TheBro 0.8 User Manual

Vern Paxson
Lawrence Berkeley National Laboratory
and
ICSI Center for Internet Research
International Computer Science Institute
vern@icir.org

March 21, 2004

Contents

1 Introduction 9
2 Getting Started 12
2.1 RunningBro. e 12
2.1.1 BuildingandinstalingBro e e e 12
2.1.2 UsingBrointeractively e e 14
2.1.3 Specifyingpolicy scripts e e 15
2.1.4 Running Broon network traffic oo oo 15
2.1.5 ModifyingBropolicy e e 16
2.1.6 Broflags and run-time environment o 17

2.2 Helperutilities e e e e 19
221 SCHPIS . . 19
2.2.2 Thehfutility 02
2.2.3 Thecfutility 02

3 Values, Types, and Constants 21
3.1 OVEIVIEW . . . o e e e e 21
311 BroTYPeS . . o o o e e e e e 21
3.1.2 Type CONVEISIONS o o i i e e e e e e e 22

3.2 Booleans e e 22
3.2.1 BooleanConstants L e 22
3.2.2 Logical Operators e e e 22

3.3 NUMENC TYPES . . o o o e e e e e e e e e e e e e e e e 23
3.3.1 NumericConstants e e 23
3.3.2 MiXingNUmeric TYPES v o o e e e e e e e e e e 23
3.3.3 Arithmetic Operators e e 23
3.3.4 Comparison OPerators v i e e e e e e e 24

3.4 EnumerationS e e e e e 24
3.5 SHNGS e e e e 24
3.5.1 StringConstants e e e 24
3.5.2 StringOperators e e e e e 25

3.6 Patterns e 25
3.6.1 Pattern Constants e e 25
3.6.2 Pattern Operators e e e e 26

3.7 Temporal TYPES . . . o . o o e e e e 27

3.7.1 Temporal Constants e e e e 27
3.7.2 Temporal Operators e e e 27
3.8 PortType . . . e e 28
3.8.1 PortConstants e e e e 28
3.8.2 PortOperators e e e e e e 29
3.9 AdAresS TYPE v e e e e e e 29
3.9.1 AddressConstants e 29
3.9.2 Address Operators e e e 29
3.0 NetType e e 29
3.10.1 NetConstants i e e e e e e 30
3.10.2 NetOperators o e e e e e e e e 30
311 ReCOrdS . . . o o e 30
3.11.1 Definingrecords e e 30
3.11.2 Record Constants e e e 31
3.11.3 Accessing Fields Usin@™ 32
3.11.4 Record ASSIgNMeNt e e e 32
312 Tables e 33
3.12.1 DeclaringTables e e e 33
3.12.2 Initializing Tables e e 34
3.12.3 Table Attributes e 35
3.12.4 Accessing Tables L e e 37
3.12.5 Table Assignment L e e e 37
3.12.6 Deleting Table Elements 38
313 SetS . . e e 38
314 Files e 39
3.15 FUNCLIONS e e e e e 39
3.16 Eventhandlers e 41
3.17 Theany type o e e e 42
Statements and Expressions 43
4.1 StatementS e e e 43
4.2 EXPreSSIONS . . . v v v i e e e e e e e e e e e 46
Global and Local Variables 53
5.1 OVEIVIEW o e e e e e 53
511 SCOPE . . . o e e 53
5.1.2 Madifiability e e 54
5.1.3 TYPING . . o o e e e e e e e 54
5.1.4 Initialization e e 55
5.1.5 Attributes e e e 55
5.1.6 Refinement e 56

6 Predefined Variables and Functions 57

6.1 Predefined Variables 57
6.1.1 active.bro e 57
6.1.2 alert.bro. 57
6.1.3 anon.bro e 57
6.1.4 backdoor.bro e 58
6.1.5 bro.init e 60
6.1.6 code-red.bro L e 63
6.1.7 conn.bro e e 63
6.1.8 demux.bro e e 64
6.1.9 dns.bro e e 64
6.1.10 dns-mapping.bro e 65
6.1.11 fingerbro e 65
6.1.12 ftp.bro. e e 65
6.1.13 hot.bro e 67
6.1.14 hot-ids.bro e e 68
6.1.15 http.bro e e e 68
6.1.16 http-abstractbro e 69
6.1.17 http-request.bro e 69
6.1.18 icmp.bro e 70
6.1.19 ident.bro L e 70
6.1.20 interconn.bro e 70
6.1.21 login.bro e e e e 72
6.1.22 mime.bro e 74
6.1.23 ntp.bro L e 74
6.1.24 port-names.bro e 74
6.1.25 portmapperbro L e 75
6.1.26 rules.bro e e 76
6.1.27 scan.bro e e 76
6.1.28 site.bro e e 79
6.1.29 smtp.bro e e 79
6.1.30 smtp-relay.bro e e 80
6.1.31 software.bro e e 81
6.1.32 SsSh.bro L e 81
6.1.33 stepping.bro. e e 81
6.1.34 titp.bro e e e e 83
6.1.35 udp.bro e e e 83
6.1.36 weird.bro 83
6.1.37 WOrm.bro 83
6.1.38 Uncategorized e e 84

6.2 Predefined FUNCLIONS e e e 85
6.2.1 Run-time errors for non-existing connections L. 91
6.2.2 Run-timeerrorsforstringswithNULS 91
6.2.3 Functions for manipulating strings e o 91
6.2.4 Functions for manipulatingtimeo 91

7 Analyzers and Events 92

7.1

7.2
7.3

7.4

7.5

7.6

7.7
7.8
7.9
7.10
7.11
7.12

7.13

7.14

7.15

7.16

7.17

7.18

Activating an Analyzer e e e e e e e 92
7.1.1 Loading Analyzers e e 92
7.1.2 Filtering e e 93
General Processing Events e e 94
Generic Connection Analysis e e e e 95
7.3.1 Theconnection record 96
7.3.2 Definitions of connections L 98
7.3.3 Generic TCP connectionevents i i i it e e 99
7.3.4 Thetcp analyzer. 010
7.3.5 Theudp analyzer. e 010
7.3.6 CoNnection SUMMANIES v v vt et e e e e e e e e 101
7.3.7 Connectionfunctions e 103
Site-specific information 105
7.4.1 Sitevariables e e 105
7.4.2 Site-specificfunctions e e 106
Thehot Analyzer 106
7.5.1 hot variables 106
7.5.2 hot functions 110
Thescan Analyzer e 112
7.6.1 scan variables 112
7.6.2 scan functions e 114
7.6.3 scan eventhandlers 114
Theport-name Module e 115
Themt Module e 115
Thelog Module 115
Theactive Module 117
Thedemux Module 71
Thedns Module e 118
7.12.1 Thadns _mapping record. o o e e 118
7.12.2 dns variables L e 119
7.12.3 dns eventhandlers 119
Thefinger Analyzer e 2
7.13.1 finger variables e 012
7.13.2 finger eventhandlers 201
Thefrag Module e 2n
Thehot-ids Module e 121
Theftp Analyzer e e e e 122
7.16.1 Thdtp _session _info record 122
7.16.2 ftp variables e 123
7.16.3 ftp functions 125
7.16.4 ftp eventhandlers L e 126
Thehttp Analyzer e 127
7.17.1 http wvariables e 127
7.17.2 http eventhandlers 128
Theident Analyzer e 28

7.18.1 ident variables e e 291

7.18.2 ident eventhandlers 129
7.19 Thelogin Analyzer e 3a
7.19.1 login analyzerconfusion 131
7.19.2 login wvariables e 311
7.19.3 login functions e 371
7.19.4 login eventhandlers 138
7.20 Theportmapper Analyzer 142
7.20.1 portmapper variables 143
7.20.2 portmapper functions L 144
7.20.3 portmapper eventhandlers 146
7.21 Theanaly Analyzer e e e 48
7.22 Thesignature Module e 148
7.23 TheSSLAnalyzer 149
7.23.1 Thex509 record o e 150
7.23.2 Thessl _connection _info record 150
7.23.3 SSLvariables 151
7.23.4 SSLeventhandlers 152
7.24 Theweird Module e 54
7.24.1 Actionsfor“weird”events L e e 154
7.24.2 weird variables L e 541
7.24.3 weird functions L e 561
7.24.4 Events handled lppnn _weird L 156
7.24.5 Events handled lmpnn weird _addl L oo 160
7.24.6 Events handled Bpw weird 161
7.24.7 Eventshandled met weird 162
7.24.8 Events generated by the standardscripts 163
7.24.9 Additional handlers for “weird”eventso 163
7.25 Theicmp Analyzer 164
7.26 Thestepping Analyzer e e 164
7.27 Thessh-stepping Module e 164
7.28 Thebackdoor Analyzer e e e 164
7.29 Theinterconn Analyzer e 164
Signatures 165
8.1 OVEIVIEW . . . o e e e 165
8.2 Signaturelanguage e e e 165
8.2.1 Conditions e 166
8.2.2 ACHIONS e 168
8.3 SNOM2bro e 168
Interactive Debugger 170
9.1 OVEIVIEW . . o o ot e e e e 170
9.2 ASample SESSION e e e e e 170
9.3 Usage o e 172
9.4 NotesandLimitations e 172

9.5 Reference e e 172

10 Missing Documentation 176
10.1 Theuse gbrefixes e e e 176
10.2 Thetcpdump save filethat Browrites i 176
10.3 Thebro.init initializationfile 176
10.4 Assignmentoperatorssuchtas L 176
10.5 The notion of redefinition/refinement L 176
10.6 Theloggingmodel e e e e 176
10.7 Timer management e e e e e e e e e 177
10.8 SYN-FINfTiltering e e e 177
10.9 Splitrouting e e e 177
10.10 Scan dropping o e e e e 177
10.11 Operator precCedencCe o i e e e e e e 177
10.12 Partial connections e e 177
10.13 Packetdrops o e e e e e e 177
10.14 The@load directive o e e e e e e e e 177
10.15 Global statements L e e 177
10.16 Inserting tables intotables 177
10.17 Demultiplexing e e e e e e e 178
10.18 Broinitfile e e 178
10.19 Hostnames vs. addreSSesS o o o e e 178
10.20 The hot-report SCript e e e e 178
10.21 Use of libpcap/BPF e e e 178
10.22 The problem of evasion e e 178
10.23 Backscatter e e 178
10.24 Playing backtraces e e 178
10.25 Discarders o e e e 178
10.26 Differences between this release and the previousone. 178
10.27 Alertcascade e e e 179
10.28 The need for subtyping e e 179
10.29 Theneed for CIDR Masks 0 e i 179
10.30 Thewish list e e e 179
10.31 Known bugs o e 179

List of Figures

7.1 print-filter prints out thecpdump filter your Bro script would use and then exits. 94
7.2 Definition of thenet _stats record. 96
7.3 Definition ofconn _id andconnection records. 97
7.4 Sample definitiondbg _hook 116
7.5 Definition of thedns _-mapping record. 118
7.6 Definition of theftp _session _info record, 122
7.7 Example of FTP log file entries fora single FTP session. 124
7.8 Example of HTTP log file entries for a single HTTP session. 127
7.9 Definition of thex509 record e 150
7.10 Definition of thessl _connection _info record 150
7.11 Example of SSL log file with a single SSLsession. 152
8.1 Definition of thesignature _state record. 168

List of Tables

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

7.9

Different types of directions feet _contents file

TCP and UDP connection states, as stored erapoint record.
Summaries of connection states, as reporteednfiles.,
Different connection states to use when calbhgck _hot
Different types of confusion thidgin analyzercanreport.
Types of calls to the RPC portmapperservice.« wu oo i i v i o oot ..
Typesof RPC status codes. e e e

endpoint _stats fields for summarizing connection endpoint statistics
Possible actions to take for signatures matchesignatures-log defaults

open_log file("signatures™) e
Different types of possible actions to take for “weirdeats.o

Chapter 1

Introduction

Bro is an intrusion detection system that works by passiwaliching traffic seen on a network link. It is built around
anevent enginghat pieces network packets into events that reflect diftesges of activity. Some events are quite
low-level, such as the monitor seeing a connection attesaptie are specific to a particular network protocol, such as
an FTP request or reply; and some reflect fairly high-levéioms, such as a user having successfully authenticated
during a login session.

Bro runs the events produced by the event engine thropgliey script which you (the Bro administrator) supply,
though in general you will do so by using large portions ofgbepts (‘analyzers; see below) that come with the Bro
distribution.

You write policy scripts in “Bro”, a specialized languageaged towards network analysis in general and security
analysis in particular. Bro scripts are made upegént handlerghat specify what to do whenever a given event
occurs. Event handlers can maintain and update global istemation, write arbitrary information to disk files,
generate new events, call functions (either user-defingaeatefined), generatderts that producesyslogmessages,
and invoke arbitrary shell commands. These latter migintitete a running connection or talk to your border router
to install an ACL prohibiting traffic from a particular ho$br example.

The Bro language is strongly typed and includes a bunch efsgesigned to aid analyzing network traffic. It also
supportamplicit typing, meaning that often you don’t need to explicitly indicateaaiable’s type because Bro can
figure it out from context. This feature makes the strongrgpa bit less of a pain, while retaining its bug-finding
benefits.

For high performance, Bro relies on use of an efficipatket filterto capture only a (hopefully small) subset
of the traffic that transits the link it monitors. Related hist Bro comes with a set @halyzersthat is, scripts for
analyzing different protocols and different types of aitgiMn general you can pick and choose among these for which
types of analysis you want to enable, and Bro will only captuaffic relating to the analyzers you choose. Thus, you
can control how much work Bro has to do by the analyzers yoigdate, a potentially major consideration if the
monitored link has a high volume of traffic.

Experience has shown that the policy scripts often reqailering to each environment in which they’re used; but
if the tailoring is done by editing the analyzers suppliethwtine Bro distribution, you wind up with multiple copies of
the analyzers, all slightly different, such that when yountta make a general change to all of them, it takes careful
(and tedious) editing to correctly apply the change to athefcopies.

Consequently, Bro emphasizes the use of tables and setduesvas ways to codify policy particulars such as
which hosts should generate alerts if seen engaged in watymes of connections, which usernames are sensitive
and should trigger alerts when used, and so on. The varialgzars are written such that you can (often) customize

them by simply changing variables associated with the aealjrurthermore, Bro supports a notionrefining the
initialization of a variable, so that, in separatefile from the one defining an analyzer, you can eitfigredefine
the variable’s initial value(ii) add new elements to a given table, set or patterr{jipremoveelements from a given
table or set. In a nutshell, refinement allows you to speafyipular policies in terms of thedifferencedgrom existing
policies, rather than in their entirety.

You can find an overview of Bro in the paper “Bro: A System fort@ming Network Intruders in Real-Time,”
Proceedings of the 1998 USENIX Security Symposium [Pa38),arevised version ifomputer NetworkfPa99].

A copy of the latter is included in the Bro distribution.

Using this manual. This manual is intended to provide full documentation fagrsf Bro, both those who wish
to write Bro scripts to use Bro’s existing analyzers, andséhavho wish to implement event engine support for new
Bro analyzers. The current version of the manuah@mpletein particular, it does not discuss the internals of the
event engines, and a number of other topics have only plidetso

The manual is organizetbt as a tutorial, but rather closer to a reference manual. liicpéar, the intent is for the
indexto be highly comprehensive, and to serve as one of the maistimbelp you navigate through Bro’s numerous
features and capabilities. Accordingly, the index corgaimany “redundant” entries, that is, the same information
indexed in multiple ways, to try to make it particularly edaseylook up information. For example, you'll find a list of
all of the predefined functions under “predefined functiomasid also under “functions”. There are similar entries for
“events” and “variables”.

The manual also includddote’s andDeficiency’s that emphasize points that may be subtle or countertinyi
or that reflect bugs of some form. The general delineatiowden the two is thalNote’s discuss facets of Bro not
likely to change, whiléeficiency's will (should) eventually get fixed.

I'm very interested in feedback on whether the manual in gdrend the index in particular is effective, what
should be added or removed from it to improve it, any errousitbin the index or (of course) elsewhere in the manual,
and what topics you would give the highest priority for thetrevision of the manual. In additioany contributions
to the manuaWwill be highly welcome! You'll find the source for the manualdoc/manual-src/

The current version of the manual is organized as followsb®@gin with an overview of how to get started using
Bro: building and installing it, running it interactivelynd on live and prerecorded network traffic, and the helper
utilities (scripts and programs) included in the distribat(Chapter 2).

Chapter 3 then discusses the different types, values, amtarts that Bro supports. The intent is to provide you
with some of the flavor of the language. In addition, laterpthes use these concepts to explain things like the types
associated with the arguments passed to different evedtdran

Chapter 6 lists the different variables and functions that redefines. The variables generally reflect particular
values that control the behavior of the event engine or retiestatus, and the functions are for the most part utlitie
to aid in the writing of Bro scripts.

Chapter 7 discusses the different analyzers that Bro pesvitlis far and away the longest chapter, since there are
a good number of analyzers, and some of them are quite rid¢teinanalysis.

Chapter 8 describes how to use Breignature engineThe signature engine provides a general mechanism for
searching for regular expressions in packet payloads ssegabled TCP byte streams. Successful matches can then
be fed as events into your policy script for further analysisluding the opportunity to assess the match in terms of
surrounding context, which can greatly reduce the probléffia¢se positives” from which signature-matching can
suffer. The chapter also discusses how to incorporate fidesthe populaSnortintrusion detection system.

Chapter 9 gives an overview of Brasteractive debuggerfThe debugger allows you to breakpoint your policy
script and inspect and change the values of script variableschapter also describes the generatiatnaafesof all
of the events generated during execution.

Finally, Chapter 10 briefly lists different aspects of Bratthave not yet been documented (in addition to the event
engine and the Bro language itself).

10

Acknowledgments:
Major components of Bro’s functionality were contributeg Ruoming Pang, Umesh Shankar, Robin Sommer,
and Chema Gonzalez. Robin also wrote Chapter 8 of this mabuatsh wrote Chapter 9; and Michael Kuhn and

Benedikt Ostermaier contributed the SSL analyzer (withtauthl development by Scott Campbell) and the associated
documentation.

Many thanks, too, to Craig Leres, Craig Lant, Jim Mellandeme Hutton, David Johnston, Mark Handley, and
Partha Banerjee for their contributions and operatioredifack.

Finally, a number of people were instrumental to supporBngjs development: Jim Rothfuss, Mark Rosenberg,
Stu Loken, Van Jacobson, Dave Stevens, and Jeff Mogul. Agany thanks!

11

Chapter 2

Getting Started

This chapter gives an overview of how to get started with afeg Bro: (i) compiling it, (i) running it interactively,

on live network traffic, and on recorded tracé§) how Bro locates the policy files it should evaluate and how to
modify them,(iv) the arguments you can give it to control its operation, @)dome helper utilities also distributed
with Bro that you'll often find handy.

2.1 Running Bro

This section discusses how to build and install Bro, runitimgteractively (mostly useful for building up familiayit
with the policy language, not for traffic analysis), runningn live and recorded network traffic, modifying Bro policy
scripts, and the different run-time flags.

2.1.1 Building and installing Bro

Supported platforms

Bro builds on a number of types of Unix: FreeBSD, SolarisuxinSunOS, and Digital Unix, though not all versions.
It doesnot build under non-Unix operating systems such as Windows NT.

The Bro source code distribution

You can get the latest public release of Bro from the Bro wejegattp://www.icir.org/vern/bro.html
Bro is distributed as gzigd Unix tar archive, which you can unpack using:

gzcat tar-file| tar xf -
or, on some Unix systems:
tar zxf tar-file

This creates a subdirectaoyo- XXX- version whereXXXis a tag such agub for public releases angriv for pri-
vate releases, angrsionreflects a version and possibly a subversion, su¢h&a20 for version0.8and subversion
a20

To build Bro, change to the Bro directory and enter:

12

Jconfigure
make

Fix me: Need to discuss configuration options hetenable-brové

This will compile all of the Bro sources, including a versioithe BIND DNS library, version 8, which Bro uses
for its non-blocking DNS lookups.

Note: For Linux systems, you may need to use the header fiths limux-include/subdirectory included in the
Bro distribution to successfully compile Bro.

Installing Bro

You install Bro by issuing:
make install

Note: | don't actually use this functionality myself, sodes not tend to be well tested and may have bugs.

Tuning BPF

Bro is written usinglibpcap the portable packet-capture library available frdip://ftp.ee.lbl.gov/
libpcap.tar.Z . While libpcap knows how to use a wide range of Unix packet filters, it far awdyaperforms
most efficiently used in conjunction with the Berkeley Pddkitter (BPF) and with BPF descendants (such as the
Digital Unix packet filter). Althought BPF is available froftp://ftp.ee.lbl.gov/bpf.tar.Z ,installing it
involves modifying your kernel, and perhaps requires $igant porting work. However, it comes as part of several
operating systems, such as FreeBSD, NetBSD, and OpenBSD.

For BPF systems, you should be aware of the follwoing tunmdy@nfiguration issues:

BPF kernel support You need to make sure that kernel support for BPF is enabietidition, some systems default
to configuring kernel support for only one BPF device. Thigofroves to be a headache because it means you
cannot run more than one Bro at a time, nor can you run it atahreedime ascpdump .

/dev/bpf devicesRelated to the previous item, on BPF systems access to thetpfilter is via specialdev/bpf
devices, such aslev/bpf0 Just as you need to make sure that the kernel’s configuratigports multiple BPF
devices, so to must you make sure that an equal number ofedféieis reside idevl

packet filter permissions On systems for which access to the packet filter is via theyaéesn, you should consider
whether you want to only allow root access, or instead craataix groupfor which you enable read access to
the device file(s). The latter allows you to run Bro as a useeiothan root, which istrongly recommendéd

large BPF buffers While running with BPF is often necessary for high perforgmrit's not necessarily sufficient.
By default, BPF programs use very modest kernel bufferstéoirtey packets, which leads to high context switch
overhead as the kernel very often has to deliver packetstadbr-level Bro process. Minimizing the overhead
requires increasing the buffer sizes. This can malkege difference!

Under FreeBSD, the configuration variable to increasieug.bpf _bufsize , which you can set viaysctl
We recommend creating a script run at boot-up time that asae it from its small default value to something
on the order of 100 KB-2 MB, depending on how fast (heavilydled) is the link being monitored, and how
much physical memory the monitor machine has at its disposal

13

Important note some versions dibpcapave internal code that limits the maximum buffer size to 32 KBr
these systems, you should apply the patch included in thelBtobution in the fildibpcap.patch

Finally, once you have increased the buffer sizes, you shthéckthat running Bro does indeed consume the
amount of kernel memory you expect. You can do this underB3&eusingvmstat -mand searching in the
output for the summary of BPF memory. You should find thatNfeenUsestatistic goes up by twice the buffer
size for every concurrent Bro dcpdump you run! The reason the increase is by twice the buffer size is
because Bro uses double-buffering to avoid dropping paaideen the buffer fills up.

2.1.2 Using Bro interactively

Once you've built Bro, you can run it interactively to try aaitnple facets of the policy language. Note that in this
mode, Bro isnot reading network traffic, so you cannot do any traffic anajytsis mode is simply to try out Bro
language features.

You run Bro interactively by simply executindpfo ” without any arguments. It then reads fra@tinand writes
to stdout

Try typing the following to it:

print "hello, world";
"D (i.e., end of file)

(The end-of-file is critical to remember. It's also a bit agimg for interactive evaluation, but reflects the fact thas B
is not actually meant for interactive use, it simply worksasde-effect of Bro's structure.)
Bro will respond by printing:

hello, world

to stdoutand exiting.
You can further declare variables and print expressiomgXample:

global a = telnet;
print a, a > ftp;
print www.microsoft.com;

will print

23/tcp, T
207.46.230.229, 207.46.230.219, 207.46.230.218

where23/tcp reflects the fact thaelnet is a predefined variable whose value is TCP port 23, whichgelghan
TCP port 21 (i.e.ftp); and the DNS nameww.microsoft.consurrently returns the above three addresses.
You can also define functions:

function topl8bits(a: addr): addr
{

return mask_addr(a, 18);

}

print topl18bits(128.3.211.7);

Iproviding that these programs have been recompiled withdhectedibpcap noted above.

14

prints
128.3.192.0
and even event handlers:

event bro_done()

print "all done!";

}

which prints ‘all done! " when Bro exits.

2.1.3 Specifying policy scripts

Usually, rather than running Bro interactively you wanfitexecute a policy script or a set of policy scripts. You do
so by specifying the names of the scripts as command-lineaegts, such as:

bro “/my-policy.bro “/my-additional-policy.bro

Bro provides several mechanisms for simplifying how youcdyevhich policies to run.
First, if a policy file doesn'’t exist then it will try again usj.bro as a suffix, so the above could be specified as:

bro “/my-policy “/my-additional-policy

Second, Bro consults the colon-separated searchii#BROPATHo locate policy scripts. If your home directory
was listed ifBBROPATHthen you could have invoked it above using:

bro my-policy my-additional-policy

Note: If you definélBROPATHyou mustinclude bro-dir/policy , wherebro-dir is where you have built or
installed Bro, because it has to be able to lochte-dir/policy/bro.init to initialize itself at run-time.

Third, the@load directive can be used in a policy script to indicate the Brouth at that point process another
policy script (like C'sinclude directive; se€ 7.1.1, page 92). So you could haveny-policy

@load my-additional-policy
and then just invoke Bro using:
bro my-policy

providing youalwayswant to loadmy-additional-policywhenever you loadhy-policy
Note that the predefined Bro modui# loads almost all of the other standard Bro analyzers, so gawpall them
in with simply:

@load mt

or by invoking Bro usingbro mt ny-policy”.

2.1.4 Running Bro on network traffic

There are two ways to run Bro on network traffic: on traffic caet live by the network interface(s), and on traffic
previously recorded using the flag oftcpdump or Bro itself.

15

Live traffic

Bro reads live traffic from the local network interface whesreyou specify thei flag. As mentioned below, you can
specify multiple instances to read from multiple interfasemultaneously, however the interfaces must all be of the
same link type (e.g., you can't mix reading from a Fast Etaewith reading from an FDDI link, though you can mix
a 10 Mbps Ethernet interface with a 100 Mbps Ethernet).

In addition, Bro will read live traffic from the interface(&3ted in theinterfaces variable,unlessyou specify
the-r flag (and do not specifyi). So, for example, if your policy script contains:

const interfaces += "sk0";
const interfaces += "sk1";

then Bro will read from thekOandsklinterfaces, and you don't need to specify.

Traffic traces

To run on recorded traffic, you use the flag to indicate the trace file Bro should read. As with, you can use the
flag multiple times to read from multiple files; Bro will merdfge packets from the files into a single packet stream
based on their timestamps.

The Bro distribution includes an example trace that you camotit, example.ftp-attack.tracdf you invoke Bro
using:

setenv BRO_ID example
bro -r example.ftp-attack.trace mt

you'll see that it generates a connection summastdout a summary of the FTP sessiondttbexample , a copy
of what would have been real-time alerts had Bro been runminiiye traffic tolog.example , and a summary of
unusual traffic anomalies (none in this tracejMeird.example

2.1.5 Modifying Bro policy

One way to alter the policy Bro executes is of course to diyexdit the scripts. When this can be avoided, however,
that is preferred, and Bro provides a pair of related meamasito help you specifiefinementso existing policies in
separate files.

The first such mechanism is that you can defmétiple handlers for a given event. So, for example, even though
the standardtp analyzer pro-dir/policy/ftp.bro) defines a handler fditp _request , you can define an-
other handler if you wish in your own policy script, even iathpolicy script loads (perhaps indirectly, via ting
module) theftp analyzer. When the event engine generatef$panrequest event,bothhandlers will be invoked.
Deficiency: Presently, you do not have control over the omeavhich they are invoked; you also cannot completely
override one handler with another, preventing the first fioging invoked.

Second, the standard policy scripts are often written imsavfredefinablevariables. For examplép.bro con-
tains a variablétp _guest _ids that defines a list of usernames the analyzer will consideftect guest accounts:

const ftp_guest_ids = { "anonymous", "ftp", "guest’, } &red ef;

While “const " marks this variables as constant at run-time, the atteil@redef ” specifies that its value can be
redefined.
For example, in your own script you could have:

16

redef ftp_guest ids = { "anonymous", "guest", "visitor", student" };

instead. (Note the use ofédef ” rather than tonst
variable.)

In addition, for most types of variables you can spedgiigrementalkchanges to the variable, either new elements
to add or old ones to subtract. For example, you could ingt&pckess the above as:

, to indicate that you realize you are redefining an existing

redef ftp_guest ids += { "visitor", "student" };
redef ftp_guest ids -= "ftp";

The potential advantage of incremental refinements sudteas tare that if angtherchanges are madeftp.bro s
original definition, your script will automatically inhéthem, rather than replacing them if you used the first dédimit
above (which explicitly lists all four names to include irethariable). Sometimes, however, you don’t want this form
of inheriting later changes; you need to decide on a caseabg-basis, though our experience is that generally the
incremental approach works best.

Finally, the use oprefixesprovides a way to specify a whole set of policy scripts to lweal particular context. For
example, if you se$BRQPREFIXESto “dialup ", then a load offtp.bro will alsoload dialup.ftp.bro
automatically (if it exists). Se®10.1, page 176 for further discussion.

2.1.6 Bro flags and run-time environment
Flags
When invoking Bro, you can control its behavior using thédeing flags:

-ffilter
Usefilter as thetcpdump filter for capturing packets, rather than the combinatiooagfture _filter and
restrict _filter , orthe defaultoftcp or udp " (§7.1.2, page 93).

-h
Generate a help message summarizing Bro’s options andenvémt variables, and exit.

-i interface
Add interfaceto the list of interfaces from which Bro should read netwaoddftc (§ 2.1.4, page 16). You can
use this flag multiple times to direct Bro to read from mukiphterfaces. You can also, or in addition, use
refinements of thnterfaces variable to specify interfaces.

Note that if no interfaces are specified, then Bro will notraay network traffic. It doesot have a notion of a
“default” interface from which to read.

-p prefix
Add prefixto the list of prefixes searched by Bro wh@ioad’ing a script. You can also, or in addition, use
@prefix to specify search prefixes. S&&0.1, page 176 for discussion.

-r readfile
Add readfileto the list oftcpdump save files that Bro should read. You can use this flag multipies to
direct Bro to read from multiple save files; it will merge thagiets read from the different files based on their
timestamps. Note that if the save files contain only packatlbes and not contents, then of course Bro’s analysis
of them will be limited.

Note that use ofr is mutually exclusivevith use of-i . However, you can use& when running scripts that
refineinterfaces , in which case ther option takes precedence and Bro performs off-line analysis

17

-s signaturefile

Add signaturefileto the list of files containing signatures to match againg ttetwork traffic. See
signatures for more information about signatures.

-w writefile

Write atcpdump save file to the filewritefile. Bro will record all of the packets it captures, includingith
contents, except as controlled by calls&t _record _packets .

Note: One exception is that unless you are analyzing HTTRtegor example, by@load’ing the http
analyzer), Bro doesot record thecontentsof HTTP SYN/FIN/RST packets to the trace file. The reason for
this is that HTTP FIN packets often contain a large amountatbdwhich is not of any interest if you are not
using HTTP analysis, and due to the very high volume of HT@fficrat many sites, removing this data can
significantly reduce the size of the save file. DeficiencyaiBiethis should not be hardwired into Bro but under
user control.

Save files written usingw are of course readable usiag . Accordingly, you will generally want to usav
when running Bro on live network traffic so you can rerun itlirfie later to understand any problems that arise,
and also to experiment with the effects of changes to theystripts.

You can also combing with -w to both read a save file(s) and write another. This is of istarden using
multiple instances ofr , as it provides a way to mergepdump save files.

Print the version of Bro and exit.

Instructs Bro that imustresolve all hostnames out of its private DNS cach@&.(2, page 118). If the script
refers to a hostname not in the cache, then&itswith a fatal error.

The point behind this option is to ensure that Bro startslduicather than possibly stalling for an indeterminant
amount of time resolving a hostname. Fast startup simplifieskpointing a running Bro—you can start up a
new Bro and then killing off the old one shortly after. Youikld this to occur in a manner such that there’s no
period during which neither Bro is watching the network (thder because you killed it off too early, the newer
because it's stuck resolving hostnames).

Turns on Bro’s optimizer for improving its internal represation of the policy scriptNote: Currently, the
amount of improvement is modest, and there’s (as alwayskaofian optimizer bug introducing errors into the
execution of the script, so the optimizer is not enabled ligude

Instructs Bro toprimeits private DNS cache§(7.12, page 118). It does so by parsing the policy scripts, but
not executing them. Bro looks up each hostname’s addrg@ss{dgecords them in the private cache. The idea
is that oncebro -P finishes, you can then usgo -F to start up Bro quickly because it will read all the
information it needs from the cache.

Instructs Bro to activate its internalatchdog The watchdog provides self-monitoring to enable Bro tedet
if its processing is wedged.

Bro only activates the watchdog if it is reading live netwdnéffic. The watchdog consists of a periodic timer
that fires every?VATCHDQIBITERVAL seconds.Deficiency: clearly this should be a user-definable value.

18

At that point, the watchdog checks to see whether Bro iswtilking on the same packet as it was the last
time the watchdog expired. If so, then the watchdog logsftttisalong with some information regarding when

Bro began processing the current packet and how many evgmtscessed after handling the packet. Finally, it
prints the packet drop information for the different interés Bro was reading from, and aborts execution.

Run-time environment

Bro is also sensitive to the following environment variable

$BROPATH
A colon-separated list of directories that Bro searchesneher you@load a policy file. It loads the first
instance it finds (though s&8RQPREFIXESfor how a single@load can lead to Bro loading multiple files).

Default: if you don't set this variable, then Bro uses theéhpat
.:policy:policy/local:/usr/local/lib/bro

That is, the current directory, ampplicy/ andpolicy/local/ subdirectories, anblisr/local/lib/bro/.

$BRQPREFIXES
A colon-separate lists gfrefixesthat Bro should apply to each name ir@doad directive. For a given prefix
and load-name, Bro constructs the filename:

prefix load-namebro

(where it doesn't addbro if load-namealready ends inbro). It then searches for the filename using
$BROPATHaNd loads it if its found. Furthermore, iépeatsthis process for all of the other prefixes (left-
to-right), and loadgachfile it finds for the different prefixedlote: Broalsofirst attempts to load the filename
without any prefix at all. If this load fails, then Bro exitstivan error complaining that it can’t open the given
@load file.

For example, if you seS BROQPREFIXESto:
mysite:mysite.wan

and then issue@load ftp ", Bro will attempt to load each of the following scripts inglffiollowing order:
ftp.bro
mysite.ftp.bro

mysite.wan.ftp.bro

Default: if you don't specify a value fBRQPREFIXES, it defaults to empty, and for the example above Bro
would only attempt ta@load ftp.bro

2.2 Helper utilities
2.2.1 Scripts

Documentation missing.

19

2.2.2 Thehf utility

Thehf utility reads text orstdinand attempts to convert any “dotted quads” it sees to hostaaltis very convenient
for running on Bro log files to generate human-readable foBee the manual page included with the distribution for
details.

2.2.3 Thecf utility

Thecf utility reads Unix timestamps at the beginning of linesstatinand converts them to human-readable form. For
example, for the input line:

972499885.784104 #26 131.243.70.68/1899 > 64.55.26.206/ ftp start
it will generate:
Oct 25 11:51:25 #26 131.243.70.68/1899 > 64.55.26.206/ftp start

It takes two flags:

specifies thdong human-readable form, which includes the year. For exanmpléhe above input, the output
would instead be:

Oct 25 11:51:25 2000 #26 131.243.70.68/1899 > 64.55.26.206 [ftp start

specifiesstrict checking to ensure that the number at the beginning of a $ireglausible timestamp: it must
have at least 9 digits, at most one decimal, and must haveimaldtthere are 10 or more digits.

