We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.
library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)
# How to convert your excel sheet into vector of static and functional markers
markers
## $input
## [1] "CD3(Cd110)Di" "CD3(Cd111)Di"
## [3] "CD3(Cd112)Di" "CD235-61-7-15(In113)Di"
## [5] "CD3(Cd114)Di" "CD45(In115)Di"
## [7] "CD19(Nd142)Di" "CD22(Nd143)Di"
## [9] "IgD(Nd145)Di" "CD79b(Nd146)Di"
## [11] "CD20(Sm147)Di" "CD34(Nd148)Di"
## [13] "CD179a(Sm149)Di" "CD72(Eu151)Di"
## [15] "IgM(Eu153)Di" "Kappa(Sm154)Di"
## [17] "CD10(Gd156)Di" "Lambda(Gd157)Di"
## [19] "CD24(Dy161)Di" "TdT(Dy163)Di"
## [21] "Rag1(Dy164)Di" "PreBCR(Ho165)Di"
## [23] "CD43(Er167)Di" "CD38(Er168)Di"
## [25] "CD40(Er170)Di" "CD33(Yb173)Di"
## [27] "HLA-DR(Yb174)Di"
##
## $functional
## [1] "pCrkL(Lu175)Di" "pCREB(Yb176)Di" "pBTK(Yb171)Di"
## [4] "pS6(Yb172)Di" "cPARP(La139)Di" "pPLCg2(Pr141)Di"
## [7] "pSrc(Nd144)Di" "Ki67(Sm152)Di" "pErk12(Gd155)Di"
## [10] "pSTAT3(Gd158)Di" "pAKT(Tb159)Di" "pBLNK(Gd160)Di"
## [13] "pP38(Tm169)Di" "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"
## [16] "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]
# Selection of the k. See "Finding Ideal K" vignette
k <- 30
# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn,
# and the euclidean distance between
# itself and the cell of interest
# Indices
str(wand.nn[[1]])
## int [1:1000, 1:30] 539 949 944 824 14 322 195 31 656 607 ...
wand.nn[[1]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 539 177 541 202 725 637 950 13 350 482
## [2,] 949 33 758 366 116 382 50 767 534 478
## [3,] 944 942 289 146 878 632 757 394 853 477
## [4,] 824 281 695 502 403 270 533 713 850 679
## [5,] 14 423 966 430 472 15 928 435 393 30
## [6,] 322 536 377 444 628 178 613 959 827 589
## [7,] 195 544 820 876 275 971 379 623 133 739
## [8,] 31 238 964 329 751 555 804 666 560 505
## [9,] 656 707 197 198 454 578 797 321 680 66
## [10,] 607 739 430 133 833 332 824 147 423 264
## [11,] 113 669 57 270 668 701 730 937 491 653
## [12,] 30 633 848 406 661 608 349 96 805 469
## [13,] 637 360 574 553 509 904 72 741 371 839
## [14,] 5 423 928 533 174 562 472 81 793 275
## [15,] 496 897 705 830 531 111 488 726 827 176
## [16,] 695 713 622 156 626 898 119 434 789 821
## [17,] 685 935 681 528 393 739 199 745 174 719
## [18,] 197 334 901 481 680 421 417 454 994 55
## [19,] 894 158 864 492 813 369 483 520 641 171
## [20,] 854 794 560 105 545 706 555 505 804 551
# Distance
str(wand.nn[[2]])
