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Chapter 11

Analyzing TCP Behavior

We discussed earlier how one of the main drawbacks to using TCP traffic for our network
“probes” is the often quite complex behavior of the TCP endpoif®.1.2). We argued that the
resulting fine-resolution probing outweighs this disadvantage, because the disadvantage can be over-
come by careful analysis of the packet arrivals and departures in order to remove those aspects of
the traffic behavior due to the TCP endpoints themselves. In this chapter we discuspdraly
performs this analysis. In addition, the process of removing the TCP effects reveals a wealth of in-
teresting detail about how different TCP implementations behave. We find a tremendous range both
in their performance and in their congestion-avoidance behavior, the latter playing a critical role in
the Internet's global stability.

In addition, a solid understanding of each TCP endpoint's exact behavior enables us to
distinguish between packet filter errors and bona fide network anomalies. For example, if multiple
copies of a single data packet arrive at the TCP receiving endpoint, we can look to see whether
the receiver generates an ack for each one. If it does, then the extra copies are bona fide and not
measurement duplication$ 10.3.5). If not, therif the TCP endpoint is known to correctly generate
acks when it receives redundant packete can conclude that a measurement error occurred, and
the packets did not really exist. If the TCP is known to not generate acks in this situation, then we
cannot tell, and look for a separate indication of whether the packets were indeed real (for example,
whether they have different TTL's). Thus, thoroughly understanding TCP behavior provides an
invaluable self-consistency check on the soundness of our measuréreht.

11.1 Analysis strategy

As its name suggests, we began writioganaly  with the goal of analyzing TCP behav-
ior. Only later did we realize that, in the process of doing so, it develops many of the data structures
also needed to analyze network dynamics.

Our original goal was for the program to workane pas®ver the packet trace by recog-
nizing genericTCP actions. The goal of executing only one pass stemmed from htpizigaly
might later evolve into a tool that could watch an Internet link in real-time and detect misbehaving
TCP sessions on the link. Designing the program in terms of generic TCP actions such as “time-
out” and “fast retransmission” would then enable it to work for any TCP implementation without
needing to know details of the implementation.
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After considerable effort, we were forced to abandon both of these goals. One-pass anal-
ysis immediately proved difficult due tantage pointissues § 10.4), in which it was often hard
to tell whether a TCP's actions were due to the most recently received packet, or one received in
the more distant past. Attempts to surmount this problem by usipgcket look-ahead for small
k proved clumsy, and finally foundered when we realized that one basic prageataly needs
to determine concerning a TCP implementation is only truly apparent upon inspecting an entire
connection, namely whether the implementation has a “sender windp1.8.2). Since sender
windows are common, in order to infer them soundly we decided to aipanaly to inspect
the entire packet trace before making decisions as to how the TCP behaved. Doing so immediately
simplified other types of analysis, too.

We abandoned the goal of recognizing generic TCP actions as the wide variation in TCP
behavior became apparent. For example, as related below, the Solaris and Linux TCP implemen-
tations in our study often retransmit data packets much too early, before the original packet had a
chance to arrive at the destination and be acknowledged, and the Linux implementation furthermore
retransmits entire flights of packets rather than just one packet at a time. Neither of these behaviors
fit a generic TCP action (except “broken retransmission™), and they are very easily confused with
legitimate retransmissions due to “fast retransmissi@r8.2.7). Similarly, the fashions in which
different implementations open the congestion window differ in subtle ways, with the result that
sometimes it can be extremely difficult to tell why a TCP failed to send new data when an ack
arrives: is it because its window has not opened another full packet, or because the TCP is simply
running slow and has not had time to do so? Both occur quite frequently.

Thus, we are left with a much less flexible but more robust desigiefanaly : it makes
two passes over the packet trace, it usgmcket look-ahead and look-behind to resolve ambigui-
ties, and, instead of characterizing the TCP behavior in terms of generic actions, we must settle for it
having coded into it intimate knowledge of the idiosyncrasies of 17 different TCP implementations.
Furthermore, when confronted with a trace generated by a new implementation not already coded
into it, it can only fruitfully analyze the trace if the new implementation behaves identically to one
of the 17 it already knows about, or if the extra effort is made to add knowledge of the new imple-
mentation to the program. To ameliorate this shortcoming, the program is capable of automatically
running all known implementations against a given trace to determine those with which the trace
appears in full accord.

Alltold, tcpanaly is about 14,000 lines of C++ code. Of these, about 7,500 analyze TCP
behavior (1,400 concerning individual implementation behavior), 5,000 analyze network behavior,
and the remainder perform utility functions. The use of C++ is particularly beneficial for expressing
the behavior of one TCP implementation in terms of its differences from that of another implemen-
tation. In particularfcpanaly includes a “Reno” implementation that captures the main features
of the BSD Reno TCP release, from which most of the TCPs in our study were derived. This allows
these derivatives to be expressed succinctly, in terms of just how they differ from “generic” Reno.
A widespread Reno variant known as Net/3 is discussed in detail in [WS95].

Table XV summarizes the different TCP implementations knowwagdanaly . The first
column gives the name of the implementation and the version numbers present among the imple-
mentations in our study. The second column lists the sites running each version, separated by ';'s.
Sites listed with a subscript af or 5 participated in both\; and A, but only used the given
implementation during the first or second, respectively.
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Implementation | Sites | Notes \
BSDI1.1; 2.0; 2. & bsdi 1, connix , pubnix ;, | Reno-derived. BSDI 2 not a
austr o; pubnix o, rain ; | public release.
bsdi o

Digital OSF/1

harv , mit , ucol 5, umann

Reno-derived. No differ

ences observed between ver-

sions 1.3a, 2.0, 3.0, 3.2.

HP/UX 9.05; 10.00

sintef2 ; sintefl

Reno-derived.

IRIX 4.0.1; 4.0.5f; 5.1; 5.2;
5.3;6.2x

oce; sandia ; bnl 1; sdsc 1;
adv, bnl o; sdsc o

Reno-derived. No difference

[72)

observed between 4.0.1 and

4.0.5f, nor between 5.3 an

6.20. 6.2c not a public release,.

Linux 1.0 korea Implemented  independently
from BSD.
NetBSD 1.0 panix Reno-derived.
Solaris 2.3; 2.4 inria 1, sri , ucl 1, ustutt , | Implemented  independently
wustl , xor ;austr2 ,inria o, | from BSD. Very minor dif-
mid , nrao o, ucl - ferences between 2.3 and
2.4.
Sun0S 4.1 austr 1, Ibl 1, near, nrao 1, | Tahoe-derived. 4.1.3 and 4.1\4
ncar , ucla , ucol 1, ukc, | appear identical.
umont, unij , usc
VIi; Vs bl 5; Ibli Experimental  Reno-variants

developed by Van Jacobso
Neither a public release.

Table XV: TCP Implementations known tepanaly

>
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All but Linux 1.0, Solaris 2.3 and 2.4, and SunOS 4.1 are some variant of “Reno.”

SunOS 4.1 is a variant of “Tahoe,” a Reno predecessor, while the Linux and Solaris implemen-

tatio

11.

inde

ns were written independently of Reno and of each other.

2 Checking packet and measurement integrity

One often assumes that a trace produced by a packet filter sited at a TCP endpoint does
ed reflect the packets sent and received by the endpoint. In Chapter 10 we discussed some ways

in which this assumption can be violated. Here we look at additional consistency ¢tyenksy
uses to avoid misassumptions.

© 00 N o O

10

Among all the traces in the study, we never observed any of the following:
. Options present in the IP header.
. A packet sent with more data than the M§9.2.2).
. A TCP connection-establishment option present in a hon-establishment (non-SYN) packet.

. An establishment (SYN) packet appearing after completion of the connection establishment
handshake.

. lllegal or unknown TCP header options.
. SYN packets with other flags set. (We have seen this in other Internet traffic traces.)
. IP fragments with the “Don't Fragment” bit set.
. Non-TCP traffic § 10.3.8).
. lllegal IP header lengths.
. TCP “simultaneous open” [St94].
We did, however, occasionally observe the following:
. Time travel §{ 10.3.7).

. IP header checksum errotspanaly  verifies that the computed checksum for the IP header
matches that in the header. This test never failetfinbut failed 17 times inV5. All 17 oc-
currences were between the same pair of hestsn(x andnrao ), and all of the IP headers
flagged with errors suffered from corrupted (too large) length fields. These circumstances
strongly suggest a faulty link somewhere in the middle of the path betweanx and
nrao , presumably the final hop in the path because otherwise an intermediary router should
have discarded the packets. The corrupted length fields are consistent with CSLIP errors, as
discussed ir§ 13.3.

. TCP checksum errors. Packet traces generatedpdymp have asnaplenthat limits the
amount of data recorded for each packet to the fifsytes § 10.2). Thesnaplencan greatly
reduce the volume of data the packet filter must copy and record. But it means that, for TCP
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data packets longer than theaplentcpanaly cannot compute the corresponding checksum

and compare it to the value in the TCP headsgranaly can, however, checksum pure ack
packets, since they completely fit within theaplenused in our experiment. It does so unless

the header checksum is exac#{f — 1, because we observed that some IRIX packet filters
frequently record outgoing packets with that value in the checksum field rather than the true
checksum. We suspect that this occurs because the packet has been copied to the packet filter
for recording prior to the checksum computation, because the computation is done later by
the network interface hardware.

Checksum errors in pure acks detected by this means are quite rare: 1 instavicarnd

26 instances iolV,. All but one of these latter involvelthli , which, as discussed #13.3,
suffered from an atypically strong predilection for checksum errors. We discuss how to infer
checksum errors in data packets below ihl.4.2, and irt 13.3 we find that these are much
more common than errors in pure acks.

An interesting question is whethampanaly ever falsely identified TCP checksum errors
because a packet filter recorded a corrupted copy of a packet (while the receiving TCP re-
ceived an uncorrupted copy). However, with corrupted packets removed from the analysis,
tcpanaly  still found that the receiving TCP behaved as expected, indicating that the packets
were indeed corrupted and ignored by the TCP.

4. Truncated packets. These are packets that, according to the IP header, have a length of
bytes, but in fact, as delivered by the local link, had a length of énty n bytes. There were
4 instances inV7, 348 inN5. The latter involved 8 different receiving hosts.

5. lllegal TCP header length. This is a TCP header length field that indicates a length less than
the allowed minimum of 20 bytes. It indicates a corrupted packet. We observed only two
instances, both in,.

6. IP fragments. We observed 5 instances\in (none in A7) of a packet arriving with an

IP header indicating it was the beginning of a fragment. (The packet filter pattern we used
precluded capture of any fragment portions other than the initial fragment.) Upon inspection,
however, all of these were not actually bona fide IP fragments, but instead a repeated pattern
of packet corruption: the packet was enlarged in flight from carrying to 512 bytes of data
to purportedly carrying either 980 bytes or 1460 bytes. Both of the latter are popular MTU
values § 9.2.2). Their presence suggests a SLIP compression error, as discussed in more
detail in§ 13.3.

It is important fortcpanaly to detect corrupted packets, because they are discarded by
the receiving TCP rather than processed by itcphinaly misses such a corruption, then it can
erroneously infer that the TCP failed to act when it should have. Thus, we believe the effort entailed
in detecting the sometimes quite rare errors reported above is well worth while, especially because
a priori we have no solid reason for assuming they are indeed rare.