Without-s , an input like:
131.243.70.68 > 64.55.26.206
generates the output:

Dec 31 16:02:11 > 64.55.26.206

which, needless to say, is not very helpidkficiency: It seems clear thag should be the default behavior.

20

Chapter 3

Values, Types, and Constants

3.1

Overview

We begin with an overview of the types of values supported by, Biving a brief description of each type and
introducing the notions of type conversion and type infee2We discuss each type in detaikiB.2-§ 3.17 below.

3.1.1 Bro Types

There are 18 types of values in the Bro type system:

bool for Booleans;

count ,int , anddouble types, collectively callechumeric for arithmetic and logical operations, and com-
parisons;

enumfor enumerated types similar to those in C;

string , character strings that can be used for comparisons andéa tables and sets;

pattern , regular expressions that can be used for pattern matching;

time andinterval , for absolute and relative times, collectively terntechporal

port ,a TCP or UDP port number;

addr , an IP address;

net , a network prefix;

record , a collection of values (of possibly different types), eatlwhich has a name;

table , an associative array, indexed by tuples of scalars andig@glalues of a particular type;
set , a collection of tuples-of-scalars, for which a particulgsle’s membership can be tested,;

file , adisk file to write or append to;

21

e function , afunction that when called with a list of values (argumgrdturns a value;
e event , an event handler that is invoked with a list of values (argats) any time an event occurs.

Every value in a Bro script has one of these types. For moststyipere are ways of specifyimgnstantsepre-
senting values of the type. For exam®e7/1828 is a constant of typdouble , and80/tcp is a constant of type
port . The discussion of types §3.2-§ 3.17 below includes a description of how to specify constémtthe types.

Finally, even though Bro variables hasttic types, meaning that their type is fixed, often their typenferred
from the value to which they are initially assigned when thdable is declared. For example,

local a = "hi there";
fixesa’s type asstring , and
local b = 6;

setsh’s type tocount . See§ 5.1.3, page 55 for further discussion.

3.1.2 Type Conversions

Some types will be automatically converted to other typeseesied. For examplecaunt value can always be used
where adouble value is expected. The following:

5;

a* .2

local a
local b

creates a local variabkeof typecount and assigns théouble valuel.0 tob, which will also be of typalouble .
Automatic conversions are limited to converting betweemerictypes. The rules for how types are converted are
given below.

3.2 Booleans

Thebool type reflects a value with one of two possible meanitge or false

3.2.1 Boolean Constants

There are twdbool constantsT andF. They represent the values of “true” and “false”, respedyiv

3.2.2 Logical Operators

Bro supports three logical operato®, || , and! are Boolean “and,”“or,” and “not,” respectivelg&and|| are
“short circuit” operators, as in C: they evaluate their tibland operand only if needed.

The && operator return§ if its first operand evaluates talse otherwise it evaluates its second operand and
returnsT if it evaluates tdrue. The|| operator evaluates its first operand and retdriifsthe operand evaluates to
true. Otherwise it evaluates its second operand, and refuifisis true, F if false

The unary! operator returns the boolean negation of its argument. SoyieldsF, and! F yieldsT.

The logical operators are left-associative. Thaperator has very high precedence, the same as vreang- ; see
§3.3.3and; 10.11. Thd| operator has precedence just bel& which in turn is just below that of the comparison
operators (seg3.3.4, page 24).

22

3.3 Numeric Types

int , count , anddouble types should be familiar to most programmers as integeignad integer, and double-
precision floating-point types.

These types are referred to collectivelynagneric Numerictypes can be used in arithmetic operations (s&&.3
below) as well as in comparison$3.3.4, page 24).

3.3.1 Numeric Constants

count constants are just strings of digit234 and0 are examples.

integer constants are strings of digits preceded bya - sign:-42 and+5 for example. Because digit strings
without a sign are of typeount , occasionally you need to take care when defining a varikilesally needs to be
of typeint rather tharcount . Because of type inferencing $.1.3, page 55), a definition like:

local size difference = O;

will result in size _difference having typecount whenint is what's instead needed (because, say, the size
difference can be negative). This can be resolved eithesimguanint constant in the initialization:

local size difference = +0;
or explicitly indicating the type:
local size difference: int = 0;

You write floating-point constants in the usual ways, a gtohdigits with perhaps a decimal point and perhaps a
scale-factor written in scientific notation. Optiorabr - signs may be given before the digits or before the scientific
notation exponent. Examples at234. ,-1234e0 , 3.14159 , and.003e-23 . All floating-point constants are
of typedouble .

3.3.2 Mixing Numeric Types

You can freely intermixaumerictypes in expressions. When intermixed, values are promntotéite “highest” type
in the expression. In general, this promotion follows a dertperarchy:double is highestint comes next, and
count is lowest. (Note thalbool is not a numeric type.)

3.3.3 Arithmetic Operators

For doing arithmetic, Bro supports -, *, /, and% In general, binary operators evaluate their operands edfte-
verting them to the higher type of the two and return a reduthat type. However, subtraction of twamunt values
yields anint value. Division is integral if its operands areunt and/orint .

+ and- can also be used as unary operators. If applieddouat type, they yield annt type.

%computes anodulus defined in the same way as in the C language. It can only béeapjplcount or int
types, and yieldsount if both operands areount types, otherwisat .

Binary + and- have the lowest precedenée/ , and%have equal and next highest precedence. The unand
- operators have the same precedence as thgerator § 3.2.2, page 22). Ség10.11, page 177, for a table of the
precedence of all Bro operators.

All arithmetic operators associate from left-to-right.

23

3.3.4 Comparison Operators

Bro provides the usual comparison operaters; |= , <, <=, >, and>=. They each take two operands, which they
convert to the higher of the two types (s£8.3.2, page 23). They returnbmol corresponding to the comparison of
the operands. For example,

3 < 3.000001

yields true.
The comparison operators are all non-associative and teaed precedence, just below that of tine operator
and just above that of the logic&& operator. Seg 10.11, page 177, for a general discussion of precedence.

3.4 Enumerations

Enumerations allow you to specify a set of related valueshhae no further structure, similar emum types in C.
For example:

type color: enum { Red, White, Blue, };

defines the valueRed, White , andBlue . A variable of typecolor holds one of these values. Note tired et al
haveglobal scope You cannotdefine a variable or type with those names. (Also note thaisaal, the comma after
Blue is optional.)

The only operations allowed on enumerations are compaiorequality. Unlike C enuemrations, they do not
have values or an ordering associated with them.

You can extend the set of values in an enumeration usdgf enum identifier += { name-1list

}:

redef enum color += { Black, Yellow };

3.5 Strings

Thestring type holds character-string values, used to represent anipuiate text.

3.5.1 String Constants

You create string constants by enclosing text within dogb)euotes. A backslash characte) (ntroduces amscape
sequenceThe following ANSI C escape sequences are recognigedyields an alert (bell) charactély yields

a backspace charactéf, yields a formfeed charactén yields a newline charactew;, yields a carriage return
character)t a tab characteh, octal-digitsthe 8-bit ASCII character with codectal-digits and\x hex-digitsthe
8-bit ASCII character with codbBex-digits Bro string constants currentannotbe continued across multiple lines
by escaping newlines in the input. This may change in theréuttiny other character following\a is passed along
literally.

Unlike with C,strings are represented internally as a count and a vectuoyte$, rather than a NUL-terminated
series of bytes. This difference is important because NWinsaasily be introduced into strings derived from network
traffic, either by the nature of the application, inadvetiteror maliciously by an attacker attempting to subvert the
monitor. An example of the latter is sending the followingatoFTP server:

24

USER nice\OUSER root

where \0 " represents a NUL. Depending on how it is written, the FTPligaion receiving this text might well
interpret it as two separate commanddSER nice ” followed by “USER root ”. But if the monitoring program
uses NUL-terminated strings, then it will effectively sedyo*USER nice ” and have no opportunity to detect the
subversive action.

Note that Bro string constants are automatically NUL-teyaéd.

Note: While Bro itself allows NULs in strings, their presenin arguments to many Bro functions results in a
run-time error, as often their presence (or, converselgklaf a NUL terminator) indicates some sort of problem
(particularly for arguments that will be passed to C funo. Se¢ 6.2.1, page 91 for discussion.

3.5.2 String Operators

Currently the only string operators provided are the cotisparoperators discussedir8.3.4, page 24 and pattern-
matching as discussed §13.6.2, page 26. These operators perform character by ¢baammparisons based on the
native character set, usually ASCII.

Some functions for manipulating strings are also availa®ées 6.2.3, page 91.

3.6 Patterns

Thepattern type holds regular-expression patterns, which can be usdddt text searching operations.

3.6.1 Pattern Constants

You create pattern constants by enclosing text within fodetashes/(). The syntax is the same as for fitexversion
of thelex utility. For example,

[foo|bar/

specifies a pattern that matches either the text “foo” orelke“bar”;
lla-zA-Z0-9]+/

matches one or more letters or digits, as will
[[[:alpha:][:digit:]]+/

or
[[[:alnum:]]+/

and the pattern
["rewt.*login/

matches any string with the text “rewt” at the beginning ofree Ifollowed somewhere later in the line by the text
“login”.

You can create disjunctions (patterns the match any of a pupftalternatives) both using thé " regular expres-
sion operator directly, as in the first example above, or liyguis to join multiple patterns. So the first example above
could instead be written:

25

[fool | /bar/

This form is convenient when constructing large disjuntsibecause it’s easier to see what'’s going on.

Note that the speed of the regular expression matchingmatetepend on the complexity or size of the patterns,
so you should feel free to make full use of the expressive pthey afford.

You can assigppattern values to variables, hold them in tables, and so on. So fanplayou could have:

global address_filters: table[addr] of pattern = {
[128.3.4.4] = /failed login/ | /access denied/,
[128.3.5.1] = /access timeout/

h
and then could test, for example:

if (address_filters[cidorig_h] in msg)
skip_the_activity();

Note though that you cannot use create patterns dynamittafiyform (or any other) to create dynamic

3.6.2 Pattern Operators

There are two types of pattern-matching operatexactmatching anc&embeddednatching.

Exact Pattern Matching

Exact matching tests for a string entirely matching a givetitgon. You specify exact matching by using treequality
relational with ongpattern operand and onstring operand (order irrelevant). For example,

"foo" == /foo|bar/
yields true, while
[foolbar/ == "foobar"

yields false. Thé= operator is the negation of the= operator, just as when comparing strings or numerics.

Note that for exact matching, tlie(anchor to beginning-of-line) arfdl (anchor to end-of-line) regular expression
operators are redundant: since the mataxesct every pattern is implicitly anchored to the beginning and ef the
line.

Embedded Pattern Matching

Embedded matching tests whether a given pattern appeangharg within a given string. You specify embedded
pattern matching using tha operator. It takes two operands, the first (which must appedhe left-hand side) of
typepattern , the second of typstring . For example,

[foolbar/ in "foobar"
yields true, as does

/oob/ in "foobar"

26

but
["oob/ in "foobar"

does not, since the text “oob” does not appear the beginffitigecstring “foobar”. Note, though, that tt®ular
expression operator (anchor to end-of-line) is not culyesutpported, so:

/oob%/ in "foobar"

currently yields true. This is likely to change in the future
Finally, thelin operator yields the negation of tire operator.

3.7 Temporal Types

Bro supports types representiagsoluteandrelativetimes with thetime andinterval types, respectively.

3.7.1 Temporal Constants

There is currently no way to specify an absolute time as ataohqthough see theurrent _time and
network _time functions in§ 6.2.4, page 91). You can speciiiyterval constants, however, by appending a
time unitafter a numeric constant. For example,

3.5 min

denotes 210 seconds. The different time unitsigex , sec , min, hr , andday , representing microseconds, seconds,
minutes, hours, and days, respectively. The whitespaeesleetthe numeric constant and the unit is optional, and the
letter “s” may be added to pluralize the unit (this has no sgin&ffect). So the above example could also be written:

3.5mins

or

150 secs

3.7.2 Temporal Operators

You can apply arithmetic and relational operators to terapaalues, as follows.

Temporal Negation

The unary- operator can be applied to arterval ~ value to yield anotheinterval ~ value. For example,
- 12 hr

represents “twelve hours in the past.”

27

Temporal Addition
Adding twointerval values yields anothénterval value. For example,
5 sec + 2 min

yields 125 seconds. Addingtame value to arinterval yields anothetime value.

Temporal Subtraction
Subtracting @ime value from anothetime value yields annterval value, as does subtracting enterval
value from anotheinterval , while subtracting ainterval from atime yields atime .
Temporal Multiplication
You can multiply arinterval ~ value by anumericvalue to yield anotheinterval ~ value. For example,
5 min * 6.5

yields 1,950 secondime values cannot be scaled by multiplication or division.

Temporal Division

You can also divide amterval ~ value by anumericvalue to yield anotheinterval ~ value. For example,
5 min / 2

yields 150 seconds. Furthermore, you can divideioteval value by another to yield double . For example,
5 min / 30 sec

yields 10.

Temporal Relationals

You may compare twdime values or twointerval values for equality, and also for ordering, where times or
intervals further in the future are considered larger tlaes or intervals nearer in the future, or in the past.

3.8 Port Type

The port type corresponds to a TCP or UDP port number. TCP and UDP poetdistinct. Thus, a value of type
port can hold either a TCP or a UDP port, but at any given time it isling exactly one of these.

3.8.1 Port Constants

There are two forms oport constants. The first consists of an unsigned integer follblae either ftcp " or
“Judp .” So, for example, 80/tcp " correspondsto TCP port 80 (the HTTP protocol used by thelthidlide Web).
The second form of constant is specified using a predefinedifige, such ashttp ”, equivalentto 80/tcp .” These
predefined identifiers are simptpnst variables defined in the Bro initialization filg £0.18, page 178), such as:

const http = 80/tcp;

28

3.8.2 Port Operators

The only operations that can be appliegptmt values are relationals. You may compare them for equality,sdso
for ordering. For example,

20/tcp < telnet

yields true becaudelnet is a predefined constant set28/tcp
UDP ports are considered larger than TCP ports, iGBudp " is larger than 65535/tcp

3.9 Address Type

Another networking type provided by Bro &ldr , corresponding to an IP address. The only operations timabea
performed on them are comparisons for equality or inequ@liso, a built-in function provides masking, as discussed
below).

When configuring the Bro distribution, if you specifyenable-brové then Bro will be built to support both
IPv4 and IPv6 addresses, andaddr can hold either. Otherwise, addresses are restricted ¢t IPv

3.9.1 Address Constants

Constants of typaddr have the familiar “dotted quad” formati_1.4_2.4_3.A_4, where theA_: all lie between
0 and 255. If you have configured for IPv6 support as discuabede, then you can also use the colon-separated
hexadecimal form described in [RFC2373].

Often more useful arbostnameconstants. There is no Bro type corresponding to Internstniames. Because
hostnames can correspond to multiple IP addresses, yoklyjuim into ambiguities if comparing one hostname with
another. Bro does, however, support hostnames as constatseries of two or more identifiers delimited by dots
forms a hostname constant, so, for examgld,Jov " and “www.microsoft.com "are both hostname constants
(the latter, as of this writing, corresponds to 5 distincatRiresses). The value of a hostname constanliss a of
addr containing one or more elements. These lists (as with tteedissociated with certaport constants, discussed
above) cannot be used in Bro expressions; but they play aateole in initializing Brotable ’'s andset 's.

3.9.2 Address Operators

The only operations that can be appliedatidr values are comparisons for equality or inequality, usirgand!= .
However, you can also operate addr values usingnask_addr to mask off lower address bits, atal _net to
convertamaddr to anet (see below).

3.10 Net Type

Related to theaddr type isnet . net values hold address prefixes. Historically, the IP addrpaseswas divided
into differentclasseof addresses, based on the uppermost components of a givmsadclass A spanned the range
0.0.0.0 to 127.255.255.255; class B from 128.0.0.0 to 28L255.255; class C from 192.0.0.0 to 223.255.255.255;
class D from 224.0.0.0 to 239.255.255.255; and class E fi®n20.0 to 255.255.255.255. Addresses were allocated
to different networks out of either class A, B, or C, in block2?4, 216, and2® addresses, respectively.

29

Accordingly,net values hold either an 8-bit class A prefix, a 16-bit class Bipra 24-bit class C prefix, or a
32-bit class D “prefix” (an entire address). Values for clagwrefixes are not defined (because no such addresses are
currently allocated, and so shouldn't appear in other thearty-bogus packets).

Today, address allocations come not from class A, B or C,rateéad fronCIDR blocks (CIDR = Classless Inter-
Domain Routing), which are prefixes between 1 and 32 bits intige range 0.0.0.0 to 223.255.255.2B8ficiency:
Bro shoulddeal just with CIDR prefixes, rather than old-style networ&fixes. However, these are more difficult to
implement efficiently for table searching and the like; leeaarrently Bro only supports the easier-to-implement old-
style prefixes. Since these don’t match current allocatiolicigs, often they don't really fit an address range you'll
want to describe. But for sites with older allocations, they which gives them some basic utility.

In addition,Deficiency: IPv6 has no notion of old-style network prefinasy CIDR prefixes, so the lack of support
of CIDR prefixes impairs use of Bro to analyze IPv6 traffic.

3.10.1 Net Constants

You express constants of typet in one of two forms, either:
N_1.N_22.

or
N_1.N2.N_3

where theN _; all lie between 0 and 255. The first of these corresponds &3 &arefixes (note the trailing “ that’s
required to distinguish the constant from a floating-poimtniber), and the second to class C prefiXasficiency:
There’s currently no way to specify a class A prefix.

3.10.2 Net Operators

The only operations that can be appliechtt values are comparisons for equality or inequality, usirgand!= .

3.11 Records

A record is a collection of values. Each value has a name, referresd tma of the record'elds and a type. The
values do not need to have the same type, and there is natiestion the allowed types (i.e., each field canalog

type).

3.11.1 Defining records

A definition of a record type has the following syntax:
record { field™ }
(that is, the keywordecord followed by one-or-moré&eld’s enclosed in braces), wherdiald has the syntax:

identifier: type field-attribute’; identifier: type field-attributes,

30

Each field has a name given by the identifier (which can be theesas the identifier of an existing variable or a
field in another record). Field names must follow the saméasyas that for Bro variable names ($£B, page 53),
namely they must begin with a letter or an underscor§ bllowed by zero or more letters, underscores, or digits.
Bro reserved words such ds orevent cannot be used for field names. Field names are case-sensitiv

Each field holds a value of the given type. We discuss the palfield-attributesbelow. Finally, you can use either
a semicolon or a comma to terminate the definition of a recetd.fi

For example, the following record type:

type conn_id: record {
orig_h: addr; # Address of originating host.
orig_p: port; # Port used by originator.
resp_h: addr; # Address of responding host.
resp_p: port; # Port used by responder.

k

is used throughout Bro scripts to denote a connection ifienby specifying the connections originating and re-
sponding addresses and ports. It has four fieddg: _h andresp _h of typeaddr , andorig _p of resp _p of type
port .

3.11.2 Record Constants

You can initialize values of typeecord using either assignment from another, already exigtogrd value; or
element-by-element; or using@cord constructor
In a Bro function or event handler, we could declare a locahde theconn _id type given above:

local id: conn_id;

and then explicitly assign each of its fields:

id$orig_h = 207.46.138.11;
id$orig_p = 31337/tcp;
id$resp_h = 207.110.0.15;
id$resp_p = 22/tcp;

Deficiency: One danger with this initialization method iatif you forget to initialize a field, and then later access
it, you will crashBro.
Or we could use:

id = [$orig_h

= 207.46.138.11, $orig_p = 31337/tcp,
$resp_h =

207.110.0.15, $resp_p = 22/tcp];

This second form is no different from assigningezord value computed in some other fashion, such as the
value of another variable, a table element, or the valugmetlby a function call. Such assignments must spexdify
of the fields in the target (i.e., il in this example), unless the missing field has fluptional or &default
attribute.

31

3.11.3 Accessing Fields Using$”

You access and assign record fields using thie(tollar-sign) operator. As indicated in the example ahdee the
recordid we can access itxig _h field using:

id$orig_h

which will yield theaddr value207.46.138.11

3.11.4 Record Assignment

You can assign one record value to another using simpleransigt:

local a: conn_id;
local b: conn_id;
b = a

Doing so produces ahallow copy. That is, after the assignmebt,refers to the same record as dagsand an
assignment to one dif’s fields will alter the field ina’s value (and vice versa for an assignment to ona’sffields).
However, assigning again titself, or assigning ta itself, will break the connection.
Deficiency: Bro lacks a mechanism for specifyindepcopy, in which no linkage is connected betwbeanda.
Consequently, you must be careful when assigning recoreissore you account for the shallow-copy semantics.
You can also assign to a record another record that has fiélldshe same names and types, even if they come in
a different order. For example, if you have:

local b: conn_id;
local c: record {
resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;
h

then you can assign eithbrto ¢ or vice versa.
You couldnot, however, make the assignment (in either direction) if yad:h

local b: conn_id;

local c: record {
resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;
num_alerts: count;

3

because the fieldum alerts would either be missing or excess.

However, when declaring a record you can associate ashwith the fields. The relevant ones &aptional
which indicates that when assigning to the record you can thaifield, and&default = expr, which indicates
that if the field is missing, then a reference to it returnsvidlee of the expressioexpr. So if instead you had:

32

local b: conn_id;

local c: record {
resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;
num_alerts: count &optional;

k

then you could execute = b even thougmum.alerts is missing fromb. You still could not executé = c,
though, since in that directionum_alerts is an extra field (regardless of whether it has been assignedrtot—
the error is a type-checking error, not a run-time error).

The same holds for:

local b: conn_id;

local c: record {
resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;
num_alerts: count &default = 0O;

k

l.e., you could execute = b butnotb = c. The only difference between this example and the previoes®that
for the previous one, accessdabnum_alerts without having first assigned to it results in a run-time grwhile in
the second, it yield®.
You can test for whether a record field exists usingafieoperator.
Finally, all of the rules for assigning records also applyewlpassing a record value as an argument in a function
call or an event handler invocation.

3.12 Tables

table ’s provideassociative arraysmappings from one set of values to another. The values leapped are termed
theindex(or indices if they come in groups of more than one) and the results ofrtapping theyield.

Tables are quite powerful, and indexing them is very effigibailing down to a single hash table lookup. So you
should take advantage of them whenever appropriate.

3.12.1 Declaring Tables

You declare tables using the following syntax:
table [typet] of type

wheretype" is one or more types, separated by commas.
The indices can be of the followingcalar types:numeric temporal enumerationsstring , port , addr , or
net . The yield can be of any type. So, for example:

global a: table[count] of string;
declaresa to be a table indexed by @ount value and yielding atring value, similar to a regular array in a

language like C. The yield type can also be more complex:

33

global a: table[count] of table[addr, port] of conn_id;

declares to be a table indexed byount and yielding another table, which itself is indexed byaaidr and aport
to yield aconn _id record.

This second example illustratesnaulti-dimensionatable, one indexed not by a single value but byuple of
values.

3.12.2 Initializing Tables
You initialize tables by enclosing a set of initializers kit braces. Each initializer looks like:
[expr-list] = expr

whereexpr-listis a comma-separated list of expressions correspondingitalax of the table (so, for a table indexed
by count , for example, this would be a single expression of tgpent) andexpris the yield value to assign to that
index.

For example,

global a: table[count] of string = {
[11] = "eleven",

[5] = “five",
3
initializes the tablea to have two elements, one indexed by and yielding the stringeleven" and the other
indexed by5 and yielding the stringfive" . (Note the comma after the last list element; it is optiosahilar to

how C allows final commas in declarations.)
You can also group together a set of indices together talizé them to the same value:

type HostType: enum { DeskTop, Server, Router };
global a: table[addr] of HostType = {
[[155.26.27.2, 155.26.27.8, 155.26.27.44]] = Server,

h
is equivalent to:

type HostType: enum { DeskTop, Server, Router };
global a: table[addr] of HostType = {

[155.26.27.2] = Server,

[155.26.27.8] = Server,

[155.26.27.44] = Server,

¥
This mechanism also applies hostnameswhich can be used in table initializations for any indicésype addr .

For example, ifvww.my-server.com corresponded to the addresses 155.26.27.2 and 155.26.8iéd the above
could be written:

global a: table[addr] of HostType = {
[[www.my-server.com, 155.26.27.8]] = Server,

3

34

and if it corresponded to all there, then:

global a: table[addr] of HostType = {
[www.my-server.com] = Server,

k
You can also use multiple index groupings across diffemstices:
global access_allowed: table[addr, port] of bool = {
[www.my-server.com, [21/tcp, 80/tcp]] = T,
k
is equivalent to:
global access_allowed: table[addr, port] of bool = {

[155.26.27.2, 21/tcp] = T,
[155.26.27.2, 80/tcp] = T,
[155.26.27.8, 21/tcp] = T,
[155.26.27.8, 80/tcp] = T,
[155.26.27.44, 21/tcp] = T,
[155.26.27.44, 80/tcp] = T,

k

Fix me: add example of cross-product initialization of sets

3.12.3 Table Attributes

When declaring a table, you can specify a number of attrébtitat affect its operation:

&default
Specifies a value to yield when an index does not appear imbie.tSyntax:

&default = expr

expr can have one of two forms. If it's type is the same as the talyleld type, therexpris evaluated and
returned. If it's type is dunction with arguments whose types correspond left-to-right whhindex types
of the table, and which returns a type the same as the yiedd tiipn that function is called with the indices that
yielded the missing value to compute the default value.

For example:

global a: table[count] of string &default = "nothing specia I";
will return the string’'nothing special” anytimea is indexed with acount value that does not appear
in a.

A more dynamic example:

35

function nothing_special(): string

{
if (panic_mode)
return "look out!";
else
return "nothing special;

}
global a: table[count] of string &default = nothing_specia l;
An example of using a function that computes using the index:

function make_pretty(c: count): string

{

return fmt("**%d**", c);

}

global a: table[count] of string &default = make_pretty;

&create _expire
Specifies that elements in the table shouldabtomatically delete@fter a given amount of time has elapsed
since they were first entered into the table. Syntax:

&create _expire = expr
whereexpris of typeinterval

&read _expire
The same a&create _expire exceptthe element is deleted when the given amount of timégipaed since
the last time the element was accessed from the table.

&write _expire
The same a&create _expire exceptthe element is deleted when the given amount of tireédipsed since
the last time the element was entered or modified in the table.

&expire _func
Specifies a function to call when an element is due for exmmesbecause of&create _expire |,
&read _expire , or&write _expire . Syntax:

&expire _func = expr

expr must be a function that takes two arguments: the first oneabla with the same index and yield types
as the associated table. The second one is of &yyyeand corresponds to the index(es) of the element being

expired. The function must return amterval value. Theinterval indicates for how much longer the
element should remain in the table; returnihgsecs or a negative value instructs Bro to go ahead and delete
the element.

Deficiency: The use of aany type here igemporaryand will be changing in the future to a genetalble
notion.

36

You specify multiple attributes by listing one after the etlwithoutcommas between them:
global a: table[count] of string &default="foo" &write_ex pire=5sec;

Note that you can specify each type of attribute only onceu Yan, however, specify more than one of
&create _expire , &read _expire , and &write _expire . In that case, whenever any of the corresponding
timers expires, the element will be deleted.

3.12.4 Accessing Tables

As usual, you access the values in tables by indexing themanialue (for a single index) or list of values (multiple
indices) enclosed ifi ’s. Deficiency: Presently, when indexing a multi-dimensioablé¢ you must providall of the
relevant indices; you can’t leave one out in order to extiasub-table.

You can also index arrays usimgcord s, providing the record is comprised of values whose typatcmthat
of the table’s indices. (Any record fields whose types arengeves records are recursively unpacked to effect this
matching.) For example, if we have:

local b: table[addr, port] of conn_id;
local c 131.243.1.10;
local d 80/tcp;

then we could indek usingb[c, d] , butif we had:
local e = [$fieldl = c, $field2 = d];

we could also index it using[d]
You can test whether a table holds a given index usingrtheperator. For example:

[131.243.1.10, 80/tcp] in b
or
einb

per the examples above. In addition, if the table has onlggisindex (not multi-dimensional), then you can omit the
[’s:

local active _connections: table[addr] of conn_id;

if (131.243.1.10 in active_connections)

3.12.5 Table Assignment
An indexed can be the target of an assignment:
b[131.243.1.10, 80/tcp] = c$id;
You can also assign to an entire table. For example, suppesave the global:

global active_conn_count: table[addr, port] of count;

37

then we could later clear the contents of the table using:

local empty table: table[addr, port] of count;
active_conn_count = empty_table;

Here the first statement declares a local variabipty _table with the same type a&ctive _conn _count . Since
we don't initialize the table, it starts out empty. Assigmiit to active _conn _count then replaces the value of
active _conn _count with an empty tableNote: As withrecord s, assigningable values results in ahallow

copy.
In addition to directly accessing an element of a table byiggiag its index, you can also loop over all of the
indices in a table using tHer statement.

3.12.6 Deleting Table Elements
You can remove an individual element from a table usingditlete statement:
delete active_host[c$id];

will remove the element imactive _host corresponding to the connection identifesid (which is aconn _id
record). If the element isn’t present, nothing happens.

3.13 Sets

Sets are very similar to tables. The principle differenadbé they are simply a collection of indices; they don't gliel
any values. You declare tables using the following syntax:

set [type"]

where, as withable s,type’ is one or more scalar types (or records), separated by commas
You initialize sets listing their elements in braces:

global a = { 21/tcp, 23/tcp, 80/tcp, 443/tcp };

which implicitly typesa as aset[port] and then initializes it to contain the giverpért values.
For multiple indices, you enclose each set of indices in ket

global b = { [21/tcp, "ftp"], [23/tcp, "telnet], };

which implicitly b asset[port, string] and then initializes it to contain the given two elementss (#th
tables, the comma after the last element is optional.)
As with tables, you can group together sets of indices:

global ¢ = { [21l/tcp, "ftp"], [[80/tcp, 8000/tcp, 8080/tcp] , "http"], }

initializesc to contain 4 elements.

Also as with tables, you can use tRereate _expire , &read _expire , and&write _expire attributes to
control the automatic expiration of elements in a &sficiency: However, th&expire _func attribute is not
currently supported.

You can test for whether a particular member is in a set usia@nt operator, as with tables. You add elements
using theadd statement:

38

add c[443/tcp, "https'];
and can remove them using thelete statement:
add d[21/tcp, "ftp"];

Also, as with tables, you can assign to the entire set, wtisigas ashallowcopy.
Finally, as with tables, you can loop over all of the indiceaiset using théor statement.

3.14 Files

Deficiency: Bro currently supports only a very simple notidffiles. You can only write to files, you can’t read from
them: and files are essentially untyped—the only values gouite to them arestring s or values that can be
converted tastring

You declardile variables simply as typi#e

global f: file;
You can create values of tyfiee by using theopen function:
f = open("suspicious_info.log");

will create (or recreate, if it already exists) the f8aspiciousnfo.log and open it for writing. You can also use
open _for _append to append to an existing file (or create a new one, if it doesadt).
You write to files using th@rint statement:

print f, 5 * 6;

will print the text30 to the file corresponding to the valuefof

There is no restriction regarding how many files you can haenat a given time. In particular, even if your
system has a limit imposed BLIMIT _NOFILEs set by the system cadketrlimit . If, however, you want to to
close a file, you can do so usiefpse , and you can test whether a file is open usictve file

Finally, you can control whether a file is buffered usgeg _buf , and can flush the buffers of all open files using
flush _all

3.15 Functions

You declare a Brdunction type using:
function (argument) [: type]

whereargument is a (possibly empty) comma-separated list of argumentktlanfinal © type declares the return
type of the function. It is optional; if missing, then the &ion does not return a value.
Each argument is declared using:

param-name type
So, for example:

function(a: addr, p: port): string

39

corresponds to a function that takes two parameteos typeaddr andp of typeport , and returns a value of type
string
You could furthermore declare:

global generate id: function(a: addr, p: port): string;

to definegenerate _id as a variable of this type. Note that the declaration dm¢slefine the body of the function,
and, indeedgenerate _id could have different function bodies at different times,asgigning different function
values to it.

When defining a function including its body, the syntax igistly different:

function func-namd argument) [: type] { statemerit}

That is, you introducéunc-namethe name of the function, between the keywhiniction and the opening paren-
thesis of the argument list, and you list the statementseofithction within braces at the end.
For the previous example, we could define its body using:

function generate_id(a: addr, p: port): string
{
if (a in local_servers)
Ignore port, they're always the same.
return fmt("server %s", a);

if (p < 1024/tcp)
Privileged port, flag it.
return fmt("%s/priv-%s", a, p);

Nothing special - default formatting.
return fmt("%s/%s", a, p);

}
We also could have omitted the first definition; a function mi&én like the one immediately above automatically
definesgenerate _id as a function of typdunction(a: addr, p: port): string . Note though that

if func-namewas indeed already declared, then the argument list mucthreaactlythat of the previous definition.
This includes the names of the argumehislike with C,you cannot change the argument names between their first
(forward) definition and the full definition of the function.

You can also define functions without using any name. Theseederred to as anonymous functions, and are a
type of expression.

You can only do two things with functions: call them or assiigem. As an example of the latter, suppose we have:

local id_funcs: table[conn_id] of function(p: port, a: add r): string;

would declare a local variable indexed bycann _id record value to yield a function of the same type as in the
previous example. You could then execute:

id_funcs[c$id] = generate_id
or call whatever function is associated with a givemn _id :

print fmt("id is: %s", id_funcs[c$id](80/tcp, 1.2.3.4));

40

3.16 Event handlers

Event handlers are nearly identical in both syntax and séogaio functions, with the two differences being that event
handlers have no return type since they never return a vahaeyou cannot call an event handler. You declare an event
handler using:

event (argument)
So, or example,
local eh: event(attack source: addr, severity: count)

declares the local variableh to have a type corresponding to an event handler that takesatguments,
attack _source oftypeaddr , andseverity of typecount .
To declare an event handler along with its body, the syntax is

event handler(argument) { statement}

As with functions, you can assign event handlers to vargabfe¢he same type. Instead of calling event handlers
like functions, though, instead they areoked This can happen in one of three ways:

From the event engine When the event engine detects an event for which you haveedefircorresponding event
handler, it queues an event for that handler. The handleviked as soon as the event engine finishes processing
the current packet (and invoking any other event handlexswiere queued first). The various event handlers
known to the event engine are discussed in Chdpfeipage 92.

Via the event statement Theevent statement queues an event for the given event handler foediate process-
ing. For example:

event password_exposed(c, user, password);

gueues an inovocation of the event handbassword _exposed with the arguments, user , and
password . Note thatpassword _exposed must have been previously declared as an event handler with
a compatible set of arguments.

Or, if we had a local variableh as defined above, we could execute:
event eh(src, how_severe);

if src is of typeaddr andhow_severe of typecount .

Via the schedule expression Theschedule xpression queues an event for future invocation. For exampl
schedule 5 secs { password_exposed(c, user, password) };

would causgassword _exposed to be invoked 5 seconds in the future.

41

3.17 Theany type

Theany type is a type used internally by Bro to bypass strong typog.example, thémt function takes arguments
of type any, because its arguments can be of different types, and adblarlength. However, thany type is not
supported for use by the user; while Bro lets you declareatbies of typeany , it does not allow assignment to them.
This may change in the future. Note, though, that you caneaelsome of the same effect usiegord values with
&optional fields.

42

Chapter 4

Statements and Expressions

You express Bro’s analysis of network traffic usienent handlerswhich, as discussed §3.16, page 41, are essen-
tially subroutines written in Bro’s policy scripting langge. In this chapter we discuss the different types of sttésn
and expressions available for expressing event handldrtharauxiliary functions they use.