## num [1:1000, 1:30] 3.54 2.87 3.53 3.23 2.91 ...
wand.nn[[2]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 3.543540 3.650297 3.753477 3.908166 4.071483 4.137077 4.140932
## [2,] 2.866492 3.265561 3.288425 3.475343 3.556980 3.613709 3.855725
## [3,] 3.525737 3.624438 3.970664 4.027025 4.125868 4.227533 4.318366
## [4,] 3.227081 3.425248 3.467818 3.474846 3.669893 3.691244 3.693790
## [5,] 2.907990 3.077282 3.123469 3.239427 3.301202 3.322066 3.327836
## [6,] 3.135509 3.206864 3.549906 3.589964 3.669989 3.686851 3.838373
## [7,] 3.947773 4.211203 4.367830 4.393915 4.452781 4.532959 4.571980
## [8,] 3.236308 3.491925 3.494201 3.797314 4.087384 4.093090 4.104316
## [9,] 3.653781 3.686222 3.837499 3.994575 4.079693 4.083511 4.089239
## [10,] 2.803137 3.125680 3.166143 3.188596 3.225273 3.406788 3.423831
## [11,] 3.440584 4.092943 4.184986 4.252569 4.365472 4.380111 4.484500
## [12,] 3.874265 4.276295 4.280278 4.444715 4.557055 4.564580 4.572503
## [13,] 2.881456 3.470804 3.545122 3.562418 3.565207 3.584916 3.630682
## [14,] 2.907990 3.287269 3.315326 3.494212 3.497916 3.535462 3.634984
## [15,] 2.639657 2.780463 3.071611 3.172208 3.192469 3.219713 3.241928
## [16,] 2.724922 2.872871 2.903003 2.943644 2.960460 3.181405 3.208096
## [17,] 2.250208 2.733413 2.807196 2.816794 2.954585 3.001345 3.065151
## [18,] 3.352649 3.573608 3.601324 3.697964 3.729397 3.783338 3.820485
## [19,] 3.159695 3.461351 4.130096 4.146185 4.286646 4.312566 4.348400
## [20,] 3.464508 3.529550 3.731366 3.816896 3.877793 4.045353 4.154364
## [,8] [,9] [,10]
## [1,] 4.215474 4.265870 4.313219
## [2,] 3.914504 3.952250 3.986689
## [3,] 4.334310 4.348662 4.365517
## [4,] 3.719178 3.835923 3.862040
## [5,] 3.372381 3.374992 3.383435
## [6,] 3.890021 3.929707 4.004217
## [7,] 4.620909 4.623731 4.631122
## [8,] 4.112280 4.143719 4.150795
## [9,] 4.103440 4.103829 4.110755
## [10,] 3.447816 3.462920 3.489961
## [11,] 4.500361 4.699085 4.703711
## [12,] 4.573815 4.582971 4.720024
## [13,] 3.689163 3.700240 3.724500
## [14,] 3.775698 3.821178 3.864313
## [15,] 3.253768 3.300186 3.320537
## [16,] 3.219435 3.252051 3.280635
## [17,] 3.098751 3.118784 3.198298
## [18,] 3.827913 3.830787 3.856318
## [19,] 4.383952 4.411795 4.514507
## [20,] 4.179797 4.244423 4.410003
This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.
wand.scone <- SconeValues(nn.matrix = wand.nn,
cell.data = wand.combined,
scone.markers = funct.markers,
unstim = "basal")
wand.scone
## # A tibble: 1,000 x 34
## `pCrkL(Lu175)Di~ `pCREB(Yb176)Di~ `pBTK(Yb171)Di.~ `pS6(Yb172)Di.I~
## <dbl> <dbl> <dbl> <dbl>
## 1 1 1 1 0.920
## 2 1 1 1 0.576
## 3 1 1 1 1
## 4 1 1 1 0.948
## 5 1 1 1 0.714
## 6 1 1 1 0.867
## 7 1 1 1 0.782
## 8 1 1 1 0.714
## 9 1 1 1 0.980
## 10 1 1 1 0.568
## # ... with 990 more rows, and 30 more variables:
## # `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## # `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## # `pErk12(Gd155)Di.IL7.qvalue` <dbl>,
## # `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, `pAKT(Tb159)Di.IL7.qvalue` <dbl>,
