
291

Chapter 15

Packet Loss

In a packet-switched network that does not provide mechanisms for reserving resources
within the network on behalf of a particular packet “flow”, loss is inevitable under conditions
of load. The Internet is such a network. According to traditional network traffic theory, based
on Poisson models that emphasize at most fleeting correlations between packet arrivals, one
can generally engineer a packet-switched network to have as low a packet loss rate as desired.
Operational experience, however, has been quite contrary and brutal to the Poisson framework
[JR86, G90, FL91, DJCME92, PF95], which appears woefully inadequate for accurately predicting
actual network behavior. Recent years have seen the rise ofself-similar traffic models, in which
correlations are extremely long-lived and have a fractal structure, leading to “burstiness on all time
scales” [LTWW94]. Fractal models predict that packet loss is extremely hard to avoid, due to the
great burstiness of network traffic, and, more generally, due to the lack of a singleburst time scale
for which one can then engineer the network to accommodate.

We should note that packet loss is not unequivocally a problem. TCP makes splendid
use of packet loss as animplicit signal that the network is under stress and the TCP sender should
reduce its sending rate [Ja88]. If the network had immense buffering within it to avoid packet loss,
this over-engineering would defeat TCP's congestion signal. Furthermore, such buffering doesnot
guarantee that the network can promise to always deliver useful throughput [Na87], and, actually,
things would be worse off, since TCP senders then could not adapt their transmission rates to the
limited capacity of the bottleneck link.

In this chapter we look at what our measurements tell us about packet loss in the Internet:
how frequently it occurs and with what general patterns (x 15.1); differences between loss rates of
data packets and acks (x 15.2); the degree to which it occurs in bursts (x 15.3); the degree to which
losses occur at the bottleneck link (x 15.4); how loss rates evolve over time (x 15.5); and how well
TCP retransmission matches genuine loss (x 15.6).

15.1 Loss rates

A fundamental issue in measuring packet loss is to avoid confusing measurement drops
with genuine losses. Doing so can often be difficult unless the measurement apparatus takes pains to
accurately report measurement drops. As we saw inx 10.3.1, some do and some do not. Here is one
of the analysis areas where the effort to ensure thattcpanaly understands the details of the many



292

Connection Duration (sec)

0.5 5.0 50.0 500.0

0.0
0.2

0.4
0.6

0.8
1.0

Figure 15.1: Connection durations forN1 (solid) andN2 (dotted)

TCP implementations in our study pays off extremely well. Because we can determine whether
traces suffer from measurement drops, we can exclude those that do from our packet loss analysis
and avoid what could otherwise be significant inaccuracies. Since, for the most part, measurement
drops will be uncorrelated with the presence of true network drops, excluding these tainted traces
should not bias our subsequent analysis. An exception would be if the measurement drops are due to
large bursts of traffic on the local network overrunning the packet filter's ability to record the burst,
and if such bursts were coupled with true loss on the local network. Since our interest lies in loss in
the Internet-in-the-large, and not in loss in local networks (even though local loss also contributes
to the end-to-end chain), we regard this source of bias as minor.

Our measurements do, however, suffer from one form of bias: due to their limited duration
(x 9.3), we will fail to successfully measure and analyze connections that suffered such high packet
loss rates that they required more than 10 minutes to transfer 100 Kbyte. When these measurement
attempts reach the 10-minute lifetime without having successfully completed, the entire measure-
ment attempt is aborted, andno trace data is retrieved from the NPDs conducting the measurement.

Unfortunately, due to the centralized control of the experiment, we cannot accurately
assess how often a measurement failed for this reason, and how often for a different reason, such as
a loss of connectivity betweennpd control and one of the remote NPDs (x 5.2,x 9.3). Thus, the
statistics presented in this section willunderestimateInternet packet loss rates somewhat.

We argue, however, that the bias is, overall, fairly small. Figure 15.1 shows the distribu-
tion of the connection durations forN1 (solid line) andN2 (dotted line). The vertical line on the
righthand side of the plot marks the 10-minute maximum duration. Thex-axis is logarithmically
scales, so we see that a large number of the connections in our study completed much sooner than
the 10 minute upper lifetime. This in turn suggests that the lifetime was generally not a limita-
tion. At the end of this section, however, we show that itdid significantly bias European loss rates
towards underestimation.



293

We begin our analysis with looking at aggregate packet loss over the course of entire
connections. InN1, out of about 714 thousand packets (data and ack) transmitted, 3.0% failed to
arrive at the other end. InN2, for 4.66 million packets, the figure rose to 4.6%, a significant increase
that merits further investigation.

On immediate question is whether the use of additional sites inN2 (and the absence of a
few of theN1 sites) skewed these basic numbers. Indeed, it did, buttowards underestimating the
increase! Of the sites in common, inN1, 2.7% of the packets were lost, while inN2, this figure
nearly doubled to 5.2%. Conventional wisdom among TCP researchers holds that a loss rate of 5%
has a significant adverse effect on TCP performance, because it will greatly limit the size of the
congestion window and hence the transfer rate, while 3% is often substantially less serious. Thus, it
behooves us to try to understand the circumstances and details of the increase as much as possible.

First, we need to address the question of whether the increase in loss rate was due to the
use of bigger windows inN2 than inN1 (x 9.3). Such could easily be the case, since with larger
windows the transfers will often have significantly more data in flight, and, consequently, will load
the router queues along the path much more. We can assess the impact of larger windows by looking
at loss rates ofdatapackets versus those forack packets. Data packets contribute to queueing and
having more in flight stresses the forward path. On the other hand, the rate at which a TCP transmits
data packetsadaptsto current conditions. Ack packets contribute almost no additional load along
the reverse path, other than occupying a buffer when queued, so having more of them in flight at one
time should not significantly alter the loss rate they suffer. They do not adapt to current conditions,
except during periods of heavy congestion, when an entire window's worth of acks is lost, forcing a
timeout retransmission.1 Thus, to compare changes in loss rates betweenN1 andN2, using the ack
loss rates should eliminate the bias caused by the different window sizes. We discuss more issues
concerning data packet loss versus ack loss inx 15.2.

Overall, inN1, acks were actually slightly more likely (3.16%) to be lost than data packets
(2.96%), while inN2 the ordering is the opposite (4.25% for acks versus 4.75% for data packets).
Restricting the comparison to the sites in common, however, changed the discrepancy between data
packets and acks, with 2.88% for acks versus 2.65% for data packets inN1, and 5.14% versus 5.28%
for the sameN2 figures. So, even if we restrict ourselves to the ack loss rates for the common sites,
which should be quite sound to compare, we observe a 78% increase in the loss rate, from 2.88% to
5.14%.

Another interesting loss rate figure is how the rate changes if we condition on observing at
least one loss during the connection. Here we make a tacit assumption that a network path has two
basic states, “quiescent,” during which connections tend to not suffer any loss, and “busy,” during
which they tend to suffer loss. The first corresponds to, overall, light or steady enough load that the
router buffers suffice to avoid packet loss, and the second to sufficient load, overall, to occasionally
overflow the buffers. We would expect to find that “busy” states coincide with the usual peak usage
times of working hours, and quiescent states with off-peak times. We return to this point below, in
the discussion of Figure 15.3 and Figure 15.4.

InN1, 52% of the connections between the common sites did not lose a single ack packet.
However, only 28% of the connections losing at least one ack lost exactly one. ForN2, the corre-

1The transmission rate of acks can also adapt to current conditions if the loss conditions along both directions of the
path are correlated, since the rate at which a TCP transmits acks reflects the rate at which it receives data packets. In
x 15.2 below, however, we find that loss rates in the two directions are nearly uncorrelated.



294

Connection Duration (sec)

0.5 5.0 50.0 500.0

0.0
0.2

0.4
0.6

0.8
1.0

Figure 15.2: Connection durations for sites common toN1 (solid) andN2 (dotted)

sponding figures are 49% and 20%. We see that part of the change in the higherN2 ack loss rates
stems fromgreater loss during busy periods. The proportion of quiescent periods remains virtually
unchanged. Similarly, for the common sites, if we condition on a connection suffering at least one
loss, then the ack loss rate for anN1 connection climbs from 2.88% to 5.69%, while forN2 the
increase goes from 5.14% to 9.16%. Thus, even inN1, if the network path was busy (using our
simplistic definition above), loss rates were quite high, and forN2 they shot upward to a level that
in general will seriously impede TCP performance.

These increases give us strong evidence that networking conditions in one important re-
spectdegradedduring the course of 1995, similar to our earlier finding that several aspects of In-
ternet routing degraded during 1995 (x 6.10,x 8.5). Since bottleneck link rates generallyincreased
during 1995 (x 14.7.1), we cannot tell from just the loss rate statistic whether users perceived the
network as delivering better or worse service. A basic measure of perceived level of service is how
long it takes to transfer a given amount of data. However, when comparing such durations we need
to keep in mind that the use of bigger windows inN2 gaveN2 connections more opportunity both to
“fill the pipe” and to utilize fast retransmission (x 9.2.7), which gives them performance advantages
that have little to do with how the network service changed. (For the sites in common, inN1 the
mean number of fast retransmissions was 0.98, while inN2 it climbed to 1.64.)