4.1 Statements

Bro functions and event handlers are written in an impeeastyle, and the statements available for doing so are
similar to those provided in C. As in C, statements are teateith with a semi-colon. There are no restrictions on how
many lines a statement can span. Whitespace can appeaebheiwe of the syntatic components in a statement, and
its presence always serves as a separator (that is, a simgéesc component cannot in general contain embedded
whitespace, unless it is escaped in some form, such as apgewide a string literal).

Bro provides the following types of statements:

expression
Syntax:

expr ;

As in C, an expression by itself can also be used as a stateFmméxample, assignments, calling functions,
and scheduling timers are all expressions; they also age ated as statements.

print
Syntax:

print [file] expr-list ;

The expressions are converted to a list of strings, whichtee printed as a comma-separated list. If the first
expression is of typéile , then the other expressions are printed to the correspgfitén otherwise they're
written tostdout

For control over how the strings are formatted, ae function.

log
Syntax:

43

log expr-list ;

The expressions are converted to a list of strings, whictireme logged as a comma-separated list. “Logging”
means recording the valuestim _log _file . In addition, if Bro is readindive network traffic (as opposed to
from a trace file), then the messages are also reportesyslag(3)at leveLOGNOTICE If the message does
not already include a timestamp, one is added.

See thdog module for a discussion of controlling logging behaviomfrgour policy script. In particular, an
important feature of thiog statement is that prior to logging the giving string(s), Brst invokedog -hook
to determine whether to suppress the logging.

event

for

next

Syntax:
event expr (expr-list*) ;

Evaluateexprto obtain an event handler and queues an event for it withahe\corresponding to the optional
comma-separated list of values givendxpr-list

Note: event statements look syntactically just like function callfietthan the keywordévent . However,
function calls are expressions, while queueing an eventtissince it does not return a value.

Syntax:

if (expr) stm
if (expr) stmt else stnt,

Evaluatesxpr, which must yield &ool value. If true, executestmt For the second form, if false, executes
stmt.

Syntax:
for (var in expr) stnt

Iterates over the indices ekpr, which must evaluate to eitherset or atable . For each iteratiorvar is set
to one of the indices anstmtis executedvar needn’t have been previously declared (in which case its typ
implicitly inferred from that of the indices a#xpr), and must not be a global variable.

If expris aset , then the indices correspond to the members of the setpifis atable , then they correspond
to the indices of the table.

Deficiency: You can only useor statements to iterate over sets and tables with a single;aoompound index
type. You can't iterate over multi-dimensional or compoinutices.

Deficiency: Bro lacks ways of controlling the order in whititérates over the indices.

Syntax:

next ;

44

Only valid within afor statement. When executed, causes the loop to proceed texhiaration value (i.e.,
the next index value).

break
Syntax:

break ;
Only valid within afor statement. When executed, causes the loop to immediatiely ex

return
Syntax:

return [expr] ;

Immediately exits the current function or event handler.d&function, returns the valwepr(which is omitted
if the function does not return a value, or for event handlers

add
Syntax:

add expri [expro] ;

Adds the element specified lexpr, to theset given byexpr,. For example,
global active_hosts: set[addr, port];
add active_hosts[1.44.33.7, 80/tcp];

addes an element corresponding to the paid.33.7 and80/tcp to the setactive _hosts .

delete
Syntax:

delete expri [expro] ;

Deletes the corresponding value, wherpr corresponds to a set or table, aexpr, an element/index of the
set/table. If the element is not in the set/table, does ngthi

compound
Compound statements are formed from a list of (zero or meat@ments enclosed {h 's:

{ statenent* }

null
A lone:

denotes an empty, do-nothing statement.

45

local ,const

Syntax:
local var [: type][=initialization] [attributes] ;
const var [: type][= initialization] [attributes] ;

Declares a local variable with the given type, initialipati and attributes, all of which are optional. The syntax
of these fields is the same as for global variable declarstibime second form likewise declares a local variable,
but one which isconstant trying to assign a new value to it results in an erieficiency: Currently, this
const restriction isn’'t detected/enforce.

Unlike with C,the scope of a local variable is from the point of declaratmithe end of the encompassing
function or event handler.

4.2 Expressions
Expressions in Bro are very similar to those in C, with simgeecedence:

parenthesized
Syntax:
(expr)
Parentheses are used as usual to override precedence.

constant
Any constant value§(3, page 21) is an expression.

variable
The name of aariablevariables is an expression.

increment decrement
Syntax:

++ expr

- expr
Increments or decrements the given expression, which noustgpond to an assignable value (variable, table
element, or record element) and of a number type.
Yields the value of the expression after the increment.
Unlike with C, these operators only are defined for “pre’-increment/deerd; there is no post-
increment/decrement.

negation
Syntax:

I expr
- expr

46

Yields the boolear 3.2.2, page 22 or arithmetic negation for values of boolgamumeric(or interval)
types, respectively.

positivation

Syntax:
+ expr

Yields the value o&xpr, which must be of typ@aumericor interval

The point of this operator is to explicitly convert a valugygecount toint . For example, suppose you want
to declare a local variableode to be of typent , but initialized to the valu@. If you used:

local code = 2;

then Bro’s implicit typing would make it of typeount , because that’s the type of a constant specified by a
string of digits. You could instead use:

local code = +2;

to direct the type inferencing to instead assign a typatf to code . Or, of course, you could specify the type
explicitly:

local code:int = 2;

arithmetic

Syntax:

expri + expro
expri - expro
expri * expr
expri / expro
expri % expro

The usual C arithmetic operators, defined for numeric typrsept modulus%) is only defined for integral
types.

logical

Syntax:

expri && exprs
expri || expro

The usual C logical operators, defined for boolean types.

equality

Syntax:
expri == expr
expri "= expr.

47

Compares two values for equality or inequality, yieldingaol value. Defined for all non-compound types
exceptpattern

relational
Syntax:

expr; < expr.
expr; <= expr.
expri; > expra
expr >= expr.

Compares two values for magnitude ordering, yieldihgal value. Defined for values of typmumerig time ,
interval ,port ,oraddr .

Note: TCPport values are considered less than UPBrt values.
Note: IPv4addr values less than IPv&ddr values.

Deficiency: Should also be defined at ftring values.

conditional
Syntax:

expri ? expro : exprs

Evaluatesxpn and, if true, evaluates and yieldgpr,, otherwise evaluates and yieldsprs. expr, andexpr;
must have compatible types.

assignment
Syntax:

expri = exprs

Assigns the value oéxpr, to the storage defined lxpr;, which must be an assignable value (variable, table
element, or record element). Yields the assigned value.

function call
Syntax:

expri; (expr-listsy)

Evaluatesxpr, to obtain a value of typ&unction , which is then invoked with its arguments bound left-to-
right to the values obtained from the comma-separatedflskgressiongxpr-list,. Each element ofxpr-list,
must be assignment-compatible with the correspondingdbamgument in the type axpr,. The list may (and
must) be empty if the function does not take any parameters.

anonymous function
Syntax:

function (parameters) body

48

Defines amanonymous functigrwhich, in abstract terms, is how you specify a constant péfunction

parametersas the syntax of parameter declarations for regular fanctéfinitions, as dodsody, which is just
a list of statements enclosed in braces.

Anonymous functions can be used anywhere you'd usuallg@ustise a function declared in the usual direct
fashion. For example, consider the function:

function demo(msg: string): bool

i{f (msg == "do the demo")
E)rint "got it";
return T;
}
else
return F;
}

You could instead declagemo as a global variable of type function:
global demo: function(msg: string): bool;
and then later assign to it an anonymous function:

demo = function (msg: string): bool

i{f (msg == "do the demo")
farint "got it";
return T;
}
else
return F;
2

You can even call the anonymous function directly:

(function (msg: string): bool

if (msg == "do the demo")
{
print "got it";
return T;
}
else
return F;

H("do the demo")

49

event

index

though to do so you need to enclose the function in parershesevoid confusing Bro’s parser.

One particularly handy form of anonymous function is thatdifor &default

scheduling
Syntax:
schedule expri { expro (expr-lists) }
Evaluatesxpr; to obtain a value of typaterval , and schedules the event givendxpr, with parameters

expr-list; for that time. Note that the expressions are all evaluatedbmund at the time of execution of the
schedule expression; evaluation it deferred until the future execution of the event handler.

For example, we could define the following event handler:

event once_in_a_blue_moon(moon_phase: interval)

{

print fmt("wow, a blue moon - phase %s", moon_phase);

}

and then we could schedule delivery of the event for 6 hoors the present, with moon_phase of 12 days,
using:

schedule +6 hr { once_in_a blue_moon(12 days) };

Note: The syntax is admittedly a bit clunky. In particuléis easy tq(i) forget to include the braces (which are
needed to avoid confusing Bro’s parse(i)) forget the final semi-colon if thechedule expression is being
used as an expression-statement(idy erroneously place a semi-colon after the event specifindtid before
the closing brace.

Timer invocation is inexact. In general, Bro uses arriviaghets to serve as its clock (when reading a trace
file off-line, this is still the case—the timestamp of theektt packet read from the trace is used as the notion
of “now”). Once this clock reaches or passes the time asttiaith a queued event, Bro will invoke the
event handler, which is termed “expiring” the timer. (HowevBro will only invokemax.timer _expires

timers per packet, and these include its own internal tife@nsianaging connection state, so this can also delay
invocation.)

It will also expire all pending timers (whose time has not ggived) when Bro terminates; if you don’t want
those event handlers to activate in this instance, you reetdone _with _network .

You would think thaschedule should just be a statement likgent invocation is, rather than an expression.
But it actually does return a value, of the undocumentedtiyper . In the future, Bro may provide mechanisms
for manipulating such timers; for example, to cancel theyoif no longer want them to expire.

Syntax:

expri [expr-listgy]

50

Returns the sub-value ekpr, indexed by the value adxpr-list, which must be compatible with the index type
of expr;.

expr-list, is a comma-separated list of expressions (with at leastxpression listed) whose values are matched
left-to-right against the index types expr;.

The only type of value that can be indexed in this fashiontsbée . Note:set 's cannot be indexed because
they do not yield any value. Use to test for set membership.

membership

Syntax:

expri in expro
expri lin expr

Yields true (false, respectively) if the indexpr, is present in théable orset expr.
For example, ialert _level isatable index by an address and yielding a count:

global alert_level: table[addr] of count;
then we could test whether the addr&23.0.0.1 is present using:
127.0.0.1 in alert_level

Fortable ’'s andset ’s indexed by multiple dimensions, you enclaser; in brackets. For example, if we
have:

global connection_seen: set[addr, addr];

then we could test for the presence of the element indexédlhy4.2 and129.186.0.77 using:
[8.1.14.2, 129.186.0.77] in connection_seen

We can also instead use a correspondemprd type. If we had
local t = [$x = 8.1.14.2, $y = 129.186.0.77]

then we could test:

t in connection_seen

pattern matching

Syntax:
expri == expr
expri "= expro

expri in expro
expri "lin expro

51

As discussed for pattern values, the first two forms yield {false) if thepattern expr, exactly matches the
string exprk. (You can also list thetring value on the left-hand side of the operator andghgern on
the right.)

The second two forms yield true (false) if thattern expr, is present within thetring expk. (For these,
you mustlist the pattern as the left-hand operand.)

record field access
Syntax:

expr $ field-nane

Returns the given fielleld-nameof the recordexpr. If the record does not contain the given field, a compile-
time error results.

record constructor
Syntax:

[field-constructor-list]

Constructs aecord value. Thefield-constructor-lists a comma-separated list of individual field constructors,
which have the syntax:

$ field-name = expr
For example,
[$foo = 3, $bar = 23/tcp]

yields arecord with two fields,foo of typecount andbar of typeport . The values used in the constructor
needn’t be constants, however; they can be any expressamassignable type.

record field test
Syntax:

expr ?$ field-nanme

Returns true if the given field has been set in the record geeldyexpr. Note thatfield-name mustorrespond
to one of the fields in the record type expr (otherwise, the expression would always be false). Thetpdin
this operator is to test whether &optional field of a record has been assigned to.

For example, suppose we have:

type rap_sheet: record {
num_scans: count &optional,
first_activity: time;

3

global the_goods: table[addr] of rap_sheet;

and we want to test whether the address held in the varfarie exists inthe _goods and, if so, whether
numscans has been assigned to, then we could use:

perp in the_goods && the goods[perp]?$num_scans

52

Chapter 5

Global and Local Variables

5.1 Overview

Bro variables can be complicated to understand becausd&#veya number of possibilities and features. They can be
global or local in scope; modifiable or constant (unchantggabexplicitly or implicitly typed; optionally initializd;
defined to have additionaltributes and, for global variablesgedefinedo have a different initialization or different
attributes from their first declaration.

Rather than giving the full syntax for variable declaratipwhich is messy, in the following sections we discuss
each of these facets of variables in turn, illustrating tivéith the minimal necessary syntax. However, keep in mind
that the features can be combined as needed in a variabbe altswh.

5.1.1 Scope

global local Globalvariables are available throughout your policy script @declared), while the scopelotal
variables is confined to the function or event handler in Whitey're declared. You indicate the variable’s type using
a corresponding keyword:

global name: type;
or
local name: type;

which declaremameto have the given type and the corresponding scope.

You can intermix function/event handler definitions wittctigations of global variables, and, indeed, they're in
fact the same thing (that is, a function or event handler diefimis equivalent to defining a global variable of type
function orevent and associating its initial value with that of the functianewent handler). So the following is
fine:

global a: count;
function b(p: port): string

if (p < 1024/tcp)

53

return “"privileged";
else
return "ephemeral®;

}
global c: addr;

However, you cannot mix declarations of global variablethwglobal statements; the following is not allowed:

print "hello, world";
global a: count;

Local variables, on the other hand, canly be declared within a function or event handler. (Unlike faobal
statements, these declarati@as come after statements.) Their scope persists to the end &ditiction. For example:

function b(p: port): string

if (p < 1024/tcp)

local port_type = "privileged";
else

port_type = "ephemeral;

return port_type;

}

5.1.2 Modifiability

const For both global and local variables, you can declare thataéhni@blecannot be modifieby declaring it using
theconst keyword rather thaglobal orlocal

const response_script = "./scripts/nuke-em";

Note thatconst variablesmustbe initialized (otherwise, of course, there’s no way fomth ever hold a useful
value).

The utility of marking a variable as unmaodifiable is for ctaiin expressing your script—making it explicit that a
particular value will never change—and also allows Bro tegioly optimize accesses to the variable (though it does
little of this currently).

Note thatconst variablescanbe redefined viaedef .

5.1.3 Typing

When you define a variable, you carplicitly type it by specifying its type after a colon. For example,
global a: count;

directly indicates thaa’s type iscount .
However, Bro can alsanplicitly type the variable by looking at the type of the expressionysrito initialize the
variable:

54

global a = 5;

also declares’s type to becount , since that’s the type of the initialization expressiore(donstan). There is no
difference between this declaration and:

global a: count = 5;

except that it is more concise both to write and to read. Itiqdar, Bro remainstronglytyped, even though it also
supportdmplicit typing; the key is that once the type is implicitly inferrétds thereafter strongly enforced.

Bro’s type inferencés fairly powerful: it can generally figure out the type whateinitialization expression you
use. For example, it correctly infers that:

global ¢ = { [21/tcp, "ftp"], [[80/tcp, 8000/tcp, 8080/tcp] , "http"], }

specifies that's type isset[port, string] . But for still more complicated expressions, it is not alwayple to
infer the correct type. When this occurs, you need to explispecify the type.

5.1.4 Initialization

When defining a variable, you can optionally specify anahitialue for the variable:
global a = 5;

indicates that the initial value @f is the values (and also implicitly types as typecount , per§ 5.1.3, page 54).

The syntax of an initialization is~ expressioh where the given expression must be assignment-compatiitth
the variable’s type (if explicitly given). Tables and setsoahave special initializer forms, which are discussed in
§3.12.2, page 34 angi3.13, page 38.

5.1.5 Attributes

When defining a variable, you can optionally specify a settbibutesassociated with the variable, which specify
additional properties associated with it. Attributes have forms:

& attr
for attributes that are specified simply using their namd, an
& attr = expr

for attributes that have a value associated with them.

The attributesredef &add _func and&delete _func , pertain to redefining variables; they are discussed in
§5.1.6, page 56.

The attribute®default , &create _expire , &read _expire , &write _expire , and&expire _func are
for use withtable 's andset ’s. See§ 3.12.3, page 35 for discussion.

The attributefoptional specifies that aecord field is optional. Se§ 3.11.4, page 32 for discussion.

Finall, to specify multiple attributes, you dmt separate them with commas (doing so would actually makesBro’
grammar ambiguous), but just list them one after anotherekample:

global a: table[port] of string &redef &default="missing" ;

55

5.1.6 Refinement

To do.
&redef
&add _func
&delete _func

56

Chapter 6

Predefined Variables and Functions

6.1 Predefined Variables

Bro predefines and responds to the following variables,roegal by the policy file in which they are contained. Note
that you will only be able to access the variables in a polieyifiyou @load it or a policy file which@load s it.

6.1.1 active.bro

active _conn : table[conn _{id] of connection
A table ofconnection records corresponding to all active connections.

6.1.2 alert.bro

alert _action filters : table[Alert] of function(a: alert _info): AlertAction
A table that maps eachlert into a function that should be called to determine the action

alert _file : file
The file into which alerts are written.

6.1.3 anon.bro

anon _log : file
The file into which anonymizatioRix me: Add a reference to doc on anonymization when it islalok. IP
address mappings are written.

preserved _subnet : set[subnet]
Addresses in these subnet are preserved when anonymizatieimg performed. See alpoeserved _net .
NOTE: This variable izonst , so may only be changed viadef .

preserved _net : set[net]
These Class A/B/C nets are preserved when anonymization egb performed. See also
preserved _subnet .

57

6.1.4 backdoor.bro

backdoor _log : file
The file into which alerts about backdoor servdragkdoor) are written.

backdoor _min_numlines : count
The number of lines oFix me: must be telnetthput and output must be more than this amount to trigger
backdoor checking.
NOTE: This variable izonst , so may only be changed viadef .

backdoor _min_normal _ine _ratio : double
If the fraction of “normal” (less than a certain length) liis below this value, then backdoor checking is not
performed.
NOTE: This variable i€onst , so may only be changed viadef .

backdoor _min_bytes : count
The total number of bytes transferred on the connection briat least this large in order for backdoor checking
to be performed.
NOTE: This variable i€onst , so may only be changed viadef .

backdoor _min_7bit _ascii _ratio : double
The fraction of 7-bit ASCII characters out of all bytes triameed must be at least this large in order for backdoor
checking to be performed.
NOTE: This variable izonst , so may only be changed viadef .

backdoor _demux_disabled : bool
If T (the default), then suspected backdoor connectionsarrdemuxed into sender and receiver streams.
NOTE: This variable i€onst , so may only be changed viadef .

backdoor _demux_skip _tags : set[string]
If the type of backdoor (the tag) is in this set, the connextidl not be demuxed.
NOTE: This variable izonst , so may only be changed viadef .

backdoor _ignore _src _addrs : table[string, addr] of bool
If the suspected backdoor name (“*” for any) and source atdfer its /16 or /24) subnet are in this table as a
pair, then the backdoor will not be logged.
NOTE: This variable i€onst , so may only be changed viadef .

backdoor _ignore _dst _addrs : table[string, addr] of bool
If the suspected backdoor name (“*” for any) and destinasiddress (or its /16 or /24) subnet are in this table
as a pair, then the backdoor will not be logged.
NOTE: This variable i€onst , so may only be changed viadef .

backdoor _ignore _ports : table[string, port] of bool
The following (signature, well-known port) paits should generated a backdoor alert.
NOTE: This variable izonst , so may only be changed viadef .

backdoor _standard _ports : set[port]
Seebackdoor _annotate _standard _ports
NOTE: This variable i€onst , so may only be changed viadef .

58

backdoor _stat _period : interval
A report on backdoor stats is generated at this interval.
NOTE: This variable i€onst , so may only be changed viadef .

backdoor _stat _backoff : interval
Fix me: Not sure about the exact definition here The backdoor reptemval packdoor _stat _period)is
increased by this factor each time it is generated [, exéé¢ipeitimers are artificially expired].
NOTE: This variable izonst , so may only be changed viadef .

backdoor _annotate _standard _ports : bool
If T (the default), backdoors alerts for thoselmsckdoor _standard _ports should be annotated with the
backdoor tag name.
NOTE: This variable i€onst , so may only be changed viadef .

ssh _sig _disabled : bool
If T (default = F), then matches against the SSH sighatureyaed.
NOTE: This variable i€onst , so may only be changed viadef .

telnet _sig _disabled : bool
If T (default = F), then matches against the telnet signadueagnored.
NOTE: This variable izonst , so may only be changed viadef .

telnet _sig _3byte _disabled : bool
If T (default = F), then matches against the 3-byte telnatatigre are ignored.
NOTE: This variable i€onst , so may only be changed viadef .

rlogin _sig _disabled : bool
If T (default = F), then matches against the rlogin signatueeignored.
NOTE: This variable i€onst , so may only be changed viadef .

rlogin _sig _lbyte _disabled : bool
If T (default = F), then matches against the 1-byte rlogimatgre are ignored.
NOTE: This variable izonst , so may only be changed viadef .

root _backdoor _sig _disabled : bool
If T (default = F), then matches against the root backdoaratigre are ignored.
NOTE: This variable i€onst , so may only be changed viadef .

ftp _sig _disabled : bool
If T (default = F), then matches against the FTP signaturégmered.
NOTE: This variable i€onst , so may only be changed viadef .

napster _sig _disabled : bool
If T (default = F), then matches against the Napster sigeaite ignored.
NOTE: This variable izonst , so may only be changed viadef .

gnutella _sig _disabled : bool
If T (default = F), then matches against the Gnutella sigresdwe ignored.
NOTE: This variable i€onst , so may only be changed viadef .

59

kazaa _sig _disabled : bool
If T (default = F), then matches against the KaZaA signatoeggnored.
NOTE: This variable i€onst , so may only be changed viadef .

http _sig _disabled : bool
If T (default = F), then matches against the HTTP signatueddgrored.
NOTE: This variable izonst , so may only be changed viadef .

http _proxy _sig _disabled : bool
If T (default = F), then matches against the HTTP proxy sigreaaire ignored.
NOTE: This variable i€onst , so may only be changed viadef .

did _sigconns : table[conn {id] of set[string]
A table which indicates, for each connection, which backdeover signatures were found in the connection’s
traffic, e.g., “ftp-sig” or “napster-sig”.

rlogin _conns : table[conn _id] of rlogin _conn _info
A table that holds relevant state variables{mgin _conn _info record) forrsh connections.

root _backdoor _sig _conns : set[conn _id]
The set of connections for which a root backdoor signatu@of:bd-sig”) has been detected.

ssh _len _conns : setfconn _id]
The set of connections that are predicted to contain SSHictrdfased on the proportion of pack-
ets that meet the expected packet size distribution. Refeparameters arssh _min _numpkts and
ssh _min _ssh _pkts _ratio , which are local tdbackdoor .

ssh _min _numpkts : count
The minimum number of packets that look like SSH packetsdhatv a stream to be classified as such.
NOTE: This variable izonst , so may only be changed viadef .

ssh _min _ssh _pkts _ratio : double
The minimum fraction of packets in a stream that look like S&idkets that allow a stream to be classified as
such.
NOTE: This variable i€onst , so may only be changed viadef .

telnet _sig _conns : table[conn _id] of count
The set of connections that are predicted to be Telnet cdionscbased on observation of the Telnet signature,
the IAC byte (0xff).

telnet _sig _3byte _conns : table[conn -id] of count
Similar totelnet _sig _conns , but the signature matched is a whole 3-byte Telnet commeaaaesnce.

6.1.5 bro.init

ignore _checksums : bool
If T (default = F), packet checksums are not verified.
NOTE: This variable i€onst , so may only be changed viadef .

60

partial _connection _ok : bool
If T (the default), instantiate connection state when aiglacbnnection (one missing its initial establishment
negotiation) is seen.
NOTE: This variable i€onst , so may only be changed viadef .

tcp _SYNack _ok : bool
If T (the default), instantiate connection state when a S¥K ia seen but not the initial SYN (even if par-
tial_connectionok is false).
NOTE: This variable i€onst , so may only be changed viadef .

tcp _match _undelivered : bool
If a connection state is removed there may still be some irated data waiting in the reassembler. If T (the
default), pass this to the signature engine before flushiegtate.
NOTE: This variable i€onst , so may only be changed viadef .

tcp _SYNtimeout : interval
Check up on the result of an initial SYN after this much tifie. me: What exactly does this mean? Check that
the connection is active?
NOTE: This variable izonst , so may only be changed viadef .

tcp _session _timer : interval
After a connection has closed, wait this long for furthenadist before checking whether to time out its state.
NOTE: This variable izonst , so may only be changed viadef .

tcp _connection _linger : interval
When checking a closed connection for further activity,sider it inactive if there hasn't been any for this
long. Complain if the connection is reused before this mirae has elapsed.
NOTE: This variable i€onst , so may only be changed viadef .

tcp _attempt _delayv : interval
Wait this long upon seeing an initial SYN before timing owt ttonnection attempt.
NOTE: This variable i€onst , so may only be changed viadef .

tcp _close _delay : interval
Upon seeing a normal connection close, flush state aftenthah time.
NOTE: This variable izonst , so may only be changed viadef .

tcp _reset _delay : interval
Upon seeing a RST, flush state after this much time.
NOTE: This variable i€onst , so may only be changed viadef .

tcp _partial _close _delay : interval
Generate a connectigrartialL.close event this much time after one half of a partial corineatioses, assuming
there has been no subsequent activity.
NOTE: This variable i€onst , so may only be changed viadef .

non_analyzed _lifetime : interval
If a connection belongs to an application that we don't analyime it out after this interval. If O secs, then
don’ttime it out.
NOTE: This variable i€onst , so may only be changed viadef .

61

inactivity _timeout : interval
If a connection is inactive, time it out after this interidl0 secs, then don’ttime it out.
NOTE: This variable i€onst , so may only be changed viadef .

tcp _storm _thresh : count
This many FINS/RSTs in a row constitutes a "storm”. See &dpo_storm _interarrival _thresh
NOTE: This variable izonst , so may only be changed viadef .

tcp _storm _interarrival _thresh : interval
The FINS/RSTs must come with this much time or less betweemtto be considered a storm. See also
tcp _storm _thresh
NOTE: This variable izonst , so may only be changed viadef .

tcp _reassembler _ports _orig : set[port]
For services without a handler, these sets define which sideannection is to be reassembl&tk me: What
is the point of this exactly? What are you analyzing?
NOTE: This variable izonst , so may only be changed viadef .

tcp _reassembler _ports _resp : set[port]
For services without a handler, these sets define which sideannection is to be reassembl&tk me: What
is the point of this exactly? What are you analyzing?
NOTE: This variable izonst , so may only be changed viadef .

table _expire _interval : interval
Check for expired table entries after this amount of tifbeme: Which tables?
NOTE: This variable i€onst , so may only be changed viadef .

dns _session _timeout : interval
Time to wait before timing out a DNS request.
NOTE: This variable i€onst , so may only be changed viadef .

ntp _session _timeout : interval
Time to wait before timing out an NTP request.
NOTE: This variable izonst , so may only be changed viadef .

rpc _timeout : interval
Time to wait before timing out an RPC request.
NOTE: This variable i€onst , so may only be changed viadef .

watchdog _interval : interval
A SIGALRM is set for this interval to make sure that Bro doesget caught up doing something for too long.
Fix me: True?f this happens, Bro is termination after doing a dump of athaining packets.
NOTE: This variable i€onst , so may only be changed viadef .

heartbeat _interval : interval

After each interval of this length, update thet _stats variable.
NOTE: This variable i€onst , so may only be changed viadef .

62

anonymize _ip _addr : bool
If true (default = false), then IP addresses are anonymizetert and log generation.
NOTE: This variable i€onst , so may only be changed viadef .

omit _rewrite _place _holder : bool
If true, omit place holder packets when rewritif@x me: Should this go somewhere else?
NOTE: This variable i€onst , so may only be changed viadef .

rewriting _http _trace : bool
If true (default = F), HTTP traces are rewritten.
NOTE: This variable izonst , so may only be changed viadef .

rewriting _smtp _trace : bool
If true (default = F), SMTP traces are rewritten.
NOTE: This variable izonst , so may only be changed viadef .

6.1.6 code-red.bro

code _red _log : file
The file into which Code Red-related alerts are written.

code _red _listl : table[addr] of count
A table which contains, for each IP address, how many Codd Riggicks were observed (based on a signature)
by the machine at that address.

code _red _list2 : table[addr] of count
A table which contains, for each IP address, how many CoddIRé&dcks were observed (based on a signature)
by the machine at that address.

local _code _red _response _pgm : string
By default, an empty string; i&kredef ed, the specified program will be invoked with the attack seuP as
the argument the first time an attack from that IP is observed.

remote _code _red _response _pgm : string
By default, an empty string; &redef ed, the specified program will be invoked with the attackidasion IP
as the argument the first time an attack on that IP is observed.

6.1.7 conn.bro

have _FTP : bool
If true, ftp.bro has been loaded.

have _SMTP : bool
If true, smtp.bro has been loaded.

have _stats : bool
True if net _stats was ever updated with packet capture statistics.

hot _conns _reported : set[string]
The set of connections (indexed by the entire 'hot’ messtgehave previously been flaggedrast .

63

last _stat : net _stats
The last recorded snapshot of packet capture statistiesyéh _stats record.

last _stat _time : time
The last time that network statistics were read iméo _stats

RPCserver _map : table[addr, port] of string
Maps a given port on a given server’s address to an RPC selwieehaven'tloadegortmapper.bro ,then
it will be empty; segortmapper.boro and theportmapper module documentation for more information.

6.1.8 demux.bro

For more information on demultiplexing of connections, seedemux modul¢(10.17, page 178).

demux_dir : string
The name of the directory which will contain the files with ddtiplexed connection data.

demuxed_conn : set[conn _id]
The set of connections that are currently being demultgdex

6.1.9 dns.bro

actually _rejected _PTRanno : set[string]
Annotations that if returned for a PTR lookup actually irat&e a rejected query; for example, "illegal-
address.Ibl.gov".
NOTE: This variable i€onst , so may only be changed viadef .

sensitive _lookup _hosts : set[addr]
Hosts in this set generate an alert when they are returned i qieries, unless the originating host is in
sensitive _lookup _hosts .
NOTE: This variable i€onst , so may only be changed viadef .

okay _to _lookup _sensitive _hosts : set[addr]
If the DNS request originator is in this set, then it is allavi® look up “sensitive” hosts (see also
sensitive _lookup _hosts without causing an alert.

dns log : file
The file into which DNS-related alerts are written.

dns _sessions : table[addr, addr] of dns _session _info
A table of outstanding DNS sessions indexed by [client IRveseIP]. Fix me: Need to illustrate
dnssessionsnfo.

num.dns _sessions : count
The total number of entries that have ever been irdihe_sessions table.

distinct _PTRrequests : table[addr, string] of count
The number of DNS PTR requests obseverd with the given saadeess and request string.

64

distinct _rejected _PTRrequests : table[addr] of count
How many DNS PTR requests from the given source address ejeead. A report is generated if this number
crosses a threshold, namalgport _rejected _PTRthresh

distinct _answered _PTRrequests : table[addr] of count
How many DNS PTR requests from the given source address wjeeted.

report _rejected _PTRthresh : count
If this many DNS requests from a host are rejected, genenaossible PTR scan event.

report _rejected _PTRfactor : double
If DNS requests from a host are rejected more than acceptéddfactor, generateRTR.scan event.

allow _PTRscans : set[addr]
The set of hosts for whichRTR.scan event does not generate a report (that is, the scan is aljowed

did PTRscan _event : table[addr] of count
A table of hosts for which TR scan event has been generated.

6.1.10 dns-mapping.bro

dns _interesting changes : h
e set of DNS mapping changes (according to lookups by Brif)itbat is interesting enough to alert on.
NOTE: This variable izonst , so may only be changed viadef .

6.1.11 finger.bro

hot _names : set[string]
If a finger request for any of the names in this set is obsethedassociated connection is marked “hot”.
NOTE: This variable izonst , so may only be changed viadef .

maxfinger _request _len : count
If a finger request is longer than this length, then it is mdrke “hot”.
NOTE: This variable izonst , so may only be changed viadef .

rewrite _finger _trace : bool
Indicates whether or not finger requests are rewritten fongmity.

6.1.12 ftp.bro

ftp _log : file
The file into which FTP-related alerts are written.

ftp _sessions : table[conn 4id] of ftp _session _info

ftp _guest _ids : set[string]
The set of login IDs which are guest logins, e.g., “anonyriansl “ftp”.
NOTE: This variable i€onst , so may only be changed viadef .

65

ftp _skip _hot : set[addr, addr, string]
Indexed by source and destination addresses and the i@, ¢bagsections are not marked as “hot” even if its
data would to cause it to be otherwise.
NOTE: This variable i€onst , so may only be changed viadef .

ftp _hot _files : pattern
If a filename matching this pattern is requested,fthe _sensitive _file eventis generated. The default
behavior is to log the connection.
NOTE: This variable i€onst , so may only be changed viadef .

ftp _hot _guest files : pattern
If a user is logged in under a guest ID and attempts to retrizvBle matching this pattern, the
ftp _sensitive _file eventis generated. The default behavior is to log the cdiorec
NOTE: This variable izonst , so may only be changed viadef .

ftp _hot _.cmds : table[string] of pattern
If an FTP command matches an index into the table and its agumatches the associated pattern, the
connection is logged.
NOTE: This variable izonst , so may only be changed viadef .

skip _unexpected : set[addr]
Pairs of IP addresses for which we shouldn’t bother logdingé of them is used in lieu of the other in a PORT
or PASV directive.

skip _unexpected _net : set[addr]
Similar toskip _unexpected , but matches a /24 subnet.

ftp _data _expected : table[addr, port] of addr
Indexed by the server’s responder pair, yields the addsgsecéed to make an FTP data connection to it.

ftp _data _expected _session : table[addr, port] of ftp _session _info
Indexed by the server’s responder pair, yields the assatifi _session _info record for the expected
incoming FTP data connection.

ftp _excessive _filename _en : count
If an FTP request filename meets or exceeds this lengthT&ExcessiveFilename alertis generated.

ftp _excessive _filename _trunc _en : count
How much of the excessively long filename is printed in thetaieessage.

ftp _ignore _invalid _PORT : pattern
Invalid PORT/PASV directives that exactly match this pattdon’t generate alerts.

ftp _ignore _privileged _PASVs : set[port]

Ifan FTP PASV portis specified to be a privileged port (j 18@dythen arFTP_PrivPort eventis generated,
EXCEPT if the port is in this set.