11.3 Sender analysis

In this section we discuss hatspanaly analyzes a TCP implementatiorsenderbe-
havior: that is, the details of how the TCP reliably transmits data to the other endpoint. The sender
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behavior includes the TCPtangestiorbehavior, too: how the TCP responds to signals of network
stress. Proper congestion behavip©(2.6) is crucial to assure the network's stability. The next
main section { 11.4) then discusses haspanaly analyzeseceiverbehavior: when and how a

TCP implementation chooses to acknowledge the data it receives. In general a TCP both sends and
receives datacpanaly , however, only accurately analyzes unidirectional TCP transfers. Extend-
ing it to cope with bidirectional transfers would not be a major undertaking, but was not needed for
our study and so was left for future work.

11.3.1 Data liberations

To accurately deduce the sender behavior of a TCP from a record of its traffic requires a
packet trace captured from a vantage pdirit@.4) at or near the TCP. If the vantage point is distant
from the sender (especially at the receivecphanaly has no reliable means of distinguishing
between measurement drops, anomalous TCP behavior, and true network drops. It also cannot
distinguish lengthy latencies from the vantage point to the sending TCP's location, and a TCP that
is simply slow to respond to the acknowledgements it receives.

As discussed ir§ 10.4, even a vantage point quite close to the sender still can result in
timing ambiguities. We accommodate this difficulty by introducing the notion of lifz¢eations
Whenever an acknowledgement arriviepanaly  determines how it updates the offered window
and the congestion window 0.2.2). If the new window values permit the TCP to send another
packet(s)tcpanaly then notes which packets it should send. We term each such newly-allowed
data packet a “liberation.”

By noting the time at which new acks created liberatianganaly can keep a list of
all pending liberations and, when the TCP finally does send more data packets, determine their
corresponding liberations. The difference in time between when the data packet was sent and when
it was liberated then defines tinesponse timef the TCP for that ack. Unusually large response
times often indicate thatpanaly has an incomplete understanding of the TCP's behavior, and
that the delay was really because the purported “liberating” ack did not in fact liberate the data
finally sent. It flags such instances so they can be inspected manually to determine the origins of the
apparently imperfect behavior.

Sometimegcpanaly  will observe a packet being sent that has no corresponding liber-
ation. We term this a “window violation,” because it indicates that the TCP exceeded either the
congestion window or the offered window. In principtepanaly  should never observe a window
violation if it correctly understands the operation of the sending TCP. Violations can still occur, how-
ever, if the trace suffers from measurement drops, or if the understanding of the TCP is incomplete
or inaccurate.

tcpanaly can use statistics of response times (minimum value, mean value) to compare
how closely different candidate TCP implementations match a particular trace. If a candidate im-
plementation is indeed correct, then its response times will usually be quite small. If the candidate
is incorrect, then the liberationspanaly computes for the implementation will not correspond to
the times at which packets were actually liberated. The difference leads to either increased response
times or window violations. Thus, depending on the relative response times and presence or lack of
window violations,tcpanaly  sorts candidate implementations into those that are close fits, those
that are imperfect fits, and those that are clearly incorrect fits (for example, if it observes window
violations). These last can also occur due to measurement drops, though, in thatpeasty
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usually rejects all of the candidate implementations.

The process of coding intopanaly a new TCP implementation likewise relies on min-
imizing response time statistics and eliminating window violations. For example, we might begin
by deriving a C++ class to encapsulate the new implementdtiarterms of differences from the
generic Reno class. We then rtapanaly  against a trace of's sender behavior. tEpanaly
flags a window violation, we manually inspect the trace at the location of the violation (usually using
a sequence plog 9.2.4) and attempt to determine a rule for hbwiffers from Reno at that point.

Once all window violations have been eliminated, we then turn to the response time statistics. If
the maximum response time is quite large, it usually indicates a congestion window that has opened
up more slowly than expected, or a failure to take advantage of fast retransmit. Again, a sequence
plot greatly aids in diagnosing the behavior. After identifying and codifyifggbehavior, we test

to assure that this has indeed lowered the response time. If so, we proceed to the next instance of a
large response time, or the next trace & behavior. If the new TCP is close to one of the existing
ones, this is a fairly quick process.

In addition to summarizing the amount of data newly allowed and when it became lib-
erated, liberations include a set of zero or more attributes that describechamaly  should
interpret a failure of the TCP to promptly use the liberation:

Blameless due to SWS (Silly Window Syndrome) avoidanc& CPs are supposed to implement
the SWS avoidance algorithm described in [CI82, St94], which in some cases prevents them
from sending data that they otherwise could.

This attribute indicates that the TCP should not be blamed for failing to utilize the liberation,
since the TCP's state after receiving the ack that created the liberation corresponds to one in
which it should not send due to SWS avoidance.

Blameless due to PSHWhen a TCP is sending data and has temporarily exhausted the available
data, then the TCP marks the last packet it sends with the PSH (“*push”) flag, informing the
receiving TCP that it should not wait for any further data since none will be forthcoming for
a while. Any ack received after a PSH packet was sent is marked as blameless-due-to-PSH,
since the TCP might still not have any fresh data to send, and hence could reasonably ignore
the opportunity created by the ack to send additional data.

Blameless due to no more datacpanaly has looked ahead and the sender will never have any
more data to send, so the liberation can be safely ignored. This attribute is separate from the
one above because TCPs do not always set PSH when all of the data for a connection has
been sent.

Should not be missedIf true, thentcpanaly should specifically complain if the TCP fails to
respond to the ack. An example is for the third duplicate ack that, for many TCP implementa-
tions, triggers a “fast retransmission” sequeric®.2.7). For those implementations, the fast
retransmission shoulalwaysoccur.

These attributes guidepanaly in correctly assessing the sending TCP's response times. For
“blameless” liberations, if the TCP's apparent response time is excessive, it is ignored.

There are many additional, minor detailst¢épanaly 's accurate management of libera-
tions. We omit further discussion here in the interest of brevity. They are documented in the C++
code.
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11.3.2 Inferring sender windows

tcpanaly sometimes lacks critical information that affects the sending TCP's behavior.
In this and the next two sections we discuss how it infers such information based on testing the
directly-available information for self-consistency.

In § 11.1 above we discussed the problem of determining whether the sending TCP has an
unstated “sender window,” that is, a fixed limit on how many packets it can have in flight separate
from its congestion window and the offered window9.2.2). In practice all TCPs have a sender
window, namely the amount of buffer space they can commit for holding previously sent data until it
is acknowledged. The key question, though, is whether this limit is ever smaller than the congestion
window and the offered window. If so, then it is reasonable for the TCP to not send data even though
from recent liberations it looks like it could. However, there is no obvious sign in a packet trace
what the TCP's actual sender window is.

tcpanaly  infers whether a sender window was in effect by calculating the maximum
amount of data the connection ever had in flight. Then, during its second pass over the trace, if at
some point the TCP's congestion window and the offered window would have allowed it to have
sent a full segment(9.2.2) more than this amount, but the TCP failed to do so, then the failure
to send additional data was either due to a sender window, or to insufficient understanding of the
TCP! One clue sometimes present that the limitation was indeed a sender window is that often the
sender window is the same as the offered window advertised IpetitingT CP in the data packets
it transmits to the receivercpanaly can still make mistakes, however, particularly when it fails
to realize that the reason the TCP did not transmit more data is not because of a sender window, but
because of the arrival of a source quenghl.3.3).

11.3.3 Inferring source quenches

Unfortunately, the filter pattern we used to collect the traces in our study was limited to
exactly the TCP packets used for each TCP transfer. This limit was imposed for security reasons,
to guarantee that the packet filter making the trace could not be used (either accidentally, or mali-
ciously, by a cracker) to spy on other network traffic using the same link. Usually, the TCP packets
fully suffice for understanding the resulting TCP behavior. One exception, however, is if some el-
ement of the Internet infrastructure sends an Internet Control Message Protocol (ICMP; [Po81b])
message to the sending TCP instructing it to slow down. This message is called a “source quench,”
and its packet format does not match the filter pattern used for our measurement, so our traces do
not include any source quench ICMP messages.

TCP implementations vary on how they respond to source quench messages. In general,
the TCP is supposed to diminish its sending rate. BSD-derived TCPs do so by entering a “slow start”
phase € 9.2.4). Figure 11.1 shows an example of this happening. AtTime11.2 the congestion
window is five packets, so the ack &t = 11.25, which advanced the window by two packets,
should have led to two additional packets being sent. None were, however. About 200 msec later
another ack arrives and advances the window another two packets, yet only one packet is sent, as
though the window were now only three packets. This would indeed be the case if a source quench
had arrived betweei = 11.2 andT = 11.25, setting the window to 1 packet. Due to slow start,
the first ack T = 11.25) would then have advanced the window to 2 packets, not enough to send

LA particularly easy error to make is to overlook the possibility that the TCP failed to send due to SWS avoidance.
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Figure 11.1: Sequence plot showing effects of unobserved source quench

any new data, and the second ack would have advanced it to three packets. Similarly, the ack around
T = 11.6 advances the window to 4 packets, as can be seen in the plot.

Solaris also enters slow start, but in addition it cagghreshoy a factor of two. Linux 1.0
diminishes the congestion window by one full segment (MSS).

tcpanaly infers the presence of a source quench as follows. Any time it detects a large
lull between when a liberation is created and when the resulting packet was actually sent, it looks
at the series of packets between the ack creating the liberation and the data packet ostensibly cor-
responding to the liberation, as well as the packets shortly after. If the whole series is consistent
with slow start having begun (for no discernable reason) sometime between the ack and the data
packet, then the trace is consistent with an unseen source quench. (This analysis does not work for
Linux 1.0, since it does not enter slow start. Consequepignaly fails to infer source quenches
for Linux 1.0.)

Source quenches are quite rare—they have been depredai@®.8.3 of [Ba95]),
since generating extra network traffic during a time of heavy load violates fundamental stability
principles—but they do happen. I, tcpanaly inferred a total of 26 source quenches in 20 dif-
ferent traces. Almost all of these includbdl as sender (one time as receiver), suggesting that a
router near it still generates source quenches when stressed. Likepésaly inferred 65 source
guenches in 64 different, traces, almost all of which involvegbnnix or austr2 . Theconnix
source quenches are quite striking in their regularity: the time they arrived after the beginning of
the connection was always between 500 msec and 1 sec, with a median and mean of 750 msec. The
connections further exhibit a strikingly regular pattern of thenix TCP opening its congestion
window to about 2 bytes just before the source quench is sent, suggesting that it is single-handedly
stressing a particular nearby router.

We note that often the source quenches inferredcbgnaly are almost immediately
followed by retransmissions, indicating that the router sending them is indeed almost overwhelmed.
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We can see this phenomenon at the end of Figure 11.1. We also notepthratly 's analysis

of possible source quenches is only heuristic. In particular, if a source quench is followed by a
retransmission timeout or a second source quench, tdpanaly ~ will not find an exact match

to a slow-start sequence following the first source quench, and does not infer that a source quench
occurred.

11.3.4 Inferring initial ssthresh

The final inference done hbigpanaly is determining whether the sending TCP has an
initial limit on ssthresh Recall from§ 9.2.6 that the TCP state varialdsthreshdetermines when
the TCP should switch from “slow start,” in which the congestion window begins at only 1 packet
but rapidly expands, to “congestion avoidance,” in which the window increases less quickly.