Still, we find the comparison illuminating. Figure 15.2 shows the distribution of the du-
rations of connections between sites common to bothN1 (solid line) andN2 (dotted line). For the
sites in common, the median connection duration diminished from 11.8 sec inN1 to 10.7 sec inN2,
a rather modest improvement. That single figure does not tell the entire story, though, since we see
from the figure that the distribution of durations did not unilaterally slide a bit to the left. Instead,
N2 connections were likely to be 20% shorter than those inN1 if they were short, meaning that we
condition on the duration being< 12 sec; and 50% longer if we condition on the duration being
> 12 sec. It seems likely that the differences are due to a higher prevalence of fast retransmission



295

Region #N1 #N2 N1 loss rate N2 loss rate �

Europe 104 734 2.8% 2.8% �03%
North America 641 2,405 1.3% 1.6% +23%
(umont ) 75 562 1.5% 5.8% +287%
Into Europe 255 1,243 6.2% 11.7% +88%
Into North America 320 1,544 3.5% 3.2% �08%
All regions 1,395 6,488 2.8% 4.6% +63%

Table XXI: Ack loss rates for different connection geographies

in N2 aiding short transfers, while a higher packet loss rate led to more frequent timeouts for those
connections that failed to open their congestion windows enough to facilitate fast retransmission.2

So far, we have treated the Internet as a single aggregated network in our loss analysis.
Geography, however, plays a crucial role in the prevalence of packet loss. To study geographic
effects, we partition the connections between the sites common toN1 andN2 into four primary
groups: “European,” “North American,” “Into Europe,” and “Into North America.” European con-
nections are those with both a European sender and a European receiver. North American have both
sender and receiver in Canada or the United States (but see below). “Into Europe” are connections
with European datasendersand North American datareceivers. The terminology is backwards
here because what we will assess areack loss rates, and these are generated by the receiver. Hence,
“Into Europe” loss rates reflect those experienced by packet streams traveling from North America
into Europe. Similarly, “Into North America” are connections with North American data senders,
European data receivers, and ack streams traveling from Europe into North America.

This partition does not include connections to or from Australia, because we had only one
Australian site common to bothN1 andN2, so it would be difficult to gauge the generality of loss
rates involving it. We note, however, that it experienced a rise of more than a factor of two in the
loss rates of ack traveling into and out of Australia, from 3.3% inN1 to 7.8% inN2.

While the above grouping was our original intent, upon examining the data we made one
further distinction. The sole Canadian site,umont , was a major outlier for packet loss inN2, so
large that its presence as one of the 13 North American hosts sufficed to significantly skew the
overall North American findings. (It was not, however, an outlier inN1.) Since we had no other
Canadian sites in our study, we cannot gauge whether this reflects a problem unique toumont or a
more general problem with Canadian Internet service. Consequently, we removedumont from our
notion of “North America” as described above; so, in fact, all of the North American sites discussed
below are in the United States. We also summarize below connections from U.S. sites to or from
umont , to illustrate its atypical loss rates.

Table XXI shows the loss rates of ack packets for the different regions. The second and
third columns give the number ofN1 andN2 connections that occurred in the region. There were
6 common European sites and 12 North American sites plusumont . The fourth and fifth columns
give the overall loss rate for the ack packets sent during all of the region's connections, and the final
column indicates the loss rate change betweenN1 andN2. Clearly:

2Note that, had we not restricted ourselves to the sites common to the two datasets, but instead interpreted Figure 15.1
in this regard, then we would have drawn a considerably different, less sound conclusion.



296

Region N1 quies. N2 quies. N1 cond. loss N2 cond. loss �

Europe 48% 58% 5.3% 5.9% +11%
North America 66% 69% 3.6% 4.4% +21%
(umont ) 60% 15% 3.7% 6.8% +81%
Into Europe 40% 31% 9.8% 16.9% +73%
Into N.A. 35% 52% 4.9% 6.0% +22%
All regions 53% 52% 5.6% 8.7% +54%

Table XXII: Conditional ack loss rates for different connection geographies

� Europe suffered considerably higher packet loss rates than did North America, but the loss
rate appears stable. However, we show below that the European figures arebiasedtowards
underestimation;

� North American loss rates were fairly low and, while the trend is increasing, it is not doing
so at an ominous rate;

� umont suffered a tremendous increase in packet loss rate, although we lack sufficient data to
tell if this is a general problem for Canadian networks or specific to the University of Montreal
or its local region;

� the trans-Atlantic links carrying European traffic to North America had fairly high loss rates,
but the situation is perhaps improving; and

� the links carrying North American traffic to Europe were a compounding disaster. We note
that since Europe's rates are significantly lower than those of trans-Atlantic traffic heading
into Europe, it must be the case that most traffic between two European sites stays inside
Europe, rather than transiting through North America, even though we sometimes observed
such routes inx 6.9.

Table XXII looks at loss rates for the same regions, but now with conditioning on whether
any acks were lost. The second and third columns give the proportion of quiescent connections,
where “quiescent” is defined as above to mean connections that did not lose any acks. We see
that, except forumont and the trans-Atlantic links going into North America, the proportion of
quiescent connections was fairly stable, suggesting that perhaps changes in loss rate are confined to
already-loaded “busy” periods of heavy load. We investigate this possibility in more detail shortly.

The fourth and fifth columns list the proportion of acks lost, given that at least one ack
was lost, and the final column summarizes the relative change. None of the conditional loss rates
is especially heartening, and the trends areall increasing. DuringN2, the trans-Atlantic links into
Europe were close to unusable during busy periods, with a loss rate of nearly 17%. This matches
anecdotal reports such as requests the author received to mail hardcopies of papers to European
researchers since they could not viably retrieve them over the network. In summary, we note that,
for every region, loss rates for busy connections increased betweenN1 andN2.

Within regions, we find considerable site-to-site variation in loss rates, as well as variation
between loss rates for packets inbound to the site and those outbound (x 15.2). We did not, however,



297

Hour (Eastern Standard Time)

Me
an 

Los
s R

ate

0 5 10 15 20

0.0
1

0.0
2

0.0
3

Figure 15.3: Hourly variation in ack loss rate for North American connections

find any other outliers as dramatic asumont in N2, so we kept the regions otherwise intact.
The last aggregate loss statistics we look at are variations of loss rate over the course of the

day. We expect to find a diurnal cycle, as numerous studies have noted significant hourly variation
in connection and packet arrival rates ([PF95] and many others). It was this expectation that led us
to postulate that the distinction made above between “busy” and “quiescent” connections is broadly
meaningful.

Figures 15.3 and 15.4 show the hourly loss rates for theN2 connections internal to North
America and Europe, respectively. The North American loss rates, with thex-axis reflecting the
hour in the Eastern Standard Time zone, clearly follow the oft-observed pattern of activity increasing
over the morning hours and falling off during the late afternoon. [PF95] notes a pickup in evening
FTP traffic, which agrees with the secondary peak. One unusual facet of Figure 15.3 is that it
does not exhibit a noon-time “dip.” However, this is almost certainly due to the North American
traffic spanning three time zones, effectively spreading out lunch-related lulls over several hours.
The apparent discontinuity between the 23rd hour at the right and the midnight hour at the left,
however, is puzzling. We have verified that as one approaches midnight, the rates come closer
together. We do not, though, have an explanation as to why midnight EST would serve as such a
sharp transition point, given that it corresponds to 9PM Pacific Standard Time, when presumably
we still see considerable user activity.

Figure 15.4 differs considerably from Figure 15.3. Here thex-axis reflects the hour in the
Greenwich Mean Time zone. We observe a morning rise in loss rate, but a considerable noontime
dip lasting several hours, followed by a striking increase in the late afternoon. Again, the evening
hours are elevated compared to the early morning hours, with a sharp transition occurring around
midnight. The late afternoon hours may in part reflect increasing background traffic from North
American sites, too, since late afternoon GMT coincides with noon and early afternoon EST, which
we see in Figure 15.3 is the peak North American period.