66

6.1.13 hot.bro

same_local _net _is _spoof : bool
If true (default = F), it should be considered a spoofing &ttha connection has the same local net for source
and destination.
NOTE: This variable i€onst , so may only be changed viadef .

allow _spoof _services : set[port]
The services in this set are not counted as spoofed even iff thass the test from
same_local _net _is _spoof .
NOTE: This variable i€onst , so may only be changed viadef .

allow _pairs : set[addr, addr]
Connections between these (source address, destinatossallpairs are never marked as “hot”.
NOTE: This variable izonst , so may only be changed viadef .

allow _16_net _pairs : set[addr, addr]
Connections between these (/16 network, /32 destinatist) pairs are never marked as “hot”.
NOTE: This variable i€onst , so may only be changed viadef .

hot _srcs : table[addr] of string
Connections from any of these sources are automaticalligedéhot” with the associated message in the table.
NOTE: This variable izonst , so may only be changed viadef .

hot _dsts : table[addr] of string
Connections to any of these destinations are automatigaiked “hot” with the associated message in the
table.
NOTE: This variable i€onst , so may only be changed viadef .

hot _src _24nets : table[addr] of string
Connections from any of these source /24 nets are autortaticarked “hot” with the associated message in
the table.
NOTE: This variable izonst , so may only be changed viadef .

hot _dst _24nets : table[addr] of string
Connections to any of these destination /24 nets are auimatipimarked “hot” with the associated message in
the table.
NOTE: This variable izonst , so may only be changed viadef .

allow _services : set[port]
Connections to this set of services are never marked “hatS€d on port number).
NOTE: This variable i€onst , so may only be changed viadef .

allow _services _to : set[addr, port]
Connections to the specified host and port are never marlat! “h
NOTE: This variable izonst , so may only be changed viadef .

allow _service _pairs : set[addr, addr, port]
Connections from the first address to the second on the gmbdiistination port are never marked “hot”.
NOTE: This variable i€onst , so may only be changed viadef .

67

flag _successful _service : table[port] of string

Successful connections to any of the specified ports aredthgith the accompanying message. Examples are
popular backdoor ports.
NOTE: This variable i€onst , so may only be changed viadef .

flag _successful _inbound _service : table[port] of string
Incoming connections to the specified ports are flagged wighaccompanying message. This is similar to
flag _successful _service , but may be used when the port gives to many false positivesiftgoing
connections.
NOTE: This variable i€onst , so may only be changed viadef .

terminate _successful _inbound _service : table[port] of string
Connections to this port, if previously flagged byflag _successful _service or
flag _successful _incoming _service , are terminated.
NOTE: This variable i€onst , so may only be changed viadef .

flag _rejected _service : table[port] of string
Failed connection attempts to the specified ports are markékot”.
NOTE: This variable izonst , so may only be changed viadef .

6.1.14 hot-ids.bro

forbidden _ids : set[string]
If any of these usernames/login IDs are used, the correspgodnnection is terminated.
NOTE: This variable i€onst , so may only be changed viadef .

forbidden _ids _if _no_password : set[string]
If any of these usernames/login IDs are used with no passwledtorresponding connection is terminated.
NOTE: This variable izonst , so may only be changed viadef .

forbidden _id _patterns : pattern
If a username/login ID matches this pattern, the corresipgntbnnection is terminated.
NOTE: This variable i€onst , so may only be changed viadef .

always _hot _ids : set[string]
Connections that attempt to login with these IDs are alwagsked “hot”, whether or not they succeed. See
alsohot _ids .
NOTE: This variable i€onst , so may only be changed viadef .

hot _ids : set[string]
Similar toalways _hot _ids , except that only successful connections are marked “hot”.
NOTE: This variable izonst , so may only be changed viadef .

6.1.15 http.bro

http _log : file
The file into which HTTP-related alerts are written.

68

http _sessions : table[addr, addr] of http _session _info
A [source, destination] indexed tablelttp _session _info records.

include _HTTP.abstract : bool
Currently used to indicate whether or not an abstract of thi@Mrequest data will be included in a rewritten
connection.

log HTTPdata : bool
If true, an abstract of the HTTP request data is included ogartessage.

maintain _http _sessions : bool
If true, HTTP sessions are maintained across multiple cctioTes, otherwise we not (which saves some mem-

ory).

process _HTTP.replies : bool
If true, HTTP replies (not just requests) are processed.

process _HTTP.data : bool
If true, HTTP data is examined as needed (e.g., for makingPHafstracts, as discussed below).

6.1.16 http-abstract.bro

http _abstract _maxlength : count
The maximum number of bytes used to store an abstract for aPH¢dnnection.
NOTE: This variable i€onst , so may only be changed viadef .

6.1.17 http-request.bro

skip _remote _sensitive _URIs : pattern
URIs matching this pattern should not be considered seasftaccessed remotely, i.e., by a local client.

have _skip _remote _sensitive _URIs : bool
Due to a quirk in Bro, this must be redef’'ed to T if you want t@egkip _remote _sensitive _URIs.
NOTE: This variable izonst , so may only be changed viadef .

sensitive _URIs : pattern
URIs matching this pattern, but not matchingvorm_ URIs, are logged. See also
skip _remote _sensitive _URIs, sensitive _post _URIs.
NOTE: This variable i€onst , so may only be changed viadef .

worm_URIs : pattern
URIs matching this pattern are not logged even if they magtsitive _URIs, since worms are so common
they would clutter the logs.
NOTE: This variable i€onst , so may only be changed viadef .

sensitive _post _URIs : pattern
URIs matching this pattern are logged if they are used wghHR TP “POST” method (rather than “GET").
NOTE: This variable i€onst , so may only be changed viadef .

69

6.1.18 icmp.bro

icmp _flows : table[licmp flow _id] of icmp _flow _info
A table tracking all ICMP “flows” byicmp _flow _id . “Flows”, which are simply inferred related sequences
of packets between two machines, based on ICMP ID, are timedfter (currently) 30 seconds of inactivity.

6.1.19 ident.bro

hot _ident _ids : set[string]
If any of the User IDs in this set are returned inident response, atdentSensitivel@lert is generated.

hot _ident _exceptions : set[string]
Exceptions to théiot _ident _ids set.

public _ident _user _ids : set[string]
User IDs in this set are described as “public” in a rewriitggnt trace.

public _ident _systems : set[string]
Operating system names in this set (e.g., “UNIX") are regubdirectly in a rewrittemdent trace; other OSes
will be reported as “OTHER”.

rewrite _ident _trace : bool
If true, traces will be rewritten (partially anonymized).

6.1.20 interconn.bro

interconn _conns : table [conn _.id] of conn _info
A conn _id -indexed table of all currently-tracked interactive coctins. The table entries ao®nn _info
records containing some very basic information about timmeotion.

interconn _og : file
The file into which generic interactive-connection-retbaderts are written.

interconn _min _interarrival : interval
Used in computing the “alpha” parameter, which is used temigihe which connections are interactive, based
on the distribution of interarrival times. See alaterconn _maxinterarrival
NOTE: This variable izonst , so may only be changed viadef .

interconn _max.interarrival : interval
Used in computing the “alpha” parameter, which is used termeine which connections are interactive, based
on the distribution of interarrival times. See alaterconn _min _interarrival
NOTE: This variable izonst , so may only be changed viadef .

interconn _maxkeystroke _pkt _size : count

The maximum packet size used to classify keystroke-coingpackets.
NOTE: This variable i€onst , so may only be changed viadef .

70

interconn _default _pkt _size : count
The estimated packet size used to calculate the number béfzanissed when we see an ack above a lrdte.
me: Please verify.
NOTE: This variable i€onst , so may only be changed viadef .

interconn _stat _period : interval
How often to generate a report of interconn stats.
NOTE: This variable izonst , so may only be changed viadef .

interconn _stat _backoff : double
Fix me: | don't fully understand i®xpire in timers. The stat report generation interval
(interconn _stat _period) is increased by this factor each time the report is gengrgteinless the
report is generated because all timers are artifically expir
NOTE: This variable i€onst , so may only be changed viadef .

interconn _min _num.pkts : count
A connection must have this number of packets transferréatédé may be classified as interactive.
NOTE: This variable izonst , so may only be changed viadef .

interconn _min _duration : interval
A connection must last least this long before it may be di@skas interactive.
NOTE: This variable izonst , so may only be changed viadef .

interconn _ssh _len _disabled : bool
If false (default = T), and at least one side of the connediempartial state (the initial negotiation was missed),
then packets are examined to see if they fit the size disinibaissociated with interactive SSH connections.
NOTE: This variable i€onst , so may only be changed viadef .

interconn _min _ssh _pkts _ratio : double
Analogous to ssh _min _ssh pkts ratio , except used in the context described in
interconn _ssh _len _disabled
NOTE: This variable izonst , so may only be changed viadef .

interconn _min _bytes : count
The number of bytes transferred on a connection must be stt ks high before the connection may be
classified as interactive.
NOTE: This variable i€onst , so may only be changed viadef .

interconn _min _7bit _ascii _ratio : double
The ratio of 7-bit ASCII characters to total bytes must beeatst this high before the connection may be
classified as interactive.
NOTE: This variable izonst , so may only be changed viadef .

interconn _min _numlines : count
The number of lines transferred on a connection must be at te& high before the connection may be
classified as interactive.
NOTE: This variable i€onst , so may only be changed viadef .

71

interconn _min _normal _ine _ratio : double
The ratio of “normal” lines to total lines must be at leassthigh before the connection may be classified as
interactive. A normal line, roughly speaking, is one whaswgth is within a certain boun#iix me: Please verify
this.
NOTE: This variable i€onst , so may only be changed viadef .

interconn _min _alpha : double
The “alpha” parameter computed on connection must be dttl@ashigh before the connection may be classi-
fied as interactive. This parameter measures certain giepef packet interarrival times. Segerconn
NOTE: This variable i€onst , so may only be changed viadef .

interconn _min _gamma : double
The “gamme” parameter computed on connection must be dt tleiashigh before the connection may be
classified as interactive.
NOTE: This variable izonst , so may only be changed viadef .

interconn _standard _ports : set[port]
Connections to or from these ports are marked as interactangtomatically, unless
interconn _ignore _standard _ports is setto true.
NOTE: This variable izonst , so may only be changed viadef .

interconn _ignore _standard _ports : bool
If true (default = F), then all connections are analyzed futeriactive patterns, regardless of port. See
interconn _standard _ports
NOTE: This variable i€onst , so may only be changed viadef .

interconn _demux_disabled : bool
If false (default = T), then interactive connections are deged when being logged.
NOTE: This variable izonst , so may only be changed viadef .

6.1.21 login.bro

input _trouble : pattern
If a user’s keystroke input matches this pattern, then am iglgenerated.

edited _input _trouble : pattern
If a user’s keystroke input matches this pattern, taking attcount backspace and delete characters, then an
alert is generated.

full _input _trouble : pattern
If this pattern is matched in a full line of input, an alert sngrated.

input _wait _for _output : pattern
The same aedited _input _trouble ,exceptthatthe alertis delayed until the correspondirgudus seen,
so that both may be logged together.

output _trouble : pattern
If the login output matches this pattern, an alert is gereerat

72

full _output _trouble : pattern
Similar tooutput _trouble , but the pattern must match the entire output.

backdoor _prompts : pattern
If the login output matches this text, but nuin _backdoor _prompts , generate a possible-backdoor alert.

non _backdoor _prompts : pattern
Seebackdoor _prompts .

hot _terminal _types : pattern
If the terminal type used matches this pattern, generatéean a

hot _telnet _orig _ports : set[port]
If the source port of a telnet connection is in this set, gateean alert.

skip _authentication : set[string]
If a string in this set appears where an authentication ptevopld normally, skip processing of authentication
(typically for an unauthenticated systerijx me: Please verify.
NOTE: This variable i€onst , so may only be changed viadef .

login _prompts : set[string]
The set of strings that are recognized as login prompts aesemn a line, e.g., “Login:”.
NOTE: This variable i€onst , so may only be changed viadef .

login _failure _msgs : set[string]

If any of these strings appear on a line following an autheatitbn attempt, the attempt is considered to have
failed, unless a string frodogin _non _failure _msgs also appears on the line. This set has higher prece-
dence thaogin _success _msgs, and the same precedencdagn _timeouts
NOTE: This variable i€onst , so may only be changed viadef .

login _non_failure _msgs : set[string]
If any of these strings appear on a line following an autleatitbn attempt, the connection is not considered to
have failed even ifogin _failure _msgs indicates otherwise.
NOTE: This variable i€onst , so may only be changed viadef .

login _success _msgs : set[string]
If any of these messages is seen, the connection attemmtsasd to have succeeded. This set has lower
precedence thdogin _failure _msgs andlogin _timeouts
NOTE: This variable i€onst , so may only be changed viadef .

login _timeouts : set[string]

If any of these messages is seen during the login phase, thieection attempt is assumed to have
timed out. This set has higher precedence thagin _success _msgs, and the same precedence as
login _failure _msgs.

NOTE: This variable izonst , so may only be changed viadef .

router _prompts : pattern
Fix me: Don’t know what this is

73

non _ASCII _hosts : set[addr]
The set of hosts that do not use ASCII (and to whom logins are iiot processed).

skip _logins _to : set[addr]
Do not process logins to this set of hosts.

always _hot _login _ids : pattern
Login names which generate an alert even if the login is not¢assful.

hot _login _ids : pattern
Login names which generate an alert, if the login is succéssf

rlogin _id _okay _if _no_password _exposed : set[string]
Login names in this set are those which are normally consitlsensitive, but are allowed if the associated
password is not exposed.

login _sessions : table[conn _id] of login _session _info
A table, indexed by connection ID, tdgin _session _info records, characterizing each login session.

6.1.22 mime.bro

mime_log : file
MIME message-related alerts are logged to this file.

mime_sessions : table[conn {id] of mime _session _info
A table, indexed by connection ID, afime_session _info records, characterizing each MIME session.

check relay _3 : function(session: mime _session _info, msg _id: string): bool
Fix me: Don't know about this

check _relay _4 : function(session: mime _session _info, content _hash: string): bool
Fix me: Don’t know about this

6.1.23 ntp.bro

excessive _ntp _request : count
NTP requests over this length are considered “excessiwkdhbe flagged (marked “hot”).
NOTE: This variable izonst , so may only be changed viadef .

allow _excessive _ntp _requests : set[addr]
NTP requests from an address in this set are never considevezkssively long (see
excessive _ntp _request).
NOTE: This variable i€onst , so may only be changed viadef .

6.1.24 port-names.bro

port _names : table[port] of string
A mapping of well-known port numbers to the associated sermames.
NOTE: This variable i€onst , so may only be changed viadef .

74

6.1.25 portmapper.bro

rpc _programs : table[count] of string
A table correlating numeric RPC service IDs to string naméshe services, e.9.[1000000] =
“portmapper”

NFSservices : set[string]
A set of string names of NFS-related RPC services.
NOTE: This variable izonst , so may only be changed viadef .

RPCokay : set[addr, addr, string]
Indexed by the host providing the service, the host requgdti and the service; do not log Sun portmapper
requests from the specified requestor to the specified profad the specified service.
NOTE: This variable izonst , so may only be changed viadef .

RPCokay _nets : set[net]
Hosts in any of the networks in this set may make portmappggrasts without being flagged.
NOTE: This variable izonst , so may only be changed viadef .

RPCokay _services : set[string]
Requests for services in this set will not be flagged.
NOTE: This variable izonst , so may only be changed viadef .

NFSworld _servers : set[addr]
Any host may request NFS services from any of the machindssrset without being flagged..
NOTE: This variable i€onst , so may only be changed viadef .

any _RPCokay : set[addr, string]
Indexed by the service provider and the service (in strimghjpany host may access these services without
being flagged.
NOTE: This variable izonst , so may only be changed viadef .

RPCdump_okay : set[addr, addr]
Indexed by requesting host and providing host, respegtivklmps of RPC portmaps are allowed between
these pairs.
NOTE: This variable izonst , so may only be changed viadef .

RPCdo_not _complain : set[string, bool]
Indexed by the portmapper request and a boolean that’s € ifdfuest was answered, F it was attempted but
not answered. If there’s an entry in the set matching theectirequest/attempt, then the access won’t be logged
(unless the connection is hot for some other reason).

suppress _pmlog : set[addr, string]
Indexed by source and portmapper service. If set, we alrkagyed and shouldn’t do so agalfix me: Pre-
sumably this can be preloaded with stuff, or we wouldn’t neetbcument it.

75

6.1.26 rules.bro

rule _actions : table[string] of count
Decide what to do when each rule (the index into the tablgyéis: Ignore the rule (RULESNORE); Pro-
cess the rule but don’t report it individually (RULEUIET); Log the match intoule _file (RULE_FILE);
Log the match into bothule _fle and the overall log file (generate an alert) (RULBG). The default is
RULE_FILE.

NOTE: This variable izonst , so may only be changed viadef .

rule file : file
The file into which rule-based alerts are logged.

horiz _scan _thresholds : set[count]

Log if for a pair (orig, rule) the number of different respamg has reached one of the thresholds in this set.
NOTE: This variable i€onst , so may only be changed viadef .

vert _scan _thresholds : set[count]
Log if for a pair (orig, resp) the number of different rule ria¢s has reached one of the thresholds in this set.
NOTE: This variable i€onst , so may only be changed viadef .

6.1.27 scan.bro

suppress _scan _checks : bool

If true, we suppress scan checking (we still do accountHaieounting). This is provided because scan check-
ing can consume a lot of memory.

report _peer _scan : set[count]

When the number of distinct machines connected to by a gixtmreal host reaches each of the levels in the
set, an alert is generated.

NOTE: This variable izonst , so may only be changed viadef .

report _outbound _peer _scan : set[count]
When the number of distinct machines connected to by a givienrial host reaches each of the levels in the
set, an alert is generated.

NOTE: This variable i€onst , so may only be changed viadef .

numddistinct _peers : table[addr] of count
A table indexed by a host’s address which indicates how méatindt machines that host has connected to.

distinct _peers : set[addr,addr]
A table indexed by source host and target machine that trablch machines have been scanned by each host.

numddistinct _ports : table[addr] of count
A table indexed by a host's address which indicates how méatindt ports that host has connected to.

distinct _ports : set[addr, port]
A table indexed by source host and target port that trackstwprts have been scanned by each host.

76

report _port _scan : set[count]
When the number of distinct ports connected to by a giverreatédnost reaches each of the levels in the set,
an alert is generated.

NOTE: This variable i€onst , so may only be changed viadef .

possible _port _scan _thresh : count
If a host tries to connect to more than this number of poris,dbnsidered a possible scanner.

NOTE: This variable izonst , so may only be changed viadef .

possible _scan _sources : set[addr]
Hosts are put in this set once they have scanned morepthesible _port _scan _thresh ports.

num.scan _triples : table[addr, addr] of count
Indexed by source address and destination address, theenwibervices scanned for on the latter by the
former. This is only tracked fquossible _scan _sources .

scan _triples : set[addr, addr, port]
For possible _scan _sources as a source address, the triples of (source address, diestinddress, and
service/port) scanned.

accounts _tried : set[addr, string, string]
Which account names were tried, indexed by source addressname tried, password tried.

numaccounts _tried : table[addr] of count
How many accounts, as defined by a (user name, passwordjyvpaértried by the host with the given address.

report _accounts _tried : set[count]
When the number of distinct accounts (username, passwad)dy a given external host reaches each of the
levels in the set, an alert is generated.
NOTE: This variable i€onst , so may only be changed viadef .

report _remote _accounts _tried : set[count]
When the number of distinct remote accounts (usernameypeadstried by a given internal host reaches each
of the levels in the set, an alert is generated.
NOTE: This variable i€onst , so may only be changed viadef .

skip _accounts _tried : set[addr]
Hosts in this set are not subject to alerts based wport _accounts _tried and
report _remote _accounts _tried
NOTE: This variable i€onst , so may only be changed viadef .

addl _web : set[port]
Ports in this set are treated as HTTP services.
NOTE: This variable i€onst , so may only be changed viadef .

skip _services : set[port]
Connections to ports in this set are ignored for the purpokssan detection.
NOTE: This variable i€onst , so may only be changed viadef .

77

skip _outbound _services : set[port]
Connections to external machines on ports in this set amrégifor the purposes of scan detection.
NOTE: This variable i€onst , so may only be changed viadef .

skip _scan _sources : set[addr]
Hosts in this set are ighored as possible sources of scans.
NOTE: This variable izonst , so may only be changed viadef .

skip _scan _nets _16 : set[addr,port]
Connections matching the specified (source host /16 supad), pairs are ignored for the purpose of scan
detection.
NOTE: This variable i€onst , so may only be changed viadef .

skip _scan _nets _24 : set[addr,port]
Connections matching the specified (source host /24 supad), pairs are ignored for the purpose of scan
detection.
NOTE: This variable izonst , so may only be changed viadef .

backscatter _ports : set[port]
Reverse (SYN-ack) scans seen from these ports are corsidaeflect possible SYN flooding backscatter and
not true (stealth) scans.
NOTE: This variable izonst , so may only be changed viadef .

numbackscatter _peers : table[addr] of count
Indexed by a host, how many other hosts it connected to withsaiple backscatter signature.

distinct _backscatter _peers : table[addr, addr] of count
A table of [source, destination] observed backscattevigtihe table entry is a count of backscatter packets
from the source to the destination.

report _backscatter : set[count]
When the number of machines that a host has sent backscattertp to reaches each of the levels in the set,
an alert is generated.

Fix me: Need to document connection-dropping related \deis

global can_drop_connectivity = F &redef;

global drop_connectivity_script = "drop-connectivity" & redef;
global connectivity dropped: set[addr];

const shut_down_scans: set[port] &redef;

const shut_down_all scans = F &redef;

const shut_down_thresh = 100 &redef;
\indpredefvar{never_shut_down}set[addr]}
\indpredefvar{never_drop_netsH{set[net]}
\indpredefvar{never_drop_16_netsH{set[net]}
\indpredefvar{did_drop_address}{table[addr] of count}

root _servers : set[host]

The set of root DNS servers.
NOTE: This variable i€onst , so may only be changed viadef .

78

gtld _servers : set[host]
The set of Generic Top-Level Domain servers (.com, .nef, &fc.).
NOTE: This variable i€onst , so may only be changed viadef .

6.1.28 site.bro

local _nets : set[net]
Class A/B/C networks that are considered “local”.
NOTE: This variable izonst , so may only be changed viadef .

local _16_nets : set[addr]
/16 address blocks that are considered “local”. These areediedirectly fromlocal _nets . Fix me: Please
verify this
NOTE: This variable i€onst , so may only be changed viadef .

local _24 nets : set[addr]
/24 address blocks that are considered “local”. These aieediedirectly fromlocal _nets . Fix me: Please
verify this
NOTE: This variable izonst , so may only be changed viadef .

neighbor _nets : set[net]
Class A/B/C networks that are considered “neighbors”. Nlo& unlike for localnets,neighbor _16 _nets
is notmerely a /16 addr version of neighhoets, but instead is consultedadditionto neighbomets.
NOTE: This variable izonst , so may only be changed viadef .

neighbor _16_nets : set[addr]
/16 address blocks that are considered “neighbors”. Nattuhlike for localnets, neighbaf6_nets isnot
merely a /16 addr version okighbor _nets , but instead is consultdd additionto neighbor _nets .
NOTE: This variable i€onst , so may only be changed viadef .

6.1.29 smtp.bro

local _mail _addr : pattern
Email addresses matching this pattern are considered tichk This is used to detect relaying.

smtp _log : file
The file into which SMTP-related alerts are written.

smtp _sessions : table[conn {id] of smtp _session _info
A table ofsmtp _session _info records tracking SMTP-related state for a given connection

process _smtp _relay : bool
If true (default = F), processing is done to check for maihyatg.
NOTE: This variable i€onst , so may only be changed viadef .

type smtp_session_info: record {
id: count;
connection_id: conn_id;

79

external_orig: bool;

in_data: bool;

num_cmds: count;

num_replies: count;

cmds: smtp_cmd_info_list;

in_header: bool;

keep_current_header: bool; # a hack till MIME rewriter is re ady
recipients: string;

subject: string;

content_hash: string;

num_lines_in_body: count; # lines in RFC 822 body before MIM E decoding
num_bytes_in_body: count; # bytes in entity bodies after Mi ME decoding
content_gap: bool; # whether there is content gap in convers ation

relay 1 rcpt: string; # external recipients

relay 2 from: count; # session id of same recipient
relay 2 to: count;

relay_3_from: count; # session id of same msg id
relay_3_to: count;

relay_4 from: count; # session id of same content hash
relay_4 to: count;

3

smtp legal _cmds : set[string]
The set of allowed SMTP commands (not currently usea)me: Is it used somewhere?
NOTE: This variable i€onst , so may only be changed viadef .

smtp _hot _cmds : table[string] of pattern
If an SMTP command matching an index into the table has amaegtimatching the associated pattern, then
the request and its reply are logged.
NOTE: This variable i€onst , so may only be changed viadef .

smtp _sensitive _cmds : set[string]
If an SMTP command is in this set, the request and its repNoaiged.
NOTE: This variable i€onst , so may only be changed viadef .

6.1.30 smtp-relay.bro

relay _log : file
Alerts related to email relaying go in this file.

smtp _relay _table : table[count] of smtp _session _info
Atable indexed by SMTP session ID (session$id) that keeyk of each session in amtp _session _info
record.

smtp _session _by _recipient : table[string] of smtp _session _info

A table indexed by the recipient that holds the correspansintp _session _info record.

80

smtp _session _by_message _id : table[string] of smtp _session _info
A table indexed by the email message ID that holds the cooretipgsmtp _session _info record.

smtp _session _by_content _hash : table[string] of smtp _session _info
A table indexed by the MD5 hash of the message that holds tiiespondingmtp _session _info record.
Fix me: Currently unimplemented?

6.1.31 software.bro

software _file : file
Alerts related to host software detection go in this file.

software _table : table[addr] of software _set
A table of the software running on each hostséftware _set is itself a table, indexed by the name of the
software, ofsoftware records.

software _ident _by _major : set[string]
Software names in this set could be installed twice on theesaachine with different major version numbers.
Such software is identified as “Software-N" where N is thegnagrsion number, to disambiguate the two.

6.1.32 ssh.bro

ssh _log : file
Alerts related to ssh connections go in this file.

did _ssh _version : table[addr, bool] of count
Indexed by host IP and (T for client, F for server), the tatdeks if we have recorded the SSH version. Values
of one and greater are essentially equivalent.

6.1.33 stepping.bro

step _log : file
Alerts related to stepping-stone detection go in this file.

display _pairs : table[addr, string] of connection
If jconn¢, was a login to jdst¢, propagating a $DISPLAY of jlidigp, then we make an entry of [jdst¢,, jdisplay¢,]
= jconny..

tag _to _conn _map : table[string] of connection
Maps login tags like "Last login ..."” to connections.

conn _tag _info : table[conn id] of tag _info
A table, indexed by connection ID, of thag _info related to it. Roughly, “tag info” consists of login strings
like “Last login” and$DISPLAY variables. Since this information can stay constant acstegsping stones, it
is used to detect them.

detected _stones : table[addr, port, addr, port, addr, port, addr, por t] of
count
Indexed by two pairs of connections: (addr,port)-¢ (addt)pand (addr,port)-¢ (addr,port) that have been

81

detected to be multiple links in a stepping stone chain. @bketvalue is the “score” of the pair of connections;
the higher the score, the more likely it is to be a real step@itone pair. More points are assigned for a
timing-based correlation than, say$BISPLAY -based correlation.

did _stone _summary : table[addr, port, addr, port, addr, port, addr, po rt] of
count
Basically tracks which suspected stepping stone conmegi@irs have had alerts generated for them. See
detected _stones forthe indexing scheme.

stp _delta : interval
NOTE: This variable izonst , so may only be changed viadef .
stp _idle _min : interval
NOTE: This variable i€onst , so may only be changed viadef .
stp _ratio _thresh : double
For timing correlations, the proportion of idle times thaishmatch up for the correlation to be considered
significant.
NOTE: This variable izonst , so may only be changed viadef .

stp _scale : double

NOTE: This variable i€onst , so may only be changed viadef .

stp _.commonhost _thresh : count

NOTE: This variable izonst , so may only be changed viadef .

stp _random _pair _thresh : count

NOTE: This variable i€onst , so may only be changed viadef .

stp _demux_disabled : count

NOTE: This variable izonst , so may only be changed viadef .

skip _clear _ssh _reports : set[addr, string]

NOTE: This variable i€onst , so may only be changed viadef .

82

6.1.34 tftp.bro

tftp _alert _count : table[addr] of count
Keeps track of the number of observed outbound TFTP cororecfiom each host.

6.1.35 udp.bro

udp _req _count : table[conn -id] of count
Keeps track of the number of UDP requests sent over each ctome

udp _rep _count : table[conn _id] of count
Fix me: not really sure

udp _did _summary : table[conn _id] of count
Keeps track of which connections have been summarizedttedbix me: what is it really? do people use this?

6.1.36 weird.bro

weird _log : file
Alerts related taveird (unexpected or inconsistent) traffic go in this file.

weird _action : table[string] of WeirdAction
A table of what to do (&VeirdAction) when faced with a particular “weird” scenario (the indexample
include logging to the special “weird” file or ignoring theradition.

weird _action filters : table[string] of function(c: connection): Weird Action
If an entry exists in this table for a given weird situatidme the corresponding entry is used to determine what
action to take; the default is to look imeird _action

weird _ignore _host : set[addr, string]
(host, weird condition) pairs in this set are ignored for pleposes of reporting.
NOTE: This variable i€onst , so may only be changed viadef .

weird _do_not _ignore _repeats : sef[string]
The included alert conditions are reported even if they epeated.
NOTE: This variable izonst , so may only be changed viadef .

6.1.37 worm.bro

worm_log : file
The file into which worm-detection-related alerts are \entt

worm_list : table[addr] of count
A table of infected hosts, indexed by the infected hostsrases. The value is how many times the instance
has been seen sending packets.

worm_type _list : table[addr, string] of count
A table of infected hosts, indexed by host address and tymewh. The value is how many times that particular
worm has been seen on the host.

83

6.1.38 Uncategorized

Fix me: These need categorization.

bro _log file : file
Used to record the messages loggedday statements.

Default:stderr, unless you@load thelog analyzer; se§ 7.9, page 115 for further discussion.

capture filter : string
Specifies what packets Bro’s filter should recdyd (1.2, page 93).

direct _login _prompts : set[string]
Strings that when seen in a login dialog indicate that the wéle be directly logged in after entering their
username, without requiring a passwosd (19.2, page 134).

discarder _maxlen : int
The maximum amount of data that Bro should pass to a TCP or difarder(§ 10.25, page 178).

Default: 128 bytes.

done _with _network : bool
Set to true when Bro is done reading from the network (or froemdave files being played back, [§et0.24,
page 178). The variable is set by a handlenfetr _done.

Default: initially set to false.

interfaces : string
A blank-separated list of network interfaces from which Bhmuld read network traffic. Bro merges packets
from the interfaces according to their timestanipsficiency: All interfacemusthave the same link layer type.

If empty, then Bro does not read any network traffic, unless @nmore interfaces are specified using the
flag.

Note: interfaces has an&add_func that allows you to add interfaces to the list simply using=a
initialization (§ 10.5, page 176).

Default: empty.

max_timer _expires : count
Sets an upper limit on how many pending timers Bro will expiee newly arriving packet. If set to 0, then Bro
expires all pending timers whose time has come or past. Triahle trades off timer accuracy and memory
requirements (because a number of Bro’s internal timeeggdb expiring state) with potentially bursty load
spikes due to a lot of timers expiring at the same time, whahtdgger the watchdog, if active.

restrict filter : string
Restricts what packets Bro’s filter should recotd (1.2, page 93).

84

6.2 Predefined Functions
Bro provides a number of built-in functions:

active _connection (id: conn _id): bool
Returns true if the given connection identifier (originatesponder addresses and ports) corresponds to a
currently-active connection.

active _file (f: file): bool
Returns true if the givefile is open.

add _interface (iold: string, inew: string): string
Used to refine the initialization dhterfaces . Meant for internal use, and as an example of refinement
(§ 10.5, page 176).

add _tcpdump filter (fold: string, fnew: string): string
Used to refine the initializations chpture filter andrestrict filter . Meant for internal use, and
as an example of refinemenit10.5, page 176).

log _hook (msg: string): bool
If you define this function, then Bro will call it with each Btg it is about to log. The function should return
true if Bro should go ahead and log the message, false otberee 7.9, page 115 for further discussion and
an example.

byte _len (s: string): count
Returns the number of bytes in the given string. This inchatey embedded NULs, and also a trailing NUL, if
any (which is why the function isn’t callestrlery to remind the user that Bro strings can include NULS).

cat (args: any): string
Returns the concatenation of the string representatiois afguments, which can be of any type. For example,
cat("foo", 3, T) returns'foo3T"

clean (s: string): string
Returns a cleaned up versionggfmeaning that:
e embedded NULs become the teXd*
e embedded DELs (delete characters) become the t@xt “

e ASCII “control” characters with codg 26 become the text™Letter’, whereLetteris the corresponding
(upper case) control character; for example, ASCII 2 becohie”

e ASCII “control” characters with codes between 26 and 32 {mmtusive) become the textX hex-cod&
for example, ASCII 31 become$1f ”

e if the string does not yet have a trailing NUL, one is added.

close (f: file): bool
Flushes any buffered output for the given file and closesetuRis true if the file was open, false if already
closed or never opened.

85

connection _record (id: conn _id): connection
Returns theconnection record corresponding to the given connection identifimte: If the connection
does not exist, then exits with a fatal run-time error.

Deficiency: If Bro had an exception mechanism, then we cotdiighe fatal run-time error, and likewise could
get rid ofactive _connection

contains _string (big: string, little: string): bool
Returns true if the strintittle occurs somewhere withisig , false otherwise.

current _time (): time
Returns the current clock time. You will usually instead wanusenetwork _time .

discarder _check _icmp (i: ip _hdr, ih: icmp _hdr): bool
Not documented.

discarder _check _ip (i: ip _hdr): bool
Not documented.

discarder _check _tcp (i: ip _hdr, t: tcp _hdr, d: string): bool
Not documented.

discarder _check _udp (i ip _hdr, u: udp _hdr, d: string): bool
Not documented.

edit (s: string, edit _char: string): string
Returns a version of assuming thagdit _char isthe “backspace” character (usudNy08" for backspace
or"\x7f" for DEL). For exampleedit("hello there", "e") returns'llo t"

edit _char must be a string of exactly one character, or Bro generatesidime error and uses the first
character in the string.

Deficiency: To do a proper jokedit should also know about delete-word and delete-line editanyl it
would be very convenient if it could do multiple types ofsedit in one shot, rather than requiring separate
invocations.

exit (); int
Exits Bro with a status of 0.
Deficiency: This function should probably allow you to spettie exit status.

Note: If you invoke this function, then the usual cleanugfiemsnet _.done andbro _done are notinvoked.
There probably should be an additionaliutdown ” function that provides for cleaner termination.

flush _all (): bool
Flushes all open files to disk.

fmt (args: any): string
Performssprintf-style formatting. The first argument gives the format sfiecto which the remaining argu-
ments are formatted, left-to-right. As wittprintf, the format for each argument is introduced usifg, ‘and
formats beginning with a positive integer specify that the given field should have a widthrefcharacters.
Fields with fewer characters are right-padded with blankgouthis width.

86

A format specifier of ' n” (coming afterm, if present) instructémt to use a precision of digits. You can
only specify a precision for the, f or g formats. {mt generates a run-time error if eith@ror n exceeds 127.)

The different format specifiers are:

% A literal percent-sign character.

D
Format as a date. Valid only for values of tyjiae .
The exact format igy-mm-dd-hh:mmssfor the local time zone, pestrftime

d
Format as an integer. Valid for typésol , count , int , port , addr , andnet , with the latter three
being converted from network order to host order prior tarfatting.bool values of true format as the
number 1, and false as 0.

e, f, g Format as a floating point value. Valid for typgsuble ,time , andinterval . The formatting is the

same as foprintf, including the field widthn and precisiom.

Given no argument$mt returns an empty string.
Given a non-string first argumerfint returns the concatenation of all its arguments,qaer.

Finally, given the wrong number of additional argumentdifiergiven format specifieiint generates a run-time
error.

get login _state (c: conn _id): count
Returns the state of the given login (Telnet or Rlogin) catioa, one of:

LOGIN.STATEAUTHENTICATE
The connection is in its initial authentication dialog.