Usually, when a new TCP connection begins,s$shreshvariable is initialized to the
equivalent of “infinity,” allowing it to rapidly probe for the presence of arbitrarily high available
bandwidth. (Exceptions are Solaris, which initializsthresho 8 packets, and Linux, which sets
it to a single packet.) Sometimes, however, the TCP implementation first inspecistéscache
for information about previous connections to the same remote host. These implementations then
initialize ssthrestbased on the congestion conditions previously encountered.

tcpanaly needs to be able to detect when the inisisthreshis lower than normal, be-
cause otherwise it will erroneously conclude that the sending TCP is very slow in responding to the
acks that would normally—due to slow start—have opened up the congestion window beyond the
hidden initialssthresHimit. It does so in a fashion similar to inferring source quencliekl(3.3).
Any time the TCP appears to take too long to respond to a liberation, if the TCP has not already
undergone a retransmission (which would have altasttireshanyway) thentcpanaly  looks
ahead to see whether the series of packets beyond the point of the apparent Iull is consistent with
congestion avoidance rather than slow start. If so, it infers that the connection had an atypical initial
value forssthresh

It turns out that only the experimental Vs TCPs exhibit non-default initiassthresh
values? Other TCPs may in the future exhibit different initedthrests, too, as a recent proposal
for improving TCP's start-up behavior includes setting the in#&threshbased on measurements
of the connection's first few packets [H096].

11.4 Receiver analysis

In this section we discuss hawpanaly analyzes a TCP implementationeeiverbe-
havior, namely when and how the implementation chooses to acknowledge the data it receives.
11.4.1 Ack obligations

Similar to the notion of data liberation§ (1.3.1), when analyzing receiver behavior
tcpanaly addresses vantage point probler§slQ.4) by keeping track of a list of pending ack

2The HP/UX implementations appeared to, also, but so rarely that we cannot determine whether a different, not yet
determined mechanism is leading to the early onset of congestion avoidance.
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obligations Whenever a TCP receives data, it incurs some sort of obligation to generate an ack-
nowledgement in response to that data. The obligation mayptenal or mandatory as discussed
below.

tcpanaly has a default set of rules for the sorts of obligations created by different types
of packets. It then includes additional rules for specific implementations that do not follow the
default set, as discussedri1.6. In our discussion of different types of ack obligations below, we
also detaikcpanaly 's corresponding default rules.

Optional ack obligations

An optionalack obligation refers to data that the TCP may choose to acknowledge but can
also wait before acknowledging. This occurs when new data arrives that is in sequence. The TCP
standard states that a TCP may refrain from acknowledging such data in the hopes that additional
data may arrive and the acknowledgements combined, but for no longer than 50 mMs&8.Q
of [Br89]). Furthermore, a correct TCP implementation should always generate at least one ack-
nowledgement for every two packet's worth of new data receivadknowledgement strategy is
further discussed in [CI82].

tcpanaly considers the arrival of any new, in-sequence data as creating an optional ack
obligation, even if more than one such packet has arrived and not yet been ack'd. When an ack-
nowledgement is finally generated for the new data, we then inspect the number of packets acknow-
ledged to see whether the TCP has heeded the suggested limit of one ack for every two packets.
tcpanaly  reports instances in which the limit is violated, but considers this different than a failure
to meet anandatoryack obligation, discussed in the next section.

Mandatory ack obligations

A mandatoryack obligation occurs when a packet arrives to which the TCP standard re-
quires the receiving TCP to respond with an acknowledgement. In the original TCP specification,
the receipt of a packet containing already-acknowledged data mandated that a new acknowledge-
ment be sent, since the unnecessary retransmission indicates that the sender may be confused as to
what data the receiver has successfully received. This was clarified.th2.21 of [Br89] to also
optionally include the receipt of packets whose data cannot yet be acknowledged due to a sequence
“hole” below the packet's sequence, in order to facilitate “fast retransmissjcdh2 (7).

Consequentlyfcpanaly  considers the arrival of any out-of-sequence data as creating
a mandatory ack obligation. (The mandatory obligation is not to ack the out-of-sequence data, but
instead to generate a cumulative ack for all in-sequence data received, since TCP acknowledgements
always reflect the extent of cumulative, in-sequence data received,P2rl.) tcpanaly keeps
track of statistics concerning how often and how quickly an implementation responds to mandatory
obligations separately from those for optional obligations.

Gratuitous acks

If tcpanaly observes an ack being sent for which there was no obligation, and which
does not change the offered window or terminate the connection, then it flags thegrakugieus

3¢ 4.2.3.2 of [Brg9] expresses this as “SHOULD,” whii&.2.5 notes it as “MUST.”
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Observing gratuitous acks plays a role analogous to observing window violations when analyzing
a sender's behavior: they can indicate confusion regardiragaly 's interpretation of the TCP's
behavior, or measurement errors in the packet trace.

11.4.2 Inferring checksum errors

As noted in§ 11.2,tcpanaly  often cannot verify a packet's TCP checksum because
the packet filter only records the beginning of the packet and not its entire contents. Nevertheless,
checksum failures do indeed occur, and when theteplanaly needs to deduce their presence to
avoid misattributing the receiving TCP's behavior to something else.

There are several situations in whiglpanaly infers the possibility that a packet re-
ceived earlier had a checksum error (and thus the subsequent ack obligations derived from the trace
do not correctly reflect the situation as perceived by the receiving TCP):

1. If a retransmission is received for data already apparently received by the TCP, and which
should have previously been ack'd by the TCP but was not, and if all sequentially earlier data
has been ack'd;

2. ifinstead of acking increasing sequence numbers in response to a series of optional ack obli-
gations, the TCP generates duplicate acks as each new packet arrives, until the retransmission
called for by the duplicate acks arrives; or,

3. if an apparently unnecessary retransmitted packet actually results in an advance of the ack-
nowledged sequence number, indicating that the retransmission did indeed fill a sequence
hole. (This item is slightly different from the first item, because here we are considering data
that originally arrived above-sequence, and so could not be acknowledged directly at that
time.)

More precisely, whatcpanaly really infers is that the TCP acted as though it ignored an arriving
packet. We then assume that the packet was ignored because it failed its checksum test. We return
to this point in more detail later.

tcpanaly  doesnot attempt to infer checksum errors in traces recorded by packet filters
that it has determined either dropp&dLQ.3.1) or resequencegl 10.3.6) packets, since it is to diffi-
cult with these traces to disambiguate between a genuine checksum failure and seemingly confusing
TCP behavior because the trace is inaccurate.

Figure 11.2 shows a sequence plot reflecting two checksum errors. The plot comes from
a trace recorded at the receiving end of a connection. Consequently, most of the points showing
acknowledgements lie directly on top of the data packets being acknowledged and thus do not show
up visually. (This is fine for the purposes of this example.) Up through fime 20.0 the data
all arrives in sequence, but starting at tiffie= 19.5 the receiving TCP generates duplicate acks
for sequence 74,241 rather than advancing the acknowledgements. This continues until data packet
74,241 is retransmitted &t = 20.2. The retransmission leads to the TCP immediately acking all
of the outstanding data, fully consistent with a single checksum error occurring at the 74,241 data
packet. Note that, after the retransmission, the pattern repeats &t t#0.5. Duplicate acks for
sequence 78,849 indicate that the 79,361 packet was likewise discarded due to a checksum error.

Figure 11.3 shows a sequence plot of a considerably different instance of checksum errors.
Instead of as in Figure 11.2, where two isolated packets were corrupted, here an entire burst of
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9 packets were all discarded by the receiving TCP. We can tell that the TCP did not accept the nine
packets from 26,281 to 37,961 At= 3.7to T = 5.2 sec, because as the data is retransmitted the
TCP only acknowledges the newly retransmitted packets—they are not shown filling any sequence
“holes” as would be the case if some of the 9 packets had been successfully received.

We further discuss checksum bursts such as this one, as well as detailing the prevalence of
checksum errors in our datasetsgibh3.3. As noted above, whijpanaly really infers argackets
ignored by the receivewhich we therassumeavere ignored due to checksum errors. It is possible
that the packets were ignored for a different reason, such as the kernel lacking sufficient buffers to
keep them until the receiving TCP could process thens. 18.3 we investigate this possibility and
find that almost all of the errors appear indeed due to packet corruption.

11.5 Sender behavior of different TCP implementations

In this section we look at the variations in how the different TCP implementations listed
in Table XV act when sending data. Our findings in this section and the next are almost all based
on the modifications we had to makettpanaly in order for it to successfully match the traces
of the TCP's behavior. A few other behaviors were discovered by examining source code for the
implementations, which we had for Linux 1.0, Solaris 2.5; ¥ad V3, as well as the invaluable
source code analysis of Net/3 in [WS95]. In addition§ .7 we present brief findings of behavior
observed for three other implementations; these were determined by manually studying sequence
plots, ascpanaly does not have the behavior of these implementations coded into it.

TCP behavior is very complex, and we do not attempt to exhaustively examine it. Our
main interest is iperformanceandcongestion behaviordoes the TCP implementation use the net-
work as effectively as it can, and does it correctly adapt to congestion by decreasing its transmission
rate, as is required for global Internet stability? There is a natural tension between these two goals,
and a great deal of research has gone into tuning TCP so it balances high performance with stable
behavior in the presence of congestion. One of the basic questions we would like to answer in this
section is how successfully this research has in fact been incorporated into TCP implementations
deployed in the Internet. The answer turns out to be “quite mixed.”

We proceed as follows. First, we give an overview of previous work in analyzing the
behavior of TCP implementations. The work focuses almost entirely on sender behavior. Next,
we present theenderbehavior of the implementations in our study, beginning with two “generic”
implementations, “Tahoe” and “Reno,” from which almost all of the implementations derive their
behavior. We then discuss each of the different implementations in Table XV. After analyzing
sending behavior, we turn iy 11.6 toreceiver behavior, namely the policy by which the TCP
sends acks. Finally, we look i611.7 at the behavior of some additional TCP implementations:
Windows 95, NT, and Trumpet/Winsock. This last investigation was motivated by our finding that
the independently written TCP implementations in our study (Linux and Solaris) suffered from
serious congestion and performance problems. We were interested to see whether other non-Reno-
derived TCP implementations likewise have these sorts of problems. The answer turns out to be:
yes!
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11.5.1 Previous studies of TCP implementations

Several researchers have previously studied and characterized the behavior of TCP imple-
mentations, using different techniques from ours.

Comer and Lin

Comer and Lin studied TCP behavior using a technique teractide probing[CL94].
Active probing consists of treating a TCP implementation as a black box and observing how it
reacts to external stimuli, such as a loss of connectivity to the other endpoint, or a failure by the
other endpoint to consume data sent by the TCP under study. They examined five implementa-
tions, IRIX 5.1.1, HP-UX 9.0, SunOS 4.0.3, SunOS 4.1.4, and Solaris 2.1, to determine their initial
retransmission timeout values, “keep-alive” strategies, and zero-window probing techniques. The
authors' emphasis was on correctness in terms of the TCP standards, and they found several imple-
mentation flaws.

Brakmo and Peterson

Brakmo and Peterson analyzed performance problems they found in TCP Lite, a widely-
used successor to TCP Reno (and the basis for some of the implementations in our study) [BP95b].
TCP Lite is also known as “Net/3,” which is the term we will use for consistency with other studies
we discuss.

Their approach was to simulate Net/3's behavior using a simulator based oikéneel
[HP91]. Thex-kernel is highly configurable, so that the simulations actually directly executed the
Net/3 code, an important consideration for assuring accuracy. They found:

1. An error in the “header prediction” code. Net/3 uses this code to make an early decision
whether an incoming packet is what would have normally been expected: either an in-
sequence, non-retransmitted data packet, or an ack for new data that does not change the
size of the offered window [CJRS89]. If the packet matches the expectation, then it can
be processed succinctly; for example, without all the computations necessary to update the
congestion window.

