The fragment-level analysis though, takes advantage of the rich fragmentation patterns observed from electron
interaction (EI) ionization.

There are many aspects of data processing for GC-MS data. Generally, algorithms are run separately on each
sample to detect features, or peaks (e.g. AMDIS). Due to retention time shifts from run-to-run, an alignment
algorithm is employed to allow the matching of the same feature across multiple samples. Alternatively, if known
standards are introduced to the samples, retention indices can be computed for each peak and used for alignment.
After peaks are matched across all samples, further processing steps are employed to create a matrix of abundances,
leading into detecting differences in abundance.

Many of these data processing steps are prone to errors and they often tend to be black boxes. But, with effective
exploratory data analysis, many of the pitfalls can be avoided and any problems can be fixed before proceeding to
the downstream statistical analysis. The package provides various visualizations to ensure the methods applied are
not black boxes.

The flagme package gives a complete suite of methods to go through all common stages of data processing. In
addition, R is especially well suited to the downstream data analysis tasks since it is very rich in analysis tools and
has excellent visualization capabilities. In addition, it is freely available (www.r-project.org), extensible and there
is a growing community of users and developers. For routine analyses, graphical user interfaces could be designed.

2 Reading and visualizing GC-MS data

To run these examples, you must have the gcspikelite package installed. This data package contains several
GC-MS samples from a spike-in experiment we designed to interrogate data processing methods. So, first, we load
the packages:

To load the data and corresponding peak detection results, we simply create vectors of the file-names and create
a peakDataset object. Note that we can speed up the import time by setting the retention time range to a subset
of the elution, as below:

> gcmsPath <- paste(find.package("gcspikelite"), "data", sep="/")
> data(targets)
> cdfFiles <- paste(gcmsPath, targets$FileName, sep="/")



> eluFiles <- gsub("CDF", "ELU", cdfFiles)
> pd <- peaksDataset(cdfFiles, mz=seq(50,550), rtrange=c(7.5,8.5))
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> pd <- addAMDISPeaks(pd, eluFiles)
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peaks: 24 23 26 20 27 24 24 25 21

Here, we have added peaks from AMDIS, a well known and mature algorithm for deconvolution of GC-MS data.
For GC-TOF-MS data, we have implemented a parser for the ChromaTOF output (see the analogous addChromaTOF-
Peaks function). The addXCMSPeaks allows to use all the XCMS peak-picking algorithms; using this approach it
is also possible to elaborate the raw data file from within R instead of using an external software. In particular
the function reads the raw data using XCMS, group each extracted ion according to their retention time using
CAMERA and attaches them to an already created peaksDataset object:

> pd.2 <- peaksDataset(cdfFiles[1:3], mz=seq(50,550), rtrange=c(7.5,8.5))

Reading C:/Users/biocbuild/bbs-3.11-bioc/R/library/gcspikelite/data/0709_468.CDF
Reading C:/Users/biocbuild/bbs-3.11-bioc/R/library/gcspikelite/data/0709_474.CDF
Reading C:/Users/biocbuild/bbs-3.11-bioc/R/library/gcspikelite/data/0709_475.CDF

> pd.2 <- addXCMSPeaks(cdfFiles[1:3], pd.2, peakPicking=c('mF'),
+ snthresh=3, fwhm=4, step=1, steps=2, mzdiff=0.5)

Start grouping after retention time.
Created 33 pseudospectra.
Start grouping after correlation.



Calculating peak correlations in 33 Groups...
% finished: 10 30 40 50 60 70 80 90 100

Calculating graph cross linking in 33 Groups...
% finished: 10 30 40 50 60 70 80 90 100
New number of ps-groups: 42

xsAnnotate has now 42 groups, instead of 33
Start grouping after retention time.

Created 30 pseudospectra.

Start grouping after correlation.

Calculating peak correlations in 30 Groups...
% finished: 10 20 50 60 70 80 90 100

Calculating graph cross linking in 30 Groups...
% finished: 10 20 50 60 70 80 90 100
New number of ps-groups: 42

xsAnnotate has now 42 groups, instead of 30
Start grouping after retention time.

Created 36 pseudospectra.

Start grouping after correlation.