## # `pBLNK(Gd160)Di.IL7.qvalue` <dbl>, `pP38(Tm169)Di.IL7.qvalue` <dbl>,
## # `pSTAT5(Nd150)Di.IL7.qvalue` <dbl>, `pSyk(Dy162)Di.IL7.qvalue` <dbl>,
## # `tIkBa(Er166)Di.IL7.qvalue` <dbl>, `pCrkL(Lu175)Di.IL7.change` <dbl>,
## # `pCREB(Yb176)Di.IL7.change` <dbl>, `pBTK(Yb171)Di.IL7.change` <dbl>,
## # `pS6(Yb172)Di.IL7.change` <dbl>, `cPARP(La139)Di.IL7.change` <dbl>,
## # `pPLCg2(Pr141)Di.IL7.change` <dbl>, `pSrc(Nd144)Di.IL7.change` <dbl>,
## # `Ki67(Sm152)Di.IL7.change` <dbl>, `pErk12(Gd155)Di.IL7.change` <dbl>,
## # `pSTAT3(Gd158)Di.IL7.change` <dbl>, `pAKT(Tb159)Di.IL7.change` <dbl>,
## # `pBLNK(Gd160)Di.IL7.change` <dbl>, `pP38(Tm169)Di.IL7.change` <dbl>,
## # `pSTAT5(Nd150)Di.IL7.change` <dbl>, `pSyk(Dy162)Di.IL7.change` <dbl>,
## # `tIkBa(Er166)Di.IL7.change` <dbl>, IL7.fraction.cond.2 <dbl>,
## # density <dbl>
If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.
I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).
I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.
An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:
# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 x 51
## `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(~
## <dbl> <dbl> <dbl> <dbl>
## 1 0.312 1.10 0.906 0.572
## 2 0.122 -0.0340 0.123 -0.593
## 3 -0.250 1.02 0.301 -0.561
## 4 -0.122 -0.171 -0.103 0.222
## 5 -0.0328 -0.406 -0.0232 -0.197
## 6 -0.0664 -0.184 -0.0623 -0.262
## 7 -0.382 -0.420 0.620 0.133
## 8 -0.106 -0.0302 0.0451 0.109
## 9 0.253 0.492 -0.367 -0.737
## 10 -0.0186 -0.159 -0.210 0.675
## # ... with 20 more rows, and 47 more variables: `CD3(Cd114)Di` <dbl>,
## # `CD45(In115)Di` <dbl>, `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>,
## # `IgD(Nd145)Di` <dbl>, `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>,
## # `CD34(Nd148)Di` <dbl>, `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>,
## # `IgM(Eu153)Di` <dbl>, `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>,
## # `Lambda(Gd157)Di` <dbl>, `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>,
## # `Rag1(Dy164)Di` <dbl>, `PreBCR(Ho165)Di` <dbl>, `CD43(Er167)Di` <dbl>,
## # `CD38(Er168)Di` <dbl>, `CD40(Er170)Di` <dbl>, `CD33(Yb173)Di` <dbl>,
## # `HLA-DR(Yb174)Di` <dbl>, Time <dbl>, Cell_length <dbl>,
## # `cPARP(La139)Di` <dbl>, `pPLCg2(Pr141)Di` <dbl>,
## # `pSrc(Nd144)Di` <dbl>, `pSTAT5(Nd150)Di` <dbl>, `Ki67(Sm152)Di` <dbl>,
## # `pErk12(Gd155)Di` <dbl>, `pSTAT3(Gd158)Di` <dbl>,
## # `pAKT(Tb159)Di` <dbl>, `pBLNK(Gd160)Di` <dbl>, `pSyk(Dy162)Di` <dbl>,
## # `tIkBa(Er166)Di` <dbl>, `pP38(Tm169)Di` <dbl>, `pBTK(Yb171)Di` <dbl>,
## # `pS6(Yb172)Di` <dbl>, `pCrkL(Lu175)Di` <dbl>, `pCREB(Yb176)Di` <dbl>,
## # `DNA1(Ir191)Di` <dbl>, `DNA2(Ir193)Di` <dbl>,
## # `Viability1(Pt195)Di` <dbl>, `Viability2(Pt196)Di` <dbl>,
## # wanderlust <dbl>, condition <chr>
# Finds the KNN density estimation for each cell, ordered by column, in the
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
## num [1:1000] 0.23 0.238 0.224 0.257 0.29 ...