298

Hour (Greenwich Mean Time)

Me
an 

Los
s R

ate

0 5 10 15 20

0.0
0.0

2
0.0

4
0.0

6
0.0

8
0.1

0
0.1

2

Figure 15.4: Hourly variation in ack loss rate for European connections

0 5 10 15 20 25

0
20

40
60

80
100

Hour (Eastern Standard Time)

Nu
mb

er o
f S

ucc
ess

ful 
Me

asu
rem

ent
s

Figure 15.5: Successful North American measurements, per hour



299

0 5 10 15 20 25

0
10

20
30

40
50

60

Hour (Greenwich Mean Time)

Nu
mb

er o
f S

ucc
ess

ful 
Me

asu
rem

ent
s

Figure 15.6: Successful European measurements, per hour

We must exercise caution, however, in interpreting Figure 15.4, due to our measurement
bias against very long-lived connections (discussed at the beginning of this section). We can test
for the presence of this bias by examining how many successful measurements we made for each
hour of the day. Because of our Poisson sampling methodology (x 9.1), measurementattemptswere
uniformly distributed over the course of the day. Figure 15.5 shows a histogram of the number of
successful North American measurements made for each distinct hour of the day. The distribution
appears fairly even, and, indeed, the measurement times pass the powerful Anderson-DarlingA2

goodness-of-fit test for uniformity [DS86], using 5% significance (and, indeed, for higher signifi-
cance).

Figure 15.6 shows the same histogram for the European measurements. The bias towards
the less busy early morning and late evening hours immediately stands out. The distribution fails
A2 at all significance levels, as one might expect. The bias is strongest against the 11AM to 1PM
periods, and eases somewhat in the later afternoon, so the apparent difference between the two
corresponding peaks in Figure 15.4 may be simply due to measurement bias and not reflect a true
underlying difference. However, we can certainly conclude based on Figure 15.6 that our analyses
of European loss rates are in generalunderestimates.

15.2 Data packet loss vs. ack loss

We noted in the previous section that analyzing data packet loss rates can be complicated
because the size of the data packets and the tendency for them to be sent closely together both add to
queueing load along the network path. We expect that this load in turn leads to a greater likelihood
of the data packets being lost, though, because TCP can unfairly distribute available bandwidth
[FJ92], this is not necessarily the case. We saw inx 15.1 that, inN1, acks were actually slightly
more likely to be lost than data packets, though, inN2, the pattern reverses, which we (at least



300

partially) attribute to the use of bigger windows inN2 (x 9.3).
In this section we take a closer look at the loss rates of data packets versus those of acks.

We consider any packet carrying one or more bytes of user data as a data packet. We would expect
to observe some differences between different-sized data packets. Unfortunately, it would prove
difficult to explore this effect with our data. Some of the sites in our study always used a maximum
segment size (MSS) of 512 bytes, the common default value, while others used larger sizes whenever
the opportunity to do so arose. But the site-specific nature of the MSS used means that, for each
site, the samples of data packet loss rates generally reflect only a small number of packet sizes,
sometimes only one. Since inx 15.1 we showed that ack loss rates exhibit strong regional variation,
we could easily conflate a spurious MSS size effect in data loss rates with a genuine, separate effect
due to the regions.

Thus, we confine ourselves to a simple definition of “data packet” as one carrying any
user data whatsoever. But in addition, we make a key distinction between “loaded” and “unloaded”
data packets. A “loaded” data packet is one that presumably queued at the bottleneck link behind
one of the connection's previous packets, while an unloaded data packet is one that we know did
not have to queue at the bottleneck behind a predecessor. Here we are abstracting the intricate,
multi-element network path to a presumably equivalent model of a single element that forwards at
the bottleneck rate, and at which all significant queueing occurs.

To tell if a packet is unloaded, we first form an estimate of the bottleneck bandwidth using
the methodology developed in Chapter 14. If the methodology indicates a bottleneck change or the
possible presence of a multi-channel bottleneck, then we refrain from further packet-loss analysis.

If, however, the methodology produces a single bottleneck estimate,�B, as is generally
the case, then the methodology also associates lower and upper bounds with�B (Eqn 14.12):

��B < �B < �+B : (15.1)

This equation in turn gives us the maximum amount of time required for ab-byte packet to transit
across the bottleneck, namely:

�+b = b=��B sec: (15.2)

Let T s
i be the time at which the sender transmits theith data packet. We then sequentially associate

amaximum load�+i with the packet as follows. The first packet has a load equal to

�+1 = �+b ; (15.3)

whereb is the size of the packet. Subsequent packets have a load

�+i = �+b +max
h
(T s

i�1 + �+i�1)� T s
i ; 0

i
: (15.4)

�+i thus reflects the maximum amount of extra delay theith packet incurs due to its own transmission
time across the bottleneck link, plus the time required to first transmit any preceding packets across
the bottleneck link, ifi will arrive at the bottleneck before they completed transmission. The latter
will be the case if

T s
i < T s

i�1 + �+i�1; (15.5)

because this condition means that packeti was sent shortly enough after packeti � 1 that packet
i� 1 would not yet have cleared the bottleneck link by the time packeti arrived at the bottleneck.



301

Per-Connection Packet Loss Rate (%)

0 10 20 30 40

0.0
0.2

0.4
0.6

0.8
1.0

Unloaded data pkts
Loaded data pkts
Acks

Figure 15.7:N2 loss rates for data packets and acks

If Eqn 15.5 applies to packeti, then we will say that packeti was “loaded,” meaning that
it had to wait for pending transmission of earlier packets. Otherwise, we term it “unloaded.”

The development of the maximal load�+i has natural analogs��i and�i for the minimal
and central loads associated with each packet, by using�+B or �B (from Eqn 15.1) in Eqn 15.2 to
compute analogous “self-interference” time constants��b and�b.3 Similarly, we can define different
flavors of “loaded” and “unloaded” depending on whether we use the maximal, central, or minimal
definitions for�i. In this section, we exercise conservatism and only consider a packet as unloaded
for the definition in terms of the maximal�+i .

Presently, our interest in whether a packet is loaded or unloaded comes just from analyzing
whether the two types have different loss patterns. Inx 16.2.6 we look in more detail at the coupling
between�i and the variation in packet transit times.

In bothN1 andN2, about 2/3's of the data packets were loaded. We might at first expect
more loaded packets inN2, due to its use of bigger windows. Window size, however, determines
whether the bottleneck link might continuouslyremainloaded. Even for a relatively small window
size, the TCP sender will transmit a number of packets (equal to the window size) over a fairly
short amount of time, and all of these but the first will be loaded. Once the entire window is in
flight, then a lull comes equal to the mismatch between the small window and the bandwidth-delay
product corresponding to the bottleneck rate and the RTT. Then the acks for the window arrive in
short order, and self-clocking leads to another flight of all-but-one loaded packets. Thus, window
size does not have a great deal of impact on the proportion of loaded packets.

Figure 15.7 shows the distributions of loss rates duringN2 for unloaded data packets,
loaded data packets, and acks. All three distributions show considerable probability of zero loss.4

3�+
B

is associated with��
i

because of the inverse relationship given by Eqn 15.2; the higher the bottleneck bandwidth,
the lower the time required for a packet to transit across the bottleneck, so the less load associated with the packet.

4Each curve also shows a horizontal shift just above a loss rate of 0%. These reflect the fact that the loss rate is



302

From the figure, we immediately see that loaded packets are much more likely to be dropped than
unloaded packets, as we would expect. In addition, we see that acks are consistently more likely than
unloaded packets to be dropped, but generally less likely to be dropped than loaded packets, except
during times of severe loss, above about 14%, which make up the upper 10% of the distributions.
We interpret the difference between ack and data loss rates as reflecting the fact that, while an ack
stream presents a much lighter load to the network than a data packet stream (particularly a series
of loaded data packets), the ack stream doesnot adapt to the current network conditions, while
the data packet stream does. Thus, unloaded data packets gain the twin benefits of traveling at a
time when the connection is not itself significantly contributing to load along the network path,
and also lowering their transmission rate during times of congestion. Loaded data packets stress
the network path, but at least they adapt, and, during periods of heavy congestion, their adaptive
behavior outweighs the advantages of ack streams that otherwise favor acks during periods of lower
congestion.

The equivalent set of distributions forN1 is qualitatively the same, though the distance
between the three distributions is narrower. This likely reflects both the overall lower loss rates in
N1 (x 15.1) and the use of smaller windows limiting loss rates for loaded packets.

It is interesting to note the extremes that packet loss can reach. InN2, the largest unloaded
data packet loss rate we observed was about 47%. For loaded packets it climbed to 65%. As we
would expect, these connections suffered egregiously, achieving overall data throughput rates in
the low hundreds of bytes per second due to lengthy, backed-off timeout periods. However, they
did manage to successfully complete their transfers within their alloted ten minutes, a testimony to
TCP's tenacity. For both of these extremes,no acks were lost in the reverse direction! The largest
ack loss rate was even higher, 68%. Starved for confirmation of forward progress, this connection
also managed only a few hundred bytes per second. Ironically,no data packets were lost in the
forward direction!