Calculating peak correlations in 36 Groups...
% finished: 10 20 40 50 60 70 80 90 100

Calculating graph cross linking in 36 Groups...
% finished: 10 20 40 50 60 70 80 90 100
New number of ps-groups: 43

xsAnnotate has now 43 groups, instead of 36

> pd.2

An object of class "peaksDataset"

3 samples: 0709_468 0709_474 0709_475
501 m/z bins - range: ( 50 550 )
scans: 175 175 175

peaks: 11 9 10

The possibility to work using computer cluster will be added in the future.
Regardless of platform and peak detection algorithm, a useful visualization of a set of samples is the set of total
ion currents (TIC), or extracted ion currents (XICs). To view TICs, you can call:

> plot(pd, rtrange=c(7.5,8.5), plotPeaks=TRUE, plotPeakLabels=TRUE,
+ max.near=8, how.near=0.5, col=rep(c("blue","red","black"), each=3))
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Note here the little hashes represent the detected peaks and are labelled with an integer index. One of the main
challenges is to match these peak detections across several samples, given that the appear at slightly different times
in different runs.

For XICs, you need to give the indices (of pd@mz, the grid of mass-to-charge values) that you want to plot
through the mzind argument. This could be a single ion (e.g. mzind=24) or could be a range of indices if multiple
ions are of interest (e.g. mzind=c(24,25,98,99)).

There are several other features within the plot command on peaksDataset objects that can be useful. See
?plot (and select the flagme version) for full details.

Another useful visualization, at least for individual samples, is a 2D heatmap of intensity. Such plots can be

enlightening, especially when peak detection results are overlaid. For example (with detected fragment peaks from
AMDIS shown in white):

>r <-1

> plotImage(pd, run=r, rtrange=c(7.5,8.5), main="")

> v <- which(pd@peaksdata[[r]] > O, arr.ind=TRUE) # find detected peaks

> abline(v=pd@peaksrt[[r]])

> points(pd@peaksrt[[r]][v[,2]], pd@mz[v[,1]], pch=19, cex=.6, col="white")
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3 Pairwise alignment with dynamic programming algorithm

One of the first challenges of GC-MS data is the matching of detected peaks (i.e. metabolites) across several samples.
Although gas chromatography is quite robust, there can be some drift in the elution time of the same analyte from
run to run. We have devised a strategy, based on dynamic programming, that takes into account both the similarity
in spectrum (at the apex of the called peak) and the similarity in retention time, without requiring the identity
of each peak; this matching uses the data alone. If each sample gives a ‘peak list’ of the detected peaks (such as
that from AMDIS that we have attached to our peaksDataset object), the challenge is to introduce gaps into these
lists such that they are best aligned. From this a matrix of retention times or a matrix of peak abundances can be
extracted for further statistical analysis, visualization and interpretation. For this matching, we created a procedure
analogous to a multiple sequence alignment.

To highlight the dynamic programming-based alignment strategy, we first illustrate a pairwise alignment of two
peak lists. This example also illustrates the selection of parameters necessary for the alignment. From the data read
in previously, let us consider the alignment of two samples, denoted 0709_468 and 0709_474. First, a similarity
matrix for two samples is calculated. This is calculated based on a scoring function and takes into account the
similarity in retention time and in the similarity of the apex spectra, according to:
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where i is the index of the peak in the first sample and j is the index of the peak in the second sample, x; and y; are

the spectra vectors and ¢; and ¢; are their respective retention times. As you can see, there are two components to
the similarity: spectra similarity (left term) and similarity in retention time (right term). Of course, other metrics

Sij(




for spectra similarity are feasible. Ask the author if you want to see other metrices implemented. We have some
non-optimized code for a few alternative metrics.

The peak alignment algorithm, much like sequence alignments, requires a gap parameter to be set, here a number
between 0 and 1. A high gap penalty discourages gaps when matching the two lists of peaks and a low gap penalty
allows gaps at a very low cost. We find that a gap penalty in the middle range (0.4-0.6) works well for GC-MS peak
matching. Another parameter, D, modulates the impact of the difference in retention time penalty. A large value
for D essentially eliminates the effect. Generally, we set this parameter to be a bit larger than the average width of
a peak, allowing a little flexibility for retention time shifts between samples. Keep in mind the D parameter should
be set on the scale (i.e. seconds or minutes) of the peaksrt slot of the peaksDataset object. The next example
shows the effect of the gap and D penalty on the matching of a small ranges of peaks.