LOGIN.STATELOGGEDN
The analyzer believes the user has successfully authtatica

LOGIN_STATESKIP
The analyzer has skipped any further processing of the @bione

LOGIN.STATECONFUSED
The analyzer has concluded that it does not correctly knewgtifite of the connection, and/or the username
associated with it§7.19.1, page 131).

or a run-time error and a value bOGIN_.STATEAUTHENTICATEHTf the connection is not a login connection.

get _orig _seq (c: conn _id): count
Returns the highest sequence number sent by a connecti@ifsator, or 0 if there’s no such TCP connection.
Sequence numbers are absolute (i.e., they reflect the \sdeedirectly in packet headers; they are not relative
to the beginning of the connection).

get resp _seq (c: conn _id): count
Returns the highest sequence number sent by a connectispsrrder, or 0 if there’s no such TCP connection.

getenv (var: string): string
Looks up the given environment variable and returns itsejadn an empty string if it is not defined.

87

is _tcp _port (p: port): bool
Returns true if the giveport value corresponds to a TCP port, false otherwise (i.e.Jatrtags to a UDP port).

length (args: any): count
Returns the number of elements in its argument, which musif hgpe table or set . If not exactly one
argument is specified, or if the argument is not a table or,dtse generates a run-time message and returns 0.

Deficiency: If Bro had a union type, then we could get rid ofrtteggic “args: any " specification and catch
parameter mismatches at compile-time instead of run-time.

log file _name (tag: string): string
Returns a name for a log file (such agird orred) in a standard form. The form depends on whether
$BRQID is set. If so, then the format is<tag>.<\$BRO_ID> ". Otherwise, it is simplytag .

mask_addr (a: addr, top _bits _to _keep: count): addr
Returns the address masked down to the number of upper bits indicateddyy _bits _to _keep, which
must be greater than 0 and less than 33. For examysk_addr(1.2.3.4, 18) returnsl.2.0.0 ,and
mask_addr(1.2.255.4, 18) returnsl.2.192.0

Compare withto _net .

max_count (a: count, b: count): count
Returns the larger of or b.

max_double (a: double, b: double): double
Returns the larger of or b.

max.nterval (a: interval, b: interval): interval
Returns the larger of or b.

Deficiency: If Bro supported polymorphic functions, theis fanction could be merged with its predecessors,
gaining simplicity and clarity.

min _count (a: count, b: count): count
Returns the smaller af or b.

min _double (a: double, b: double): double
Returns the smaller & or b.

min _interval (a: interval, b: interval): interval
Returns the smaller &f or b.

Deficiency: If Bro supported polymorphic functions, theis flanction could be merged with its predecessors,
gaining simplicity and clarity.

mkdir (f: string): bool
Creates a directory with the given name, if it does not alyeadst. Returns true upon success, false (with a
run-time message) if unsuccessful.

network _time (): time
Returns the timestamp of the most recently read packethehetad from a live network interface or from a
save file § 10.24, page 178). Compare agaiogtrent _time . In general, you should usetwork _time

88

| Direction | Meaning |
CONTENTSNONE| Stop recording the connection’s contents.

CONTENTSRIG | Record the data sent by the connection originator (ofteclibat).
CONTENTSRESP | Record the data sent by the connection responder (ofterettiers.
CONTENTSBOTH| Record the data sent in both directions.

Table 6.1: Different types of directions feet _contents _file

unless you're using Bro for non-networking uses (such agigarscripting; not particularly recommended),
because otherwise your script may behave very differemtlyve traffic versus played-back traffic from a save
file.

open (f: string): file
Opens the given filename for write access. Creates the filddfds not already exist. Generates a run-time error
if the file cannot be opened/created.

open _for _append (f: string): file
Opens the given filename for append access. Creates theifitdois not already exist. Generates a run-time
error if the file cannot be opened/created.

open _log file (tag: string): file
Opens a log file associated with the given tag, using a filerfameat as returned bpg _file _name.

parse _ftp _pasv (s: string): ftp _port
Parses the server’s reply to an FPRSVcommand to extract the IP address and port number indicgtéteb
server. The values are returned infgm _port record, which has three fields; the addressi(is mnemonic
for hos); p, the (TCP) port; andgalid , a boolean that is true if the server’s reply was in the resgliformat,
false if not, or if any of the individual values (or the indied port number) are out of range.

parse _ftp _port (s: string): ftp _port
Parses the argument included in a client's FHBRTrequest to extract the IP address and port number indi-
cated by the server. The values are returned ifi@mn_port record, which has three fields, as indicated in the
discussion oparse _ftp _pasv .

reading _live _traffic (): bool
Returns true if Bro was invoked to read live network traffio(h one or more network interfaces, 3e2.1.4,
page 16), false if it's reading from save files being playecki{§ 10.24, page 178).

Note: This function returns true even after Bro has stopeadiing network traffic, for example due to receiving
a termination signal{ 7.2, page 95).

set _buf (f: file, buffered: bool)
Specifies that writing to the given file should either be fllbffered (ifbuffered s true), or line-buffered (if
false). Does not return a value.

set _contents _file (c: conn _id, direction: count, f: file): bool
Specifies that the traffic stream of the given connection éngiren direction should be recorded to the given
file. direction is one of the values given in Table 6.2.

89

Note: CONTENTSBOTHresults in the two directions being intermixed in the fileha order the data was seen
by Bro.

Note: The data recorded to the file reflects the byte streatthe@ontents of individual packets. Reordering and
duplicates are removed. If any data is missing, the recgrdiiops at the missing data; seek _above _hole
for how this can happen.

Deficiency: Bro begins recording the traffic stream startimigh new traffic it sees. Experience has shown it
would be highly handy if Bro could record the entire connattio the file, including previously seen traffic. In
principle, this is possible if Bro is recording the trafficacsave file § 10.2, page 176), which a separate utility
program could then read to extract the stream.

Returns true upon success, false upon an error.
set _login _state (c: conn _id, new _state: count): bool

Manually sets the state of the given login (Telnet or Rlogim)inection t;new_state , which should be one
of the values described et _login _state

Generates a run-time error and returns false if the cororeiginot a login connection. Otherwise, returns true.
set _record _packets (c: conn _id, do _record: bool): bool

Controls whether Bro should or should not record the pada@tgsponding to the given connection to the save
file (§ 10.2, page 176), if any.

Returns true upon success, false upon an error.

skip _further _processing (c: conn _id): bool
Informs bro that it should skip any further processing of tomtents of the given connection. In particu-
lar, Bro will refrain from reassembling the TCP byte streamd drom generating events relating to any an-

alyzers that have been processing the connection. Bro tilillgenerate connection-oriented events such as
connection _finished

This function provides a way to shed some load in order to gedhe computational burden placed on the
monitor.

Returns true upon success, false upon an error.
sub _bytes (s: string, start: count, n: count): string

Returns a copy ofi bytes from the given string, starting at positistart . The beginning of a string corre-
sponds to position 1.

If start is O or exceeds the length of the string, returns an emptygstri
If the string does not have characters fronstart to its end, then returns the characters fretart to the
end.
system (s: string): int
Runs the given string asshhcommand (via C'systencall).
Note: The command is run in theckgroundvith stdoutredirected tostderr

Returns the return value from tisgstentall. Note: This corresponds to the status of backgrounding thergi
commandnotto the exit status of the command itse.value of 127 corresponds to a failure to execsite
and -1 to an internal system failure.

90

to _lower (s: string): string
Returns a copy of the given string with the uppercase lefassndicated bysascii andisuppe) folded to
lowercase (vidolower).

to _net (a: addr): net
Returns the network prefix historically associated with giveen address. That is, &’s leading octet is less
than 128, then returnsa>/8; if between 128 and 191, inclusive, thea>/16; if between 192 and 223, then
<a>/24; and, otherwisesa>/32. See the discussion of tmet type for more about network prefixes.

Generates a run-time error and retudn®8.0.0 if the address is IPv6.

Note: Such network prefixes have become obsolete with thentadf CIDR; still, for some sites they prove
useful because they correspond to existing address aitotat

Compare withmask_addr .

to _upper (s: string): string
Returns a copy of the given string with the lowercase lettassindicated bysascii andislower) folded to
uppercase (vitcouppel).

6.2.1 Run-time errors for non-existing connections

Note that for all functions that takeaonn _id argument excepctive _connection , Bro generates a run-time
error and returns false if the given connection does not.exis

6.2.2 Run-time errors for strings with NULs

While Bro allows NULs embedded within strings 8.5.1, page 24), for many of the predefined functions, their
presence spells trouble, particularly when the string isd@assed to a C run-time function. The same holds for
strings that ar@ot NUL-terminated. Because Bro string constants and valuesred by Bro functions that construct
strings such afmt andcat are all NUL-terminated, such strings will not ordinarilyiss; but their presence could
indicate an attacker attempting to manipulate either a Ti@peint, or the monitor itself, into misinterpreting a s
they’re sending.

In general, any of the functions above that are passed g strijument will check for the presence of an embedded
NUL or the lack of a terminating NUL. If either occurs, theyngeate a run-time message, and the string is transformed
into the valué'<string-with-NUL>"

There are three exceptiordean ,byte _len , andsub _bytes . These functions do not complain about embed-
ded NULs or lack of trailing NULSs.

6.2.3 Functions for manipulating strings

Fix me: Missing

6.2.4 Functions for manipulating time

Fix me: Missing

91

Chapter 7

Analyzers and Events

In this chapter we detail the different analyzers that Brovtes. Some analyzers look at traffic in fairly generic
terms, such as at the level of TCP or UDP connections. Othedve ihto the specifics of a particular application that
is carried on top of TCP or UDP.

As we use the term heranalyzerprimarily refers to Bro’s event engine. We use the tegriptto refer to a set of
event handlers (and related functions and variables)asritt the Bro languagenoduleto refer to a script that serves
primarily to provide utility (helper) functions and variais, rather than event handlers; drahdlerto denote an event
handler written in the Bro language. Furthermore gtamdard scripis the script that comes with the Bro distribution
for handling the events generated by a particular analyzer.

Note: However, we also sometimes as@lyzerto refer to the event handler that processes events gemnktbgte
the event engine.

We characterize the analyzers in termswiiatevents they generate, but don't here go into the detait®ufthey
generate the events (i.e., the nitty gritty C++ impleméaotet of the analyzers).

7.1 Activating an Analyzer

In general, Bro will only do the work associated with a parf@ analyzer if your policy script defines one or more
event handlers associated with the analyzer. For examptewil instantiate an FTP analyzer only if your script
defines arftp _request orftp _reply handler. If it doesn't, then when a new FTP connection bedns will
only instantiate a generic TCP analyzer for it. This is anant@nt point, because some analyzers can require Bro to
capture a large volume of traffi§ 7.1.2, page 93) and perform a lot of computation; therefpoe, need to have a
way to trade off between the type of analysis you do and thi@paance requirements it entails, so you can strike the
best balance for your particular monitoring needs.

Deficiency: While Bro attempts to instantiate an analyzgoif define a handler faanyof the events the analyzer
generates, its method for doing so is incomplete: if you defjne an analyzer’s less mainstream handlers, Bro may
fail to instantiate the analyzer.

7.1.1 Loading Analyzers

The simplest way to use an analyzer is@oad the standard script associated with the analyzer. (St@.14,
page 177 for a discussion @load.) However, there’'s nothing magic about these scripts; yaoufeeely modify or

92

write your own. The only caveat is that some scri@ifoad other scripts, so the original version may wind up being
loaded even though you've also written your own verspeficiency: It would be useful to have a mechanism to fully
override one script with another.

In this chapter we discuss each of the standard scripts assaiesd their associated analyzers.

7.1.2 Filtering

Most analyzers require Bro to capture a particular type ofvaek traffic. These traffic flows can vary immensely in
volume, so different analyzers can cost greatly differimgants in terms of performance.

Bro predefines two redefinabtring variables that have special interpretations with regaritaring. (See
§ 10.5, page 176 for a discussion of redefinable variabtegpjure filter is atcpdump filter that tells Bro
what traffic it should captureestrict ~ filter limits what traffic Bro captures. Thepdump filter Bro uses is:

(capturefilter) and (restrict filter)
So, for example, if you specify:

redef capture_filter = "port http";
redef restrict filter = "net 128.3";

then the correspondirtgpdump filter will be:
(port http) and (net 128.3)

which will capture all TCP port 80 traffic that has either a m@uor destination address belonging to t#8.3
network (i.e.,128.3/16).

If you do not definecapture filter , then its value is set tot€p or udp ”; if you do not define
restrict ~ filter , then no restriction is in effect.
You may have noticed that other than their default valuesg, definitions of capture filter and

restrict filter are symmetric. They differ only in the convention of how tlaeg used. Usually, you either don’t
define a value forestrict filter at all, or define it just once, using it to specify a restrintthat holds across
your environment. For example, either to confine packeturapb a subset of the traffic (like theet 128.3"

example above), or to exclude a particular traffic soufoet(host syn-flood.magnet.com”) or both of
these'(net 128.3 and not host syn-flood.magnet.com").
For capture _filter , on the other hand, you usually don't define a single valuejrisieadrefine it one or

more times using the= initializer. (See§ 10.5, page 176 for a discussion of refining a variable’sahitalue.) The
way capture filter ’srefinementis defined, it constructs a filter that is the ‘@fréach of its refinements. So, for
example, if at one point in your script you have:

redef capture_filter += "port ftp";
and at another:
redef capture_filter += "udp port 53"
and at a third:
redef capture_filter += "len >= 512 and len <= 1024";

then the resultingapture filter will be:

93

event bro_init()

{
if (restrict_filter == "™ && capture_filter == "™)
print "tcp or not tcp"; # Capture everything.
else if (restrict_filter == ™)
print capture_filter;
else if (capture_filter == "™)
print restrict_filter;
else
print fmt("(%s) and (%s)", capture_filter, restrict_filt er);
exit();
}
Figure 7.1: print-filter prints out theicpdump filter your Bro script would use and then exits.

(port ftp) or (udp port 53) or (len >= 512 and len <= 1024)

(except there will be more parentheses, which don’t agtudfect the interpretation of the filter; sgé.1.6, page 56
for the details of how the refinement is done, and why it leadhé extra parentheses).

restrict filter has the same refinement mechanism, the “or"ing togethereodiifferent refinement addi-
tions, though, as mentioned above, it is not usually refined.

As you add analyzers, the finedpdump filter can become quite complicated. You can use the predkfine
print-filter script shown in Figure 7.1.2 to print out the filter. This pthandles théro _init event and exits
after printing the filter. Its intended use is that you can add the Bro command line gro my- own- scri pt
print-filter ") when you want to see what filter the script/-own-scriptinds up using.

There are two particular uses fprint-filter . The first is to debug filtering problems. Unfortunately, Bro
sometimes uses sufficiently complicated expressionstiegttickle bugs irtcpdump s optimizer. You can take the
filter printed out for your script and try running it througgpdump by hand, and then also try usitgpdump ’'s -O
option to see if turning off the optimizer fixes the problem.

The second use is to provideshadowbackup to Bro: that is, a version tdpdump running either on the same
machine or a separate machine that uses the same netwarksiBro. Whiletcpdump can’t perform any analysis
of the traffic, the shadow guards against the possibility raf &ashing, because if it does, you will still have a record
of the subsequent network traffic which you can run throughfBr post-analysis.

7.2 General Processing Events
Bro provides the following events relating to its overalbpessing:

bro _init ()
generated when Bro first starts up. In particular, after Bxihitialized the network (or initialized to read from

94

a save file) and executed any initializations and globatstahts § 10.15, page 177), and just before Bro begins
to read packets from the network input source(s).

net _done (t: time)
generated when Bro has finished reading from the networkiaeéher having exhausted reading the save
file(s), or having received a terminating sign&l’(2, page 95)Deficiency: This event is generated on a termi-
nating signal even if Bro is not reading network traffic.gives the time at which network processing finished.

This event is generatdmforebro _done . Note: If Bro terminates due to an invocationefit , then this event
is notgenerated.

bro _done ()
generated when Bro is about to terminate, either due to gamthausted reading the save file(s), receiving a
terminating signal{ 7.2, page 95), or because Bro was run without the networkt ispurce and has finished
executing any global statemen§sl(0.15, page 177).

This event is generatealfter net _done . If you have cleanup that only needs to be done when proagssin
network traffic, it likely is better done usinget _done . Note: If Bro terminates due to an invocationefit ,
then this event inot generated.

bro _signal (signal: count)
generated when Bro receives a signal. Currently, the sgdral handles ar8IGTERM SIGINT, andSIGHUP,

Receiving either of the first two terminates Bro, though ibBs in the middle of processing a set of events, it
first finishes with them before shutting down. The shutdovad$sto invocations afet _done andbro _done,
in that orderDeficiency: In this case, Bro fails to invokeo _signal , clearly a bug.

Upon receivingSIGHUR, Bro invokesflush _all (in addition to your handler, if any).

net _stats _update (t: time, ns: net _stats)
This event includes two arguments, thetime at which the event was generated, arg] a net _stats
record, as defined in Figure 7.2. Regarding this second mesythepkts _recvd field gives the total number
of packets accepted by the packet filter so far during this@ti@n of Bro;pkts _dropped gives the total
number of packets reportelioppedby the kernel; anihterface _drops gives the total number of packets
reported by the kernel as having been dropped by the netwteiace.

Note: An important consideration is that, as shown by exgrerg, the kernel’s reporting of these statistics is not
always accurate. In particular, th®pkts _dropped statistic is sometimes missing actual packet drops, and
some operating systems do not supportititerface _drops statistic at all. See thack _above _hole
event for an alternate way to detect if packets are being pieop

7.3 Generic Connection Analysis

Theconn analyzer performs generic connection analysis: connestiart time, duration, sizes, hosts, and the like.
You don'’t in general loadonn directly, but instead do so implicitly by loading thep , udp, oricmp analyzers.
Consequentlyconn doesn'’t load acapture filter value by itself, but instead uses whatever is set up by these
more specific analyzers.

conn analyzes a number of events related to connections begipnending. We first describe tisennection
record data type that keeps track of the state associatheadh connectior§(7.3.1, page 96), and then we detail the

95

type net_stats: record {
All counts are cumulative.

pkts_recvd: count; # Number of packets received so far.
pkts_dropped: count; # Number of packets *reported* droppe d.
interface_drops: count; # Number of drops reported by inter face(s).

Figure 7.2: Definition of th@et _stats record.

events in§ 7.3.3, page 99. The main output of its analysis are one-limaection summaries, which we describe in
§7.3.6, page 101, and §7.3.7, page 103 we give an overview of the different callfibhetions provided bgonn .
conn also loads three other Bro modules: tie andscan analyzers, and thgort-name utility module.

7.3.1 Theconnection record

A connection record holds the state associated with a connection, asnstmoigure 7.3.1. Its first fieldd , is
defined in terms of theonn _id record, which has the following fields:

orig _h
The IP address of the host that originated (initiated) theneation. In “client/server” terminology, this is the
“client.”

orig _p
The TCP or UDP port used by the connection originator (c)igfdr ICMP “connections”, it is set to G (7.25,
page 164).

resp _h
The IP address of the host that responded (received) theection. In “client/server” terminology, this is the
“server.”

resp _p
The TCP or UDP port used by the connection responder (seRa@r)CMP “connections”, it is set to G (7.25,
page 164).

Theorig andresp fields of aconnection record both hola&ndpoint record values, which consist of the
following fields:

size
How many bytes the given endpoint has transmitted so fare Nuwdt for some types of filtering, the size
will be zero until the connection terminates, because theraaf the filtering is to discard the connection’s
intermediary packets and only capture its start/stop gag¢kd0.8, page 177).

state
The current state the endpointis in with respect to the catiore Table 7.3.1 defines the different possible states
for TCP and UDP connectionDeficiency: The states are currently definedcasint , but should instead be
an enumerated type; but Bro does not yet support enumergped.t

Note: UDP “connections” do not have a well-defined structige the states for them are quite simplistic. See
§ 7.3.2, page 98 for further discussion.

96

type

conn_id: record {

orig_h: addr; # Address of originating host.
orig_p: port; # Port used by originator.
resp_h: addr; # Address of responding host.
resp_p: port; # Port used by responder.

endpoint: record {
size: count; # Bytes sent by this endpoint so far.
state: count; # The endpoint's current state.

connection: record {

id: conn_id; # Originator/responder addresses/ports.

orig: endpoint; # Endpoint info for originator.

resp: endpoint; # Endpoint info for responder.

start_time: time; # When the connection began.

duration: interval; # How long it was active (or has been so fa r.
service: string; # The service we associate with it (e.g., "h ttp").
addl: string; # Additional information associated with it.

hot: count; # How many times we've marked it as sensitive.

Figure 7.3: Definition otonn _id andconnection records.

| State | Meaning
TCPINACTIVE The endpoint has not sent any traffic.
TCP.SYNSENT It has senta SYN to initiated a connection.
TCP.SYNACKSENT | It has senta SYN ACK to respond to a connection request.
TCP.PARTIAL The endpoint has been active, but we did not see the begiohithg connection
TCP.ESTABLISHED | The two endpoints have established a connection.
TCP.CLOSED The endpoint has sent a FIN in order to close its end of theextion.
TCP.RESET The endpoint has sent a RST to abruptly terminate the coionect
UDRINACTIVE The endpoint has not sent any traffic.
UDPRACTIVE The endpoint has sent some traffic.

Table 7.1: TCP and UDP connection states, as stored @mdpoint record.

97

The remaining fields in aonnection record are:

start _time
The time at which the first packet associated with this cotimegvas seen.

duration
How long the connection lasted, or, if it is still active, héwg since it began.

service
The name of the service associated with the connection.Xamgle, ifidresp_p istcp/80 , then the
service will be"http" . Usually, this mapping is provided by thwrt _names global variable, perhaps via
theendpoint _id function; but the service does not always directly correspim idresp_p , which is
why it's a separate field. In particular, an FTP data conoeatan have aervice of "ftp-data" even

though itsidresp_p is something other thatep/20 (which is not consistently used by FTP servers).
If the name of the service has not yet been determined, thefidhd is set to an empty string.

addl
Additional information associated with the connectiort. &mample, for dogin connection, this is the username
associated with the login.

Deficiency: A significandeficiencyassociated with thaddl field is that it is simply astring without any
further structure. In practice, this has proven too redikie. For example, we may well want to associate an
unambiguous username withlagin sessionandalso keep track of the names associated with failed login
attempts. (See thegin analyzer for an example of how this is implemented presghmirat’s needed is a
notion ofunion types which can then take on a variety of values in a typeraafmer.

If no additional information is yet associated with this nengtion, then this field is set to an empty string.

hot
How many times this connection has been marked as potgramtisitive or reflecting a break-in. The default
value of 0 means that so far the connection has not been egyasd‘hot”.

Note: Bro does not presently make fine-grained use of thid; fileé standard scripts log connections with a
non-zerchot field, and do not in general log those that do not, though tlaeeeexceptions. In particular, the

hot field isnotrigorously maintained as an indicator of trouble; it instk& used loosely as an indicator of
particular types of trouble (access to sensitive hosts ernsmes).

7.3.2 Definitions of connections

Connections for TCP are well-defined, because establisridgerminating a connection plays a central part of the
TCP protocol. For UDP and ICMP, however, the notion is mudsé.

For UDP, a connection begins when haktsends a packet to ho#&t for the first time, B never having sent
anything toA. This transmission is termedraquest even if in fact the application protocol being used is naidzh
on requests and replies. B sends a packet back, then that packet is termegply. Each packetd or B sends is
another request or replReficiency: There is presently no mechanism by which geeoic-RPC) UDP connections
are terminated; Bro holds the state indefinitely. There $thpwobably be a generic timeout for UDP connections that
don’t correspond to some higher-level protocol (such as RR@&d a user-accessible function to mark connections
with particular timeouts.

98

For ICMP, Bro likewise creates a connection the first timed#ssan ICMP packet from to B, even if B previously
sent a packet tol, because that earlier packet would have been for a différ@nsportconnection than the ICMP
itself—the ICMP will likely referto that connection, but it itself is not part of the connegtiBor simplicity, this holds
even for ICMP ECHOs and ECHB®EPLYs; if you want to pair them up, you need to do so expliditl the policy
script.Deficiency: As with UDP, Bro does not time out ICMP connedion

7.3.3 Generic TCP connection events

There are a number of generic events associated with TCRections, all of which have a sing®nnection
record as their argument:

new_connection
Generated whenever state for a new (TCP) connection isnitiestad.

Note: Handling this event is potentially expensive. Formegke, during a SYN flooding attack, every spoofed
SYN packet will lead to a nemew_connection event.

connection _established
Generated when a connection has become establishedottepdrticipating endpoints have agreed to open the
connection.

connection _attempt
Generated when the originator (client) has unsuccessdtttynpted to establish a connection. “Unsuccessful”
is defined as at lea®® TTEMPTINTERVAL seconds having elapsed since the client first sent a coonecti
establishment packet to the responder (server), wh€leEEMPTINTERVAL is an internal Bro variable which
is presently set to 300 secondeficiency: This variable should be user-settaliigiou want toimmediately
detect that a client is attempting to connect to a servearddgss of whether it may soon succeed, then you want
to handle thenew_connection event instead.

Note: Handling this event is potentially expensive. Forregke, during a SYN flooding attack, every spoofed
SYN packet will lead to a negonnection _attempt event, albeit delayed BWTTEMPTINTERVAL.

partial _connection

Generated when both connection endpoints enter T8® PARTIAL state (Table 7.3.1). This means
that we have seen traffic generated by each endpoint, butdiétya did not begin with the usual con-
nection establishmenDeficiency: For completeness, Bro’s event engine shoulengé® another form of
partial _connection event when a single endpoint becomes activerfsgeconnection below). This
hasn’t been implemented because our experience is netvadiik bften contains a great deal of “crud”, which
would lead to a large number of these really-partial eveitswever, by not providing the event handler, we
miss an opportunity to detect certain forms of stealth seam# they begin to elicit some form of reply.

connection finished
Generated when a connection has gracefully closed.

connection _rejected
Generated when a server rejects a connection attempt bgrd.cli

Note: This event is only generated as the client attemptstabsh a connection. If the server instead ac-
cepts the connection and then later aborts icannection _reset eventis generated (see below). This can
happen, for example, due to use of TCP Wrappers.

99

Note: Per the discussion above, a client attempting to conrte a server will result inone of
connection _attempt , connection _established ,orconnection _rejected ;they are mutually
exclusive.

connection _half _finished
Generated when Bro sees one endpoint of a connection attem@tcefully close the connection, but the other
endpointis in th&f CPINACTIVE state. This can happen duedplit routing(§ 10.9, page 177), in which Bro
only sees one side of a connection.

connection _reset
Generated when one endpoint of an established connectimmtges the connection abruptly by sending a
TCP RST packet.

connection _partial _close
Generated when a previously inactive endpoint attemptsoseca connection via a normal FIN handshake
or an abort RST sequence. When it sends one of these packetsaBs PARTIAL_CLOSEINTERVAL (an
internal Bro variable set to 10 seconds) prior to generdtiagevent, to give the other endpoint a chance to close
the connection normally.

connection _pending
Generated for each still-open connection when Bro terramat

7.3.4 Thetcp analyzer

The generatcp analyzer lets you specify that you're interested in genesigcnection analysis for TCP. It simply
@load’s conn and adds the following toapture _filter

tcp[13] & Ox7 = 0

which instructs Bro to capture all TCP SYN, FIN and RST pask#iat is, the control packets that delineate the
beginning (SYN) and end (FIN) or abnormal termination (R8ffa connection.

7.3.5 Theudp analyzer

The generalidp analyzer lets you specify that you're interested in genesitnection analysis for UDP. @load’s
bothhot andconn, and defines two event handlers:

udp _request (u: connection)
Invoked whenever a UDP packet is seen on the forward (repdiesttion of a UDP connection. S§€7.3.2,
page 98 for a discussion of how Bro defines UDP connections.

The analyzer invokesheck _hot with a mode of CONNATTEMPTEDNd thenrecord _connection to
generate a connection summary (necessary because Broatdgsarout UDP connections, and hence cannot
generate a connection-attempt-failed event).

udp _reply (u: connection)
Invoked whenever a UDP packet is seen on the reverse (rejpgdtion of a UDP connection. Sege7.3.2,
page 98 for a discussion of how Bro defines UDP connections.

100

The analyzer invokesheck _hot with a mode of CONNESTABLISHEDand then again with a mode of
CONNFINISHED to cover the general case that the reply reflects that theembiom was both established
and is now complete. Finally, it invokescord _connection to generate a connection summary.

Note: The standard script doemt updatecapture filter to capture UDP traffic. Unlike for TCP, where
there is a natural generic filter that captures only a subdehe traffic, the only natural UDP filter would be simply
to capture all UDP traffic, and that can often be a huge load.

7.3.6 Connection summaries

The main output o€onn is a one-line ASCIl summary of each connection. By tradititbese summaries are written
to a file with the nameed. tag, wheretaguniquely identifies the Bro session generating the loged(" is mnemonic
for “reduced,” from Bro’s roots in performing protocol agsis for Internet traffic studies.)

The summaries are produced by teeord _connection function, and have the following format:

<start> <duratiorn> <service> B, B, A; A, <state> <flags> <addb

start corresponds to the connection’s start time, as definestdry _time .
duration gives the connection’s duration, as defineddoyation
service is the connection’s service, as defineddeyvice

B,, B, give the number of bytes sent by tbdaginator andrespondefrespectively. These correspond to giee
fields of the correspondingndpoint records.

Ay, A, correspond to théocal andremoteaddresses that participated in the connection, respictiMee notion of
which addresses are local is controlled by kheal _nets global variable, if refined from its default value
of empty. Iflocal _nets hasnotbeen refined, thed, is the connectiomesponderand A.. is the connection
originator.

Note: The format and defaults fof; and A, are unintuitive; they reflect the use of Bro’'s predecessor fo
analyzing Internet traffic patterns, and have not been cledrsp as to maintain compatibility with old, archived
connection summaries.

state reflects the state of the connection at the time the summasywvidten (which is usually either when the
connection terminated, or when Bro terminated). The difiéstates are summarized in Table 7.3.6. The ASCII
Name given in the Table is what appears in thed file; it is returned by theconn _state function. The
Symbolis used when generating human-readable versions of theddehet-report

For UDP connections, the analyzer reports connections iicmboth endpoints have been activesds those
for which just the originator was active &9); those for which just the responder was active&sa} and those
for which neither was active @TH(this latter shouldn’t happen!).

flags reports a set of additional binary state associated witltdin@ection:

L indicates that the connection was initiatedally, i.e., the host corresponding t initiated the connection.
If L is missing, then the host correspondingdpinitiated the connection.

101

| Symbol | Name

| Meaning

Table 7.2: Summaries of connection states, as reportestlirfiles.

102

} SO Connection attempt seen, no reply.
> S1 Connection established, not terminated.
> SF Normal establishment and termination. Note that this is the
same symbol as for stagil. You can tell the two apart because
for S1 there will not be any byte counts in the summary, while
for SF there will be.
[REJ Connection attempt rejected.
12 S2 Connection established and close attempt by originatan see
(but no reply from responder).
13 S3 Connection established and close attempt by responder|seen
(but no reply from originator).
>] RSTO Connection established, originator aborted (sent a RST).
>[RSTR Established, responder aborted.
H RSTOSO| Originator sent a SYN followed by a RST, we never saw a SYN
ACK from the responder.
<[RSTRH | Responder sent a SYN ACK followed by a RST, we never saw
a SYN from the (purported) originator.
>h SH Originator sent a SYN followed by a FIN, we never saw a
SYN ACK from the responder (hence the connection was “half”
open).
<h SHR Responder sent a SYN ACK followed by a FIN, we never gaw
a SYN from the originator.
?2>? OTH No SYN seen, just midstream traffic (a “partial connectidratt
was not later closed).

U indicates the connection involved one of the networksdigteheneighbor _nets variable. The use oft)’
for this indication (rather thanN’, say) is historical, as for the most part is the whole notiéfineighbor
network.”

Note that connection can have batlandU set (see next item).

X is used to indicate thateitherthe “L” or “ U’ flags is associated with this connection. An explicit neégat
indication is needed to disambiguate flagysfield from the subsequeatdifield.

addl lists additional information associated with the conrmtti.e., as defined bgddl| .

Putting all of this together, here is an example oéd connection summary:
931803523.006848 54.3776 http 7320 38891 206.132.179.35 1 28.32.162.134 RSTO X %103

The connection began at timestamp 931803523.006848 (#8.1durs GMT on July 12, 1999; see the utility

for how to determine this) and lasted 54.3776 seconds. Tiveceavas HTTP (presuambly; this conclusion is based
just on the responder’s use of p@&@/tcp). The originator sent 7,320 bytes, and the responder se@93®ytes.
Because thel'” flag is absent, the connection was initiated by host 128&2134, and the responding host was
206.132.179.35. When the summary was written, the cororeetas in the RSTO state, i.e., after establishing
the connection and transferring data, the originator hediteated it with a RST (this is unfortunately common for
Web clients). The connection had neither ther U flags associated with it, and there was additional inforomati
summarized by the string6103’ (see thehttp analyzer for an explanation of this information).

7.3.7 Connection functions

We finish our discussion of generic connection analysis withief summary of the different Bro functions provided
by theconn analyzer:

conn _size (e: endpoint, is _tcp: bool): string
returns a string giving either the number of bytes the endygant during the given connection,"@ if from
the connection state this can’t be determined. iEheicp parameter is needed so that the function can inspect
the endpoint’s state to determine whether the connecti@clesed.

conn _state (c: connection, is _tcp: bool): string
returns the name associated with the connection’s statgyas in Table 7.3.6.

determine _service (c: connection): bool
sets theservice field of the given connection, usimmprt _names. If you are using thétp analyzer, then
it knows about FTP data connections and maps thepoto _names[20/tcp] , i.e.,"ftp-data"

full _id _string (c: connection): string
returns a string identifying the connection in one of the faltlowing forms. If the connection is in stat0,
S1, or REJ, then no data has been transfertaahd the format is:

A, <statee A,/< servicee <addb

1Deficiency: Actually, for stat&1 data may have been transferred, and so this assumptiongheutorrected in that case.

103

where A, is the IP address of the originata®id$orig _h), stateis as given in theSymbol column of
Table 7.3.6,A, is the IP address of the respond&id$resp _h), servicegives the application service
($service) as set bydetermine _service , andaddlis the contents of th§addl field (which may be an
empty string).

Note that the ephemeral port used by the originator is nairteg. If you want to display it, use _string

So, for example:

128.3.6.55 > 131.243.88.10/telnet "luser"

identifies a connection originated 128.3.6.55 1t0131.243.88.10 s Telnet server, for which the addi-
tional associated information ftuser" , the username successfully used during the authenticditdog as
determined by théogin analyzer. From Table 7.3.6 we see that the connection mustdiateS1, as that's
the only state 060, S1, or REJthat has & symbol. (We can tell its1otin stateSF because the format used
for that state differs—see below.)

For connections in other states, Bro has size and duratfomiation available, and the format returned by
full _d _string is:
A, S,b <statee A,/< servicee S,.b Ds <addb

whereA,, A,., state service andaddlare as beforeS, andS,. give the number of bytes transmitted so far by
the originator to the responder and vice versa, Brgives the duration of the connection in seconds (reported
with one decimal place) so far.

An example of this second format is:
128.3.6.55 63b > 131.243.88.10/telnet 391b 39.1s "luser"

which reflects the same connection as before, but ri®8.3.6.55 has transmitted 63 bytes to
131.243.88.10 , which has transmitted 391 bytes in response, and the ctiondas been active for 39.1
seconds. The*” indicates that the connection is in st&8e€.

id _string (id: conn _id): string
returns a string identifying the connection by its addsd/quadruple. Regardless of the connection’s state,
the format is:

A, P, > Al P,

where A, and A, are the originator and responder addresses, respectwvaly;, and P, are representations
of the originator and responder ports as returned byptrename module, i.e., either&numbep/<tcp or
udp>" or a string like *http ” for a well-known port such a80/tcp

An example:
128.3.6.55/2244 > 131.243.88.10/telnet

Note,id _string is implemented using a pair of callsémdpoint _id .