The error they found was that the code considered an incoming acknowledgement as expected
even if the congestion window had been inflated due to “fast recove8:/2(7). Thus, if after

fast recovery the acknowledgements all passed the header prediction test, then the window
was never deflated.

Fixing this problem is a one-line addition to the prediction code.

2. Inaccuracies computing the retransmission timeout (RTO) due to details in some of the integer
arithmetic used to approximate the true real-numbered calculations. The authors proposed
altering the scaling used in the integer arithmetic to remedy the inaccuracy.

3. Confusion between whether the “maximum segment size” variable used to decide when to
send new acknowledgements and how to update the congestion window should include the
size of TCP header options or not.



157

4. Very bursty behavior when the offered window advances a large amount (an incoming ack for
a large amount of new data). When this occurs, Net/3 (and, in our experience, all other TCPs)
immediately sends as many packets as the new window allows. The authors include a small
coding addition that would reduce such bursts to 2 or 3 packets at a time.

5. A “fencepost” error in determining whether the congestion window was inflated due to fast
recovery, and later needs deflating. The fix is replacingtast with a> test.

Of these problems, we found that a number of the implementations in our study exhibited
all of them, except we did not examine the RTO's used by the implementations and thus did not
have an opportunity to observe the second problem.

Stevens

In [St96], Stevens devotes a chapter to an analysis of the behavior of a large number of
TCP connections made to a World Wide Web server running Net/3 TCP. The analysis was based on
a 24 houncpdump packet trace of 147,103 attempts by remote sites to connect to the Web server.
He characterized the range of options offered by the remote TCPs, finding tremendous variation
(including many obviously incorrect values); the rate at which connection attempts and re-attempts
arrived; the variation in round trip time between the server and the remote clients; and the pending-
connection load on the server. In addition, he analyzed three Net/3 implementation bugs, one in
which two different TCP connection states become confused (“SYN received” and “performing
keep-alive probe”), one in which the TCP falils to time out zero window probes (and thus over time
devotes more and more resources to zero window probes for connections that have permanently lost
connectivity), and one in which the TCP can skip the first cycle of “slow start” if it happens to have
data ready to send upon connection establishment.

He further found that almost 10% of all SYN packets were retransmitted; some remote
TCPs sent “storms” of up to 30 SYNs/sec, all requesting the same connection; and some remote
TCPs did not correctly back off their connection-establishment retry timer, or reset it after 4 at-
tempts.

Dawson, Jahanian and Mitton

In recent work, Dawson, Jahanian and Mitton studied six TCP implementations using a
“software fault injection” tool they developed [DJM97]. The implementations were: SunOS 4.1.3,
AIX 3.2.3, NeXT (Mach 2.5), 0OS/2, Windows 95, and Solaris 2.3. The first and last were also
present in our study; the remainder were not.

Their basic approach is a refinement of Comer and Lin's “active probind’1(5.1).

They use ther-kernel to interpose a general purpose packet manipulation program between the
TCP implementation and the actual network, so they can arbitrarily alter, delay, reorder, replicate,
or discard any packets the TCP sends or receives.

The main focus was on timer management. They found that retransmission sequences
vary a great deal; that some TCPs do not correctly terminate the connection with a RST packet if
the maximum retransmission count is reached; and that Solaris 2.3 uses a much lower bound for its
initial RTO, around 300 msec, than the other implementations, and also takes much longer to adapt
the RTO to higher, measured RTTs. We further discuss both of these latter probleiis. 5110.
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They also studied keep-alive behavior. “Keep-alives” are an optional TCP mechanism for
probing idle connections to ensure that the network path still provides connectivity between the two
endpoints. The TCP standard specifies that, if a TCP supports keep-alives, then, by default, the idle
interval must be at least two hours before the TCP begins probing the path. However, the authors of
[DIM97] found that OS/2 begins keep-alive after only 800 sec. In addition, Windows 95 only makes
four keep-alive probes, all sent one second apart. If none of these elicit replies, then it abandons
the connection. This latter behavior will make Windows 95 connections quite brittle in the face of
mid-sized connectivity outages.

Finally, they found that Solaris 2.5.1 (not otherwise part of their study) incorrectly imple-
ments Karn's algorithm, which is used to disambiguate round-trip time measurements [KP87].

11.5.2 Generic Tahoe behavior

The goal of our TCP behavior analysis is to delve considerably deeper into the perfor-
mance and congestion behavior of the different TCPs in our study than done previously. We begin
by discussing the generic TCP “Tahoe” implementation td@tnaly  uses as a building block for
describing the behavior of all of the TCP implementations except Linux 1.0.

Our Tahoe implementation reflects the behavior of the Tahoe version of BSD TCP, re-
leased in 1988 [St96, p.27]. It includs®w start(§ 9.2.4),congestion avoidandg 9.2.6), andast
retransmissiorn(§ 9.2.7), but nofast recovery(§ 9.2.7). It updates the congestion window upon the
receipt of any ack for new data. It setsthresho half the effective window upon a retransmission,
but for fast-retransmit it rounds the result down to a multiple of the Maximum Segment Size (MSS;
§ 9.2.2), while for a timeout it does not. No doubt this inconsistency is due to the fast retransmit
code having been added later than the original timeout code. In both sai@gshis never set
lower than2-MSS.

Tahoe updates the congestion windomndusing congestion avoidanceciivndis strictly
larger tharssthresh The increase is:

MSS?
AW = {CwndJ : (11.1)

without any additional constant term (Egqn 11.2 below).

11.5.3 Generic Reno behavior

The “Reno” version of BSD TCP was released in 1990. Our generic Reno implementation
does not attempt to precisely describe that release, but instead to provide a common base from which
we can express as variants the numerous Reno-derived implementations in our study. Reno differs
from Tahoe as follows:

1. Itimplementdast recovery(§ 9.2.7), in which following a fast retransmit it inflates the con-
gestion windowcwnd and will send additional packets if enough additional duplicate acks
arrive.

2. It consequently suffers from the “header prediction” and “fencepost” errors when deflating
the window, as previously described in [BP95p1(1.5.1).
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3. It roundsssthreshdown to a multiple of MSS for timeout retransmissions as well as fast-
retransmits.

4. It includes aradditive constantvhen increasing the window during congestion avoidance.
That is, instead of using Tahoe's increase as given in Eqn 11.1, it uses:

cwnd 8 (11.2)

MSS MSS
v - US| M)
The extra term MSS/8 leads to a super-linear increase of the congestion window during con-
gestion avoidance. Subsequent to its addition to Reno, this extra term has come to be viewed

as too aggressive ([BP95b], credited to S. Floyd in footnote 6), but its presence is widespread.

11.5.4 BSDITCP

We had several BSDI 1.1 and 2.0 sites in our study, as well as one site running an alpha
release of 2.1, which we term 21

BSDI 1.1 appears identical to our generic Reno implementation. We observed two
changes with BSDI 2.0. The first is that it omits the extra congestion avoidance increment (i.e.,
it uses Eqn 11.1 rather than Egn 11.2). The second is that it computes the MSS governing how
much data it should send in each TCP/IP packet in a slightly complicated fashion, as follows.

When initiating a connection, BSDI 2.0 includes the “window scaling” and “timestamp”
options in its initial SYN packet. If the remote peer agrees to these options in its SYN-ack, then
each subsequent packet sent by BSDI 2.0 includes an accompanying timestamp in its header. With
padding, this option requires an additional 12 bytes of space in the header. If, for example, the MSS
is 512 bytes, as is often the case, then the TCP should send 512 bytes of data in each packet along
with 52 bytes of header, the usual 40 bytes of TCP/IP header plus the timestamp option. Instead,
it uses an MSS of 500 bytes. The fundamental problenthat the implementation is overloading
the notion of “MSS,” trying to make it serve as both the maximum amouwlatd to send to the
receiver in one packet, and also as the largest total TCP/IP packet size that can be sent along the
Internet path without incurring fragmentation. Yet, the presence of options means the relationship
between these two is more complex than simply adding in a constant header size.

To further complicate matters, BSDI 2.0 uses the unadjusted MSS (i.e., its value before
deducting 12 bytes for options) in its congestion window computations.

None of these MSS fine points has much impact at all on BSDI 2.0's performance or
congestion behavior. But they do subtly alter the conditions under which the TCP will send packets,
and thus solid analysis of the TCP's behavior must take them into account.

BSDI 2.1x behaves the same as BSDI 2.0 except for two differences. The first is that it
uses the adjusted MSS for its congestion window computations (the MSS still has 12 bytes deducted
for the header options). The second is that, if the remote TCP does not include an MSS option in its
SYN-ack reply to the BSDI TCP's initial SYN packet, then the congestion windovesthdeshare
initialized to a huge valueinstead of MSS bytes. This bug occurs because of an assumption in the
Net/3 code that SYN-acks will always include MSS options and that therefore receiving a SYN-ack
is the proper time to initializewndandssthresh

“Pointed out to me by Matt Mathis.
SSpecifically:2%° - 21, See [WS95, p.835].
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Figure 11.4: Sequence plot showing the Net/3 uninitializekd bug

Figure 11.4 dramatically illustrates the potential burstiness created by this bug. Here,
when the initial ack arrives offering a window of 16,384 bytes (and with no MSS option), the BSDI
TCP instantly sends all the full-sized (536 bytes, in this case) packets that fit within the window, a
total of 30 packets. The next ack (which was sent because it updates the advertised window) offers
a larger window (cf§ 9.3), and again the TCP floods the network with packets, taking advantage
of the increased window. A third ack arrives but does not advance the window, so nothing further is

sent.
Ironically, even the first packet of the storm was lost (as was its retransmission), as can

be seen by the lack of progress in the acknowledgements. All told, 14 of the 61 packets sent in the
first two spikes were lost (any other connections sharing the path between the two TCPs also surely

suffered).
Fortunately, it is relatively rare that this bug manifests itself so dramatically. It requires

interaction between the BSDI TCP and a remote TCP that both does not send MSS options in its
SYN-ack, and offers a large window. TCPs that do not offer MSS options tend to be of quite old

vintage, and these tend to offer small receiver windows.
The bug does not always manifest itself under the conditions given above. We suspect

that the times it does not are when the BSDI TCP finds initrahd andssthreshvalues in its route

cache, and thus begins the new connection with tamer values.
This bug nicely illustrates the fundamental tension between TCP performance and con-

gestion behavior. Fixing it lessens the TCP's performance (blasting out 30 packets at a time can
work extremely well in making sure one utilizes all available bandwidth), but also makes the TCP

much more “congestion friendly.”
Finally, we note that the IRIX 5.2 TCP implementation also exhibits this bug, as does

Net/3. Most likely both BSDI 2.& and IRIX 5.2 “inherited” the bug as they incorporated enhance-

ments and changes from Net/3.
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Figure 11.5: Sequence plot showing the HP/UX congestion window advance with duplicate acks

11.5.5 Digital OSF/1 TCP

Digital's OSF/1 TCP implementation appears virtually identical to our generic Reno
implementation. The only difference we observed was that it does not always manifest the “header
prediction” bug § 11.5.1). We could not find a pattern to when it would and when it would not.
For analyzing a given tracégpanaly accommodates its inability to know whether the TCP will
exhibit the bug by looking ahead to determine whether in fact the TCP deflated the congestion
window.