> Ds <- ¢(0.1, 10, 0.1, 0.1)

> gaps <- ¢(0.5, 0.5, 0.1, 0.9)

> par (mfrow=c(2,2), mai=c(0.8466,0.4806,0.4806,0.1486))

> for(i in 1:4)1

+ pa <- peaksAlignment (pd@peaksdatal[[1]], pd@peaksdatal[[2]],

+ pd@peaksrt[[1]], pd@peaksrt[[2]], D=Ds[i],
+ gap=gaps[i], metric=1, type=1)

+ plot(pa, xlim=c(0, 17), ylim=c(0, 16), matchCol="yellow",

+ main=paste("D=", Ds[i], " gap=", gaps[i], sep=""))

+ }

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.5 D= 0.001 , metric= 1 , type= 1
[peaksAlignment] 21 matched. Similarity= 0.7983038

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.5 D= 0.1 , metric= 1 , type= 1
[peaksAlignment] 21 matched. Similarity= 0.2308905

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.1 D= 0.001 , metric= 1 , type= 1
[peaksAlignment] 3 matched. Similarity= 0.333332

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.9 D= 0.001 , metric= 1 , type= 1
[peaksAlignment] 23 matched. Similarity= 0.8227008
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You might ask: is the flagme package useful without peak detection results? Possibly. There have been some
developments in alignment (generally on LC-MS proteomics experiments) without peak/feature detection, such
as Prince et al. 2006, where a very similar dynamic programming is used for a pairwise alignment. We have
experimented with alignments without using the peaks, but do not have any convincing results. It does introduce a
new set of challenges in terms of highlighting differentially abundant metabolites. However, in the peaksAlignment
routine above (and those mentioned below), you can set usePeaks=FALSE in order to do scan-based alignments
instead of peak-based alignments. In addition, the flagme package may be useful simply for its bare-bones dynamic
programming algorithm.

3.1 Normalizing retention time score to drift estimates

In what is mentioned above for pairwise alignments, we are penalizing for differences in retention times that are
non-zero. But, as you can see from the TICs, some differences in retention time are consistent. For example, all
of the peaks from sample 0709_485 elute at later times than peaks from sample 0709_496. We should be able to
estimate this drift and normahze the time penalty to that estimate, instead of penalizing to zero. That is, we should
replace t; —t; with t; d” where dlj is the expected drift between peak i of the first sample and peak j of the
second sample.



More details coming soon.

3.2 Imputing location of undetected peaks

One goal of the alignment leading into downstream data analyses is the generation of a table of abundances for each
metabolite across all samples. As you can see from the TICs above, there are some low intensity peaks that fall
below detection in some but not all samples. Our view is that instead of inserting arbitrary low constants (such as 0
or half the detection limit) or imputing the intensities post-hoc or having missing data in the data matrices, it is best
to return to the area of the where the peak should be and give some kind of abundance. The alignments themselves
are rich in information with respect to the location of undetected peaks. We feel this is a more conservative and
statistically valid approach than introducing arbitrary values.
More details coming soon.

4 Multiple alignment of several experimental groups

Next, we discuss the multiple alignment of peaks across many samples. With replicates, we typically do an alignment
within replicates, then combine these together into a summarized form. This cuts down on the computational cost.
For example, consider 2 sets of samples, each with 5 replicates. Aligning first within replicates requires 10+10+1
total alignments whereas an all-pairwise alignment requires 45 pairwise alignments. In addition, this allows some
flexibility in setting different gap and distance penalty parameters for the within alignment and between alignment.
An example follows.

> print (targets)

FileName Group
0709_468.CDF  mmA
0709_474.CDF  mmA
0709_475.CDF  mmA
0709_485.CDF  mmC
0709_493.CDF  mmC
0709_496.CDF ~ mmC
0709_470.CDF  mmD
0709_471.CDF  mmD
0709_479.CDF  mmD
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ma <- multipleAlignment(pd, group=targets$Group, wn.gap=0.5, wn.D=.05,
bw.gap=.6, bw.D=0.05, usePeaks=TRUE, filterMin=1,
+ df=50, verbose=FALSE, metric = 1, type = 1) # bug

+

[clusterAlignment] Aligning 0709_468 to 0709_474

[peaksAlignment] Comparing 24 peaks to 23 peaks -- gap= 0.5 D= 5e-04 , metric= 1 , type= 1
[peaksAlignment] 22 matched. Similarity= 0.8625793