Deficiency: It would be convenientto have a forndofstring that can incorporate a notion of directionality,
for examplel28.3.6.55/2244 < 131.243.88.10/telnet to indicate the same connection as before,
but referring specifically to the flow from responder to onigiior in that connection (indicated by using™
instead of '>").

104

log _hot _conn (c: connection)
logs a real-time alert of the form:

hot: <connection-ick

whereconnection-ids the format returned bfull _id _string .log _hot _conn keeps track of which con-
nections it has logged and will not log the same connectiorertt@an once.

record _connection (c: connection, disposition: string)
Generates a connection summary toré file in the format described in7.3.6, page 101. If the connection’s
$hot field is positive, then also logs the connection usiog _hot _conn . The disposition is a text
description of the connection’s state, suchasempt® or"half _finished" ;itis not presently used.

service _name (c: connection): string
returns a string describing the service associated witlttmmection, computed as follows. If the responder
port @id$resp _p), p, is well-known, that is, in thport _names table, therp’s entry in the table is returned
(such as'http” for TCP port 80). Otherwise, for TCP connections, if the egfer port is less than 1024,
thenpriv- p is returned, otherwisether- p. For UDP connections, the corresponding service names are
upriv- panduother- p.

terminate _connection (c: connection)
Attempts to terminate the given connection usingm$te utility in the current directory. It does not check to
see whether the utility is actually present, so an unaestieell error will appear if the utility is not available.

rst terminates connections by forging RST packets. It is natgm#y distributed with Bro, due to its potential
for disruptive use.

If Bro is reading a trace file rather than live network traffitenterminate _connection logs therst
invocation but does not actually invoke the utility. In @tlcase, it finishes by logging that the connection is
being terminated.

7.4 Site-specific information

Thesite analyzer is not actually an analyzer but simply a set of dleadables (and one function) used to define a
site’s basic topological information.

7.4.1 Site variables
Thesite module defines the following variables, all redefinable:
local _nets : set[net]
Defines whichet s Bro should consider as reflecting a local address.
Default: empty.
local _16_nets : set[net]
Defines which /16 prefixes Bro should consider as reflectingcal laddressDeficiency: Bro currently is in-

consistent regarding when it consultsal _nets versuslocal _16_nets , so you should ensure that this
variable and the previous one are always consistent.

Default: empty.

105

local _24 _nets : set[net]
The same, but for /24 addresses.

Default: empty.
neighbor _nets : set[net]
Defines whichnet 's Bro should consider as reflecting a “neighbor.” Neighbwetvorks can be treated spe-

cially in some policies, distinct from other non-local adsses. In particuladrop _address will not drop
connectivity to an address belonging to a neighbor.

The notion is somewhat historical, as is the useldftb mark neighbors in connection summarigsr(3.6,
page 101).
Default: empty.

neighbor _16_nets : set[addr]
Defines which /16 addresses Bro should consider as reflegtirgighbor; the only use of this variable in the
standard scripts is that a scan originating from an addrikswe of these prefixes will not be dropp&d.0.10,
page 177)Deficiency: The name is poorly chosen and should be chandesttir reflect this use. Deficiency: In

addition, this variable should be kept consistent witlighbor _nets , until the fine day when the processing
is rectified to only use one variable.

Default: empty.

neighbor 24 nets : set[net]
The same, but for /24 addresses.

Default: empty.

7.4.2 Site-specific functions

Currently, thesite module only defines one function:
is _local _addr (a: addr): bool

returns true if the given address belongs to one of the “lauatworks, false otherwise. Currently, the test is
made by masking the address to /16 and /24 and comparingpitdab _16_nets andlocal _24 _nets .

7.5 Thehot Analyzer

The standardhot script defines policy relating to fairly generic notions dibaved and prohibited connections. It
defines a number of variables that you will need to refine tdotnize your site’'s policies. It also provides two
functions for checking connections against the policidsictvcan be used by other of the standard scripts.

7.5.1 hot variables

The standartiot script defines the following variables, all redefinable:

106

same_local _net _is _spoof : bool
If true, then a connection with a local originator addresd anlocal responder address is considered by
check _spoof to have been spoofefeficiency: The name is poorly chosen (and may be changecein th
future) to something more accurate liketh _local _nets _is _spoof .

In general, you want to use true for a Bro that is monitorintginet access links (DMZs) and false for internal
monitors.

Default:F.

allow _spoof _services : set[port]
Defines a set of services (responder ports) for which Brolshmat generate alerts if it sees apparent spoofed
traffic.

Default:110/tcp (POP version 3; [RFC1939]). This default was chosen becausar experience one com-
mon form of benign spoof is an off-site laptop attemptinggad mail while still configured to use its on-site
address.

allow _pairs : set[addr, addr]
Defines pairs of source and destination addresses for winchaurce is allowed to connect to the destination.
The intent with this variable is that the source or destoraiddress will be a sensitive host (such as defined
with hot _srcs orhot _dsts), for which this particular access should be allowed.

Default: empty.

allow _16_net _pairs : set[addr, addr]
Defines pairs of source and destination /16 networks for lwthe source is allowed to connect to the desti-
nation, similar toallow _pairs . Note: The set is defined in termsazfdr ’'s and notnet 's. So, for example,
rather than specifyind28.32. , which is anet constant, you'd us#28.32.0.0 (anaddr constant).

Default: empty.
hot _srcs : table[addr] of string
Defines source addresses that should be considered “hoticéessfully established connection from such
a source address is logged, unless one of the access excegtiables such aallow _pairs also matches
the connection. The value of the table gives an explanat@ssage as to why the source is hot; for example,

"known attacker site" . Note: This value is not currently used, though it aids in doeating the policy
script.

Default: empty.
Example: redefininfpot _srcs using

redef hot_srcs: table[addr] of string = {
[ph33r.the.eleet.com] = "script kideez",

h
would result in Bro alerting on any traffic comimpdp33r.the.eleet.com

hot _dsts : table[addr] of string
Same a$ot _srcs , except for destination addresses.

Default: empty.

107

hot _src _24nets : table[addr] of string
Defines /24 source networks should be considered “hot, laind hot _srcs . Deficiency: Other network
masks, particularly /16, should be provided.

Default: empty.
Example: redefininfpot _src _24nets using

redef hot_src_24nets: table[addr] of string = {
[198.81.129.0] = "CIA incoming!",

3

would result in Bro alerting on any traffic coming from th©8.81.129/24 network.
hot _dst _24nets : table[addr] of string

same a$iot _src _24nets , except for destination networks.

Default: empty.
allow _services : set[port]

Defines a set of services that are always allowed, regardfesbether the source or destination address is
“hOt,"

Default:ssh , http , gopherident ,smtp, 20/tcp (FTP data).
Note: The defaults are a bit unusual. They are intended fasitegppen site with many services.
allow _services _to : set[addr, port]

Defines a set of services that are always allowed if the séswke given host, regardless of whether the source
or destination address is “hot.”

Default: empty.
Example: redefiningllow _services _to using

redef allow_services_to: set[addr, port] += {
[ns.mydomain.com, [domain, 123/tcp]],
} &redef;

would result in Bro not alerting on any TCP DNS or NTP traffiatdang tons.mydomain.com . You might
add this ifns.mydomain.com is also inhot _dsts , because in general you want to consider any access
(other than DNS or NTP) as sensitive.

allow _services _pairs : set[addr, addr, port]
Defines a set of services that are always allowed if the cdimmeariginator is the first address and the responder
(server) the second address.

Default: empty.
Example: redefiningllow _services _pairs using

redef allow_services_pairs: set[addr, addr, port] += {

[ns2.mydomain.com, ns.mydomain.com, [domain, 123/tcp]] ,
} &redef;

108

would result in Bro not alerting on any TCP DNS or NTP traffitiated fromns2.mydomain.com to
ns.mydomain.com

flag _successful _service : table[port] of string
The opposite oéllow _services . Defines a set of services that should always be flagged aisiwer=s/en
if neither the source nor the destination address is “hdig §tring value in the table gives the reason for
why the service is considered hblote: Bro currently does not use these explanatory messages

Default:31337/tcp (a popular backdoor because in stylized lettering it SgellEET) and2766/tcp (the
Solarislisten service, in our experience rarely used legitimately in wadea traffic).

Note: Bro can flag these services erroneously when a serysydres to run a different service on the same port.
For example, if you're not running the FTP analyzer, then Bron’t know that FTP data connections using
ephemeral ports in fact belong to legitimate FTP traffic, avitl flag any that coincide with these services. A
related problem arises when a user has configured their S8Esstto tunnel FTP control channels through the
FTP connection, but not the corresponding data connect{saghey don't pay the expense of encrypting the
data transfers), so again Bro can’t recognize that the epdraiports used for the data connections does not
reflect the presumed sensitive service.

Example: redefininlag _successful _service using

redef flag_successful_service: table[port] of string += {
[1524/tcp] = "popular backdoor",

2
would result in Bro also alerting on any successful conoadid a server running on TCP port 1524.

flag _successful _inbound _service : table[port] of string
The same aflag _successful _service ,exceptonly applies to connections with a remote initiatod a
local responder (determined by finding the responder addindscal _nets).

Default:1524/tcp (ingreslock , a popular backdoor because an attacker can place an enthefback-
door in/etc/inetd.confusing a service hame rather than a raw port number, and heoeelikely to appear
legitimate to casual inspectioote: There’'s no compelling reason wimgreslock is in this table rather
than the more generdlag _successful _service |, though it does tend to result in a few more false hits
than the others, presumably because it's a lower port nupdrat hence more likely on some systems to be
chosen for an ephemeral poigreslock

Note: Symmetry would call fdlag _successful _outbound _service . This hasn’t beenimplemented in
Bro yet simply because the Bro development site has a thdmetructured primarily around external threats.

terminate _successful _inbound _service : table[port] of string
The same aflag _successful _inbound _service , exceptinvokeserminate _connection in an
attempt to terminate the connection.

Default: empty.

Note: As forflag _successful _inbound _service , it would be symmetric to haveerminate _
successful _outbound _service , and also to have a more generérminate _successful _
service

109

flag _rejected _service : table[port] of string
Similar toflag _successful _service , except applies to connections that a server rejects. Fonple,
you could detect a particular, failed Linaxountdattack by addind0752/tcp to this table, since that happens
to be the port used by the commonly available version of tipdoéfor its backdoor if the attack succeetinte:
You would of course likely also want to gl@752/tcp in flag _successful _service ; or putthe entire
flag _rejected _service tableintoflag _successful _service ,asdiscussedif10.16, page 177.

Default: none.

Deficiency: It might make sense to hdleg _attempted _service , which doesn'’t require that a server
actively reject the connection, but Bro doesn’t currentiyé this.

7.5.2 hot functions

Thehot module defines two functions for external use:

check _spoof (c: connection): bool
checks the originator and responder addresses of the gieemection to determine if they are
both local (and the connection is not explicitly allowed a@tlow _spoof _services). If so, and if
same_local _net _is _spoof is true, then marks the connection as “hot”".

The function also checks for a specific denial of servicechitthe “Land” attack, in which the addresses are
the same and so are the ports. If so, then it generatesm_weird event with a name dfLand _attack”
It makes this check even#ame_local _net _is _spoof is false.

Returns: true if the connection is now hot (or was upon enfay3e otherwise.

check _hot (c: connection, state: count): bool
checks the given connection against the various policyatides discussed above, and bumps the connection’s
hot field if it matches the policies for being sensitive, and doesmatch the various exceptions. It also uses
check _spoof to see if the connection reflects a possible spoofing attaukterminates the connection if
terminate _successful _service indicates so.

The caller indicates the connection’s state in the secormhpeter to the function, using one of the values given
in Table 7.5.2. As noted in the Table, the processing diffleysending on the state.

In general, the pattern is to make one call when the connedidirst seen, eitheCONNATTEMPTED
CONNESTABLISHED or CONNREJECTEDIf the application is one for which connections should ooy
considered “established” after a successful pre-exchhatyeeen originator and responder, then a subsequent
call is made with a state &PPLESTABLISHED The idea here is to provide a way to filter out what are in fact
not really successful connections so that they are not aedlin terms of successful service. Finally, for ser-
vices that don't usAPPL ESTABLISHED a call is made instead when the connection finishes for seas®n,
using stataCONNFINISHED . Note: This approach delays alerting until the connectioover, which might

be later than you want, in which case you may need toatitk _hot to provide the desired functionality.

Returns: true if the connection is now hot (or was upon enfay3e otherwise.

110

| State | Meaning | Tests
CONN_ATTEMPTED | Connection attempted, no reply seencheck _spoof .
Note that you should also use this valye
for scans with indeterminant state, such
as possible stealth scans. For exam-

ple, connection _half _finished

does this.

CONN_ESTABLISHEL

Connection established. Also used f

ocheck _spoof ,

connections apparently established, pdtag _successful _service ,
partial _connection flag _successful _inbound _
service , allow _services _to,
terminate _successful
inbound _service
APPL_ESTABLISHED| The connection has reachedallow _services _to,
application-layer establishment. Forallow _service _pairs |,
example, for Telnet or Rlogin, this isallow _pairs |,
after the user has authenticated. allow _16_net _pairs , hot _srcs ,

hot _dsts , hot _src _24nets , hot _
dst _24nets .

CONN_FINISHED

The connection has finished, eith
cleanly or abnormally (for example
connection _reset).

eiSame as APPLESTABLISHED if
,the connection exchanged non-z¢
amounts of data in both directions, af
if the service wasn't one of the ones th
generateaAPPLESTABLISHED

ro
nd
at

CONN_REJECTED

The connection attempt was rejected
the server.

bgheck _spoof ,

flag _rejected _service

Table 7.3: Different connection states to use when cattimeck _hot .

111

7.6 Thescan Analyzer

The scan analyzer detects connection attempts to numerous mactaddsess scanning), connection attempts to
many different services on the same machine (port scanrang)attempts to access many different accounts (pass-
word guessing). The basic methodology is to use tables tp kaek of the distinct addresses and ports to which
a given host attempts to connect, and to trigger alerts withareof these reaches a specified si2eficiency: As
currently written, the analyzer will not detect distribdtecans, i.e., when many sites are used to probe individually
just a few, but together a large number, of ports or addresses

A powerful technique that Bro potentially provides is drogpborder connectivity with remote scanning sites,
though you must supply the magic script to talk with your ema#nd effect the block. Seltop _address below for
a discussion of the interface providédbte: Naturally, providing this capability means you migpeicome vulnerable
to denial-of-service attacks in which spoofed packets agglun an attempt to trigger a block of a site to which you
want to have access.

7.6.1 scan variables

In addition to internal variables for its bookkeeping, timalyzer provides the following redefinable variables:

report _peer _scan : set[count]
Generate a log message whenever a remote host (as detebyisedocal _addr) has attempted to connect
to the given number of distinct hosts.

Default:{ 100, 1000, 10000, }. So, for example, if a remote host attempts to connect ta03j&terent
local hosts, a report will be generated when it makes thehl@®:mpt, and another when it makes the 1,000th
attempt.

report _outbound _peer _scan : set[count]
The same ageport _peer _scan , except for connections initiated locally.

Default:{ 1000, 10000, }.

possible _port _scan _thresh : count
Initially, port scan detection is done based on how manyedifit ports a given host connects to, regardless
of on which hosts. Once this threshold is reached, howelen the analyzer begins tracking ports accessed
per-server, which is important for reducing false posgiwote: The reason this variable exists is because it is
very expensive to track per-server ports accessed for eatiye host; this variable limits such tracking to only
active hosts contacting a significant number of differemtgo

Default: 25.
report _accounts _tried : set[count]

Whenever a remote host has attempted to access a numbeabfdoounts present in this set, generate a log
message. Each distinct username/password pair is coedidelifferent access.

Default:{ 25, 100, 500, }.

report _remote _accounts _tried : set[count]
The same, except for access to remote accounts rather tedmoltes.

Default:{ 100, 500, }.

112

skip _accounts _tried : set[addr]
Do not do bookkeeping for account attempts for the givenshost

Default: empty.
skip _outbound _services : set[port]
Do not do outbound-scanning bookkeeping for connectiorswing the given services.
Default:allow _services ,ftp ,addl _web (see nextitem).
addl _web : set[port]
Additional ports that should be considered as Web traffid fzence skipped for outbound-scan bookkeeping).
Default:{ 81/tcp, 443/tcp, 8000/tcp, 8001/tcp, 8080/tcp, }.
skip _scan _sources : set[addr]
Hosts that are allowed to address-scan without complaint.
Default: scooter.pa-x.dec.com , scooter2.av.pa-x.dec.com (AltaVista crawlers; you get the
idea.)
skip _scan _nets _24 : set[addr, port]
/24 networks that are allowed to address scan for the givemgilnout complaint.
Default: empty.
can _drop _connectivity : bool
True if the Bro has the capability of dropping connectivitgrdrop _address .
Default: false.
shut _down_scans : set[port]

Scans of these ports trigger connectivity-dropping (if Bre is capable of dropping connectivity), unless
shut _down_all _scans is defined (nextitem).

Default: empty.

shut _down_all _scans : bool
Ignoreshut _down_scans and simply drop all scans regardless of service.
Default: false.

shut _down_thresh : count
Shut down connectivity after a host has scanned this mameases.*
Default:100.

never _shut _down : set[addr]
Purported scans from these addresses are never shut down.

Default: the root name servem.(oot-servers.net throughm.root-servers.net).

113

7.6.2 scan functions

The standardcan script provides the following functions:

drop _address (a: addr, msg: string)
Drops external connectivity to the given address and log#tification using the given message.

Dropping connectivity requires all of the following to beir.

e can _drop _connectivity is true.
e The address is neither local nor a neight§or 4.1, page 106).
e The address is not inever _shut _down.

If these checks succeed, then the script simply attemptsvtikeé a shell scriptirop-connectivitywith a sin-
gle argument, the IP address to block. It is up to you to pm¥ite script, using whatever interface to your
router/firewall you have available.

The function does not return a value.

check _scan (c: connection, established: bool, reverse: bool): bo ol

Updates the analyzer’s internal bookkeeping on the badiseofiew connection. If established is true,

then the connection was successfully established, otkemét. Ifreverse s true, then the function should
consider the originator/responder fields in the connetti@etord as reversetlote: This last is needed for some
unusual new connections that may reflect stealth scannorgeXample, when the event engine sees a SYN-ack
without a corresponding SYN, it instantiates a new connaatiith an assumption that the SYN-ack came from
the responder (and it missed the initial SYN either due tib splting (§ 10.9, page 177), a packet drop10.13,
page 177), or Bro having started running after the initialN6Was sent).

If the originating host’s activity matches the policy defingy the variables above, then the analyzer logs this
fact, and possibly attempts to drop connectivity to theiagdting host. The function also schedules an event for
24 hours in the future (or when Bro terminates) to generatavansary of the scanning activity (so if the host
continues scanning, you get a report on how many hosts it diaprscanning)Deficiency: This time interval
should be selectable.

Note: Purported scans of the FTP data pa2O(tcp) or theident service (13/tcp) are never reported
or dropped, as experience has shown they yield too manyHatse

The function does not return a value.

7.6.3 scan event handlers
The standardcan script defines one event handler:
account _tried (c: connection, user: string, passwd: string)
The given connection made an attempt to access the givemamerand password. Each distinct user-

name/password pair is considered a new access. The eveltéhg@nerates a log message if the access matches
the logging policy outlined above.

Note:account _tried events are generated kggin andftp analyzers.

114

7.7 Theport-name Module

Theport-name utility module provides one redefinable variable and onkab## function:

port _names : table[port] of string
Maps TCP/UDP ports to names for the services associatedtde ports. For exampl8p/tcp maps to
"http" . These names are used by tumn analyzer when generating connection 103 .3, page 95).

endpoint _id (h: addr, p: port): string
Returns a printable form of the given address/port conaectendpoint. The format is either
<address/< service-name or <address/< port-number depending on whether the port appears in
port _names.

7.8 Themt Module

Themt module is intended to provide a convenient way to run (aljredkbf the analyzers. I@load’s the following
other modules and analyzeteg , dns, hot , port-name , frag , tcp , scan, weird , finger ,ident , ftp ,
login andportmapper .So you can run Bro usingro -i inO mtto have it analyze traffic on interfage0 using the
above analyzer$(2.1.4, page 16); or you ca@load mt to load in the above analyzers.

Note: Themt analyzer doesn't loatittp (because it can prove a very high load for many sites) norexm@atal
analyzers such astepping or backdoor .

7.9 Thelog Module

Thelog utility module redefines a single variable:

bro _log file : file
A special Bro variable used internally to specify a file wh8m@ should record messages loggedlby
statements (as well as generating real-time alertsysg#og.

Default: if the$BRQID environment variable is defined, thieg.< $BRO.I D>, otherwisebro.log

Note: This value is slightly different than that returneddpen _log _file , because the latter would return
log if $BRQID wasn't defined, and that name seems too easy to confuse wihustes.

See§ 6.1.38, page 84 for further discussion.

If you do not include this module, then Bro records log messdgstderr.

You can also control Bro’s log processing by defining the ggddanctionlog _hook . It takes a single argument,
msg: string , the message in a just-executed statement, and returns a boolean value: true if Bro shodledd
log the message, false if not. For example, Figure 7.9 shadefinition oflog _hook that checks each log message
to see whether the same text has been logged before. It @yythe first instance of a message. If a message appears
at least five times, then it schedules a futiege _summary event for 5 minutes in the future; the purpose of this event
is to summarize the total number of times the message hasuaggpat that point in time.

115

global msg_count: table[string] of count &default = 0;
event log_summary(msg: string)

log fmt("(%s) %d times", msg, msg_count[msg]);

}

function log_hook(msg: string): bool

{

if (++msg_countfmsg] == 1)
First time we've seen this message - log it.
return T;

if (msg_countfmsg] == 5)
We've seen it five times, enough to be worth
summarizing. Do so five minutes from now,
for whatever total we've seen by then.
schedule +5 min { log_summary(msg) };

return F;

}

Figure 7.4: Sample definition ¢dg _hook

116

7.10 Theactive Module

Theactive utility module provides a single, non-redefinable variablgt holds information about active connec-
tions:

active _conn : table[conn _id] of connection
Indexed by aconn _id (Figure 7.3.1) giving the originator/responder addre/pgets, returns the connection’s
connection record. As usual, accessing the table with a non-existidepimesults in a run-time error, so you
should first test for the presence of the index usingnth@perator.

Default: empty.

This functionality is quite similar to that of thective _connection function, andDeficiency: arguably this
module should be removed in favor of the functiboes, however, provide a useful example of maintainiogkh
keeping by defining additional handlers for events thataalyehave handlers elsewhere.

7.11 Thedemux Module

Thedemux utility module provides a single function:

demux_conn (id: conn _d, tag: string, otag: string, rtag: string): bool
Instructs Bro to write (“demultiplex”) the contents of thermection with the giveid to a pair of files whose
names are constructed outtafy , otag , andrtag , as follows.

The originator-to-responder direction of the connectioaginto a file named:
<otag>.< tag>.< orig-addr>.< orig-port>-< resp-addp.< resp-port
and the other direction in:
<rtag>.< tag>.< resp-addp.< resp-port-< orig-addr>.< orig-port>

Accordingly,tag can be used to associate a unique label with the pair of filefewtag and rtag provide
distinct labels for the two directions.

If Bro is already demuxing the connection, or if the connattis not active, then nothing happens, and the
function returns false. Otherwise, it returns true.

Bro places demuxed streams in a directory defined by the rexdidd globademux_dir , which defaults in the
usual fashion tmpen _log file("xscript")

Deficiency: Experience has shown that it would be highly eaient if Bro would demultiplex trentireconnection
contents into the files, instead of just the part of the cotioeseen subsequently after the calbmux_conn . One
way to do this would be fadlemux_conn to offset the contents in the file by the current stream positind then to
invoke a utility tool that goes through the Bro output trade ¢ 10.2, page 176) and copies the contents up to the
current stream position to the front of the file. This utilipol might even be another instance of Bro running with
suitable arguments.

117

type dns_mapping: record {
creation_time: time; # When the mapping was created.

req_host: string; # The hostname in the request, if any.
req_addr: addr; # The address in the request, if any.

valid: bool; # Whether we received an answer.
hostname: string; # The hostname in the answer, or "<none>".
addrs: set[addr]; # The addresses in the answer, if any.

Figure 7.5: Definition of thelns _mapping record.

7.12 Thedns Module

Thedns module deals with Bro’s internal mapping of hostnames¢offtP addressefeficiency: There is no DNS
protocol analyzer available at preserffurthermoreDeficiency: the lookup mechanisms discussed here are nibt ava
able to the Bro script writer, other than implicitly by usilgstnames in lieu of addresses in variable initializations
(§ 10.19, page 178).

The module’s function is to handle different events that@ecur when Bro resolves hostnames upon startup. Bro
maintains its own cache of DNS information which persist®sg invocations of Bro on the same machine and by the
same user. The role of the cache is to allow Bro to resolvanboses even in the face of DNS outages; the philosophy
is that it's better to use old addresses than none at all,laadh¢lps harden Bro against attacks in which the attacker
causes DNS outages in order to prevent Bro from resolvinticodar sensitive hostnames (e.ggt _srcs). The
cache is stored in the fileiro-dns-cache " in the user’s home directory. You can delete this file whemeiou
want, for example to purge out old entries no longer needwdiBao will recreate it next time it's invoked using .

Currently, all of the event handlers are invoked upomparingthe results of a new attempt to look up a name or
an address versus the results obtainedaketimeBro did the lookup. When Bro looks up a name for the first time,
no events are generated.

Also, Bro currently only looks up hostnames to map them taesigks. It does not perform inverse lookups.

7.12.1 Thedns _mapping record

All of the events handled by the module include at least ocgerceof DNS mapping information, defined by the
dns _mapping type shown in Figure 7.12.1. The corresponding fields are:

creation _time
When the mapping was created.

req _host
The hostname looked up, or an empty string if this was not énhose lookup.

req _addr
The address looked up (reverse lookup)Qdr.0.0 if this was not an address lookup.

118

valid
True if an answer was received for a lookup (even if the ansvesrthat the request name or address does not
exist in the DNS).

hostname
The hostname answer in response to an address lookup, d@ritigg'snone>" if an answer was received but
it indicated there was no PTR record for the given address.

addrs
A set of addresses in response to a hostname lookup. Emptaif@wer was received but it indicated that there
was no A record for the given hostname.

7.12.2 dns variables
The modules provides one redefinable variable:

dns _interesting _changes : set[string]
The different DNS events have names associated with thetie liame is present in this set, then the event
will be logged, otherwise not.

One exception to this list is that DNS changes involving ttapback addrese27.0.0.1 are always consid-
ered log-worthy, since they may reflect DNS corruption.

Default:{ "unverified", "old name", "new name", "mapping", 1.

7.12.3 dns event handlers
The DNS module supplies the following event handlers:

dns _mapping _valid (dm: dns _mapping)
The given request was looked up and it was identical to itgipus mapping.

dns _mapping _unverified (dm: dns _mapping)
The given request was looked up but no answer came back.

dns _mapping _new_name (dm: dns _mapping)
In the past, the given address did not resolve to a hostnéuisdirhe, it did.

dns _mapping _lost _name (dm: dns _mapping)
In the past, the given address resolved to a hostname; natwmame has gone away. (An answer was received,
but it stated that there is no hostname corresponding toitkea gddress.)

dns _mapping _name_changed (old _dm: dns _mapping, new _dm: dns _mapping)
The name returned this time for the given address differn fitte name returned in the past.

dns _mapping _altered (dm: dns _mapping, old _addrs: set[addr], new _addrs:
set[addr])
The addresses associated with the given hostname haveethdrmse irold _addrs used to be part of the
set returned for the name, but aren’t any more; while thosew addrs didn’t used to be, but now are. There
may also be some unchanged addresses, which are thdssbaddrs but notinnew_addrs .

119

7.13 Thefinger Analyzer

Thefinger analyzer processes traffic associated with the FingercefRFC1288]. Bro instantiatesfamger
analyzer for any connection with service po®tcp (if you @load the finger analyzer in your script, or define your
ownfinger _request orfinger _reply handlers, of course).

The analyzer uses a capture filter pbft finger " (§7.1.2, page 93).

In the past, attackers often used Finger requests to obtfonmation about a site’s users, and sometimes to
launch attacks of various forms (buffer overflows, in paéc). In our experience, exploitation of the service has
greatly diminished over the past years (no doubt in partécservice being increasingly turned off, or prohibited by
firewalls). Now it is only rarely associated with an attack.

7.13.1 finger variables

The standard script defines two redefinable variables:

hot _-names : set[string]
A list of usernames that should be considered sensitivewloghy) if included in a Finger request.

Default: { "root", "Ip", "uucp", "nuucp”, "demos", "operator", "sync ,
"guest"”, "visitor", }.

max_request _length : count
The largest reasonable request size (used to flag possiffiée buerflow attacks). Bro marks a connection as
“hot” if its request exceeds this length, and truncatesoggying of the request to this many bytes, followed by

Default:80.

7.13.2 finger event handlers

The standard script defines one event handler:

finger _request (c: connection, request: string, full: bool)
Invoked upon connection having made the requestquest . Thefull flag is true if the request included
the “long format” option (which the event engine will havemaved from the request).

The standard script flags long requests and truncates thaoted above, and then checks whether the request
is for a name irhot _names. It then formats the request either by placing double qimtaharks around it, or,

if the request was empty—indicating a request for inforpratn all users—the request is changed to the string
ALL with no quotes around it.

If the originator already made a request, then this additioequest is placed in parentheses (though multiple
requests violate the Finger protocol). If the request waghiefull format, then the text(/W) " is appended
to the request. Finally, the request is appended to the ction&saddl field.

The event engine generates an additional event that thefipredfinger script does not handle:

finger _reply (c: connection, reply _line: string)
Generated for each line of text sent in response to the atigils request.

120

7.14 Thefrag Module

Thefrag utility module simply refines the capture filtef 7.1.2, page 93) so that Bro will capture and reassemble
IP fragments. Bro reassembles any fragments it receivésidomally it doesn’t receive any, except the beginnings of
TCP fragments (see thep module), and UDP port 111 (per tipertmapper module).

So, to make Bro do fragment reassembly, you simply @é&ad frag . It effects this by adding:

(ip[6:2] & Ox3fff I= 0) and tcp

to the filter. The first part of this expression matches allrdgjfnents, while the second restricts those matched to TCP
traffic. We wouldlike to use:

(ip[6:2] & Ox3fff I= 0) and (tcp or udp port 111)

to also include portmapper fragments, but that won’t workeort numbers will only be present in the first fragment,
so the packet filter won't recognize the subsequent fragsrenbelonging to a UDP port 111 packet, and will fail to
capture them.

Note: Alternatively, we might be tempted to ugep or udp) ”and so captureall UDP fragments, including
port 111. This would work in principle, but in practice canptare very high volumes of traffic due to NFS traffic,
which can send all of its file data in UDP fragments.

7.15 Thehot-ids Module
Thehot-ids module defines a number of redefinable variables that speséynames Bro should consider sensitive:

forbidden _ids : set[string]
lists usernames that should never be used. If Bro detectsf ose, it will attempt to terminate the corresponding

connection.
Default: { "uucp", "daemon”, "rewt", "nuucp", "EZsetup", "OutOfBox" ,
"4Dgifts", "ezsetup"”, "outofbox", "4dgifts", "sgiweb", }. All of these correspond to

accounts that some systems have enabled by default (wittkm@lvn passwords), except forewt" , which
corresponds to a username often used by (weenie) attackers.

Deficiency: The repeated definitions sucHBZsetup” and"ezsetup" reflect that this variable is aet
and not gpattern . Consequently, the exact username must appear in it (wititanm, we could use character
classes to match both upper and lower case).

forbidden _ids _if _no_password : set[string]
Same aforbidden _ids except only considered forbidden if the login succeedel wit empty password.
Default:"Ip" , a default passwordless IRIX account.

forbidden _id _patterns : pattern

A pattern giving user ids that should be considered forhidBeficiency: This pattern is currently only used
to check Telnet/Rlogin user ids, not ids seen in other ctsiteMch as FTP sessions.

Default: /(y[oO]u)(r|ar[e3])([o0]wn.*)/ , a particularly egregious style of username of which
we've observed variants in different break-ins.

121

type ftp_session_info: record {

id: count; # unigue number associated w/ session
user: string; # username, if determined

request: string; # pending request or requests
num_requests: count; # count of pending requests

request_t: time; # time of request

log_if _not_denied: bool; # unless code 530 on reply, log it
log_if_not_unavail: bool; # unless code 550 on reply, log it
log_it: bool; # if true, log the request(s)

Figure 7.6: Definition of thétp _session _info record.

always _hot _ids : set[string]
A list of usernames that should always be considered semsitiough not necessarily so sensitive that they
should be terminated whenever used.

Default:{ "Ip", "warez", "demos", forbidden dds, }. The"lp" and"demos" accounts are
specified here rather thdorbidden _ids because it's possible that they might be used for legitinaate
counts."warez" (for “wares”, i.e., bootlegged software) is listed becaitsaise likely constitutes a policy
violation, not a security violation.

Note: forbidden _ids is incorporated intcalways _hot _ids to avoid replicating the list of particularly
sensitive ids by listing it twice and risking inconsistersci

hot _ids : set[string]
User ids that generate alerts if the user logs in succegsfull

Default: { "root", "system", always _hot _ids, }. The ones included in addition to
always _hot _ids are only considered sensitive if the user logs in succdgsful

7.16 Theftp Analyzer

Theftp analyzer processes traffic associated with the FTP filefeagervice [RFC959]. Bro instantiates &p
analyzer for any connection with service p@t/tcp , providing you have loaded tHgp analyzer, or defined a
handler forftp _request orftp _reply

The analyzer uses a capture filter glott ftp " (§ 7.1.2, page 93). It generates summaries of FTP sessions;
looks for sensitive usernames, access to sensitive fildgp@ssible FTP “bounce” attacks, in which the host specified
in a “PORT or “PASV directive does not correspond to the host sending the tiliesr in which a different host
than the server (client) connects to the endpoint specifi@PiORT(PAS\) directive.

7.16.1 Theftp _session _info record

The main data structure managed by ftpe analyzer is a collection dtp _session _info records, where the
record type is shown in Figure 7.16.1. The correspondinddiate:

122

The unique session identifier assigned to this sessionioBesare numbered starting Atand incrementing
with each new session.

user
The username associated with this session (from the ifiliBl authentication dialog), or an empty string if not
yet determined.

request
The pending request, if the client has issued any. Ordintrdre would be at most one pending request, but
a client can in fact send multiple requests to the servertalhae, and an attacker could do so attempting to
confuse the analyzer into mismatching responses with stguar simply forgetting about previous requests.

num.requests
A count of how many requests are currently pending.

request _t
The time at which the pending request was issued.

log _if _not _denied
If true, then when the reply to the current request comes iin,dBould log it, unless the reply code580
(“denied).

log _if _not _unavall
If true, then when the reply to the current request comes iin,dBould log it, unless the reply code550
(“unavail).

log _it
If true, then when the reply to the current request comesiin,sBould log it.

7.16.2 ftp variables

The standard script defines the following redefinable vég&b

ftp _guest _ids : set[string]
A set of usernames associated with publicly accessiblestjservices. Bro interprets guest usernames as
indicating Bro should use the authenticatjpasswordas the effective username.