We did not observe any differences between Digital OSF/1 versions 1.3a, 2.0, 3.0, and 3.2.

11.5.6 HP/UXTCP

HP/UX 9.05 TCP is very similar to our generic Reno implementation. The only dif-
ferences we observed were two behaviors that rarely have an opportunity to manifest themselves.
First, HP/UX 9.05 does not clear its “dup-ack” countgry(2.7) when a timeout occurs, so if it
receives additional duplicate acknowledgements after a timeout, these can lead to fast retransmit
or the sending of additional fast recovery packets. Second, such duplicate acks also advance the
congestion window, providing that the timeout was for a segment previously retransmitted using
fast retransmission.

We illustrate this latter behavior in Figure 11.5, since it is somewhat unusual. The stream
of acks along the bottom of the figure are all duplicates. The packet they call for has already been
retransmitted, but was dropped. The data packets sent afoend8.8 with sequence numbers near
55,000 are fast recovery packets, sent out by inflatingd Just beforél” = 19.0, the previously-
retransmitted packet times out and is retransmitted again. As more dups arrive (from an earlier huge
flight of packets), each liberates another retransmission via fast recovery. This is not ideal behavior:
the packets being retransmitted may all have already arrived at the receiver. The TCP should instead
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either send additionalewdata, as it was doing prior to the timeout (and which is the intent behind
fast recovery, thwarted by the timeout having resend), or simply wait one RTT to see what data
the peer has now received.

HP/UX 10.00 behaves identically to HP/UX 9.05 except it advances the congestion win-
dow (per Figure 11.5) for dup acks received after any timeout, not just one of a packet previously
transmitted using fast-retransmission; and it uses the original MSS it offered to its peer when com-
puting congestion window updates, rather than the final MSS negotiated during the connection
setup.

11.5.7 IRIXTCP

IRIX 4.0 appears identical to our generic Reno implementation except it does not manifest
the header prediction bug (1.5.1). IRIX 5.1 does, though not always, the same as Digital OSF/1
TCP § 11.5.5). IRIX 5.2 is identical to IRIX 5.1 except it also exhibits the uninitializadid bug
shown in Figure 11.4. IRIX 5.3 is identical to IRIX 5.2 except that, if the remote peer does not
include an MSS option in its SYN-ack, then IRIX 5.3 initializes the congestion window to the value
it offered, even if this is larger than the final MSS it used.

11.5.8 Linux TCP

The Linux 1.0 TCP implementation was written independently from any other. Conse-
quently, it is not surprising that it differs in many ways from the others in our study, including some
ways that are particularly significant.

The most significant is itbroken retransmission behavioFirst, often when it decides
to retransmit, it re-sends every unacknowledged packet in a single burst. Second, it decides to
retransmit much too early, leading it to retransmit packets for which acks are already heading back,
or, even worse, which are themselves still in flight towards the recéidacobson terms this sort
of behavior “the network equivalent of pouring gasoline on a fire” [Ja88], because it unnecessarily
consumes network resources precisely when they are scarce. Consequently, it cacdegdgtion
collapse in which the network load stays extremely high but throughput is reduced to close to zero
[Na84].

Figure 11.6 illustrates Linux 1.0's behavior. At ab@u 85 an acknowledgement arrives
advancing the window by three packets, which the TCP immediately sends.=A86, however,
two duplicate acks arrive, the first of which spurs the TCP to retransmit every packet it has in flight.
Shortly after, an ack arrives for sequence 77,825; this correctly liberates only new data, as does this
ack for 78,849 that follows momentarily. None of the new data arrives successfully—the network
is already clogged with the unnecessary retransmissions.

At T = 87.8, sequence 79,361 times out and is retransmitted. This happens again at
T = 90.6 (the timeout is not fully doubling as it backs off, though in other cases it doeg).-A092
dup acks for 78,849 arrive. These were sent within 400 msec of the ack receiled &6.4 but
took more than 5 seconds to arrive, indicating huge delays in the network. The TCP appears to

5The offered MSS can differ from the final MSS used because, if the remote peer does not include an MSS option,
then the TCP must use an MSS of nho more than 536 b§té2(2.6 of [Br89]).

"These retransmissions usually occur shortly after receiving an ack, suggesting that they are not timeout retransmis-
sions per se, but are stimulated instead by the arrival of the ack.
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Figure 11.6: Sequence plot showing broken Linux 1.0 retransmission behavior
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ignore their arrival, however (so would a Reno TCP), but when the twice-retransmitted data packet
is ack'd a little while later, again all data in flight is retransmitted, and again 1.3 sec later, and again
1.1 sec later. Worse, not only is all of this data being retransmitted at about 1 sec intervals: if we
blow up the activity (Figure 11.7), we see the packetsadge being retransmitted on much finer
time scales!

All told, this connection sent 317 packets, 117 of them retransmissions. 20% of the
packets were dropped by the network. Of the retransmitted packets that reached the other end,
60% were superfluous, since the data had already arrived safely in an earlier packet. How hard this
connection hammered others sharing the network path, we can only guess! But it is clear that, if
Linux 1.0 were ubiquitous, its retransmission behavior would bring the Internet to its knees.

The excessive retransmissions clearly follow shortly after the TCP receives an ack, so
tcpanaly models them as a type of “fast retransmission.” We have been unable to determine
exactly which incoming acks will trigger these retransmissions, though they appear to occur only
for duplicate acks or acks received during a retransmission sequence. Consedenthly
simply allows that either of these might potentially liberate the entire window for retransmission.

The Linux TCP maintainers are aware of this problem and report that it has since been
fixed.

Linux 1.0 differs from the other implementations in our study in several other ways:

1. It does not implement fast retransmission or fast recovery.

2. ltinitializesssthresho a single packet (MSS), which makes it slow to initially open its win-
dow. This behavior is beneficial from the perspective of network stability, as it means that
Linux 1.0 TCP connections begin in a fundamentally conservative fashion.

3. The Linux 1.0 code has logic in it to prevent more than 2,048 bytes from ever being in flight,
quite conservative behavior. However, a typenders it ineffective.

4. 1t does not roundsthrestdown to a multiple of MSS for any form of retransmission.
5. Its test for slow-start iswnd < ssthreshrather tharcwnd < ssthresh

6. In congestion avoidance, it counts the number of acks received, and, when they@axoded
divided by MSS, therwndis advanced by MSS and the counter reset to zero.

7. It has no minimum value on how far it can @agthresh

8. It acks every packet receive¢i11.6).

11.5.9 NetBSD TCP

As far as we could determine, NetBSD 1.0 TCP is identical to our generic Reno imple-
mentation.

8We have observed Linux 1.0 retransmitting a packet it sent less than 2 msec before. The first transmission was due
to a newly arrived ack advancing the window, and the second was part of a retransmission burst apparently triggered by
the receipt of the ack.

9The limit is specified a2048 when what is being tested against it is the numbeguauketsin flight.
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Figure 11.8: Sequence plot showing broken Solaris 2.3/2.4 retransmission behavior, RTT =
680 msec

11.5.10 Solaris TCP

Along with Linux, Solaris TCP is the other independent TCP implementation in our study.
tcpanaly  knows about two versions, 2.3 and 2.4, which differ only in minor ways.

Like Linux, the most striking feature of Solaris 2.3 and 2.4 TCP ifitken retransmis-
sion behavior Dawson et al. identified that Solaris uses an atypically low initial value of about
300 msec for its retransmission timeout (RTO). This value, plus difficulties the timer has with
adapting to higher RTTs, leads to the broken retransmission behavior. For a connection with a
longer RTT, the TCP is guaranteed to retransmit its first packet, whether needed or not. Such an
unnecessary retransmission would be only a minor problem if the timer then adapted to the RTT
and raised the RTO, but it fails to do so, leading to connections riddled with premature, unnecessary
retransmissions.

Figure 11.8 shows an example of the retransmission problem in action. The sestder is
in California, and the receiver isce, in the Netherlands. The round-trip time is about 680 msec,
above that of 200 msec for the initial Solaris retransmit timer (but not pathologically large). The
Solaris TCP sends almost as many retransmissions as new packeisdgtd packets whatsoever
were dropped! Each retransmission was completely unnecessary. Furthermore, so many retransmis-
sions are generated that it is difficult to find unambiguous RTT timings, in order to adapt the timer.
While the RTO does indeed double on multiple timeouts, it is restored to its erroneously small value
immediately upon an acknowledgement for a retransmitted packet, so it never has much opportunity
to adapt.

As the path's RTT increases, the problem only gets worse. Figure 11.9 shows a plot for
an N5 connection fromwvustl  to oce. The smallest RTT in the trace is about 2.6 sec, and it got
as high as 9.9 sec. The beginning of the connection is simply disastrous, with the first data packet
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Figure 11.9: Sequence plot showing broken Solaris 2.3/2.4 retransmission behavior, RTT = 2.6 sec

being retransmitted 5 times (the first retransmission occurs closely enough to the original packet
that it is hard to distinguish in the plot), the second data packet is retransmitted 6 times, the third
4 times, the fourth 4 times (not all shown), and so Nieneof the packets or their retransmissions

were dropped! All of the retransmissions were needless. Worse yet, because they were needless,
they elicited dup acks from the receiver, which eventually reached the level sufficient to trigger fast
retransmission(9.2.7), generatinfurther needless retransmissions!

The connection eventually ran smoother, as the timer managed to adapt, but was still
plagued with needless retransmissions as the RTT grew larger and the timer sometimes failed to
track it quickly enough.

Thus, Solaris TCP can effectively increase the load it presents to any high-latency Internet
path by a factor of two or even quite a bit more. Unfortunately, many of the most heavily loaded
Internet paths—those linking different continents via trans-oceanic or satellite links—have exactly
this property. It would be interesting to learn what proportion of the traffic on a very heavily utilized
link (such as the U.K.—U.S. trans-Atlantic cable) is due to completely unnecessary retransmissions.

The Solaris TCP maintainers are aware of this problem and have issued a patch to fix it.

Solaris TCP differs from the other implementations in our study in a number of additional
ways:

1. Itinitializesssthresho 8-MSS. From the perspective of network stability, this is nicely con-
servative, but from the perspective of performance, it impedes fast transfers unless they are
quite lengthy.

2. Sometimes when it receives an ack, it retransmits the packet just after the ack rather than the
packet newly liberated by the advance of the window. These retransmissions do not affect the
congestion window, nor do they alter the notion of what new data should be sent next time the
window advances. Figure 11.10 shows an exampld’ At 10.3, the Solaris TCP retransmits
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Figure 11.10: Solaris 2.4 retransmitting without cuttavgnd

sequence 37,125, and then just affer 10.5 it retransmits 38,577. Yet, when an ack arrives
for (the original transmission of) 38,577, we see that the congestion window was not reduced
by the retransmissions, but remains at 5 packets.

3. Its duplicate-ack counter survives timeouts, which can lead to a recently retransmitted-via-
timeout packet being retransmitted again via fast retransmission.

4. Although there is code in the implementation for fast recovery, it is only exercised under
rare circumstances. The problem is that the Solaris implementation is careful to advance the
congestion window only upon receiving an ack for new data (see next item). This means that
the dup acks that are supposed to keep inflating the window in order to liberate additional
packets do not actually increase the window, since they do not acknowledge any new data.
The rare circumstance in which the TCP can send a single fast recovery packet is if it has
already accumulated during congestion avoidance more “excess” bytes than are required to
advancecwndgiven its current value.