[clusterAlignment] Aligning 0709_468 to 0709_475

[peaksAlignment] Comparing 24 peaks to 26 peaks -- gap= 0.5 D= 5e-04 , metric= 1 , type= 1
[peaksAlignment] 15 matched. Similarity= 0.8

[clusterAlignment] Aligning 0709_474 to 0709_475

[peaksAlignment] Comparing 23 peaks to 26 peaks -- gap= 0.5 D= 5e-04 , metric= 1 , type= 1
[peaksAlignment] 20 matched. Similarity= 0.899699

[progressiveAlignment] Doing merge -1 -3

[progressiveAlignment] left.runs: 1 , right.runs: 3

[progressiveAlignment] Doing merge -2 1



[progressiveAlignment] left.runs: 2 , right.runs: 1 3
[progressiveAlignment] (dot=50) going to 23 :
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5058659 270.2 9430395 503.7 7315214 390.7
Vcells 9665654 73.8 28719104 219.2 28719104 219.2
[clusterAlignment] Aligning 0709_485 to 0709_493
[peaksAlignment] Comparing 20 peaks to 27 peaks -- gap= 0.5 D= 5e-04 , metric= 1 , type=
[peaksAlignment] 20 matched. Similarity= 0.9354748
[clusterAlignment] Aligning 0709_485 to 0709_496
[peaksAlignment] Comparing 20 peaks to 24 peaks -- gap= 0.5 D= 5e-04 , metric= 1 , type=
[peaksAlignment] 20 matched. Similarity= 0.9359244
[clusterAlignment] Aligning 0709_493 to 0709_496
[peaksAlignment] Comparing 27 peaks to 24 peaks -- gap= 0.5 D= 5e-04 , metric= 1 , type=
[peaksAlignment] 22 matched. Similarity= 0.8515771
[progressiveAlignment] Doing merge -5 -6
[progressiveAlignment] left.runs: 5 , right.runs: 6
[progressiveAlignment] Doing merge -4 1
[progressiveAlignment] left.runs: 4 , right.runs: 5 6
[progressiveAlignment] (dot=50) going to 20 :
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5058813 270.2 9430395 503.7 7315214 390.7
Vcells 9666220 73.8 28719104 219.2 28719104 219.2
[clusterAlignment] Aligning 0709_470 to 0709_471
[peaksAlignment] Comparing 24 peaks to 25 peaks -- gap= 0.5 D= 5e-04 , metric= 1 , type=
[peaksAlignment] 22 matched. Similarity= 0.8879722
[clusterAlignment] Aligning 0709_470 to 0709_479
[peaksAlignment] Comparing 24 peaks to 21 peaks -- gap= 0.5 D= 5e-04 , metric= 1 , type=
[peaksAlignment] 21 matched. Similarity= 0.8564714
[clusterAlignment] Aligning 0709_471 to 0709_479
[peaksAlignment] Comparing 25 peaks to 21 peaks -- gap= 0.5 D= 5e-04 , metric= 1 , type=
[peaksAlignment] 19 matched. Similarity= 0.8258931
[progressiveAlignment] Doing merge -8 -9
[progressiveAlignment] left.runs: 8 , right.runs: 9
[progressiveAlignment] Doing merge -7 1
[progressiveAlignment] left.runs: 7 , right.runs: 8 9
[progressiveAlignment] (dot=50) going to 24 :
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5058991 270.2 9430395 503.7 7315214 390.7
Vcells 9667304 73.8 28719104 219.2 28719104 219.2
[clusterAlignment] Aligning to
[peaksAlignment] Comparing 36 peaks to 29 peaks -- gap= 0.6 D= 5e-04 , metric= 1 , type=
[peaksAlignment] 25 matched. Similarity= 0.9094807
[clusterAlignment] Aligning to
[peaksAlignment] Comparing 36 peaks to 29 peaks -- gap= 0.6 D= 5e-04 , metric= 1 , type=
[peaksAlignment] 29 matched. Similarity= 0.8798354
[clusterAlignment] Aligning to
[peaksAlignment] Comparing 29 peaks to 29 peaks -- gap= 0.6 D= 5e-04 , metric= 1 , type=
[peaksAlignment] 29 matched. Similarity= 0.9655151
[progressiveAlignment] Doing merge -1 -3
[progressiveAlignment] left.runs: 1 , right.runs: 3
[progressiveAlignment] Doing merge -2 1



[progressiveAlignment] left.runs: 2 , right.runs: 1 3
[progressiveAlignment] (dot=50) going to 29 :

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 5060521 270.3 9430395 503.7 7315214 390.7
Vcells 9719851 74.2 28719104 219.2 28719104 219.2

> ma
An object of class "multipleAlignment"
3 groups: 3 3 3 samples, respectively.