As indicated by these extreme cases, clearly packet losses on the forward and reverse paths
are sometimes completely independent. Indeed, the coefficient of correlation between combined
(loaded and unloaded) data packet loss rates and ack loss rates inN1 was about 0.21, with the
correlation for connections within North America falling to 0.13. InN2, however, the loss rates
become uncorrelated (coefficient of�0:02), perhaps due to the greater prevalence of significant
routing asymmetry (Chapter 8).

Another form of asymmetry is the degree to which loss correlates with the connection's
throughput. We would expect that data packet loss rates correlate more strongly, and negatively, with
throughput, since each loss requires a retransmission that subsequently cuts the sender's transmis-
sion rate, and perhaps entails a lengthy timeout lull. Ack loss, on the other hand, may go unnoticed,
if light, since acks are cumulative, and, if another ack arrives shortly, the connection will not stall
for any appreciable amount of time.

To fairly gauge the correlation, we need to first account for the different maximum
throughput rates due to the different bottleneck bandwidth rates. We do so by dividing the achieved
throughput over the entire connection (total bytes transferred divided by total duration) by the esti-
mated bottleneck bandwidth. We then compute�, the coefficient of correlation, between theloga-
rithm of the normalized throughput and the loss rates of interest, where the logarithmic transforma-

computed in terms ofk packets lost out of a total ofn, hence1=n is the minimum possible positive loss rate. Since, for
most connections,n � 200 packets, we observe a minimum possible loss rate of around 0.5%.



303

Unloaded Data Packet Loss Rate (%)

P(X
 >=

 x)

0 10 20 30 40

0.0
001

0.0
010

0.0
100

0.1
000

1.0
000

Figure 15.8: Complementary distribution plot ofN2 unloaded data packet loss rate

tion is to reduce the otherwise dominating effect of throughput outliers.
For N2, we find that� for the overall data loss rate is quite large, about�0:52, with

unloaded loss rates a bit more strongly correlated than loaded loss rates. Presumably this latter
effect is because backed-off timeout retransmissions, which have the greatest deleterious effect on
connection throughput, always generate unloaded data packets, and further back-off occurs when
these packets are then lost. The corresponding� for ack loss rates also indicates a fairly strongly
correlation, with a value of�0:42. Since these figures are forN2, this correlation isnot due to
any coupling between the ack loss rate and the data packet loss rate, because the two are generally
uncorrelated, as shown previously. Instead, the correlation is probably due to the coupling between
the ack loss rate and the possibility of losing an entire flight's worth of acks, which then unavoidably
leads to a timeout retransmission (x 15.6).

The significant correlation between ack loss rates and normalized connection throughput
indicates that, when attempting to predict a connection's throughput along a particular forward path,
it pays to have information about conditions along the reverse path, too. For the North American
region (as defined inx 15.1), the correlations weaken somewhat, to�0:40 for data packet loss
rates and�0:25 for acks. Thus, we must recognize that the strength of the correlations varies
considerably.

The distributions in Figure 15.7 have shapes suggestive of exponential distributions, if we
ignore the considerable zero portion of each distribution. Further investigating the distributions, one
striking feature we find is that the non-zero portion of both the unloaded and loaded data packet loss
rates is almost exactly exponential, while that for acks is not nearly so close a match.

Figures 15.8, 15.9, and 15.10 show logarithmically scaled complementary distribution
plots of the unloaded, loaded, and ack loss rates, conditioned on observing at least one loss. A
straight line on such a plot corresponds to an exponential distribution. We have added least-squares
fits to each plot. We see that, for both unloaded and loaded data packets, the loss rate distribution is



304

Loaded Data Packet Loss Rate (%)

P(X
 >=

 x)

0 10 20 30 40 50 60

0.0
001

0.0
010

0.0
100

0.1
000

1.0
000

Figure 15.9: Complementary distribution plot ofN2 loaded data packet loss rate

Ack Loss Rate (%)

P(X
 >=

 x)

0 20 40 60

0.0
001

0.0
010

0.0
100

0.1
000

1.0
000

Figure 15.10: Complementary distribution plot ofN2 ack loss rate



305

quite close to exponential, but for acks it deviates considerably more. The effect is widespread: it is
also present forN1, and for the North American and European subsets ofN2.

While striking, interpreting the fit to the exponential distribution is difficult. If, for ex-
ample, packet loss occurs independently and with a constant probability, then we would expect the
loss rate to reflect a binomial distribution, but that isnot what we observe. (We also know from the
results inx 15.1 that there isnot a single Internet packet loss rate, or anything approaching such a
situation.)

It seems likely that the better exponential fit for both loaded and unloaded data loss rates
than ack loss rates holds a clue. The most salient difference between the transmission of data
packets and that of acks is that the rate at which the sender transmits data packetsadaptsto the
current network conditions, and furthermore it adaptsbased on observing data packet loss. Thus,
if we passivelymeasurethe loss rate by observing the fate of a connection's TCP data packets,
then we in fact are making measurements using a mechanism whose goal is to lower the value of
what we are measuring (by spacing out the measurements). Consequently, we need to take care
to distinguish between measuring overall Internet packet loss rates, which is best done usingnon-
adaptivesampling, versus measuring loss ratesexperiencedby a transport connection's packets—
the two can be quite different.

15.3 Loss bursts

In this section we look at the degree to which packet loss occurs inburstsof more than
one consecutive loss. Analytic models of network behavior often assume individual packet losses
occur at a fixed rate but independently from other losses, as this assumption aids in keeping the
models tractable. Accordingly, to gauge the strength of these models we need to address the issue
of the soundness of this assumption.

As with loss rates, we expect that the size of loss bursts depends on whether we analyze
losses of loaded data packets, unloaded data packets, or acks. These each correspond to a different
transmission rate, and, furthermore, the first two are generated at a rate dynamically adapted to the
frequency of previously observed packet loss, while acks are not.

The first question we address is the degree to which packet losses are well-modeled as
independent. In [Bo93], Bolot investigated this question by comparing the unconditional loss prob-
ability, which we denote asP u

l (ulp in Bolot's paper), with the conditional loss probability,P c
l (clp),

whereP c
l is conditioned on the fact that the previous packet was also lost. He found thatP c

l � P u
l

always held, which one would expect, as it would be surprising if loss of the previous packet made
loss of the next packet less likely. He investigated the relationship betweenP u

l andP c
l for different

packet spacings�, ranging from 8 msec to 500 msec. He found thatP c
l approachesP u

l as� in-
creases, indicating that loss correlations are short-lived, and concluded that “losses of probe packets
are essentially random as long as the probe traffic uses less than 10% of the available capacity of the
connection over which the probes are sent.” He also observed thatP u

l stabilized at about 10%, quite
a high loss rate, though the path being studied included a heavily loaded trans-Atlantic link, and also
a mid-level network known to have previously experienced 3% loss rates unrelated to congestion.

Table XXIII summarizesP u
l andP c

l for the different types of packets and our two datasets.
P c
l conditions on whether the connection's previous packet was lost, even if it is a different type than

its successor (e.g., a loaded packet lost followed by an unloaded). Clearly, for TCP packets (which



306

Type of loss P u
l P c

l

N1 N2 N1 N2

Loaded data pkt 2.8% 4.5% 49% 50%
Unloaded data pkt 3.3% 5.3% 20% 25%
Ack 3.2% 4.3% 25% 31%

Table XXIII: Unconditional and conditional loss rates for different packet types

have a large range of interarrival intervals), we must discard the assumption that loss events are
well-modeled as independent. Even for the low-burden, relatively low-rate ack packets, the loss
probability jumps by a factor of seven if the previous ack was lost. We would expect to find the
disparity strongest for loaded data packets, as these must contend for buffers with the connection's
own previous packets, as well as any additional traffic, and indeed this is the case. We find the
effect least strong for unloaded data packets, which accords with these not having to contend with
the connection's previous packets.

It is interesting to observe that loaded packets are unconditionally less likely to be lost than
unloaded packets. We suspect this reflects the fact that lengthy periods of heavy loss or outages will
lead to timeout retransmissions, and these are unloaded, so they contribute to the loss probability of
unloaded packets rather than loaded packets.

The relative differences betweenP u
l andP c

l in Table XXIII all exceed those computed by
Bolot by a large factor. His greatest observed ratio ofP c

l toP u
l was about 2.5:1. However, hisP u

l 's
were all much higher than those in Table XXIII, even for� = 500 msec, suggesting that the path he
measured differed considerably from a “typical” path in our study.

(We also note that, since TCP packet loss events are not well-modeled as independent,
it behooves us in general to avoid discussing unconditional packet loss in terms ofprobability,
since for networking analysis this stochastic term often carries with it an implicit assumption of
independence among the events. We advocate instead consistent use of the term packet lossrate,
since this term downplays the implication of independence.)

Given that packet losses occur in bursts, the next natural question is: how big? To address
this question, we grouped successive packet losses intooutagesand computed for each outage the
number of packets lost and the duration of the outage in terms of the difference between the sending
times of the two successfully arriving packets delimiting the outage. (Note that a data packet outage
can encompass both loaded and unloaded packets.)