5. During congestion avoidance, the TCP keeps track of exactly how many bytes of data have
been acknowledged since the last advanaind Whenever this value exceedand cwnd
is increased by the MSS. (Like the Linux congestion avoidance increment strategy, this is
closer in spirit to the scheme outlined in [Ja88] than the Tahoe approach given by Eqn 11.1.)

6. Its test for whether it is in a slow-start phasewnd < ssthrestrather tharcwnd < ssthresh

7. Upon receiving an ICMP Source Quenghi (.3.3), it setssthreshio cwnd2 prior to entering
slow start.

8. When cuttingssthreshit does not round it down to a multiple of MSS.
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The only differences between Solaris 2.3 and 2.4 that we observed are in their acking

policies. Se¢ 11.6 for discussion.

11.5.11 SunOS TCP

We had many SunOS 4.1.3 and 4.1.4 sites in our study. We did not observe any differences

between the two releases.

1.

SunOS 4.1 appears to have been derived from BSD Tahoe, with the following differences:

If the MSS offered by the remote TCP peer is larger than that offered by the SunOS TCP,
then it uses the larger value to initializesnd though it still uses its own offered value for all
subsequentwndcalculations.

. Ifit receives a series of acknowledgements for the same sequence number, if any of the acks

is awindow recision(that is, advertises a smaller window than did the previously-received
acks), it simply ignores the ack. Other TCPs consider the window-recision ack as resetting
the duplicate ack counter, delaying the possible onset of fast retransmission.

We note that in our study the only window recisions we observed were due to packet reorder-
ing. No TCP ever originated an ack that rescinded a previously-offered window.

. It will only enter fast retransmission for a packet that was not previously retransmitted using

fast retransmission (circumstances under which this behavior manifests itself are rare).

. Upon retransmission, when cuttisgthresht does not round it down to a multiple of MSS,

regardless of the type of retransmission.

11.5.12 VJTCP

Two sites in our study ran experimental TCP implementations developed by Van

Jacobsonlbl  during A ran a version we term \(J(in A it ran SunOS), and in both/; and
N3 Ibli - ran a version we term \4J Though it differs from the numbering, Y the earlier of the
two versions. It behaves the same as our generic Reno implementation except:

1.

it uses an additive constant of 4 bytes when updatimgd during congestion avoidance, as
opposed to MSS/8 (Egn 11.2);

. it does not exhibit the “fencepost” error when deflating the windpd(5.1);

. it does not cussthreshif a timeout retransmission occurs during a fast retransmission se-

quence,

. it has a bug that leads to it always cuttisgthreshdown to two segments upon any other

timeout.

VJ; behaves like Vil except it does not exhibit the header-prediction Bu$X(.5.1) and

it uses Egn 11.1 to update the congestion window during congestion avoidance (no additive incre-
ment).
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11.6 Receiver behavior of different TCP implementations

In this section we examine variations in how the different implementations behave as re-
ceivers of data: the policies used to acknowledge newly arrived data and the effects of these on
performance and congestion. We begin with a discussion of how different implementations ac-
knowledge in-sequence data, the “normal” case of a connection proceeding smadthly.q).

We find a number of different “policies” for choosing exactly when to generate acknowledgements.
Some of these have surprisingly negative performance problems. We then look at how implementa-
tions acknowledge out-of-sequence data: packets coming above or below a sequericelh6l2)

Finally, after characterizing the generation of gratuitous agksl(6.3), we finish with an analysis

of response delaysnamely, how long it takes a TCP receiver to generate its acknowledgements
(§ 11.6.4). Variations in response times can introduce a significaise termfor senders that at-
tempt to measure round-trip times (RTTs) to high resolution. One of our goals is to assess the
viability of sender-only timing schemes.

11.6.1 Acking in-sequence data

When a TCP receives in-sequence data, it needs to eventually generate an acknowledge-
ment for the data, so the sender knows it has been successfully received and can release the resources
allocated for retaining the data in case it required retransmission. There is a basic tension between
acknowledging data quickly versus waiting to see if more in-sequence data arrives so that a single
ack can take care of acknowledging multiple data packefhe more acks the receiver generates,
the more network resources its feedback stream consumes; but also the more likely in the face of
packet loss that enough acks will reach the sender that it will not retransmit unnecessarily, and the
smoother the resulting stream of transmitted packets, since the window moves in numerous, small
increments rather than rare, large increments.

TCPs need to assure that they acknowledge data quickly enough that the sender does not
erroneously conclude a packet was lost and retransmit it. The TCP standard requires that acknowl-
edgements be delayed no more than 500 msec, and either recommends or requR2exs 4 and
§ 4.2.5 of [Br89]) that a TCP acknowledge upon receiving the equivalent of two full-sized packets,
that is,2-MSS bytes § 9.2.2).

As discussed if§ 11.4,tcpanaly  associates the acks generated by a TCP with the data
packet that prompted the TCP to send the ack, allowing determination of the acknowledgement
delay. It also classifies acks into three categories, those for less than two full-sized packets (“delayed
acks”), those for two full-sized packets (“normal acks”), and those for more than two full-sized
packets (“stretch acks”). We expect: delayed acks to incur considerable delay as the TCP waits
hoping for more data to acknowledge; normal acks to be commonplace in any connection with
significant data flow, and to take little time to generate; and stretch acks to be rare. We now treat
each in turn.

Delayed acks

In both /7 and N5, it was exceedingly rare to observe a delayed ack that took longer than
500 msec, on the order of one trace in 1,000.

190r to see if the ack can piggyback on a data packet or window update being sent back to the sender.
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All of the BSD- (i.e., Tahoe- and Reno-) derived implementations in Table XV use a
delayed-ack timer of 200 msec, meaning that, except for truly unusual conditions (presumably when
the host was very busy doing something else), they generate delayed acks within 200 msec of
receiving the corresponding packet. These delays are furthermore evenly distributed over the range
0 msec to 200 msec, a consequence of the implementations using a 200 msec “heartbeat” timer.
Every time the timer expires, they check to see whether new, unacknowledged data has arrived. If
so, they generate an ack. The fact that the new data may have arrived at any point since the last
heartbeat leads to the even distribution of the delays.

Linux 1.0 always immediately acknowledges newly arrived in-sequence data, so, by
tcpanaly 's definition,all of its acks are delayed acks. It usually generates the ack within 1 msec.

Solaris TCP differs from the others in that it uses a 50 nirstecval timer, scheduled upon
the arrival of each packet, instead of a 200 mseartbeattimer. As a result, the delay is generally
very close to 50 msec (slightly lower, perhaps because the timer is scheduled before the packet filter
timestamps the arriving data packet; £f.0.3.6), though it is a configurable parameter. One might
think that a shorter delay would lead to better performance because the sender waits less before
receiving the ack. We note, however, that, for certain link speeds, a low value such as 50 msec
guarantees that every ack for in-sequence data will be a delayed ack, which is instead counter-
productive because the sender winds up waitovgger for acks in terms of the delay required
to acknowledge two packets. Suppose the delay timer is set $econds, the maximum data
transfer rate the Internet path can supportligytes/sec and the data packets haveilstages. Then
whenever:

t <b/p,

it is impossible that two full-sized data packets will arrive before the delay timer eXpir€an-
sequently, the sender will wait an extraeconds for the acknowledgements of every two pack-
ets. Ift = 50 msec and = 512 bytes, then ifp < 10 KB/sec, the delay will be sub-optimal,
leading to acking of every packet even if they arrive as fast as possible. This range includes the
still-quite-common rates of 56 Kbit/sec and 64 Kbit/sec. If, howewet, 200 msec, then only for

p < 2.5 KB/sec is the delay sub-optimal. This rate includes some of today's modems, but no other
commonly used link technologies.

Finally, we temper this discussion by noting that the deficiency is fairly minor. Yes, a low
delay timer results in extra ack traffic, and somewhat elevated RTTs. However, acks are small, so
the additional traffic load is likewise small, and the additional latency is bounded by the small timer
setting to an often-imperceptible value.

Normal acks

We term an ack “normal” if it is for two full-sized packets. Since our study concerns
unidirectional bulk transfer, we expect that most of the time the receiving TCP will have plenty of
opportunity to generate normal acks.

BSD-derived TCPs dmot simply generate acknowledgements every time they receive
two in-sequence, full-sized packets. Instead, they generate the acknowledgements when the receiv-
ing application procestiasconsumedhat much data, even if the data it consumed was actually
delivered in earlier packets. This means that normal acks are not always promptly generated. We

well, almost impossible. Segl6.3.2.
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Figure 11.11: Sequence plot showing Solaris 2.4 acknowledgments (large squares) during initial
slow-start

analyze the timing of their generation belowsiil.6.4. Here we simply note that quite frequently
the delay in generation is very small, presumably because it takes little time for the application
process to consume the new data.

Since Linux 1.0 TCP acks every packet, it does not generate normal ackpabgly 's
definition of “normal.” Solaris TCP generates normal acks after an initial slow-start sequence, but
not before (see next section).

Stretch acks

Every implementation in our study except Linux 1.0 sometimes generates “stretch” acks,
that is, acknowledgements for more than two full-sized packets, contrary to [Br89] (though they all
came less than 500 msec after the last packet they were acknowledging). We suspect most of these
occur because of delays in the application process consuming the newly arrived data (discussed
above). For most implementations and sites, stretch acks usually were for no more than three full-
sized packets.

Some implementations and sites, however, were especially prone to large stretch acks, par-
ticularly some of the IRIX sites. These instances, however, were intermittent (except for Solaris—
see below): quite often, the site would not generate a significant number of stretch acks, other times
it would. Most likely this intermittence reflects periods of heavy versus light load. The IRIX sites
might be particularly prone because of some peculiarity of how the IRIX scheduler deals with heavy
processor contention: if it delays competing processes for lengthy periods of time, this could easily
translate into stretch acks. For example, we noticed ddatoften generated stretch acks sepa-
rated by almost exactly a multiple of 30 msec, and posit that 30 msec reflects the host's scheduling
quantum.
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Figure 11.12: Corresponding burstiness at sender

Solaris TCP, however, generates stretch acks in quite a different manner. It apparently has
been tuned so that, during the initial slow-start, it generates only one ack for each increasingly-large
“flight” of packets. Figure 11.11 shows how this works, using a trace recorded at a Solaris receiver.
Here, the acks are shown with large squares, since they lie directly on top of the end of each initial
slow-start flight. The delay between the final packet of a flight and the corresponding ack is only
100's ofusec—much too small for timer-driven acking. Since the TCP appears to “know” exactly
when each flight ends without waiting any appreciable time for additional packets, we conclude that
it does indeed know: it predicts that each flight will be one packet larger than the previous flight
(which is exactly the case during slow-start, if each flight elicits only one ack in reply), and counts
exactly that many packets before acknowledging.

At aroundT = 0.9 a data packet was lost, and thus the prediction that 10 packets would
arrive in that flight failed. The ack for the 9 packets that did arrive is sent when the delayed-ack timer
expires, 49 msec after the last packet in the flight arrived. The packets liberated by this ack then
arrive above the sequence hole and the TCP generates a series of duplicate acks in response, and
the sending TCP retransmits the missing packet. Note that, after this point, the Solaris TCP gives
up on trying to ack just once for each flight, and falls back on acking every three full-sized packets
(in violation of [Br89]), or fewer if the delayed-ack timer expires before three arrive. This behavior
also fits with our hypothesis that the TCP is predicting flights by counting slow-start cycles: once
the connection is no longer in slow-start, the TCP cannot easily determine the size of the next flight,
so it falls back on a less sparse acking policy.