36 merged peaks

If you set verbose=TRUE, many nitty-gritty details of the alignment procedure are given. Next, we can take the
alignment results and overlay it onto the TICs, allowing a visual inspection.

> plot(pd, rtrange=c(7.5,8.5), runs=ma@betweenAlignment@runs,

+ mind=ma@betweenAlignment@ind, plotPeaks=TRUE,
+ plotPeakLabels=TRUE, max.near=8, how.near=.5,
+ col=rep(c("blue", "red", "black"), each=3))
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> mp <- correlationAlignment (object=pd.2, thr=0.85, D=20, penality=0.2,
+ normalize=TRUE, minFilter=1)
> mp

10



4.1 Gathering results

The alignment results can be extracted from the multipleAlignment object as:
> ma@betweenAlignment@runs

[11 456213789

> ma@betweenAlignment@ind

(,11 (.21 [,3] [,4] [,5] .61 [,7]1 [,8] [,9]
[1,] 1 1 11 1 1 1 1 1

[2,] NA 2 NA NA 2 NA 2 2 NA

[3,] NA 3 2 2 3 2 3 3 NA

[4,] 2 4 3 3 4 3 4 4 2

(5,1 3 5 4 4 5 4 5 5 3

(6,1 4 6 5 5 6 5 6 6 4

7,1 5 7 6 6 7 6 NA NA NA

[8,] 6 8 7 7 8 7 7 7 5

[9,] 7 9 8 NA NA 8 8 8 6
[10,] NA NA NA NA NA 9 NA ©NA NA
[11,] NA NA NA NA NA 10 NA NA NA
[12,] NA 10 NA NA NA 11 NA NA NA
[13,] 8 11 9 NA NA 12 NA NA NA
[14,] NA 12 NA NA NA 13 NA NA NA
[15,] NA 13 NA NA NA 14 NA NA 7
[16,] 9 14 NA NA NA 15 NA 9 8
[17,1] 10 15 10 8 9 16 NA 10 9
[18,1 11 16 11 9 10 17 9 11 10
[19,] NA 17 12 NA NA 18 10 12 NA
[20,] NA 18 13 NA NA 19 11 13 NA
[21,] 12 NA 14 NA 11 20 12 14 NA
[22,] NA NA NA 10 12 21 13 15 NA
[23,] NA NA NA 11 13 22 14 16 11
[24,] 13 19 15 12 NA NA 15 17 12
[25,] NA NA NA 13 14 NA 16 NA NA
[26,] NA NA NA 14 15 NA 17 18 13
[27,] NA NA NA 15 16 NA NA 19 14
[28,] NA 20 16 16 17 NA 18 20 15
[29,] NA 21 17 17 18 NA 19 21 16
[30,] 14 22 18 18 19 NA 20 22 17
[31,] 156 23 19 19 20 NA 21 NA NA
[32,] 16 NA 20 20 21 NA 22 23 18
[33,] 17 24 21 21 22 23 NA NA 19
[34,] 18 25 22 22 23 24 23 24 20
[35,] 19 26 23 NA NA 25 NA NA NA

[36,] 20 27 24 23 24 26 24 25 21

This table would suggest that matched peak 8 (see numbers below the TICs in the figure above) corresponds to
detected peaks 9, 12, 11 in runs 4, 5, 6 and so on, same as shown in the above plot.