Figure 15.11 shows the distributions of the outage durations for data packets and acks in
N1 andN2, using a logarithmicx-axis. We see considerable variation for the length of small outage
durations. Our definition of duration as the time between two successfully arriving packets spanning
the outage means the durations are bothupper bounds,5 and hence will be considerably skewed, for
small values, by variations in the inter-packet spacing. The distributions are really only solid for
larger values. Above 200 msec, the distributions agree quite closely, except thatN2 data packet

5However, for large estimates the degree of overestimation is limited by the retransmit timer backoff (x 9.2.3), and
hence the estimated duration is off by at most a factor of two. Since we analyze the distributions using logarithmicx-
axes, this factor at most results in a translation of the distribution's body—it does not appreciably alter the shape of the
log-transformed distribution.



307

Outage Duration (sec)

10^-6 10^-4 10^-2 10^0 10^2

0.0
0.2

0.4
0.6

0.8
1.0 N1 Data

N1 Acks
N2 Data
N2 Acks

Figure 15.11: Distribution of packet loss outage durations

outages are considerably shorter lived, no doubt because, inN2, the connections often had many
more data packets in flight (x 9.3), and so had significantly more opportunity to observe short-lived
outages.

Figure 15.12 shows the distributions conditioned on the outage exceeding 200 msec,
which removes the effect of theN2 data packets observing more short-lived outages. (Thex-axis
extends only to 50 sec even though all of the distributions have some larger points. The plotting
truncation lets us focus on the main body of the distribution in more detail than we could if we
included the entire upper tail.) We see that, for outages of this length or longer, all four distributions
agree fairly closely.

It is clear from Figure 15.11 that outage durations span several orders of magnitude. For
example, 10% of theN2 ack outages were 33 msec or shorter, while another 10% were 3.2 sec or
longer, a factor of a hundred larger. Furthermore, the upper tails of the distributions are consistent
with those of Pareto distributions. Figure 15.13 shows a complementary distribution plot of the
duration ofN2 ack outages, for those lasting more than 2 sec (about 16% of all the outages). Both
axes are log-scaled, so a straight line on the plot corresponds to a Pareto distribution. We see the
long outages fit quite well to a Pareto distribution with shape parameter� = 1:06, except for the
extreme upper tail, to which we will return in a moment.

A shape parameter� � 2 means that the distribution hasinfinite variance, indicating
immense variability. Pareto distributions for activity and inactivity periods play key roles in some
models of self-similar traffic [WTSW95, WP97, WPT97]. We do not attempt further analysis here
of the possible role of packet loss outages in contributing to self-similar correlations in aggregate
network traffic, but note that it may prove a fruitful area for further research.

However, it is clear in the plot that the extreme upper tail does not fit the same Pareto distri-
bution. This discrepancy could simply be because the uppermost tail is subject to truncation, due to
the 600-second lifetime to which our connections were limited (x 9.3). But the discrepancy could in-



308

Outage Duration (sec)

0.5 1.0 5.0 50.0

0.0
0.2

0.4
0.6

0.8
1.0 N1 Data

N1 Acks
N2 Data
N2 Acks

Figure 15.12: Distribution of packet loss outage durations exceeding 200 msec

Ack Outage Duration (sec)

P[X
 >=

 x]

5 10 50 100 500

0.0
001

0.0
010

0.0
100

0.1
000

1.0
000

Figure 15.13: Log-log complementary distribution plot ofN2 ack outage durations



309

stead reflect two different loss mechanisms. We showed inx 6.8 that “temporary outages” observed
by traceroute measurements appear well-described usingexponentialdistributions, which are
much less volatile than Pareto distributions. That analysis, however, was confined to time scales of
30 sec or longer, and, forR2 (corresponding in time toN2), we found a mixture of exponentials,
with the second only fitting to outages exceeding 75 sec in duration. This latter fit corresponds to the
extreme upper tail in Figure 15.13. This in turn leads us to speculate that the distribution of outage
durations might reflect a Pareto distribution for losses due to heavy congestion, and an exponential
distribution for losses due to routing outages. We could test this hypothesis by gathering packet loss
measurements made over longer periods of time, which would eliminate the ambiguities presented
by the 600-second lifetime truncating the upper tail of our measurements.

We might also consider analyzing thenumberof lost packets in an outage, rather than
the duration of the outage. This value, however, is much more subject to fluctuation due to the
particulars of how many packets the TCP had in flight prior to the outage, or how many acks it had
to generate during the outage in response to incoming data packets. We note that the mean number
of packets lost during an outage was around 1.5, slightly lower for acks and higher for data packets.
The loss extremes we observed were 68 consecutive data packets and 40 consecutive acks (most
of which were dups in response to a large number of incoming packets). These extremes are less
interesting than the extreme outage durations, because the former are specific to the structure of the
TCP connections—both occurred due to very large numbers of data packets in flight,

We also note that the patterns of loss bursts we observe might be greatly shaped by use of
“drop-tail” queueing. With the drop-tail policy, a router queues incoming packets until the available
buffer space is exhausted, and then drops any additional arrivals until sufficient space becomes
available again. Routers using drop-tail comprise the vast majority of Internet routers, no doubt
because it is very simple to implement.

Simulations show that drop-tail leads to large bursts of losses when a flight of closely-
spaced packets arrive at a router with no available buffers, and the entire flight is dropped [FJ93].
Related to this problem is a basicunfairnessin how packets are dropped: a connection may suffer
a large number of losses because adifferentconnection is occupying all of the router's buffer. In
response to these problems, [FJ93] developed the “Random Early Drop” (RED) policy, in which
the router drops (or marks) incoming arrivals before all of the buffer has been exhausted. These
drops are made with probabilities reflecting the proportion of the router's resources used by the
connection, so the policy is much more fair than drop-tail. Because REDspreads outlosses over
time, widespread deployment of RED could significantly alter loss patterns and the corresponding
connection dynamics.

A final loss burst pattern we investigated was the presence ofperiodic losses: outages oc-
curring a fixed interval apart. Floyd and Jacobson observed periodic losses and described how they
could arise due to global synchronization of the times at which routers exchange updates [FJ94].
They showed how fixed-interval timers such as thirty second update periods act as resonant fre-
quencies, which can synchronize in phase to other events occurring at the same frequency. Periodic
losses are thus possibly symptomatic of widespread synchronization in the network, which can have
debilitating effects on network performance, especially since large loss periods can in turn synchro-
nize all of the TCP senders that suffer a loss during the period.

Unfortunately, our measurements are ill-suited to detecting periodic loss. Rather than
having fixed intervals between our loss “probes” (i.e., the individual packets of a single TCP con-



310

nection), which would then lend themselves nicely to frequency-domain analysis, we have variable
intervals. Furthermore, we used much larger, variable intervals between groups of measurements
(connections), precisely to avoid problems with the measurements synchronizing to any periodici-
ties present in the network. Thus, while we can analyze the timing of all of the lost packets in our
measurements, the measurements themselves are sparse, and also are cluttered with a great deal of
loss that is clearly not periodic.

We attempted to analyze for periodic loss by first identifying a North American subset
of our sites with clocks highly synchronized to each other. We identified the day with the most
connections between those sites and extracted from the traces a dataset giving the timesLi of each
packet loss during those connections. We then constructed plots ofLi versusLi mod �, and varied
� through the range of1; 2; : : : ; 120 sec. We hoped to find a� for which many of theLi mod

� clustered about a particular value. However, no compelling modulus emerged. We repeated
the analysis for data packets sent to Europe, shown in Table XXII as the most loss-prone Internet
path, to test whether perhaps their heavy losses are due in part to a periodic component rather than
congestion. Again, we did not find persuasive evidence of frequent periodic losses.

We conclude that periodic losses do notstronglydominate TCP packet losses. However,
the mismatch between our measurements and those needed to thoroughly examine the question of
periodic losses is great enough that we cannot from our evidence conclude that such losses do not
regularly occur.

15.4 Loss location

We discussed in Chapter 14 how each network path contains one (or more) “bottleneck”
element(s) that limit the maximum rate a connection using the path can achieve. It is natural to
assume that this bottleneck element is also the point of congestion along the path, because it has the
least amount of one of the network's most important resources, namely bandwidth. Consequently,
for a given load in terms of volume of packets to forward along a network path, the bottleneck
elements will be the most stressed of those along the path, since they require the most time to
service the load. With this assumption, we are again (as inx 15.2) abstracting the intricate, multi-
element network path to a presumably equivalent model of a single element that forwards at the
bottleneck rate, and at which all significant queueing occurs.