Default:{ "anonymous", "ftp", "guest", }.
ftp _skip _hot : set[addr, addr, string]

Entries indicate that a connection from the first given asislte the second given address, using the given string
username, should not be treated as hot even if the usernamesiive.

Default: empty.
Example: redefiningfp _skip _hot using

redef ftp_skip_hot: set[addr, addr, string] += {
[[bobl.dsl.home.net, bob2.dsl.home.net], bob.work.com , "root"],

h

123

972499885.784104 #26 131.243.70.68/1899 > 64.55.26.206/ ftp start

972499886.685046 #26 response (220 tuvok.ooc.com FTP serv er
(Version wu-2.6.0(1) Fri Jun 23 09:17:44 EDT 2000) ready.)

972499886.686025 #26 USER anonymous/IEUser@ (logged in)

972499887.850621 #26 TYPE | (ok)

972499888.421741 #26 PASV (227 64.55.26.206/2427)

972499889.493020 #26 SIZE /pub/OB/4.0/JOB-4.0.3.zip (21 3 1675597)
972499890.135706 #26 *RETR /pub/OB/4.0/J0B-4.0.3.zip, A BOR (complete)
972500055.491045 #26 response (225 ABOR command successfu 1)

Figure 7.7: Example of FTP log file entries for a single FTFsees

would result in Bro not alerting on FTP connections as Usaot" from eitherbobl.dsl.home.net or
bob2.dsl.home.net to the server running onob.work.com

ftp _hot _files : pattern
Bro matches the argument given in each FTP file manipuladquest (RETR, STOR, etc.) against this pattern
to see if the file is sensitive. If so, and if the request sudsethen the access is logged.

eggdrop Default; a pattern that matches various flavors of passwigsl filus any string witeggdrop init.
Note: Eggdrop is an IRC management tool often installed byaceattackers upon a successful break-in.

ftp _not _actually _hot _files : pattern
A pattern giving exceptions tiip _hot _files . It turns out that a pattern likipasswd/ generates a lot of
false hits, such as frompasswd.c (source for thegpasswdutility; this can turn up in FTP sessions that fetch
entire sets of utility sources usi?dGET or passwd.html (a Web page explaining how to enter a password
for accessing a particular page).

Default:/(passwd|shadow).*\.(c|gif|ntm|pl|rpm|tar|zip)/
ftp _hot _guest _files : pattern
Files that guests should not attempt to access.
Default:.rhosts and.forward
skip _unexpected : set[addr]
If a new host (address) unexpectedly connects to the endgpéeified in @ ORTor PASVdirective, then if
either the original host or the new host is in this set, no mgsss generated. The idea is that you can specify

multi-homed hosts that frequently show up in your FTP traffscthese can generate innocuous warnings about
connections from unexpected hosts.

Default: somehp.com hosts, as an example. Most are specified as raw IP addre#isestrean hostnames,
since the hostnames don't always consistently resolve.

skip _unexpected _net : set[addr]
The same askip _unexpected , exceptaddresses are masked to /24 and /16 before lookadhip set.

Default: empty.

124

In addition,ftp _log holds the name of the FTP log file to which Bro writes FTP sessianmaries. It defaults
toopen _log _file("ftp")

Figure 7.16.2 shows an example of what entries in this fil& lde. Here we see a transcript of the 26th FTP
session seen since Bro started running. The first line gteestart time and the participating hosts and ports. The
next line (split across two lines above for clarity) givee terver’s welcome banner. The client then logged in as
user ‘anonymous ", and because this is one of the guest usernames, Bro rettreie password too, which in this
case waslEUser@ " (a useless string supplied by their Web browser). The sexeeepted this authentication, so the
status on the line is(fogged in) "

The client then issues a request for the Image file type, tehvitie server agreed. Next they issueBASY
directive, and received a response instructing them toectrio the server on po2d27/tcp for the next transfer. At
this point, after issuing 8IZE directive (to which the server returned 1,675,597 bytésy sendRETRto fetch the
file /pub/OB/4.0/JOB-4.0.3.ziplowever, before the transfer completed, they issMBOR but the transfer finished
before the server processed the abort, so the log showsua sfdtompleted) . Furthermore, because the client
issued two commands without waiting for an intervening oese, these are shown together in the log file, and the line
marked with a *” so it draws the eye. Finally, because Bro paired up(teenpleted) with the multi-request line,
it then treats the response to A BORcommand as a reply by itself, showing in the last line thasdéwwer reported it
successfully carried out the abort.

The corresponding lines in thred file look like:

972499885.784104 565.836 ftp 118 427 131.243.70.68 64.55. 26.206
RSTO L #26 anonymous/IEUser@

972499888.984116 165.098 ftp-data ? 1675597 131.243.70.6 8 64.55.26.206
RSTO L

The first line summarizes the FTP control session (over wtkiehclient sends its requests and receives the server’s
responses). Itincludes aldl annotation of #26 anonymous/IEUser@ ", summarizing the session number (so
you can find the corresponding records infipe log file) and the authentication information.

The second line summarizes the single FTP data transfe6 65597 bytes. The amount of data sent by the client
for this connection is shown as unknown because the cliemt@dhthe connection with a RST (hence the SR8§ Q.
For connections that Bro does not look inside (such as FT® tdasfers), it learns the amount of data transferred
from the sequence numbers of the SYN and FIN connection @igmdickets, and can't (reliably) learn them for the
sender of a RST. (It can for the receiver of the RST.)

They also aborted the control session (again, $28&Q, but in this case, Bro captured all of the packets of the
session, so it could still assign sizes to both directions.

7.16.3 ftp functions

The standardtp script provides one function for external use:

is _ftp _data _conn (c: connection): bool
Returns true if the given connection matches one we're giqeas the data connection half of an FTP session.
Note: This function is not idempotent: if the connectionghas an expected one, then Bro updates its state such
that that connection is no longer expected. It also logs ard{gancy if the connection appears to be usurping
another one that generated either RORT or a “ PASV directive.

Also returns true if the source port2®/tcp and there’s currently an FTP session active between thmatay
and responder, in case for some reason Bro’s bookkeepingassistent.

125

7.16.4 ftp event handlers
The standard script handles the following events:

ftp _request (c: connection, command: string, arg: string)
Invoked upon the client side of connectiorhaving made the requesbmmandwith the argumenéarg .

The processing depends on the particular command:

USER
Specifies the username that the client wishes to use for mithgon. If it is sensitive—irhot _ids
(which theftp analyzer accesses via@load of hot-ids)—then the analyzer flags the FTP session as
log-worthy. In addition, if the username isfiorbidden _ids , then the analyzer terminates the session.

The analyzer also updates the connectiaadl field with the username.

PASS
Specifies the password to use for authentication.
If the password is empty and the username appedmiidden _ids _if _no_password (also from
thehot-ids analyzer), then the analyzer terminates the connection.
If the username corresponds to a guest accdimt (guest _ids), then the analyzer updates the con-
nection’'saddl field with the password as additional account informatiothe@wise, it generates an
account _tried eventto facilitate detection of password guessing.

PORT
Instructs the FTP server to connect to the given IP addredgart for delivery of the next FTP data
item. The analyzer first checks the address/port specifierdiadity. If valid, it will generate an alert if
either the address specified in the directive does not mhtttof the client, or if the port corresponds to
a “privileged” port, i.e., one in the range 0-1023. Finallygstablishes state so that _ftp _data _conn
can identify a subsequent connection corresponding taltféstive as belonging to this FTP session.

ACCT
Specifies additional accounting information associatetl wisession, which the analyzer simply adds to
the connection'sidd! field.

APPE CWDDELE MKDRETR RMDRNFRRNTQSTORSTOU
All of these manipulate files (and directories). The analycteecks the filename against the policies to
see if it is sensitive in the context of the given usernamee,(guest or non-guest), and, if so, marks the
connection to generate an alert unless the operation Tditsanalyzer also checks for an excessively long
filename, currently by checking its length again&eficiency: hardwired maximum of 250 bytes

ftp _reply (c: connection, code: count, msg: string, cont _resp: bool)

Invoked upon the server side of connectohaving replied to a request using the given status code amd te
messagecont _resp is true if the reply line is tagged as being continued to the hiee. The analyzer only
processes requests when the last line of a continued repgésved.

The analyzer checks the reply against any expected for theemtion (for example log _if _not _denied ")
and generates alerts accordingly. If the reply corresptm@dPASVdirective, then it parses the address/port
specification in the reply and generates alerts in an ana®tashion as done by thin _request handler
for PORTdirectives.

Finally, if the reply is not one that the analyzer is hardwite skip (codel50, used at the beginning of a data
transfer, and cod®31, used to prompt for a password), then it writes a summaryefeluest and reply to the

126

972482763.371224 %1596 start 200.241.229.80 > 131.243.2. 12
%1596 GET /ITG.hm.pg.docs/dissect/portuguese/dissect. html
%1596 GET /vfrog/bottom.icon.gif

%1596 GET /vfrog/top.icon.gif

%1596 GET /vfrog/movies/off.qgif

%1596 GET /vfrog/new.frog.small.gif

Figure 7.8: Example of HTTP log file entries for a single HTE3son.

FTP log file § 7.16.2, page 125). Also, if the reply is an “orphan” (thereswwa corresponding request, perhaps
because Bro started up after the request was made), thespilyes summarized in the log file by itself.

The standardtp script defines one other handler, an instancearsinection _finished used to flush FTP
session information in case the session terminates abtigramna no reply is seen to the pending request(s).

7.17 Thehttp Analyzer

Thehttp analyzer processes traffic associated with the Hyper Textsfer Protocol (HTTP) [RFC1945, RFC2616],
the main protocol used by the Web. Bro instantiatebtgm analyzer for any connection with service p8@/tcp ,
providing you have loaded tHdtp analyzer, or defined a handler foitp _request . It also instantiates an ana-
lyzer for service port8080/tcp and8000/tcp , as these are often also used for Web servers.

The analyzer uses a capture filter afcy dst port 80 or tcp dst port 8080 or tcp dst
port 8000 " (§ 7.1.2, page 93)Note: This filter excludes traffic sent by an HTTP server (thatild be matched
bytcp src port 80 , etc.), because Deficiency: Bro doesn’t yet have an anafgzétTTP replies. It generates
summaries of HTTP sessions (connections between the s@aneamd server) and looks for access to sensitive URIs
(effectively, URLS).

7.17.1 http variables

sensitive _URIs : pattern
Any HTTP method (e.gGET, HEAD POST) specifying a URI that matches this pattern is flagged astsens

Default: URIs with/etc/passwd or/etc/shadow embedded in them, dcfdocs/expeval (usedin
some Cold Fusion exploitsNote: This latter generates some false hits; it's mainlyuded just to convey the
notion of looking for direct attacks rather than attacks dise exploit sensitive files like the first ones.

Deficiency: It would be very handy to have variables prowgdimoks for more context when considering
whether a particular access is sensitive, such as whetleerauest was inbound or outbound.

sensitive _post _URIs : pattern
Any POSTmethod specifying a URI that matches this pattern is flaggeskasitive.

Default: URIs withwwwroot embedded in them.

In addition,http _log holds the name of the HTTP log file to which Bro writes HTTP g@ssummaries. It
defaults toopen _log _file("http")

127

Figure 7.17.1 shows an example of what entries in this fil& ld®. Here we see a transcript of the 1596th HTTP
session seen since Bro started running. The first line gisestdrt time and the participating hosts. The next five lines
all correspond t&GETmethods retrieving different items from the Web serisficiency: Bro can't log whether the
retrievals succeeded or failed because it doesn't yet haud &I P reply analyzer.

The corresponding lines in thred file look like:

972482762.872695 481.551 http 441 5040 131.243.2.12 200.2 41.229.80
S3 X %10596

972482764.686470 18.7611 http 596 7712 131.243.2.12 200.2 41.229.80
S3 X %10596

972482764.685047 ? http 603 2959 131.243.2.12 200.241.229 .80

S1 X %10596

That there are three rather than five refl¢dtshat the client used persistent HTTP, and so didn’t need oneextion
per item, but alsdii) the client used three parallel connections (the maximunstidwedard allows is only two) to fetch
the items more quickly. As with FTP sessions, #&0596 addl annotation lets you correlate thed entries with
thehttp log entries.

Note: All three of the connections wound up in unusual stdtes first two are in stat83, which, as indicated by
Table 7.3.6 means that the responder (in this case, the Weérkattempted to close the connection, but their was no
reply from the originator. The last is in stagl, indicating that neither side attempted to close the cotiae¢which
is why no duration is listed for the connection).

7.17.2 http event handlers

The standard HTTP script defines one event handler:

http _request (c: connection, request: string, URI: string)
Invoked whenever the client side of the given connectioregaties an HTTP requestquest givesthe HTTP
method andJRI the associated resource. The analyzer matches the URIsagfagnones defined as sensitive,
as given above.

Deficiency: As mentioned above, the event engine does nehtlyrgenerate amttp _reply event. This is for
two reasons: first, the HTTP request stream is much lowemaelthan the HTTP reply stream, and | was interested
in the degree to which Bro could get away without analyzirghtyher volume stream. (Of course, this argument is
shallow, since one could control whether or not Bro shouldlgre HTTP replies by deciding whether or not to define
an http _reply handler.) Second, matching HTTP replies in their full gedigy involves a lot of work, because
the HTTP standard allows replies to be delimited in a numbevays. That said, most of the work for implementing
http _reply is already done in the event engine, but it is missing testimfydebugging.

7.18 Theident Analyzer

Theident analyzer processes traffic associated with the Identifio&rotocol [RFC1413], which provides a simple
service whereby clients can query ldent servers to discaser information associated with an existing connection
between the server’s host and the client’s host. Bro inistist anident analyzer for any connection with ser-
vice port113/tcp , providing you have loaded thdent analyzer, or defined a handler faent _request
ident _reply ,orident _error

128

The analyzer uses a capture filter &y port 113 " (§7.1.2, page 93). Thielent _reply handler annotates
theaddl field of the connection for which the Ident client made its iyueith the user information returned in the
reply. It also checks the user information against sersitBernames, because a match indicates that the connaection i
the ldent query was initiated by a possibly-compromisedant

7.18.1 ident variables

The standard script defines the following pair of redefinabliables:

hot _ident _ids : set[string]
usernames to flag as sensitive if they appear in an Ident reply

Default:always _hot _ids (§7.15, page 122).

hot _ident _exceptions : set[string]
usernames not to consider sensitive even if they appdaotinident _ids .

Default:{ "uucp", "nuucp"”, "daemon", }. These usernames are exceptions because daemons some-
times run with the given user ids and their use is often innasu

7.18.2 ident eventhandlers

The standard script handles the following events:

ident _request (c: connection, Iport: port, rport: port)
Invoked when a client request arrives on connectipgquerying about the connection from local plprt
to remote portport , where local and remote are relative to the client.

ident _reply (c: connection, Iport: port, rport: port, user _id: string, system:
string)
Invoked when a server replies to an ldent requipstt andrport are again the local and remote ports
(relative to the client) of the connection being asked abuosér _id is the user information returned in
the Ident server’s reply, ansystem is information regarding the operating system (the IdeetcHBiation
[RFC1413] does not further standardize this information).

The handler annotates the queried connection with the ugermiation, which it also checks against
hot _ident _ids andhot _ident _exceptions as discussed above. At present, it does nothing with the
system information.

ident _error (c: connection, Iport: port, rport: port, line: strin 0)
Invoked when the given request yielded an error reply froedlent server. The handler annotates the connec-
tion with ident/< error>, whereerror is the text given idine

129

7.19 Thelogin Analyzer

Thelogin analyzer inspects interactive login sessions to extraamnagne and password information, and monitors
user keystrokes and the text returned by the login serves.dhe of the most powerful Bro modules for detecting
break-ins to Unix systems because of the ability to look fartipular commands that attackers often execute once
they have penetrated a Unix machine.

The analyzer is generic in the sense that it applies to maredhne protocol. Currently, Bro instantiategin
analyzer for both Telnet [RFC854] and Rlogin [RFC1282]ftcain principle, it could do the same for other protocols
such as SSH [YKSRLOO] or perhaps X11 [RFC1013], if one coutdeathe corresponding elements of the event
engine to decryptthe SSH session (naturally, this wouldiregccess to the encryption keys) or extract authenticati
information and keystrokes from the X11 event strellote: The analyzer does an exceedingly limited form of SSH
analysis; sedot _ssh _orig _ports

For Telnet, the event engine knows how to remove in-bandetelption sequences [RFC855] from the text stream,
and does not deliver these to the event handlers, exceptféar aptions that the engine analyzes in detail (such as
attempts to negotiate authentication). Unfortunatelg, Telnet protocol does not include any explicit marking of
username or password information (unlike the FTP protaa®ldiscussed if§ 7.16, page 122). Consequently, Bro
employs a series of heuristics that attempt to extract tkeenasne and password from the authentication dialog the
session is presumed to begin with. The analysis becomes coritplicated due to the possible use of type-ahead
and editing sequences by the user, plus the possibilitytieatiser may be an attacker who attempts to mislead the
heuristics in order to disguise the username they are dngess

Analyzing Rlogin is nominally easier than analyzing Telbetause Rlogin has a simpler in-band option scheme,
and because the Rlogin protocol explicitly indicates thermame in the initial connection dialog. However, this last
is not actually a help to the analyzer, because for most Rlsgivers, if the initial username fails authenticatiom (fo
example, is not present in théhosts file local to the server), then the server falls back on theesanthentication
dialog as with Telnet (prompting for username and then pastwor perhaps just for a password to go with the
transmitted username). Consequently, the event enginkogsihe same set of heuristics as for Telnet.

Each connection processed by the analyzer is in a distiat:aiser attempting to authenticate, user has success-
fully authenticated, analyzer is skipping any further m®sing, or the analyzer is confus€d’(19.1, page 131). You
can find out the state of a given connection ugieg _login _state

The analyzer uses a capture filter dEf port 23 or tcp port 513 " (§ 7.1.2, page 93). It anno-
tates each connection with the username(s) present in therdication dialog. If the username was authenticated
successfully, then it encloses the annotation in quotethdfauthentication failed, then the name is marked as
failed/< username. So, for example, if user “smith” successfully authentisathen the connectioresldl field
will have "smith" appended to it:

931803523.006848 254.377 telnet 324 8891 1.2.34 5.6.7.8 S F L "smith"
while if “smith” failed to authenticate, the report will 1&dike:
931803523.006848 254.377 telnet 324 8891 1.2.3.4 5.6.7.8 S F L fail/smith

and if they first tried as “smith” and failed, and then sucezkds “jones”, the record would look like:
931803523.006848 254.377 telnet 324 8891 1.2.3.4 5.6.7.8 S F L fail/smith "jones"

Note: The event engine’s heuristics can sometimes get @yneh such that it interprets a password as a user-
name; in addition, users sometimes type their password Wienshould instead enter their username. Consequently,
the connection logs sometimes include passwords in thetatims, and so should be treated as very sensitive infor-
mation (e.g., not readable by any user other than the oneingn@ro).

130

7.19.1 login analyzer confusion

Because there is no well-defined protocol for Telnet autbation (or Rlogin, if the initial.rhosts authentication
fails), thelogin analyzer employs a set of heuristics to detect the userrmzamsword, and whether the authentication
attempt succeeded. All in all, these heuristics work quigél Wut it is possible for them to become confused and reach
incorrect conclusions.

Bro attempts to detect such confusion. If it does, then itegates dogin _confused event, after which the
event engine will no longer attempt to follow the authertaadialog. In particular, it willnot generate subsequent
login _failure orlogin _success events. Thdogin _confused eventincludes a string describing the type
of confusion, using one of the values given in Table 7.19.1.

7.19.2 login variables

The standard script defines a large number of variables fioimg the analysis policy:

input _trouble : pattern
lists patterns that the analyzer should flag if they appetirdruser’s input (keystroke) stream.

The analyzer searches for these patterns both in the rawypeed by the user and the same lines after applying
editingusing theedit function twice: once with interpretingS(ctrl-H) as delete-one-character, and once with
DEL as the edit character. If any of these matches, then thezaralgnsiders the pattern to have matched.

eggdrop Default: a pattern matching occurrences of the strimgat ”, “eggdrop ", “loadmodule ", or
“/bin/eject ". The first of these is a popular username attackers use ébaxckdoor accounts. The second
reflects that one prevalent class of attackers are devotfdatemet Relay Chat (IRC), who frequently upon
breaking into an account install the IREGgdrop utility.

edited _input _trouble : pattern
is the same amput _trouble exceptthe analyzer only checks the edited user input aghmpattern, not
the raw input (see above).

This variable is provided so you can specify patterns thatamur innocuously as typos; whenever the user
corrects the typo before terminating the line, the pattesn’wmatch, because it won't be present in the edited
version of the line. In addition, for matches to these patiethe analyzedelaysreporting the match until

it sees the next line of output from the server. It then inekiboth the line that triggered the match and the
corresponding response from the server, which makes it sy human inspecting the logs to tell if the
occurrence of the pattern was in fact innocuous.

Here’s an example of an innocuous report:

936723303.760483 1.2.3.4/21550 > 5.6.7.8/telnet
input "cd ..." yielded output "ksh: not found."

It was flagged because the user’s input included *“’, a name commonly used by attackers to surreptitiously
hide a directory containing their tools and the like. Howewe see from the Telnet server’s response that this
was not actual access to such a directory, but merely a typistake.

On the other hand:

937528764.579039 1.2.3.4/3834 > 5.6.7.8/telnet
input "cd ..." yielded output "maroon# ftp sunspot.sunspot .noao.edu "

131

| Type of confusion | Meaning |
"excessive _typeahead" The user has typed ahead 12 or more lificiency: The upper boung
should be adjustable.
"extra _repeat _text" The user has entered more than one VMS repeat sequence (an es-

cape followed by [A”) on the same lineNote: Bro determineg
that a login session involves a VMS server if the server ptemjith
“"Username:" " It then interprets VMS repeat sequences as indicat-
ing it should replace the current line with the previous line

"multiple _USERS" The user has specified more than one username usirgjt8&Renvi-
ronment variable.

"multiple _login _prompts" The analyzer has seen several login prompts on the samelhidehas
not seen a corresponding number of lines typed ahead psdyiby the
user.

"no _login _prompt" The analyzer has seen 50 lines sent by the server without faimem
matchinglogin _prompts . Deficiency: The value of 50 should be ad-
justable.

"no _username" The analyzer is generating an event after having already adegin
failure, but the user’s input has not provided another wemto include
with the eventNote: If the analyzer’s heuristics indicate it's okay that
no new username has been given, such as when the event iatgener
due to one connection endpoint closing the connection, ithieistead
uses the username&none> .

"no _username?2" The analyzer saw an additional password prompt withouhgea in-
tervening username, and it has no previous username to.reuse

"non _empty _multi _login" The analyzer saw multiple adjacent login prompts, with apaapntly
ignored intervening username typed-ahead between them.

"possible _login _ploy" The client sent text that matches one of the patterns refiptekt usually

sent by the server. This form of confusion can reflect an ktteattempt-
ing to evade the monitor. For example, the client may havetbertext
“login: " as a username so that when echoed back by the servey, the
analyzer would misinterpret it as reflecting another logianppt from
the server.

“repeat _without _username" The user entered a VMS repeat sequence but there is no usetnam
repeat. (Seextra _repeat _text for a discussion of the analyzer
heuristics for dealing with VMS servers.)

%)

“responder _environment" The responder (login server) has signaled a set of envirohwaeiables
to the originator (login client). This is in the oppositeetition as to what
makes sense.

"username _with _embedded _repeat" The line repeated by a VMS server in response to a repeatseg)iiself
contains a repeat sequence.

Table 7.4: Different types of confusion tHagyin analyzer can report.

132

shows a problem—the lines returned by the server was a rootgr(“maroon# "), to which the user issued a
command to access a remote FTP server.

Deficiency: The analyzer should decouple the notion of n@itd receive the server’s reply from the notion
of matching only the edited form of the line; there might b& mputs for which it is useful to see the server's
response, and edited inputs for which the server’s respangaimportant in terms of knowing that the input
spells trouble.

Default: the pattern

M0 MFed [M+ AW TI0 D)/

which looks for a €d” command to either a directory beginning with.” ” (optionally quoted by the user) or
a directory name beginning with “ that is quoted and includes an embedded blank or tab.

output _trouble : pattern
lists patterns that the analyzer should flag if they occunéndutput sent by the login server back to the user.

PATHUTMP smashdu.c Default: the pattern

["-r.s.*root.*\/binV/(sh|csh|tcsh)/
| /Jumping to address/

| /smashdu\.c/

| /PATH_UTMP/

| /Log started at =/

| /www\.anticode\.com/

| /smurfi.c by TFreak/

| /Trojaning in progress/

| /Super Linux Xploit/

The first of these triggers any time the user inspects witHsuility an executable whose pathname ends in
/bin/ followed by one of the popular command shells, andltheutput shows that the command shell has
been altered to be setuid to root. The remainder match ahibeyutput generated by some popular exploit tools
(for example, Jumping to address ", present in many buffer overflow exploit tools), exploibtmames
(“smashdu.c "), text found within the tool source codegthurf.c by TFreak "), or URLs accessed (say
via thelynx or fetchutilities) to retrieve attack softwareww.anticode.com 7).

backdoor _prompts : pattern
lists patterns that the analyzer should flag if they are seehegfirst line sent by the server to the user, because
they often correspond with backdoors that offer a remoteinsmediate command shell access without having
to first authenticate.

Default: the pattern/[I-"]*(?)[#%3$] / ", which matches a line that begins with a series of printable
non-blank characters and ends with a likely prompt charagith a blank just after the prompt character and
perhaps before it.

non _backdoor _prompts : pattern
lists patterns that if a possible backdoor prompt also nestcthen the analyzer should not consider the server
output as indicating a backdoor prompt. Used to limit falesitives forbackdoor _prompts .

Default: the pattern/® *#.*#/ ", which catches lines with more than one occurrence #f ome servers
generate such lines as part of their welcome banner.

133

hot _terminal _types : pattern
lists “magic” terminal types sometimes used by attackeracimess backdoors. Both Telnet and Rlogin have
mechanisms for negotiating a terminal type (name; exgerin ”); these backdoors trigger and skip authenti-
cation if the name has a patrticular value.

VT666 Default: the nameVT666”, one of the trigger terminal types we've observed in piazti

hot _telnet _orig _ports : set[port]

Some Telnet backdoors trigger if the ephemeral port usechéyclient side of the connection happens to
be a particular value. This variable is used to list the pafti®s whose use should be considered as possibly
indicating a backdoolNote: Clearly, this mechanism can generate false positimasn the client by chance
happens to choose one of the listed ports.

Default:53982/tcp , one of the trigger ports we have observed in practice.
Deficiency: There should be a corresponding variable foigitidbackdoors triggered by a similar mechanism.

hot _ssh _orig _ports : set[port]
Similar tohot _telnet _orig _ports , only for SSH.

Default:31337/tcp , a trigger port that we've observed in practice.

skip _authentication : set[string]
A set of strings that, if present in the server’s initial auttidi.e., its welcome banner), indicates the analyzer
should not attempt to analyze the session for an autheioticdiglog. This is used for servers that provide public
access and don't bother authenticating the user.

Default: the string"WELCOME TO THE BERKELEY PUBLIC LIBRARYhich corresponds to a fre-
qguently accessed public server in the Berkeley area. (@blypwe include this default as an example, and
not because it will be appropriate for most Bro users! Bubigllittle harm to include it.)

Deficiency: It would be more natural if this variable and a rhanof others listed below were of typattern
rather thanset[string] . They are actually converted internally by the event enmjiteeregular expressions.

direct _login _prompts : set[string]
A set of strings that if seen during the authentication djatwan that the user will be logged in as soon as they
answer the prompt.

Default:"TERMINAL?" , a prompt used by some terminal servers.

login _prompts : set[string]
A set of strings corresponding to login username promptsduan authentication dialog.
Default: the strings

Login:

login:

Name:
Username:
User:

Member Name

and the default contents dfrect _login _prompts .

134

login _failure _msgs : set[string]
A set of strings that if seen in text sent by the server duriregauthentication dialog correspond to a failed
login attempt.

Default: the strings

invalid
Invalid
incorrect
Incorrect
failure
Failure,
User authorization failure,
Login failed,
INVALID
Sorry,
Sorry.

login _non _failure _msgs : set[string]
A set of strings similar tdogin _failure _msgs that if present mean that the server text does not actually
correspond to an authentication failure (i.elpjin _failure _msgs also matches, it's a false positive).

Default: the strings

Failures
failures
failure since last successful login
failures since last successful login

router _prompts : set[string]
A set of strings corresponding to prompts returned by thellomuters when a user successfully authenticates
to the router. For the purpose of this variable, see the redble.

Default: empty.

login _success _msgs : set[string]
A set of strings that if seen in text sent by the server duttiegatuthentication dialog correspond to a successful
authentication attempt.

Default: the strings

Last login

Last successful login

Last successful login

checking for disk quotas
unsuccessful login attempts
failure since last successful login
failures since last successful login

135

and the default contents of theuter _prompts variable.

Deficiency: Since by defaulrouter _prompts is empty, this last inclusion does nothing.
In particular, if you redefine router _prompts then login _success _msgs will not pick
up the change; you wil need to redefine it to (again) includeuter _prompts , using:
redef login _success _msgs += router _prompts . This is clearly a misfeature of Bro and will
be fixed one fine day.

login _timeouts : set[string]
A set of strings that if seen in text sent by the server duttiregauthentication dialog correspond to the server
having timed out the authentication attempt.

Default: the strings

timeout

timed out

Timeout

Timed out

Error reading command input

(This last is returned by the VMS operating system.)

non _ASCII _hosts : set[addr]
A set of addresses corresponding to hosts whose login sedeerot (primarily) use 7-bit ASCII. The analyzer

will not attempt to analyze authentication dialogs to sua$ts, and will not complain about huge lines generated
by either the sender or receiver (etcessive _line).

Default: empty.

skip _logins _to : set[addr]

A set of addresses corresponding to hosts for which the agiaghould not attempt to analyze authentication
dialogs.

Default: the (empty) contents abn _ASCIl _hosts .

always _hot _login _ids : set[string]

A set of usernames that the analyzer should always flag asigensven if they're seen in a session for which
the analyzer igonfused§ 7.19.1, page 131).

Default: the value oflways _hot _ids defined by thénot analyzer.
hot _login _ids : set[string]

A set of usernames that the analyzer should flag as senasitiless it sees them in a session for which the
analyzer ixonfused§ 7.19.1, page 131).

Default: the value ohot _ids defined by thénot-ids analyzer.
rlogin _id _okay _if _no_password _exposed : set[string]

A set of username exceptionshot _login _ids which the analyzer should not flag as sensitive if the user
authenticated without exposing a password (so, for examagerhosts).

Default: the usernam&oot”

136

7.19.3 login functions

The standartbgin script provides the following functions for external use:

is _login _conn (c: connection): bool
Returns true if the given connection is one analyzetbigyn (currently, Telnet or Rlogin), false otherwise.

hot _login (c: connection, msg: string, tag: string)
Marks the given connection as hot, logs the given messagedamultiplexes{ 10.17, page 178) the subse-
guent server-side contents of the connection to a filenamedoartag and the client-side to a filename based
on the namé&keys" . No return value.

is _hot _id (id: string, successful: bool, confused: bool): bool
Returns true if the username id should be considered samgiiven that the user either did or did not success-
fully authenticate, and that the analyze was or was notiordusedstate § 7.19.1, page 131).

is _forbidden _.d (id: string): bool
Returns true if the username id is preserfoirbidden _ids orforbidden _id _patterns

edit _and_check _line (c: connection, line: string, successful: bool):
check _info
Tests whether the given line of text seen on conneatidgncludes a sensitive username, after first applying
BSandDEL keystroke editingq 7.19.2, page 131kuccessful should be true if the user has successfully
authenticated, false otherwise.

The return value is aheck _info record, which contains fourheck _info fields:
expanded _line
All of the different editing interpretations of the line,m@ated by commas. For example, if the original
line is
"rob< DEL><BS><BS>ot"

then the different editing interpretations dre< BS><BS>ot" and"root" , so the return value will
be:
"rob< DEL><BS><BS>ot,ro< BS><BS>ot,root"

Deficiency: ldeally, these values would be returned in adfssome form, so that they can be accessed
separately and unambiguously. The current form is realitasle only for display to a person, and even
that can be quite confusing ine happens to contain commas alrea®, perhaps an algorithm of
“simply pick the shortest” would find the correct editing eyéme anyway.

hot: bool True if any editing sequence resulted in a match againstsitsenusername.

hot _id: string The version of the input line (with or without editing) thaag/considered hot, or an empty
string if none.
forbidden: bool True if any editing sequence resulted in a match againstraaises considered “forbid-

den”, peris _forbidden _id .
edit _and_check _user (c: connection, user: string, successful: bool, fmt _S:

string): bool
Tests whether the given username used for authenticati@ommectiorc is sensitive, after first applyinBS

137

and DEL keystroke editing § 7.19.2, page 131»uccessful should be true if the user has successfully
authenticated, false otherwise.

fmt _s is afmt format specifying how the username information should lotuiithed in the connection&dd|
field. It takes twostring parameters, the current value of the field and the expandsibweof the username
as described iexpanded _line

If edit _and_check _line indicates that the username is sensitive, tedit _and check _user records
the connection into its own demultiplexing file$10.17, page 178). If the usernamdasbidden then unless
the analyzer is confused, we attempt to terminate the cdiomagsingterminate _connection

Returns true if the connection is now considered “hot,"@ittiue to having a sensitive username, or because it
was hot upon entry to the function.

edit _and_check _password (c: connection, password: string): bool

Checks the given password to see whether it contains aisenssername. If so, then marks the connection as
hot and logs the sensitive password. No return value.

Note: The purpose of this function is to catch instances iithvthe event engine becomes out of synch with
the authentication dialog and mistakes what is, in fact,ermame being entered, for a password being entered.
Such confusion can come about either due to a failure of tle@tesngine’s heuristics, or due to deliberate
manipulation of the event engine by an attacker.

7.19.4 login event handlers

The standartbgin script handles the following events:

login

login

_failure (c: connection, user: string, client _user: string, password:
string, line: string)

Invoked when the event engine has seen a failed attempt bertitate asiser with password on the
given connectiorc. client _user is the user's username on the client side of the connectionTElnet
connections, this is an empty string, but for Rlogin conioag, it is the client name passed in the initial
authentication information (to check againgiosts). line is the line of text that led the analyzer to
conclude that the authentication had failed.

The analyzer first generates aocount _tried event to facilitate detection of password guessing, and the
checks for a sensitive username or password. If the usemaaot sensitive and the password is empty, then
no further analysis is applied, since clearly the attemm half-hearted and aborted. Otherwise, the analyzer
annotates the connectiorasldl field with fail/< user nane> to mark the authentication failure, and also
checks theelient _user to see ifitis sensitive. If we then find that the connectiohas, the analyzer logs a
message to that effect.

_success (c: connection, user: string, client _user: string, password:
string, line: string)

Invoked when the event engine has seen a successful attermpthtenticate. The parameters are the same as
forlogin _failure

The analyzer invokesheck _hot with mode APPLLESTABLISHEDsince the application session has now
been established. It generatesatount _tried event to facilitate detection of password guessing, and
then checks for a sensitive username or password. The evgimeeuses the special passwdtthone>" to

138

login

login

login

indicate that no password was exposed, and this mitigagesehsitivity of logins using particular usernames
perrlogin _id _okay _if _no_password _exposed .

The analyzer annotates the connecti@usll field with "< user name>" to mark the successful authentica-
tion. Finally, if we then find that the connection is hot, thealyzer logs a message to that effect.