In addition, you can gather a list of all the merged peaks with the gatherInfo function, giving elements for
the retention times, the detected fragment ions and their intensities. The example below also shows the how to
construct a table of retention times of the matched peaks (No attempt is made here to adjust retention times onto
a common scale. Instead, the peaks are matched to each other on their original scale). For example:

11



> outList <- gatherInfo(pd,ma)
> outList[[8]]

$rt
mmC.4 mmC.5 mmC. 6 mmA . 2 mmA.1 mmA.3 mmD.7 mmD . 8
7.728317 7.740700 7.711417 7.713550 7.708567 7.711600 7.702967 7.701717
mmD. 9
7.713933

$mz
[1] 52 59 66 70 72 73 74 75 79 89 104 116 133 147 148 188 204

$data
mmC.4 mmC.5 mmC.6 mmA.2 mmA.1 mmA.3 mmD.7 mmD.8 mmD.9
[1,] 0 0 0 0 0 0 26248 0 0
[2,] 0 0 0 5113 4425 4994 4855 4557 4728
[3,] 0 0 0 3926 5146 4876 4831 3354 4783
[4,] 0 0 0 11568 0 0 10637 0 0
[5,] 0 0 0 3680 3910 4492 4051 3427 3907
[6,] 0 0 0 61816 65680 66768 65912 52848 61560
[7,] 0 0 0 6705 6185 7400 6642 6235 7088
[8,] 0 0 24160 26376 23328 0 28016 26304 27184
[9,] 0 0 0 0 0 0 38712 0 0
[10,] 0 0 0 5617 5347 5702 5173 3946 5659
[11,] 0 0 0 13173 13808 13207 12852 9816 12492
[12,] 0 0 0 5417 5525 5912 5577 4504 5201
[13,] 0 0 0 3539 3730 2910 3599 2436 3893
[14,] 0 0 17904 21864 20016 22280 21904 17896 22400
[15,] 0 0 0 4413 3430 3890 3006 3335 3851
[186,] 0 0 7636 14433 14751 13765 14731 10680 14061
[17,] 0 0 0 6878 6667 7018 6935 5149 6830

> rtmat <- matrix(unlist(lapply(outList,.subset,"rt"), use.names=FALSE),

+ nr=length(outlist), byrow=TRUE)

> colnames (rtmat) <- names(outList[[1]]$rt); rownames(rtmat) <- 1:nrow(rtmat)
> round(rtmat, 3)

mmC.4 mmC.5 mmC.6 mmA.2 mmA.1 mmA.3 mmD.7 mmD.8 mmD.9
1 7.534 7.512 7.506 7.531 7.526 7.540 7.520 7.519 7.531
2 NA 7.535 NA NA 7.549 NA 7.543 7.547 NA
3 NA 7.558 7.551 7.559 7.566 7.557 7.560 7.565 NA
4 T7.580 7.575 7.569 7.576 7.583 7.574 7.577 7.582 7.577
5 7.597 7.586 7.586 7.588 7.600 7.592 7.594 7.599 7.594
6 7.614 7.615 7.614 7.616 7.617 7.614 7.617 7.610 7.617
7 T7.717 7.695 7.694 7.691 7.663 7.649 NA NA NA
8 7.728 7.741 7.711 7.714 7.709 7.712 7.703 7.702 7.714
9 7.803 7.804 7.803 NA NA 7.803 7.806 7.805 7.805
10 NA NA NA NA NA 7.826 NA NA NA
11 NA NA NA NA NA 7.975 NA NA NA
12 NA 7.809 NA NA NA 7.997 NA NA NA
13 7.825 7.849 7.951 NA NA 8.009 NA NA NA
14 NA 7.946 NA NA NA 8.077 NA NA NA
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15 NA 7.958 NA NA NA 8.095 NA NA 7.817
16 7.946 7.969 NA NA NA 8.112 NA 7.816 7.823
17 7.974 7.986 7.980 7.736 7.783 8.249 NA 7.907 7.874
18 8.008 8.009 8.003 7.799 7.800 8.283 7.812 7.936 7.943
19 NA 8.049 8.043 NA NA 8.312 7.966 7.965 NA
20 NA 8.061 8.060 NA NA 8.335 7.989 7.993 NA
21 8.077 NA 8.100 NA 7.823 8.357 8.012 8.010 NA
22 NA NA NA 7.828 7.880 8.375 8.069 8.068 NA
23 NA NA NA 7.942 7.943 8.403 8.086 8.085 7.977
24 8.111 8.107 8.111 7.976 NA NA 8.109 8.108 8.000
25 NA NA NA 7.999 7.966 NA 8.172 NA NA
26 NA NA NA 8.079 7.994 NA 8.246 8.245 8.080
27 NA NA NA 8.114 8.011 NA NA 8.262 8.091
28 NA 8.204 8.237 8.182 8.109 NA 8.280 8.330 8.114
29 NA 8.244 8.254 8.251 8.246 NA 8.326 8.342 8.251
30 8.254 8.301 8.294 8.285 8.263 NA 8.360 8.359 8.263
31 8.266 8.324 8.323 8.337 8.332 NA 8.377 NA NA
32 8.334 NA 8.329 8.359 8.360 NA 8.395 8.393 8.337
33 8.363 8.352 8.352 8.399 8.394 8.420 NA NA 8.400
34 8.403 8.392 8.386 8.434 8.434 8.437 8.435 8.433 8.440
35 8.437 8.432 8.432 NA NA 8.443 NA NA NA
36 8.477 8.461 8.460 8.474 8.469 8.472 8.469 8.468 8.474