It seems very likely that this acking behavior was developed in order to maximize through-
put for local-area networks. We are led to speculate that this is the case, because the acking policy
has four major drawbacks for wide-area network use, worth discussing in detail because at first
blush one might find such a frugal ack policy attractive as apparently efficient and streamlined:

1. Because each ack advances the window by increasingly large amounts, the acking behavior
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Figure 11.13: Sequence plot showing retransmission timeout due to loss of single Solaris 2.4 ack

leads to progressively burstier transmissions by the sender. Figure 11.12 shows the same trace
as in Figure 11.11 except recorded at the sending TCP. We see increasingly taller “towers” of
packets, sent at rates up to 1.15 Mbyte/sec, completely saturating the local Ethernet. While
a local area network might be able to accommodate such burstiness, it can be very hard on
a wide-area network, because it leads to rapid queue growth if the bottleneck bandwidth is
significantly lower (in this connectiongpanaly calculated it to be about 350 Kbyte/sec
(evidently two T1 circuits), using the methodology discussed in Chapter 14). This queue
variation then potentially perturbs all the other connections currently sharing the bottleneck
link, by delaying their packets and perhaps causimayr packets to be dropped.

Much better is for the packets to be spaced out more evenly, approaching the bottleneck
bandwidth, which will happen naturally due to “self-clocking’q.2.5) if the receiving TCP
generates acks at a quicker rate. See [BP95b] for a discussion of TCP sender modifications to
achieve smoother spacing in the face of large ack advances.

2. Because only one ack is sent per round-trip time, the connection loses the usual benefit of
exponential window-increase during slow-start. On/tteslow-start flight, the Solaris ack-
ing policy will lead to exactlyk packets in flight. A policy of ack-every-packet, on the other
hand, leads t@*~! packets in flight, an enormous difference when trying to fully utilize a
network path with a large bandwidth-delay product.

3. Because only one ack is sent per round-trip time, the resulting connectiomsitdesin
the face of packet loss, which is much more prevalent in wide-area networks than local-
area networks. Since each flight of data elicits only one ack in response, if the ack is lost,
then the data/ack “pipelinefhustshut down with an expensive (in terms of performance)
retransmission timeout, because the sender will not re@iyenore information about the
data it sent. Figure 11.13 shows a trace recorded at a Solaris receiver in which this occurred.
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Figure 11.14: Receiver sequence plot showing lulls due to Solaris 2.3 acking policy

The slow-start progresses normally until abdut= 0.8, at which point the lone ack for

the 8th slow-start flight is lost. Even though none of the data packets were lost, the entire
connection must shut down until a timeout about 700 msec later restarts the flow of data, and
then proceeds on from this point at an unnecessarily reduced transmission rate, due to TCP
congestion avoidance. With a more prolific acking policy, loss of the ack would have had
no effect on the data flow whatsoever, since more data would have arrived shortly (liberated
by acks for packets earlier in the flight) and elicited more acks in response, keeping the flow
alive.

. Finally, the Solaris acking policy {grovably sub-optimain the following sense. One of the
goals of a solid implementation of a byte-stream transport protocol such as TCP should be
that, in the absence of any competing network traffic, a transport connection should quickly
reach a state in which it delivers packets to the receiving end continuously and at the available
bandwidth. Yet, the Solaris acking policy cannot achieve this goal, even if we allow its linear
slow-start window increase discussed above to qualify as “quickly.”

The fundamental problem is that, regardless of how large the slow-start flight grows, it always
eventually comes to an end, at which point the Solaris TCP sends the sole ack for that flight.
While that ack is traversing the network back to the sender, the sender is perforce doing
nothing because it has already sent its entire flight and cannot send any more data until an
ack arrives to advance the window. Thus, the Solaris acking policy guaranteesuthagaal

to the round-trip time will accommodate each flight of data. As long as the sender remains in
slow-start, the receiver witheversee a continuous stream of packets arriving at the available
bandwidth!

Figure 11.14 illustrates this problem. This connection has a RTT of about 44 msec, and a
T1 bandwidth limit of about 170 Kbyte/sec. Thus, the connection's bandwidth-delay product
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Figure 11.15: Sequence plot showing more frequent acking leading to “filling the pipe”

is about 8 Kbyte, so if the sending TCP has this much data in flight at one time, ordinarily
that would suffice to “fill the pipe” and completely utilize the available bandwidth. Near the
end of the connection, it has more than 8 Kbyte in flight, andsyi#tdoes not achieve full
utilization, due to the 44 msec delays incurred at the end of each flight.

The only Solaris TCP in our study that did not exhibit this problem suas$r2 , because its
bottleneck bandwidth of about 13 Kbyte/sec was so small that the delay ack timer (50 msec
in Solaris) would often expire before the full flight could arrive.

Other acking policies avoid this problem because, by acking more often, they can ensure (for
a large enough window) that the sender will have additional data already in flight by the time
the current flight ends. As the window grows sufficiently large, the packets from this next
flight will arrive closer and closer to the end of the first flight, until eventually the distinction
between flights blurs and the connection settles into a continuous stream of arriving data
packets. Figure 11.15 shows such a connection, with the same sender as in Figure 11.14.
Note that this connection had a longer RTT than that shown in Figure 11.14, which explains
why it happened to achieve only the same overall throughput, instead of higher throughput,
which would have been the case for equal RTTs and a greater degree of “filling the pipe.”

11.6.2 Acking out-of-sequence data

When a TCP receives a packet with out-of-sequence data, it eithsigenerate an ack-
nowledgement, if the data corresponds to data already acknowledged, which we term “below se-
guence”; orshouldgenerate an acknowledgement, if the data is for a sequence number beyond what
has been previously acknowledged, which we term “above sequence” [Br89]. (These situations are
also discussed above §rl1.4.1.) For example, suppose a TCP has received contiguous data up to
sequence 10,000. If it now receives data with a sequence number below 10,000nhbstyéner-
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ate another acknowledgement for sequence 10,000. If, instead, it receives data starting at sequence
number 11,000, then ghouldgenerate another acknowledgement for sequence 10,000.

In both cases, the acknowledgement generated is for the highest in-sequence data re-
ceived. The reason for generating acks in the first case is that the sender has retransmitted unnec-
essarily and thus appears confused as to how much data the receiver has in fact received, so the
receiver needs to inform the sender again of what it has received. The reason for generating acks in
the second case is to enable “fast retransmit,” discuss¢8.@&7.

Of the TCPs in Table XV, only SunOS 4.1 exhibited unusual behavior when receiving
out-of-sequence data. While it generally will immediately acknowledge below-sequence packets,
it does not always do so, and it never immediately acknowledges above-sequence packets. Instead,
it apparently checks upon each expiration of the 200 msec delayed-ack heartbeat timer whether
any above-sequence (or, sometimes, below-sequence) data has arrived. If so, it generates a single
duplicate acknowledgement reflecting its current upper-sequence limit.

One other form of “mandatory” ack not generated by SunOS 4.1 concerns the initial SYN
packet used to begin establishing a TCP connection. SunOS 4.1 TCP appears to ignore retrans-
missions of the initial SYN once it has sent a SYN-ack, and instead continues retransmitting (upon
timeout) the SYN-ack until it is acknowledged. This behavior has only minor implications concern-
ing a possible delay in establishing connections when the first SYN-ack is lost.

Other than SunQS, all the implementations in our study tend to generate mandatory ac-
knowledgements promptly (though we have observed more than 1 minute delays for a Solaris im-
plementation while it waited for a sequence hole to be filled!). The few tiopemaly detected
a failure to send a mandatory ack were generally due to either vantage-point probléthg)(
packet-filter resequencing errofs10.3.6), or confusion caused by checksum errors.

The only other failure we observed with respect to generating mandatory acks is with
Solaris 2.3 TCP. If it receives a packet containing only a FIN option (no data), and arriving above-
sequence, then it simply ignores the packet. If the packet contains data, then it elicits a duplicate ack
like any other above-sequence arrival, but the presence of the FIN bit is forgotten (so if the sequence
hole is filled, the TCP will acknowledge all of the data but not the FIN). This behavior is fixed in
Solaris 2.4, and is the only difference in behavior we observed between the two implementations.

11.6.3 Gratuitous acks

tcpanaly includes in its analysis checking for “gratuitous acks,” meaning acknowledge-
ments that as far as it could determine simply did not need to have been sent. These are quite rare.
For example, only about 0.5% of tiAé, receiver traces exhibited a gratuitous ack. SunOS 4.1 TCP
is particularly apt to generate them; Figure 11.16 shows a typical gratuitous ack produced by this
implementation. The acknowledgementZat= 0.4 is sent on the delayed-ack timer, because the
TCP has received above-sequence data that it cannot directly acknowledgenoted in§ 11.4.1,
SunOS 4.1 does not acknowledge each above-sequence packet.) The second aclf; at tirie
appears completely unneeded. It was sent almost exactly 200 msec after the first ack in the plot, so
almost certainly due to the delayed-ack timer. While the last data packet arrived shortly before the
T = 0.4 ack was sent, we suspect is had not yet heecessedand its processing led the TCP
to generate another ack the next time the delayed-ack timer expired. (So this example is really a

12This ack includes the same offered window as its predecessor; ietasnt in order to update the window.
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Figure 11.16: Sequence plot showing gratuitous acknowledgement

vantage-poinjproblem, pef 10.4.)
tcpanaly can also become confused and falsely conclude a gratuitous ack was sent if the
TCP takes a particularly long time to generate an ack, or if a checksum error cotefusedy 's
analysis of cause and effect. Figure 11.17 shows an example of the former, integzEohly
views the lower ack sent &t = 1.28 as gratuitous, even though it was really a response to an out-of-
order packet 21,745 received shortly before the packet preceding it in sequence, Brauhd6.
Thus, it took the TCP in this example (HP/UX 9.05) more than 20 msec to generate the mandatory
ack required by receiving an out-of-sequence packet, which in the presence of the earlier (likewise
tardy) ack for the same sequence numbér at 1.26 sufficed to confusécpanaly  as to why the

second ack was sent.
One other form of gratuitous ack we observed occurs with Linux 1.0. It will generate an

ack if 30 seconds have elapsed without any newly arriving packets. Presumably, this ack is intended
to resynchronize the sender with the receiver in the face of a lull induced by the loss of previous

acks.

11.6.4 Response delays
As discussed ir§ 9.1.3, there are a number of advantages to network measurement

schemes that rely only on the ability to record packet timings at one of the two connection end-
points. One of the main advantages is that it is logistically much easier to secure single-endpoint
measurements than dual-endpoint. For example, TCP Vegas has as one if its central congestion con-
trol mechanisms an analysis of round-trip times measured by the TCP sender [BOP94]. The goal of
these measurements is to infer how the sender's window changes are affecting the queueing delays
in the network, i.e., how the sender's behavior is utilizing networking resources. As developed in
[BOP94], the RTT timings central to the congestion control policy are made solely by the sender.
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Figure 11.17: Sequence plot showing false gratuitous acknowledgement

Not needing to rely on cooperation by the receiver in making these measurements is a great boon,
but it carries with it the risk of having to make control decisions based on considerably less precise
measurements than could be obtained if the receiver cooperated.