One might think that, with only end-to-end measurements, one lacks sufficient informa-
tion to verify whether in fact loss occurs at the bottleneck or at some other element. Sometimes,
however, we can, as illustrated by Figure 15.14 and Figure 15.15. Both sequence plots reflect data
packet arrivals at the receiver, with the packets flowing in steadily at the bottleneck rate. In each
plot, one packet has been lost, and the circle indicates where it would have arrived had it not been
lost, and had it likewise arrived at the bottleneck rate. In Figure 15.14, its successor arrives in the
position where the lost packet would have otherwise arrived. This indicates its successor didnot
queue behind the lost packet, but instead behind the lost packet's predecessor; hence the lost packet
must never have made it across the bottleneck link. In Figure 15.15, however, the successor arrives
in the same position that it would have, had the lost packet safely arrived too. Thus, the successor
did queue behind the lost packet at the bottleneck, and we conclude that the lost packet did indeed
make it across the bottleneck link, only to be dropped later.

In general, we prefer that packets are droppedbeforethe bottleneck, so they do not fruit-



311

Time

Se
que

nce
 #

6.6 6.8 7.0 7.2

430
00

440
00

450
00

460
00

470
00

Figure 15.14: Receiver sequence plot showing packet lost at or before bottleneck link

Time

Se
que

nce
 #

3.4 3.6 3.8 4.0

160
00

170
00

180
00

190
00

Figure 15.15: Receiver sequence plot showing packet lost after bottleneck link



312

lessly consume the (usually) scarce bottleneck resource. In this section, we analyze how often this
occurs. We first clarify our terminology. We will refer to a packet lost after it has been successfully
forwarded by the bottleneck element as occurring “after the bottleneck,” while one lost earlier as
occurring “before the bottleneck.” These latter may have been lost because of a full queue just be-
fore the bottleneck element, or may have been lost further upstream. Some network paths may have
multiplebottlenecks, meaning a number of elements with the same limiting rate. Since our analysis
is based on the patterns in Figures 15.14 and 15.15, in the case of multiple bottlenecks we consider
only loss after or before the first of the bottlenecks. Loss prior to subsequent bottlenecks will still
appear at the receiver as in Figure 15.15, since the data packets will have already been spread out
by the first bottleneck.

Our analysis is doomed to be inexact, since effects such as data packet compression
(x 16.3.2) and spurious extra delay often obscure the patterns so clearly evinced in Figures 15.14
and 15.15. But we still aspire to attempt some sort of meaningful analysis, since the basic question
of position of loss is an intriguing one, with the potential to reshape our abstractions when analyzing
networks.

We proceed as follows. For each lost data packet, we check whether both its predecessor
and successor arrived successfully. If not, then we ignore the packet for our analysis, which removes
from our possible results the effects of loss bursts. Since we know fromx 15.3 that loss bursts are
not uncommon, the resulting bias means our results will at best be only qualitative. (We attempted to
extend the analysis to include loss bursts, but the ambiguities of whether the next successful packet
had to queue behind onlysomeof the packets lost in the burst proved too difficult to remove.)

If both predecessor and successor arrived, then we check whether the lost packet was
sufficiently “loaded” (x 15.2) that, upon arriving at the bottleneck, it would find its predecessor
waiting in the queue, not yet having begun its service. If not, then we again ignore the packet for
our analysis. Doing so assures we only analyze lost packets that would nominally have occupied a
full “slot” at the queue, and not a partial slot due to arriving while its predecessor was in the process
of transmission across the bottleneck.

If the lost packet was sufficiently loaded, then we check whether its successor was sent
soon enough after that, had the lost packet queued at the bottleneck, its successor would have arrived
at the bottleneck before the lost packet beganits bottleneck transmission, and thus the successor
would have been delayed a full “slot” in the queue, too. If the successor was sent too late, we again
ignore the lost packet for our analysis.

If the successor was sent sufficiently soon after the lost packet, then we next inspect the
arrival time of the successor. If it is within�25% of the time expected had the lost packet never been
transmitted (no bottleneck “load” incurred), then we consider the lost packet as having been dropped
before the bottleneck. If the successor arrives within�25% of the time expected had the lost packet
indeed loaded the bottleneck, then we consider the loss as occurring after the bottleneck. If the
successor's arrival is between these two ranges, then its arrival is “ambiguous,” and if its arrival is
after (or before) both ranges, then its arrival is “inconsistent,” meaning the simple packets-arriving-
at-the-bottleneck-rate scenario we envision is inadequate, probably due to downstream queueing.

In bothN1 andN2, about a third of the losses fit the “inconsistent” category, and almost
none were “ambiguous.” Of the remaining two-thirds, we find that, inN1, fully 48% of the losses
occurred after the bottleneck. InN2, the figure falls to 28%. These figures, however, are less than
solid in two important ways. First, if a packet is lost before the bottleneck, but its successor queues



313

behind a packet fromanother connectionat the bottleneck, then we will still obtain the signature of
an after-bottleneck loss. It is difficult to see how to quantify the frequency of this effect given only
end-to-end measurement data. Second, our analysis is somewhat skewed by the presence of sites in
our study with low-speed Internet connections. For connections involving these sites, the bottleneck
will often be immediately at the sender (or before the receiver), so there is little opportunity for loss
before (or after) the bottleneck. If we restrict our analysis to only connections with a bottleneck rate
exceeding 100 Kbyte/sec, then inN1 we find 36% of the losses occur after the bottleneck, and 26%
in N2.

From this analysis, we conclude that, for isolated packet losses (not bursts), the assump-
tion that loss occurs at or before the bottleneck link is certainly true more often than not. But if loss
position is critical to some analysis, then one must accommodate the possibility of loss occurring
after the bottleneck. We also conclude that perhaps 25% of packet loss occurs regretfully late in
the network path, meaning that an upstream bottleneck link spent its scarce resources carrying a
doomed packet.

15.5 Evolution of packet loss rate

In this section we look at how packet loss rates along an Internet path evolve over time.
Our goal is to determine how fruitful it might be to cache packet loss information for Internet paths
to better estimate the service we might expect from the paths in the future. For each path in our
study, we analyze the evolution of the ack loss rate along the path in several different ways. Clearly,
there will be great variation among some of the paths in how the loss rate evolves over time. But
we presently limit ourselves to investigating overall patterns of loss rate evolution, aggregated over
all of theN2 connections. We do not analyze theN1 connections because few of theN1 paths were
measured frequently enough to allow solid analysis.

We first look at how well observing no loss along the path for a 100 Kbyte connection
predicts experiencing no loss along the path for another such connection at some point in the future.
For each zero-loss connection,c, we compute the pairh�Tc; I

z
c i, where�Tc is the time between

that connection and the next successful connection,c0, we observed along that path; andIzc is an
indicator function with a value of 1 ifc0 also experienced no loss, and 0 if it did.

After constructing these pairs, we sort them on�Tc and then compute the probability
P z(�T ) that a connection that comes an interval�T after a zero-loss connection will also be zero-
loss, as follows. LetIz

(i)
denote theith indicator, sorted on�Tc. Beginning with bP z

0 = 1, we run
an exponentially-weighted moving average (EWMA) with� = 0:01 through the sorted indicators,
where theith value of the average is computed as

bP z
i = (1� �) bP z

i�1 + �Iz(i):

Let bP z(�T ) then bebP z
i for the value ofi corresponding to the interval�T .

Using� = 0:01 means thatbP z
i is dominated by the preceding 100 values ofIz, though

earlier values still contribute to the smoothing. Our goal is to turn the indicator values into meaning-
ful probability estimates, while still allowing for effects that are localized to different time intervals.

Figure 15.16 shows howbP z(�T ) evolves with time. Thex-axis gives the time between
the first zero-loss connection and the subsequent connection, logarithmically scaled, and they-axis
gives the smoothed probability that the subsequent connection is also zero-loss.



314

Interval Between Connections (sec)

Pro
bab

ility
 Als

o Z
ero

-Lo
ss

10^2 10^3 10^4 10^5 10^6

0.7
0.8

0.9
1.0

Figure 15.16: Evolution of how well observing a zero-loss connection predicts that a future connec-
tion will also be zero-loss

We had very few successive connections in our study separated by less than 60 sec, be-
cause the NPDs reuse TCP connection identifiers (to aid in filtering the traffic, perx A.2), and most
TCP implementations set a minimum waiting interval on reusing identifiers of 1 minute or more.6

Because of the combination of exponential smoothing and very few closely-spaced suc-
cessive connections, the leftmost portion of the plot exhibits an artifact in terms of a steep dip from
probability 1.0 to probability 0.8. Had we instead used an initial probability ofbP z

0 = 0:8, then this
spike would disappear. Putting aside the spike, we see that the probability of again observing a
zero-loss connection stays at about 0.75 for intervals on the order of a few minutes to a few hours.
Above about 6 hours, it approaches what appears to be a “steady state” of 0.70, which continues all
the way out to several weeks. Thus, observing a zero-loss connection remains a good predictor of
observing future zero-loss connections, even for points in time quite far in the future.