5 Future improvements and extension

There are many procedures that we have implemented in our investigation of GC-MS data, but have not made part
of the package just yet. Some of the most useful procedures will be released, such as:

1. Parsers for other peak detection algorithms (e.g. MzMine) and parsers for other alignment procedures (e.g.
SpectConnect) and perhaps retention indices procedures.

2. More convenient access to the alignment information and abundance table.
3. Statistical analysis of differential metabolite abundance.

4. Fragment-level analysis, an alternative method to summarize abundance across all detected fragments of a
metabolite peak.

6 References
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7 This vignette was built with/at ...

> sessionInfo()

R Under development (unstable) (2019-11-04 r77367)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows Server 2012 R2 x64 (build 9600)

Matrix products: default

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.1252

attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods Dbase

other attached packages:

[1] flagme_1.43.0 CAMERA_1.43.0 xcms_3.9.0

[4] MSnbase_2.13.0 ProtGenerics_1.19.0 S4Vectors_0.25.0
[7] mzR_2.21.0 Rcpp_1.0.3 BiocParallel_1.21.0
[10] Biobase_2.47.0 BiocGenerics_0.33.0 gcspikelite_1.25.0

loaded via a namespace (and not attached):

[1] vsn_3.55.0 splines_4.0.0 foreach_1.4.7

[4] gtools_3.8.1 Formula_1.2-3 assertthat_0.2.1
[7] BiocManager_1.30.9 affy_1.65.1 latticeExtra_0.6-28
[10] RBGL_1.63.1 robustbase_0.93-5 impute_1.61.0
[13] pillar_1.4.2 backports_1.1.5 lattice_0.20-38
[16] glue_1.3.1 limma_3.43.0 digest_0.6.22
[19] RColorBrewer_1.1-2 checkmate_1.9.4 colorspace_1.4-1
[22] htmltools_0.4.0 preprocessCore_1.49.0 Matrix_1.2-17
[25] plyr_1.8.4 MALDIquant_1.19.3 XML_3.98-1.20
[28] pkgconfig 2.0.3 SparseM_1.77 zlibbioc_1.33.0
[31] purrr_0.3.3 scales_1.0.0 gdata_2.18.0

[34] RANN_2.6.1 affyio_1.57.0 tibble_2.1.3

[37] htmlTable_1.13.2 IRanges_2.21.1 ggplot2_3.2.1
[40] nnet_7.3-12 lazyeval_0.2.2 MassSpecWavelet_1.53.0
[43] survival_3.1-6 magrittr_1.5 crayon_1.3.4

[46] ncdf4_1.17 gplots_3.0.1.1 doParallel_1.0.15
[49] MASS_7.3-51.4 foreign_0.8-72 graph_1.65.0

[52] data.table_1.12.6 tools_4.0.0 stringr_1.4.0
[55] munsell_0.5.0 cluster_2.1.0 pcaMethods_1.79.1
[68] compiler_4.0.0 mzID_1.25.0 caTools_1.17.1.2
[61] rlang 0.4.1 grid_4.0.0 iterators_1.0.12
[64] rstudioapi_0.10 htmlwidgets_1.5.1 igraph_1.2.4.1
[67] bitops_1.0-6 base64enc_0.1-3 gtable_0.3.0
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[70] codetools_0.2-16
[73] gridExtra_2.3
[76] Hmisc_4.3-0

[79] rpart_4.1-15
[82] tidyselect_0.2.5

> date()

multtest_2.43.0
knitr_1.25
KernSmooth_2.23-16
acepack_1.4.1
xfun_0.10

[1] "Fri Nov 08 21:08:47 2019"
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R6_2.4.0
dplyr_0.8.3
stringi_1.4.3
DEoptimR_1.0-8