In this section we look at the variation among a TGBsponse delay$®y which we mean
how much time the TCP takes to generate an acknowledgement for new data it has received. We
are interested in theariation because itlirectly affectghe precision with which a sending TCP can
measure round-trip time delays. If the receiving TCP exhibits large variations in the time it takes
to generate acknowledgements, and if the sender has no way of factoring out these delays, then the
sender must contend with consideraht@sein its RTT measurements, perhaps enough to render
impractical the accurate assessment of the network's state based on sender-only measurement.

As we argue elsewhere (Chapter 16), often what is of greatest intereatiagions in
networking delays rather than the absolute magnitude of the delays. Thus, we do not concern
ourselves in this section with thmeantime a TCP takes to generate an acknowledgement, as this
contributes nothing to errors in measuring delay variation. Instead, we focus waristion of the
time taken to generate an acknowledgement.

Furthermore, we assume that the sender can eliminate one of the common sources of delay
variation, namely delayed acks. These are easy to spot, because any time an ack is received that
advances the window by less than two full-sized packets, the ack was potentially delayed, so RTTs
derived from its arrival should not be trusted beyond the 200 msec of variation known to frequently
attend delayed acks.

We also assume that acks generated for exceptional conditions such as out-of-sequence
data are not of much interest, since they generally indicate that the sending TCP is about to enter an
exceptional state (retransmission) anyway. Thus, we confine ourselves to the time taken by different
TCPs to generate acks for two or more full-sized, in-sequence packets.

The maximum time taken by a TCP to generate a “normal” §dKki.(6.1) is almost always
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less than 200 msec and often less than 50 msec, no doubt reflecting the BSD and Solaris delayed-ack
timer intervals. We have, however, observed values as high as 1.6 sec. (The mean time taken is less
than 1 msec in about two thirds of our traces, and less than 10 msec in about 95% of our traces.)

One final important point is that to assess response time we compute the standard devia-
tion (o) of the response time, rather than using a more robust staf%id 4). We do so because
we argue that a real-time sender-based measurement scheme will only be able to make fairly cheap
assessments of delay variations, rather than employing robust statistics. Furthermore, even if the
sender can afford to compute robust statistics on the packet timing measurements it gathers, it will
still have the serious problem of discerning between “outliers” due to receiver delays versus those
due to genuine networking effects. Thus, we argue it is reasonable to assess delay variations in
terms of standard deviation, even though we know this estimator can be seriously misleading in the
presence of occasionally quite large, exceptional values.

In assessing botl/; and N>, we find that about two thirds of the timecalculated for
the response time is below 1 msec. These cases are good news for sender-based measurement, since
often clock resolutions are not appreciably more accurate than 1 msec ariy®&y.@). However,
the mean value fos was about 5 msec, and for the one-third of the traces with 1 msec, the
mean climbs to 15 msec.

There is a great amount of site-to-site variation among the average valoes@floubt
reflecting large variations in average site-to-site load. For example,an IRIX system, has an
average value of just under 1 msec, whilenl , another IRIX system, has an average value of over
5 msec.

We conclude that, for high-precision, sender-only RTT measurement, the ack response
delays will often not prove an impediment; but sometimes they will, meaning that the intrinsic
measurement errors will be large enough to possibly swamp any true network effects we wish to
guantify. Here, “often not” is roughly 2/3's of the time, “sometimes they will” is 1/3 of the time,
and “large enough” is on the order of 15 msec. Naturally, the point at which the noise impairs
measurement and control depends on the particular time constants associated with the connection,
and with what information the TCP wishes to derive from its measurements.

11.7 Behavior of additional TCP implementations

Our analysis of TCP behavior above revealed two implementations with particularly sig-
nificant problems: Linux 1.0 and Solaris (2.3 and 2.4). These implementations were both written
independently of any of the others. Furthermore, ofithether implementations we studied, none
of which exhibited problems of the same magnitude as theseawere derived from a common
implementation, the BSD Tahoe/Reno releases. Thus, we find a striking dichotomy between those
TCP implementations exhibiting serious problems, and those that do not: the former were written
independently, the latter built upon the Tahoe/Reno code base.

We interpret this difference as highlighting the fact thmplementing TCP correctly is
extremely difficult. The Tahoe/Reno implementations benefited from extensive development and
testing by a host of TCP experts. Furthermore, they were the code base used by Jacobson to imple-
ment the algorithms in his seminal paper on TCP congestion behavior [Ja88].

However, to test our hypothesis that implementing TCP independently is difficult and
fraught with error, we need to examine other independent implementations. To do so, we gathered
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Figure 11.18: Sequence plot showing Windows 95 TCP transmit problem

tcpdump traces? of three additional TCPs: Windows NT, Windows 95, and Trumpet/Winsock, all
implementations for personal computéts.

We analyzed these traces by studying sequence plots of their behavior. We did not in-
tegrate them intacpanaly because we had only a handful of traces to study. These sufficed,
however, to find some interesting behavior.

11.7.1 Windows NT TCP

We inspected four traces of Windows NT TCP, two of it sending data and two of it receiv-
ing data. We found no serious problems. It does not do fast retransmit, but this only impedes its own
performance; it does not affect network stability (if anything, it abets stability). The only unusual
aspect of its behavior we found is that its congestion window during its initial slow-start begins at
2 packets instead of 1. This could be a calculated decision to improve initial performance, or a bug
due to treating the ack that completes the three-way SYN handshake establishing the connection as
opening the congestion window.

11.7.2 Windows 95 TCP

We obtained only two traces of Windows 95 TCP, one of it sending data and one of it
receiving. The sending trace exhibited a striking performance problem: often when it could send
out two packets, only the second appeared to have been sent, and the first would subsequently be

13Many thanks to Kevin Fall for undertaking the measurement of these.

“We have subsequently been informed that the Windows NT and Windows 95 TCPs are in fact the same implementa-
tion. We observed different, but not inconsistent, behaviors between them, as noted below. In particular, the Windows 95
behavior that we did not observe in Windows NT may be due to the particular software/hardware combination used when
obtaining the Windows 95 traces, which differed from that used to obtain the Windows NT traces.
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Figure 11.19: Sequence plot showing Trumpet/Winsock TCP skipping initial slow start

sent via timeout “retransmission.” Figure 11.18 shows this problem. A pattern of one-ack, two-acks,
one-ack, two-acks repeats. The first ack (such as the one a bit féferé55) reflects a timeout
retransmission filling a sequence hole. The congestion window is evidently one packet at this point.
The TCP sends a single packet and this is acknowledged about 150 msec later. It then apparently
sends not the next in-sequence packet, but the one after that. Receiving this out-of-sequence packet
elicits a dup ack from the remote TCP, but only one, after which no more acks arrive. The sending
TCP thus times out and retransmits the packet it should have sent in the first place, and the cycle
repeats. Eventually it breaks out of the cycle, by sending two back-to-back packets when called for
by a newly-received ack.

We suspect the problem is that the TiSBending both packets, but the first is frequently
being dropped by the network interface card, perhaps because the second arrives too closely on its
heels. This would explain why the problem is sporadic, and also why it may have gone unnoticed
during development of the TCP. Certainly, if this problem is widespread, then Windows 95 TCP
users suffer from very poor performance. Since the retransmission problem lies wholly within the
sending host, however, it does not threaten network stability in any way.

11.7.3 Trumpet/Winsock TCP

The lastindependently implemented TCP we studied was Trumpet/Winsock. We obtained
13 traces of its behavior. Some were made with version 2.0b and some with version 3.0c. We did
not detect any difference in behavior between the two, even though the release notes of 3.0c indicate
it fixed a retransmission problem with version 2.

The first problem Trumpet/Winsock TCP exhibits it thaskips the initial slow start
Figure 11.19 illustrates this behavior. The connection is established justlatter0. The TCP
waits 400 msec and then dumps 6 packets of 1460 bytes (except the first, which is 512 bytes)
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Figure 11.20: Sequence plot showing Trumpet/Winsock TCP skipping slow start after timeout

without waiting for any acknowledgements. When the first ack arrives, the window simply slides
and more packets go out. Over time the window opened to 9 packets.

It further skips slow start after timeout retransmissiofigure 11.20 illustrates this be-
havior. AtT = 7.6, a packet times out and is retransmitted. When an acknowledgement for it and
a number of other successfully received packets is received, the TCP sends another 8 packets, and
when an ack for the first four of these arrives (along with dups), another 9 are sent! (We observed
similar behavior even if the ack for the retransmitted packet only acknowledged a few packets be-
yond it.) We did also observe some apparent slow-start sequences after retransmission timeouts
(though duplicate acks received during this sequences advanced the congestion window), indicating
that thenotion of entering slow start after timeout is present in the implementation, but incorrectly
implemented. These sequences had one other unusual aspect, which is that they began with the
transmission of a packet followed 10 msec later by a retransmission of that same packet.

We are, unfortunately, not yet finished with cataloging Trumpet/Winsock TCP's imple-
mentation flaws. Figure 11.21 shows the TCP's acking policy. The trace was recorded at a Trum-
pet/Winsock receiver of a bulk transfer. The only acks it sent are those shown distinctly in the
plot—none were sent shortly after a data packet arrived. The acking is clearly entirely timer-driven,
incurring similar performance implications as for Solafsl.6.1), except it always acks in this
fashion, rather than just during the initial slow-start, and it is acking off of a timer rather than when
it knows no more data is in flight.

The final implementation flaw we found in Trumpet/Winsock TCP is thdisitards any
above-sequence data it receivesigure 11.22 shows this surprising deficiency. Again, the trace
was captured at the Trumpet/Winsock side of a connection in which the TCP was receiving a bulk
transfer. Shortly afte” = 18.5, a sequence hole forms due to a packet having been dropped
by the network. 13 more packets follow, all arriving safely, yet the TCP does not generate any
duplicate acks indicating their reception. Furthermore, when the lost packet is finally retransmitted
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Figure 11.21: Sequence plot showing Trumpet/Winsock timer-driven acking
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Figure 11.22: Sequence plot showing Trumpet/Winsock failure to retain above-sequence data
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due to a timeout, we find it doe®t fill the hole previously created, which would lead to the TCP
acknowledging both it and the 13 previously received packets. Instead, only it is acknowledged,
and, as additional packets (already safely received) are retransmitted, they too form the limit of the
acknowledged data.

Thus, the TCP hathrown awayall of the additional packets it received above the se-
guence hole. As noted i513.3, this pattern of behavior is possible when a CSLIP link generates
a “burst” of checksum failures. When we first observed this behavior, we presumed that was what
had happened. However, Wesubsequently gathered full packet traces ¢naplenlimitation on
the amount recorded for each packet;§cf0.2) and enablettpanaly 's checksum testing (L1.2)
to determine whether the data packets were received uncorrupted. They were, indicating that the
TCP could have kept them but instead discarded them. Furthermoneseweeobserved the TCP
generating a duplicate ack upon receiving a packet above a sequence hole, nor acting as though a
retransmission had filled a sequence hole.

All of these behaviors have strong, adverse impacts on network stability. Skipping slow
start initially and after loss means that Trumpet/Winsock data transfers can present heavy bursts
of traffic to the network when it lacks the resources to accept them. It violates [Br89]. Acking
only when a timer expires can lead to excessive, unnecessary retransmissions when a single ack for
many packets is dropped by the network. This also violates [Br89]. Finally, discarding successfully-
received above-sequence data wastes network resources as the other TCP must resend all of the data
again. This behavior, while strongly discouraged by [Br§49,.2.2.20], is not strictly forbidden,
presumably to avoid indefinitely tying up resources in the receiving TCP in cases where connectivity
is lost with the sender.

5Thanks again to Kevin Fall.