Figure 15.17 shows the same evolution except for the predictive power of observing a non-
zero-loss connection rather than a zero-loss connection. The pattern is similar, though the steady
state shows signs of declining on time scales of weeks. The “notch” at about 6 hours (21,600 sec)
is somewhat puzzling, though it is perhaps simply an artifact, as the region surrounding the notch
contains only about 200 points. The notch at four minutes is likewise puzzling: it contains 20% of
all of the points, and hence is clearly not spurious, but it is difficult to see what mechanism would
lead to less correlation between connections 3-5 minutes apart compared to those further apart. (The
comparable notch in Figure 15.16 occurs instead at two minutes, and contains only 3% of the points,
so it is perhaps spurious.)

The final aspect of packet loss evolution we look at is how loss rates change over time.
For each connection, we computehTc; �ci, whereTc is the time when the connection began and�c

6The TCP specification sets this time at 4 minutes, though it provides exceptions for which it can be bypassed [Br89].



315

Interval Between Connections (sec)

Pro
bab

ility
 Als

o N
on-

Zer
o-L

oss

10^2 10^3 10^4 10^5 10^6

0.7
0.8

0.9
1.0

Figure 15.17: Evolution of how well observing a non-zero-loss connection predicts that a future
connection will also be non-zero-loss

is the ack loss rate. We then compute for consecutive connectionsc1 andc2 along the same path the
pair h�T1;2;�1;2i, where:

�T1;2 = Tc2 � Tc1 ;

�1;2 = j�c2 � �c1 j:

Thus,�1;2 gives the magnitude of the difference in loss rates between the two connections.
Figure 15.18 shows how the EWMA of�1;2 evolves as�T1;2 increases, where the

smoothing is done with� = 0:01 and with an initial value of�0;0 = 0. We see an almost immedi-
ate jump to a mean difference of�2% in loss rate, followed by a steady climb up to a difference of
�4% at about 10 hours, followed by a jump to the�6 � 8% level for larger time intervals, where
the variation for very large time scales (weeks) at the righthand edge of the plot may be spurious,
due to an exceedingly small number of samples.

From Figures 15.16, 15.17, and 15.18, we conclude that observing no loss along a path is
a good predictor that we will continue to not observe loss along the path, even far into the future;
that the same holds almost as strongly for observing loss predicting we will observe future loss; but
that the farther into the future we wish to project, the more difficult it is to accurately assess the
magnitudeof the loss rate based on the magnitude of the currently observed loss rate. These find-
ings support the notion developed earlier in this chapter that network paths have two general states,
a tendency towards loss-free connections (“quiescent”), and a tendency towards lossy connections
(“busy”), and provide evidence that both states are long-lived, on time scales of hours, presumably
because they are functions of whether the path has adequate capacity for the aggregate traffic deliv-
ered to it, and aggregate traffic rates generally change on time scales of hours [PF95]. We also find
that, while we may predict future loss rates fairly accurately for time scales of minutes to hours, as
time scales grow beyond, our predictive power diminishes.



316

Interval Between Connections (sec)

Me
an 

Dif
fere

nce
 In 

Los
s R

ate

10^2 10^3 10^4 10^5 10^6

0.0
0.0

2
0.0

4
0.0

6
0.0

8

Figure 15.18: Evolution of the mean difference in loss-rate between successive connections along
the same path

15.6 Efficacy of TCP retransmission

The final aspect of packet loss we investigate is how efficiently TCP deals with it. Ideally,
TCP retransmits any lost data until it is successfully received, but never retransmits unnecessarily,
as that would waste network resources. However, the transmitting TCP lacks perfect information,
and consequently will sometimes indeed retransmit unnecessarily. For example, TCP acknowl-
edgements arenot transmitted reliably; so, if a flight of data packets all arrive successfully at the
receiver, but all of the corresponding acknowledgements are lost, then the TCP has no choice but to
retransmit when the retransmission timer expires.

We analyzed the efficacy of retransmission by the different TCPs in our study as follows.
For each connection, we examine each retransmitted packetPr to see if the data contained inPr had
already been successfully sent.7 Note that the earlier, successful transmission may not have arrived
yet at the receiver at the time of the retransmission; we consider it successful, however, if an earlier
transmission of the dataeverarrives at the receiver.

If Pr contained data that had not previously been successfully transmitted to the receiver,
then we termPr “necessary,” otherwise we term it “redundant.”In bothN1 andN2, about 40%
of the retransmissions were redundant!As an aggregate statistic, this is not a happy number. It
means that two times out of five, the TCP should (1) not have retransmitted, and (2) not have cut
its congestion window, if the retransmission led it to do so. However, we need to investigate the
40% figure better, since there are a number of different reasons why a TCP might send redundant
retransmissions (RRs):

7The exact test is whetherall of the data inPr had been successfully sent. This fine point can be important if different
portions ofPr 's data were earlier sent in different packets.



317

Time

Se
que

nce
 #

0.45 0.50 0.55 0.60 0.65

600
00

700
00

800
00

900
00

Figure 15.19: Receiver sequence plot showing large number of sequence holes

unavoidable We mentioned earlier that, if the network drops all of the acks for a flight of data
packets, then the TCP sender has no choice but to retransmit, since no further feedback will
be forthcoming from the receiver.

pathological The packet was a timeout retransmission, but the interval between the data's earlier
transmission and this packet's was less than the minimum round-trip time ever seen. Hence,
the retransmission timeout used by the TCP was absolutely broken—the receiver did not
even have a chance to acknowledge the data—and, furthermore, a simple test by the TCP to
make sure that at least the minimum RTT had elapsed would have prevented the redundant
retransmission.

coarse feedbackSince TCP acknowledgements simply give the highest data sequence number re-
ceived in-order, when a TCP retransmits with a window larger than one packet (such as during
slow-start after a timeout), it may transmit unnecessary packets because the receiver lacks a
fine enough feedback mechanism to tell it which above-sequence packets have already ar-
rived. Figures 15.19 and 15.20 illustrate the problem. In the first sequence plot (measured
at the data receiver), we see that the sender has a large amount of data in flight, which until
aboutT = 0:47 has steadily streamed in. At that point, however, the packet with sequence
number 59,905 is lost. Many more packets continue streaming in, but they contain numer-
ous holes where some were lost. The new arrivals generate a torrent of duplicate acks in
response. Since, however, the acks only provide coarse feedback to the sender, all the sender
really knows is that sequence 59,905 was lost, and many more packets safely arrived—but it
does not know which.

The sender retransmits the first missing packet via fast retransmission (x 9.2.7), and this
packet arrives at the receiver just beforeT = 0:6. The receiver duly acknowledges up to the
next hole, and even generates some duplicate acks for new data arriving at sequence 90,625



318

Time

Se
que

nce
 #

1.95 2.00 2.05 2.10 2.15 2.20 2.25

650
00

700
00

750
00

800
00

850
00

900
00

950
00

Figure 15.20: Redundant retransmissions subsequent to previous figure

and above (sent due to fast recovery). These in turn lead to a fast retransmission for the next
hole, arriving atT = 0:63. At this point, however, the sender does not see any more incoming
acks allowing it to send more data via fast recovery (and it has halved its congestion window
twice, once per fast retransmission event, so it will take a while for more dup acks to inflate
the window far enough to enable fast recovery). Consequently, self-clocking ceases and the
sender stalls until a retransmission timeout occurs.

Until now, the retransmissions have all been necessary. The retransmissions after the timeout,
however, are a disaster, as shown in Figure 15.20. The first packet retransmitted after the
timeout was also necessary. Unfortunately, the acks generated by it (shown as large squares
in the plot) rapidly open the sender's congestion window due to slow start, and it sends larger
and larger flights of packets. Nearly all of these retransmitted packets are unnecessary—all
that is really needed is to fill the sporadic holes shown in Figure 15.19. Every duplicate ack
in Figure 15.20 corresponds to an unnecessary retransmission, yet because the sender lacks
fine-grain information regarding which above-sequence packets the receiver already has, it
continues retransmitting to fill the known holes (as indicated by the latest ack it has received),
as well as pouring additional, unnecessary packets into the network—23, all told.

The TCP research community has long known about this problem and is in the midst of stan-
dardizing a TCP extension to remedy it. With the extension, a “selective acknowledgement”
(SACK) option, acks can carry additional information concerning above-sequence packets
that have arrived at the receiver (x 13.1.3). The sender then uses this information to select
which packets require retransmission.

We consider an RR as reflecting TCP's “coarse feedback” problem if it occurredafter the
arrival of an ack that itself was sent after the original copy of the data arrived at the receiver.
Presumably, had we used SACK, this ack could have conveyed to the sender that the data had



319

Type of RR N1 total N2 total N1 Solaris N2 Solaris N1 Other N2 Other

% all packets 2% 3% 6% 6% 1% 2%
% retransmissions 43% 38% 66% 59% 26% 28%
Unavoidable 25% 25% 14% 33% 44% 17%
Pathological 2% 7% 3% 11% 0% 2%
Coarse feedback 18% 41% 1% 1% 51% 80%
Bad RTO 55% 28% 81% 55% 4% 1%

Table XXIV: Proportion of redundant retransmissions (RRs) due to different causes

already arrived, and the sender would have avoided the RR.

bad RTO If the RR was prompted by a timeout, and if an acknowledgment for the previously sent
data arrives after the timeout retransmission, then the TCP selected too low a value for its
retransmission timeout (RTO). The RR could have been avoided simply by waiting longer.

Table XXIV summarizes the prevalence of the different types of RRs inN1 andN2. The
second and third columns give the overall percentage of theN1 andN2 RRs due to each type.
The fourth and fifth columns give the same figures if we restrict the analysis to just Solaris TCP
senders, since inx 11.5.10 we discussed how it is prone to underestimating RTO and consequently
retransmitting too early, so we would expect it to exhibit a higher frequency of “pathological” and
“bad RTO” types of RRs than the other TCPs in our study. The final two columns summarize the
frequency of each type of retransmission for the non-Solaris TCPs.8

We see that a fair proportion of the RRs were unavoidable. (Some of these might, however,
have been avoidable had the receiving TCP generated more acks.) We note that forN2, which, with
its bigger windows (x 9.3), had more opportunity to successfully transmit an ack for part of the
window, only about 1/6 of the RRs for non-Solaris TCPs were unavoidable. Clearly it is worth our
efforts to first eliminate the avoidable 5/6's.

Pathological RRs could be eliminated with a simple test: if the packet being retransmitted
was previously transmitted (or retransmitted) less than one RTT in the past, then simply do not
retransmit it. Aside from Solaris, most pathological RRs occur within retransmission epochs, during
which earlier RRs lead to enough duplicate acks that the TCP resends data it sent shortly before due
to the window advancing. For Solaris, many occurred due to the problems the Solaris TCP timer
has with adapting to the true round-trip time, cf.x 11.5.10 andx 11.5.1.

“Coarse feedback” RRs would presumably all be fixed using SACK. The increase in non-
Solaris coarse feedback RRs inN2 is no doubt due to the use of bigger windows inN2, and hence
more opportunity for acks (and, thus, finer feedback) to potentially inform the sending TCP of what

8In x 11.5.8 we identified the Linux 1.0 TCP as suffering from many RRs due to its practice of retransmitting all
the unacknowledged packets rather than just the first. However, inx 10.5 we discussed how many of the Linux traces
could not be unambiguously paired in terms of packet departures and arrivals, precisely because of this retransmission
problem. In this section, we confine our retransmission analysis to those traces that we could unambiguously pair, so
we can distinguish between the different types of RRs (in particular, “coarse feedback,” which depends on whether the
original data arrived before a subsequently transmitted and received ack). Consequently, we analyzed very few Linux 1.0
traces and thus their presence does not significantly affect the statistics in Table XXIV.



320

Time

Se
que

nce
 #

10 15 20 25

200
00

400
00

600
00

800
00

Figure 15.21: Sender sequence plot showing failure of RTO adaption

packets the receiver already has. It is encouraging to see that, aside from Solaris TCPs, deployment
of SACK remedies almost all of the avoidable RRs. It makes almost no difference for Solaris TCP,
since many of its RRs occur before any ack for the previous transmission of data has arrived from
the receiver, due to the Solaris timer adaption problems.

“Bad RTO” RRs indicate that the TCP's computation of the retransmission timeout was
erroneous. These are the bane of Solaris TCP, as noted above. More than half of its RRs were
due to miscalculating the timeout. Fixing the calculation eliminates 4-5% ofall of the data traffic
generated by the TCP.9

The TCP standard requires use of Jacobson's exponentially-weighted moving average
(EWMA) round-trip time (RTT) estimate and associated variance estimate ([Br89, 4.2.2.15] and
[Ja88]), along with Karn's algorithm for eliminating ambiguous RTT estimates [KP87]. If we as-
sume that the non-Solaris TCPs do in fact implement this algorithm, then from Table XXIV we see
that it performs quite well.

Figure 15.21 shows an instance where it failed, or at least where HP/UX 9.05's imple-
mentation of it failed. Here the receiving TCP is offering a very large window, to which the sending
TCP is rapidly opening its congestion window in the face of no packet loss. The bottleneck link,
however, can only support about 7.3 Kbyte/sec, and so the window represents a large mismatch
with the correct window size needed to avoid overloading the bottleneck. Consequently, the RTT
rises rapidly as packets queue behind their predecessors. During the last five round trips, starting at
timeT = 10, the RTT increases by about 1 second during each trip. The RTO estimation algorithm
fails to track this rapid increase, and at timeT = 23 a retransmission timeout occurs, even though
the corresponding ack is just about to arrive. Subsequent acks for the first transmissions of the data
then rapidly feed the slow-start sequence begun by the timeout retransmission, and the sending TCP

9We note that this problem has already been fixed in Solaris 2.5.1.



321

promptly resends 63 packets, all redundant. However, we found pathological behavior like that
shown in the figure quite rare.

While the standard RTO estimation almost never leads to an unnecessary timeout retrans-
mission, a separate question, unanswered by these statistics, is whether it could be safely modified
to be less conservative. At present the timeout often occurs after much more than an RTT elapses.
A more aggressive RTO algorithm could potentially lead to higher connection throughput, because
timeout lulls would be less costly than they currently are. Yet, if the more aggressive algorithm leads
to excessive retransmission during times of RTT fluctuation, then it could contribute to congestion
collapse, a major disaster.

Answering the question of how the RTO estimation might be reengineered is a complex
problem. The current timer uses coarse-grained (as much as 500 msec granularity) measurements
with some subtle adjustments to compensate for the granularity, as well as timing only one packet
per flight. A revised timer might take advantage of both higher-resolution clocks and the opportunity
to time multiple packets per flight. The first affects the adjustment factors used by the current
algorithm, and the second changes the constant used in the EWMA estimator. Because the issues
are complex, we leave this interesting question for future work.

In summary: assuring standard-conformant RTO calculations and deploying the SACK
option together eliminate virtually all of the avoidable redundant retransmissions. The few remain-
ing RRs are rare enough to not present, overall, any serious performance problems.

The last aspects of TCP retransmission we investigate are the patterns of packet loss dur-
ing fast recovery sequences. The TCP fast recovery mechanism, described inx 9.2.7, works best
when only a single packet out of a flight is lost. When multiple packets in one flight are lost, the
fast recovery mechanism generally will not suffice to retransmit all of the missing packets, and the
TCP transfer will subsequently stall until a retransmission timeout, seriously diminishing through-
put [FF96, Ho96]. It was this problem that motivated the development of the SACK option, which
allows a TCP to efficiently recover from multiple losses.

A separate fast recovery problem occurs when the retransmitted packet is also lost.10

When this happens, the TCP will again stall until a retransmission timeout expires. In some circum-
stances, and depending on the algorithm used by a TCP to act upon information it acquires by using
the SACK option, a TCP using SACK can avoid this timeout by determining that the retransmitted
packet was itself lost, and retransmitting it again.

While these problems have been recognized for quite a while, no hard data has been avail-
able in order to gauge the degree to which they actually present difficulties for Internet connections.
We analyzed theN1 andN2 measurements to provide such data, as follows. For each packet retrans-
mitted using the fast recovery mechanism, we tallied whether the retransmitted packet was lost or
successfully arrived at the receiver, and also counted the number of outstanding (unacknowledged)
packets at the time of the retransmission that were lost.

In N1, out of 1,178 packets retransmitted using fast recovery, only 3.9% were themselves
lost. InN2, 15,444 packets were retransmitted using fast recovery (a significantly higher proportion
of all of the retransmissions than inN1, due to the use of bigger windows inN2, per x 9.3). Of
these, only 4.5% were also lost. (These proportions are quite close to the unconditional loss rates
we examined inx 15.1, and much lower than the conditional loss rates examined inx 15.3, indicating

10This problem also occurs for TCPs that implement “fast retransmit” (x 9.2.7) but not fast recovery. However, for
simplicity, we will only use the term “fast recovery” in our discussion.



322

that congestion often drains on time scales of RTTs.) Thus, we conclude that the second concern
discussed above is, in practice, not an especially serious problem.

However, in bothN1 andN2, one third of the time more than one packet was lost in the
flight prior to a fast recovery, and about 15% of the time, more than two packets were lost. These
proportions are high enough to give solid support for refining the fast recovery mechanism (such
as by adding SACK, or the modifications discussed by Hoe [Ho96]) in order to better cope with
multiple packet losses within a single flight.