_input _line (c: connection, line: string)

Invoked for every line of text sent by the client side of thgitosession to the server side. The analyzer matches
the text againsinput _trouble andedited _input _trouble and invokeshot _login with a tag of
"trb" if it sees a match, which will log an alert concerning the aaation. However, this invocation is only
done while the connectionlsot field count is< 2, to avoid cascaded alerts when an attacker gets really busy
and steps on a lot of sensitive patterns.

_output _line (c: connection, line: string)

Invoked for every line of text sent by the server side of thgirosession to the client side. The ana-
lyzer checksackdoor _prompts and any pending input alerts that were waiting on the serugsu, per
edited _input _trouble . These last are then logged unless the output matched tleerpat

/No such file or directory/

Deficiency: Clearly, this pattern should not be hardwired imstead specified by a redefinable variable.

Finally, if the line is not too long and the text matctmegput _trouble and the connectionisot field count

is < 2 (to avoid cascaded alerts), the analyzer invdkess_login ~ with a tag of"trb" . Deficiency: “Too
long” is hardwired to be a length> 256 bytes. It, too, should be specifiable via a redefinable végiaNote:

We might wonder if not checking overly long lines presents\vasion threat: the attacker can bury their access
to a sensitive string in an excessive line and thus avoidctiete While this is true, it doesn’t appear to cost
much. First, some of the sensitive patterns are generatsdriver output that will be hard to manipulate into
being overly long. Second, if the attacker is trying to avibédection, there are easier ways, such as passing
their output through a filter that alters it a good deal.

_confused (c: connection, msg: string, line: string)

Invoked when the event engine’s heuristics have concludgthey have become confused and can no longer
correctly track the authentication dialog7.19.1, page 131)nsg gives the particular problem the heuristics
detected (for examplemultiple _login _prompts means that the engine saw several login prompts in a
row, without the type-ahead from the client side presumesgary to cause them) alite the line of text
that caused the heuristics to conclude they were confused.

Once declaring that it's confused, the event engine willarmkr attempt to follow the authentication dialog. In
particular, it will notgenerate subsequdogin _failure orlogin _success events.

Upon this event, the standalogin script invokescheck _hot with mode APPLLESTABLISHEDSsince it
could well be that the application session is now estahbdigfitecan’t know for sure, of course, because the
event engine has given up). It annotates the connectadd$ field with confused/< line> to mark the
confused state, and then logs to theird file the particulars of the connection and the type of comiusi
(msg). Deficiency: This should be done by generatingedrd-related event instead.

Finally, the analyzer invokeset _record _packets to specify that all of the packets associated with this con-
nection should be recorded to ttrace file. Note: For the currentogin analyzer, this call is not needed—it
records every packet of every login session anyway, be¢hasgenerally philosophy is that Bro should record

139

login

login

whatever it analyzes, so that the analysis may be repeatesamined in detail. Since the current analyzer
looks at every input and output line Miagin _input andlogin _output , it records all of the packets of ev-
ery such analyzed session. There is commented-out tlegim _success to be used ifogin _input and
login _output are not being used; it turns off recording of a session’s péslafter the user has successfully
logged in (assuming the connection is not considered hot).

_confused _text (c: connection, line: string)

Invoked for every line the user types after the event engatedmtered theonfusedstate. If the connection is
not already considered hot, then the analyzer checks foprimence of sensitive usernames in the line using
edit _and_check _line , and, if present, annotates the connectiadsll field with confused/< line>,
logs that the connection has become hot, and invekésrecord _packets to record to theérace file all
of the packets associated with the connection.

_terminal (c: connection, terminal: string)
Invoked when the client transmits a terminal type to the eerfhe mechanism by which the client transmits
the type depends on the underlying protocol (Rlogin or Tglne

The handler checks the terminal type agaihst _terminal _types and if it finds a match invokes
hot _login with a tag of'trb"

excessive _line (c: connection)

Invoked when the event engine observes a very long line sewither the client or the server. Such long
lines are seen as potential attempts by an attacker to evatbgin analyzer; or, possibly, as a Login session
carrying an unusual applicatioNote: One example we have observed occurs when a high-batidemnary
payload protocol such as Napster is sent over the TelnetagiRWell-known port in an attempt to either evade
detection or tunnel through a firewall.

This event is actually generic to any TCP connection cagn application that uses the “Network Virtual
Terminal” (NVT) abstraction, which presently comprisedn&t and FTP. But the only handler defined in the
demonstration Bro policy is for Telnet, hence we discusseiteh For this reason, the handler first invokes
is _login _conn to check whether the connection is in fact a login sessiaso,lthen if the connection is not
hot, and if the analyzer finds the server listechan _ASCII _hosts , then it presumes the long line is due to
use of a non-ASCII character set; the analyzer invaats_login _state andset _record _packets to
avoid further analysis or recording of the connection.

Otherwise, if the connection s still in the authenticatiimlog, then the handler generatdegin _confused
event with a confusion-type déxcessive _line" , and changes the connection’s statedafused

Deficiency: The event engine is currently hardwired to coeisa line of> 1024 bytes as “excessive”; clearly
this should be user-redefinable.

inconsistent _option (c: connection)

NVT options are specified by the client and server statingtvioptions they are willing to support vs. which
not, and then instructing one another which in fact they khoushould not use for the current connection. If
the event engine sees a peer violate either what the othehpsénstructed it to do, or what it itself offered in
terms of options in the past, then the engine generatexansistent _option event.

The handler for this event simply records an entry abouttiiéaveird file. Deficiency: The event handler in-
vocation does notinclude enough information to determinagthwption was inconsistently specified; in addition,
it would be convenient to integrate the handling of probléikesthis within the general “weird” framework.

140

Note: As forexcessive _line above, this event is actually a generic one applicable to Hif-based
protocol. It is handled here because the problem most oftepscup for Telnet sessions. Note: Also, the
handler does not check to see whether the connection is a $agision (as it does faxcessive _line);it
serves as the handler for any NVT session with an excessaze li

Note: Finally, note that this event can be generated if thesies contains a stream of binary data. One way
this can occur is when the session is encrypted but Bro failsd¢ognize this fact.

bad _option (c: connection)
If an NVT option is either ill-formed (e.qg., a bad length fiplet unrecognized, then the analyzer generates this
event.

The processing of this event (recording information touwreérd file) and the various notes and deficiencies
associated with it are the same as thoserfoonsistent _option above.

bad _option _termination (c: connection)
If an NVT option fails to be terminated correctly (for exaraph character is seen within the option that is
disallowed for use in the option), then the analyzer gepertiis event.

The processing of this event (recording information towregrd file) and the various notes and deficiencies
associated with it are the same as thoserfoonsistent _option above.

authentication _accepted (name: string, c: connection)
The NVT framework includes options for negotiating autheatton. When such an option is sent from client
to server and the server replies that it accepts the autlagioin, then the event engine generates this event.

The handler annotates the connectioadd! field with auth/< name>, unless that annotation is already

present.
authentication _rejected (name: string, c: connection)
The same aauthentication _accepted , except invoked when the server replies that it rejects the a
tempted authentication.
The handler annotates the connectiausll field with auth-failed/< name.
authentication _skipped (c: connection)

Invoked when the event engine sees a line in the authemticdithlog that matcheskip _authentication

The handler annotates the connecti@usd! field with “(skipped) ”to mark that authentication was skipped,
and then invokeskip _further _processing and (unless the connection is heét _record _packets
to skip any further analysis of the connection, and to stopnging its packets to thieace file.

connection _established (c: connection)
connection _established is a generic event generated for all TCP connections; hawéwelogin
analyzer defines an additional handler for it.

The handler first checks (via _login _conn) whether this is a Telnet or Rlogin connection. If so, it gees
an authentication _skipped event if the server’s address occursskip _logins _to, and also (for
Telnet) checks whether the client’s port occurat _telnet _orig _ports , invokinghot _login with the
tag"orig" ifitdoes.

For SSH connections, it likewise checks the client’s paut,ib hot _ssh _orig _ports , marking the connec-
tion as hot and logging a real-time alert if it is.

141

| Call | Meaning |

NULL A do-nothing call typically provided by all RPC services.

GETPORT| Look up the port associated with a given RPC program.

SET Add a new port mapping (or replace an existing mapping) fdRRE program,
UNSET Remove a port mapping.

DUMP Retrieve all of the RPC program mappings.

CALLIT Both look up a program and then directly call it.

Table 7.5: Types of calls to the RPC portmapper service.

partial _connection (c: connection)
As noted earlierpartial _connection is a generic event generated for all TCP connections.ldgie
analyzer also defines a handler for it, one which (if it's an&IRlogin connection) sets the connection’s state
to confusedand checks fohot _telnet _orig _ports .

activating _encryption (c: connection)
The NVT framework includes options for negotiating encigpt When such a series of options is successfully
negotiated, the event engine generates this eimie: The negotiation sequence is complex and can fail at a
number of points. The event engine does not attempt to genevants for each possible failure, but instead
only looks for the option sent after a successful negotiesequence.

The handler annotates the connecticeckll field with “(encrypted) " to mark that authentication was
encryptedNote: The event engine itself marks the connection as rieguiro further processing. This is done
by the event engine rather than the handler because the engirie cannot do its job (regardless of the policy
the handler might desire) in the face of encryption.

7.20 Theportmapper Analyzer

The portmapper analyzer monitors one particularly important form of remptocedure call (RPC) [RFC1831,
RFC1832] traffic: the portmapper service, used to map betwEC program (and version) numbers and the TCP or
UDP port on which the service runs for a particular host. Kkaneple rstatdis an RPC service that provides “remote
host status monitoring” so that a set of hosts can be infonwtezh any of them rebootsstatd has been assigned a
standard RPC program number of 100002. To find out the carneipg TCP or UDP port on a given host, a remote
host would usually first contact the portmapper RPC servineing on the host and request the port corresponding to
program 100002.

All'in all, clients can make six different types of calls taethortmapper, as summarized in Table 7.20. Attackers
often use GETPORT and DUMP to see whether a host may be ruaniRdPC service vulnerable to a known exploit.

The analyzer uses a capture filter poft 111 ” (§ 7.1.2, page 93), equivalent teccp port 111 or udp
port 111 ” (since the portmapper service ordinarily accepts callagusither TCP or UDP, both on port 111). It
checks the different types of portmapper calls againstjgaliexpressed using a number of different variables.

Note: Animportant point not to overlook is that an attackeednothave to first call the portmapper service in
order to call an RPC program. They might instead happen tonkti® port on which the service ruaspriori, since
for example it may generally run on the same port for a patticeperating system; or they might scan the host's

142

different TCP or UDP ports directly looking for a reply frornd service. Thus, while portmapper monitoring proves
very useful in detecting attacks, it dasst provide comprehensive monitoring of attempts to exploiCRErvices.

7.20.1 portmapper variables

The standard script provides the following redefinablealzgs:

rpc _programs : table[count] of string
Maps RPC program numbers to a string used to name the sefeicexample, thgL00002] entry is mapped
to "rstatd”

Default: a large list of RPC services.

NFSservices : set of string
Lists the names of those RPC services that correspond toddefile System (NFS) [RFC1094, RFC1813]
services. This variable is provided because it is convérieerxpress policies specific to accessing NFS file
systems.

Default: the servicemountd nfs, pcnfsd nlockmgr rquotad status
Deficiency: Bro’s notion of NFS is currently confined to jusbWwledge of the existence of these services. It
does not analyze the particulars of different NFS operation

RPCokay : set[addr, addr, string]
Indexed by the host providing a given service and then by tis¢ &ccessing the service. If an entry is present,
it means that the given access is allowed. For example, ay @fint

[1.2.3.4, 5.6.7.8, "rstatd"]

means that ho$.6.7.8 is allowed to access thetatd service on host.2.3.4
Default: empty.

RPCokay _nets : set[net]
A set of networks allowed to make GETPORT requests withoatpaint. The notion behind providing this
variable is that the listed networks are trusted. HowevVer ttust doesn’t extend beyond GETPORT to other
portmapper requests, because GETPORT is the only portmapeeation used routinely by a set of hosts
trusted by another set of hosts (but that don’t belong to &mesgroup, and hence are not issuing SET and
UNSET calls).

Default: empty.
RPCokay _services : set[string]
A set of services for which GETPORT requests should not gea@omplaints. These might be services that

are widely invoked and believed exploit-free, suclvadid, though care should be taken with blithely assuming
that a given service is indeed exploit-free.

Note that, like foRPCokay _nets , the trust does not extend beyond GETPORT, because it sheuld only
portmapper operation routinely invoked.

Default: empty.

143

NFSworld _servers : set[addr]
A set of hosts that provide public access to an NFS file sysaamhthus should not have any of their NFS traffic
flagged as possibly sensitive. (The presumption here issthet public servers have been carefully secured
against any remote NFS operations.) An example of such amseright be one providing read-only access to a
public database.

Default: empty.

RPCdump_okay : set[addr, addr]

Indexed first by the host requesting a portmapper dump, asahdeby the host from which it's requesting the
dump. If an entry is present, then the dump operation is nggéél.

Default: empty.

any RPCokay : set[addr, string]
Pairs of hosts and services for which any GETPORT accesg tgiten service is allowed.

sun-rpc.mcast.net Default:

[NFS_world_servers, NFS_services],
[sun-rpc.mcast.net, "ypserv"]

The first of these allows access to any NFS service of any oN#F&world _servers , using Bro’s cross-
product initialization feature§(3.12.2, page 35). The second alloysservrequests to the multicast address
reserved for RPC multicasts.

suppress _pmlog : table[addr, string] of bool
Do not generate real-time alerts for access by the givereaddor the given service. Note that unlike most Bro
policy variables, this one is n@bnst but is modified at run-time to add to it any host that invokesvtalld
RPC service, so that such access is only reported once fohest.

Default: empty, but dynamic as discussed above.

7.20.2 portmapper functions

The standard script provides the following externally asdge functions:

rpc _prog (p: count): string
Returns the name of the RPC program with the given numbdfs ipiesent inrpc _programs ; otherwise
returns the textunknown-< p>".

pm.check _getport (r: connection, prog: string): bool
Checks a GETPORT request for the given program against ey pxpressed bjRPCokay _services ,
any RPCokay , RPCokay , andRPCokay _nets , returning true if the request violates policy, false i§it’
allowed.

2| don’t know how much this type of access is actually used acfice, but experience shows that requestyfpservdirected to that address
pop up not infrequently.

144

pm.activity (r: connection, log _it: bool)
A bookkeeping function invoked when there’s been portmapptvity on the given connection.

The function records the connection viecord _connection , unless itis a TCP connection (which will
instead be recorded lmonnection _finished). If log _it is true then the function generates a real-time
alert of the form:

rpc: <connection-i¢s <RPC-service <r$addb

For example:

972616255.679799 rpc: 65.174.102.21/832 > 182.7.9.47/po rtmapper
pm_getport: nfs -> 2049/udp

However, it does not generate the alert if either the clierst land service are presentsappress _pmlog ,
or if it already generated an alert in the past for the sanemtlserver and service (to prevent alert cascades).

pm.request (r: connection, proc: string, addl: string, log _it: bool)
Invoked when the given connection has made a portmappeeseqtisome sort for the given RPC procedure
proc . addl gives an annotation to add to the connecticasll field. If log _it is true, then connection
should be logged; it will also be logged if the function detares that it is hot.

The function first invokesheck _scan andcheck _hot (with a mode ofCONNESTABLISHED), unlessr

is a TCP connection, in which case these checks have alrestyrhade bgonnection _established

The function then addaddl to the connection’siddl field, though if the field’s length already exceeds 80
bytes, then it just tacks oh.." (unless already present). This last is necessary becaossilBBsometimes
see zillions of successive portmapper requests that ahgssame connection ID, and these will each add to
addl until it becomes unwieldy in siz&eficiency: Clearly, the byte limit of 80 should be adjustabl

Finally, the function invokesheck _hot with a mode ofCONNFINISHED , andpm.activity to finish up
bookkeeping for the connection.

No return value.

pmattempt (r: connection, proc: string, status: count, addl: string, log _it:
bool)
Invoked when the given connection attempted to make a ppperaequest of some sort, but the request failed
or went unanswered. The arguments are the same gesrfoequest , with the addition ofstatus , which
gives the RPC status code corresponding to why the attenigd {see below).

The function first invokesheck _scan andcheck _hot (with a mode of CONNATTEMPTER unless is a
TCP connection, in which case these checks have alreadynb&@® byconnection _attempt

The function then addaddl to the connection’addl field, along with a text description of the RPC status
code, as given in Table 7.20.2.

No return value.

145

Status description | Meaning |

"ok" The call succeeded.

"prog unavail" The call was for an RPC program that has not registered wtlpdntmapper.

"mismatch” The call was for a version of the RPC program that has nottergid with the portmappet.
"garbage args" The parameters in the call did not decode correctly.

"system err" A system error (such as out-of-memory) occurred when peicgshe call.

"timeout" No reply was received within 24 seconds of the request.

"auth error" The caller failed to authenticate to the server, or was ntitaized to make the call.
"unknown" An unknown error occurred.

Table 7.6: Types of RPC status codes.

7.20.3 portmapper event handlers

The standard script handles the following events:

pmrequest _null (r: connection)
Invoked upon a successful portmapper request for the “putitedure. The script invokg@snrequest with
log _it=F .

pmrequest _set (r: connection, m: pm _mapping, success: bool)
Invoked upon a nominally successful portmapper requestttthe portmapper binding The script invokes
pmrequest with log _it=T .success is true if the server honored the request, false otherwigestript
turns this into an annotation 66k" or “failed"

Thepmmapping type (form) has three fieldgrogram: count ,version: count andp: port ,the
port for the mapping of the given program and versm.mapping

pmrequest _unset (r: connection, m: pm _mapping, success: bool)
Invoked upon a nominally successful portmapper requedrtove a portmapper binding. The script invokes
pmrequest with log _it=T .success is true if the server honored the request, false otherwigestript
turns this into an annotation 66k" or "failed"

pmrequest _getport (r: connection, pr: pm _port _request, p: port)
Invoked upon a successful portmapper request to look up dmppper binding.pr, of type
pmport _request , has three fieldgorogram: count , version: count , andis _tcp: bool , this

last indicating whether the caller is request the TCP or UDW®, jf the given program/version has mappings for
both. The script invokesmrequest with log _it setaccording to the return valuepficheck _getport
and an annotation of the mapping.

pmrequest _dump (r: connection, m: pm _mappings)

Invoked upon a successful portmapper request to dump thengpper bindings. The script invokes
pmrequest with log _it=T unlessRPCdump_okay indicates that the dump call is allowed. The script
ignoresm which gives the mappings agable[count] of pm _mapping , where the table index simply
reflects the order in which the mappings were returnedjmstartith an index of 1Deficiency: What the script
shoulddo, instead, is keep track of the mappings so that Bro cartifgie¢he service associated with connections
for otherwise unknown ports.

146

pmrequest _callit (r: connection, pm _callit _request, p: port)

Invoked upon a successful portmapper request to look up afidan RPC procedure. The script
invokes pmrequest with log _.it=T unless the combination of the caller and the program are
in suppress _pmlog . Finally, if the program called iswalld, then the script adds the caller to
suppress _pmlog .

Thepmcallit _request type has four fieldspmcallit _request program: count , version:

count , proc: count , andarg _size: count . These reflect the procedure being looked up and called,
and the size of the arguments being passed to it, respgcidediciency: Currently, the event engine does not
do any analysis or refinement of the arguments passed to thoegure (such as making them available to the
event handler) or the return valup.is the port value returned by the call.

pmattempt _null (r; connection, status: count)
Invoked upon a failed portmapper request for the “null” paare.status gives the reason for the failure.
The script invokepmattempt with log _it=T .

pmattempt _set (r: connection, status: count, m: pm _mapping)
Invoked upon a failed portmapper request to set the porteragipdingm The script invokepm.attempt
with log _it=T .

pmattempt _unset (r: connection, status: count, m: pm _mapping)
Invoked upon a failed portmapper request to remove a porerdginding. The script invokgazm attempt
with log _it=T .

pmattempt _getport (r: connection, status: count, pr: pm _port _request)
Invoked upon a failed portmapper request to look up a porgeabindingpr , of typepmport _request ,
has three fieldgorogram: count , version: count ,andis _tcp: bool , this lastindicating whether

the caller requested the TCP or UDP port. The script invgkasittempt with log _it set according to the
return value opmcheck _getport

pmattempt _dump (r: connection, status: count)
Invoked upon a failed portmapper request to dump the poperapindings. The script invokgsn attempt
with log _it=T unlessRPCdump_okay indicates that the dump call is allowed.

pmattempt _callit (r: connection, status: count, pm _callit _request)

Invoked upon a failed portmapper request to look up and callRPC procedure. The script in-
vokes pmattempt with log _it=T unless the combination of the caller and the program are
in suppress _pmlog . Finally, if the program called iswalld, then the script adds the caller to
suppress _pmlog .

pmbad _port (r: connection, bad _p: count)
Invoked when a portmapper request or response includesvalidiport number. Since ports are represented
by unsigned 4-byte integers, they can stray outside thevatlaange of 0-65535 by being65536. The script
invokesconn _weird _addl with aweird tagof "bad _pm.port"

147

| Field | Meaning |
num_pkts The number of packets sent by the endpoint, as seen by theéandrtie endpoint may
have sent others that the network dropped upstream from dinéon
numrxmit The number of packets retransmitted by the endpoint, astsetire monitor.
numrxmit _bytes | The number of bytes retransmitted by the endpoint.
numin _order The number of packets sent by the endpoint that arrived anthator in order, where “in

order” means in the same order as sent by the endpoint, réein sequence number.
(Thus, a retransmission can arrive in order, by this defini}iBro determines if the packe
arrived in order by applying heuristics to the IP identifioat(ID) field, which in general
will increase by a small amount between successive paciagtsmitted by an endpoint.

—

num.O0 The number of packets sent by the endpoint that arrived ahthetor out of order. See the
previous entry for the definition of “in order”, and hence tad order.”
num.repl The number of extra copies of packets sent by the endpoinathaed at the monitor. Brd

considers a packet replicated if its IP ID field is the samepaghie previous packet it sa
from the endpoint. Using this definition, a replication isshiikely caused by a networ
mechanism such as duplication of a packet by a router, réthara transport mechanis
such as retransmission, though some TCPs fully reuse gasken retransmitting them,
including their IP ID field.

endian _type Whether the advance of the IP ID field as seen by the monitoroeasistent with big-
endian (network order) addition, little-endian, or undetimed. The three values are repie-
sented by the Bro constarENDIANBIG, ENDIANLITTLE , andENDIAN.UNKNOWN
In addition, the value can EENDIAN.CONFUSEDmeaning that the monitor saw confligt
ing evidence for little- and big-endian.

3~ <

Table 7.7:endpoint _stats fields for summarizing connection endpoint statisticspftypecount .

7.21 Theanaly Analyzer

The analy analyzer provides a limited mechanism to use Bro to do staisanalysis on TCP connections. Its
primary purpose is to demonstrate that Bro has applicatmngtwork traffic analysis beyond intrusion detection. It
defines one event handler:

conn _stats (c: connection, os: endpoint _stats, rs: endpoint _stats)
Invoked for each connection when it terminates (for whateeason)os andrs are the statistics for the
originator endpoint and the responder endpoint, respadgtifable 7.21 gives the different record fields.

7.22 Thesignature Module

Thesignature module analyzesignature matcheésee§ 8, page 165). For each signature, you can specify one
of the actions defined in Table 7.22. In addition, the moddémntifies two types oéxploit scanshorizontal(a host
triggers a signature for multiple destinations) aedtical (a host triggers multiple signature for the same destintio

The module handles one event:

signature _match (state: signature _State, msg: string, data: string)

148

| Action | Meaning

SIG_IGNORE| Ignore the signature completely.

SIG_QUIET | Process for scan detection but don’t report individually.
SIG _FILE Write matches t@ignatures-log

SIG_LOG Log matches and write them signatures-log

Table 7.8: Possible actions to take for signatures matchesgnatures-log defaults to
open _log _file("signatures")

Invoked upon a match of a signature which containsnt action ¢ 8.2.2, page 168).
It provides the following redefinable variables:
sig _actions : table[string] of count
Maps signature IDs to actions as defined in Table 7.22.
Default: SIG _FILE .
horiz _scan _thresholds : set[count]
Generate a log message whenever a remote host triggerssausigfor the given number of hosts.
Default:{ 5, 10, 50, 100, 500, 1000 }
vert _scan _thresholds : set[count]
Generate alog message whenever a remote host triggerséimengimber of signatures for the same destination.
Default:{ 5, 10, 50, 100, 500, 1000 }

The module defines one function for external use:

has _signature _matched id: string, orig: addr, resp: addr): bool
Returns true if the given signature has already matchedhéofdriginator,responder) pair.

7.23 TheSSL Analyzer

The SSL analyzer processes traffic associated with the SSL (SeaaleSLayer) protocol versions 2.0 [SSLv2], 3.0
[SSLv30] and 3.1 [TLSv1]. SSL version 3.1 is also known as TLf&nsport Layer Security) version 1.0 since from
that version onward the IETF has taken responsibility fottfer developement of SSL.

Bro instantiates arSSL analyzer for any connection with service po#43/tcp (https), 563/tcp

(nntps), 585/tcp (imap4-ssl), 614/tcp (sshell), 636/tcp (Idaps), 989/tcp
(ftps-data), 990/tcp (ftps), 992/tcp (telnets), 993/tcp (imaps), 994/tcp
(ircs), 995/tcp (pop3s) , providing you have loaded th8SL analyzer, or defined a handler for one

of the SSL events.

By default, the analyzer uses the above set of ports as aredjiter (§ 7.1.2, page 93). It currently checks the SSL
handshake process for consistency, tries to verify sedificaties, generates several events, does connectiomipggi
tries to detect security weaknesses, and produces singilstiss. It is also able to store seen certificates on disk.
However, it does no decryption, so analysis is limited t@arctext SSL records. This means that analysis stops in the

149

type x509: record {
issuer: string; # issuer name of the certificate
subject: string; # subject name of the certificate

Figure 7.9: Definition of th&509 record.

type ssl_connection_info: record {

id: count; # the log identifier number
connection_id: conn_id; # IP connection information
version: count; # version associated with connection

client_cert: x509;

server_cert: x509;

id_index: string; # index for associated sessionID

handshake_cipher: count; # cipher suite client and server a greed upon

Figure 7.10: Definition of thesl _connection _info record.

middle of the handshaking phase for SSLv2 and at the end of 88Lv3.0/SSLv3.1 (TLS). For this reason we have
not implemented the SSL session caching mechanism (yet).

The analyzer consists of the four filessl.bro , ssl-ciphers.bro , ssl-errors.bro , and
ssl-alerts.bro , Which are accessed b@load ssl . The analyzer writes to theveird andssl log files.
The first receives all non-conformant and “weird” activitghile the latter tracks the SSL handshaking phase.

7.23.1 Thex509 record

This record is a very simplified structure for storing X.50%09] certificate information. It currently supports only
the issuer and subject names.

7.23.2 Thessl _connection _info record

The main data structure managed by 8&._analyzer is a collection afsl _connection _info records, where the
record type is shown in Figure 7.23.2. The correspondinddiateFix me: the description here is out of date

id
The unique connection identifier assigned to this connect@nnections are numbered startinglaand
incrementing with each new connection.

connection _id
The TCP connection which this SSL connection is based on.

version
The SSL version number for this connection. Possible vadmeSSLv20, for SSL version 2.0SSLv30 for
version 3.0, an&SLv31 for version 3.1.

150

client _cert
The information from the client certificate, if available.

server _cert
The information from the server certificate, if available.

id _index
Index into associate8SL_sessionID _record table.

handshake _cipher
The cipher suite client and server agreed updote: For SSLv2 cached sessions, this is a placeholder
(OXABCD.

7.23.3 SSLvariables

The standard script defines the following redefinable vig&@b

ssl _compare _cipherspecs : bool
If true, remember the client and server cipher specs andieiddditional tests. This costs an extra amount of
memory (normally only for a short time) but enables detectbnon-intersecting cipher sets, for example.

Default:T.

ssl _analyze _certificates : bool
If true, analyze certificates seen in SSL connections, winicludes the following steps:

e Generating a hash of the certificate and checking if we ajresadv it earlier from the current host. If
so, we won't verify it, because we already did and verifyisg@icomputational expensive process. If the
certificate has changed for the current host, generate d eeént.

o Verify the certificate.
e Store of the certificate on disk in DER format.
Default:T.
ssl _store _certificates : bool
If certificates are analyzed, this variable determines #iuld be stored on disk.
Default: T.
ssl _store _cert _path : string
Path where certificates are stored. If empty, use the cudierttory.Note: The path must not end with a slash!
Default:"../certs"
ssl _verify _certificates : bool
If certificates are analyzed, wheter to verify them.
Default:T.
x509 _trusted _cert _path : string
Path where OpenSSL looks for trusted certificates. If emysty,the default OpenSSL path.
Default:"" .

151

1046778101.534846 #1 192.168.0.98/32988 > 213.61.126.12 4/https start
1046778101.534846 #1 connection attempt version: 3.1

1046778101.534846 #1 cipher suites: SSLv3x_RSA_WITH_RC4 _128 MD5 (0x4), SSLv3x_RSA FIPS WITH_3C
1046778101.753356 #1 server reply, version: 3.1

1046778101.753356 #1 cipher suite: SSLv3x_RSA_WITH_RC4_ 128 _MD5 (0x4),

1046778101.762601 #1 X.509 server issuer: /C=DE/ST=Hambu rg/L=Hamburg/O=TC TrustCenter for Security
1046778101.762601 #1 X.509 server subject: /C=DE/ST=Berl in/O=Lehmanns Fachbuchhandlung GmbH/OU:
1046778101.894567 #1 handshake finished, version 3.1, cip her suite: SSLv3x_RSA WITH _RC4 128 MD

1046778104.877207 #1 finish

Used cipher-suites statistics:
SSLv3x_RSA WITH_RC4_128 MD5 (0x4): 1

Figure 7.11: Example of SSL log file with a single SSL session.

ssl _maxcipherspec _size : count
Maximum size in bytes for an SSL cipherspec. If we see attechpse of larger cipherspecs, warn and skip
comparing it.

Default:45.

ssl _store _key material : bool
If true, stores key material exchanged in the handshakiagg@Note: This is mainly for decryption purposes
and currently useless.

Default: T.

In addition,ssl _log holds the name of the SSL log file to which Bro writes SSL cotinacsummaries. It
defaults toopen _log _file("ssl")

Figure 7.23.3 shows an example of how entries in the SSL ledddk like. We see a transcript of the first SSL
connection seen since Bro started running. The first linegits start and the participating hosts and ports. Next, we
see a client trying to attempt a SSL (Version 3.1) connediodh the cipher suites offered. The server replies with a
SSL 3.1SERVER-REPLYand the desired cipher suifdote: In SSL v3.0/v3.1 this determines which cipher suille wi
be used for the connectioRollowing this is the certificate the server sends, inelgdhe issuer and subject. Finally,
we see that the handshaking phase for this SSL connectianishdd now, and that client and server agreed on the
cipher suiteRSAWITH.RC4.128 _MD5 Due to encryption, the SSL analyzer skips all further data.only see the
end of the connection. When Bro finishes, we get some statiatiout the cipher suites used in all monitored SSL
connections.

7.23.4 SSLevent handlers

The standard script handles the following events:

ssl _conn _attempt (c: connection, version: count, cipherSuites:
cipher _suites _list)

152

ss|

ssl

ssl

ssl

ss|

ss|

Invoked upon the client side of connectienwhen the analyzer seesGLIENT-HELLO of SSL version
version including the cipher suites the client offaipherSuites

The version can b&x0002 , 0x0300 or 0x0301 . A new entry is generated inside the SSL connection table
and the cipher suites are listed. Ciphers, that are knownea& according to a corresponding table of weak
ciphers) are logged inside tineak.log file. This also happens to cipher suites that we do not knowNeate:

See the filessl-ciphers.bro for a list of known cipher suites.

_conn _server _reply (c: connection, version: count, cipherSuites:
cipher _suites _list)

This event is invoked upon the analyzer receivinBBERVER-HELLOof the SSL server. It contains the SSL
version the server wishes to uséate: This finally determines, which SSL version will be dsether) and the
cipher suite he offers. If it is SSL version 3.0 or 3.1, theveerdetermines within thiSERVER-HELLChe
cipher suite for the following connection (so it will only lm®e). But if it's a SSL version 2.0 connection, the
server only announces the cipher suites he supports angits the client to decide which one to use.

Again, the cipher suites are listed and weak and unknowrecighites are reported insideak.log

_certificate _seen (c: connection, isServer: int)

Invoked whenever we see a certificate from client or servebéfore verification of the certificate takes place.
This may be useful, if you want to do something before cediéoerification (e.g. do not verify certificates of
some given servers).

_certificate (c: connection, cert: x509, isServer: bool)

Invoked after the certificate from server or clieisServer) has been verifiedNote: We only verify certificates
once. If we see them again, we only check if they have chamged! holds the issuer and subject of the
certificate, which gets stored inside this SSL connectigritrmation record inside the SSL connection table
and are written t@sl.log

_conn _reused (c: connection, session _id: string)
Invoked whenever a former SSL session is reusedsion _id holds the session ID as string of the reused
session and is written tssl.log . Currently we don’t do session tracking, because SSL ver3i0 doesn't
send the session ID in clear text when it's generated.

_conn _established (c: connection, version: count, cipher _suite: count)
Invoked when the handshaking phase of an SSL connectionisbdi. We see the used SSL version and the
cipher suite that will be used for cryptography (writterssb.log) if we have SSL version 3.0 or 3.1. In case
of SSL version 2.0 we can only determine the used cipher Buiteew sessions, not for reused oné¢ote: In
SSL version 3.0 and 3.1 the cipher suite to be used is alreadyreced in th6&ERVER-HELLQ

_conn _alert (c: connection, version: count, level: count, descri ption:

count)

153

Invoked when the analyzer receives an SSL alert. Tehwel of the alert (warning or fatal) and the
description are written intessl.log . (Note: Seessl-alerts.bro).

ssl _conn _weak (name: string, c: connection)

This event is called when the analyzer sees:

e weak ciphers (Seesl _conn _attempt ,ssl _server _reply ,ssl _conn _established),
e unknown ciphers (Sessl _conn _attempt ,ssl _server _reply ,ssl _conn _established)
e or certificate verification failed.

Seeweak.bro

7.24 Theweird Module

Theweird module processes unusual or exceptional events. A numbleesd “shouldn’t” or even “can’t” happen,
yet they do. The general design philosophy of Bro is to checlstich events whenever possible, because they can
reflect incorrect assumptions (either Bro's or the used#fempts by attackers to confuse the monitor and evade
detection, broken hardware, misconfigured networks, arhso

Weird events are divided into three categories, namelyetipestaining to: connections; flows (a pair of hosts,
but for which a specific connection cannot be identified); astivork behavior (cannot be associated with a pair
of hosts). These categories have a total of four event hemdlenn _weird , conn _weird _addl , flow _weird ,
andnet _weird , and in the corresponding sections below we catalog theteVemdled by each. In addition, we
separately catalog the events generated by the standigots scemselves;(7.24.8, page 163). Finally, two more weird
events have their own handlers, in order to associate ddtaformation with the eventexmit _inconsistency
andack _above _hole .

weird _file is the logging file that the module uses to record exceptiomants. It defaults to
open _log _file("weird")

Note: While these events “shouldn’t” happen, in reality yhaften do. For example, of the 73 listed below, a
search of 10 months’ worth of logs at LBNL shows that 42 weze sperationally. While some of the instances reflect
attacks, the great majority are simply due(ip buggy implementationgii) diverse use of the network, ¢iii) Bro
bugs or limitations. Accordingly, you may initially be imed to log each instance, but don’t be surprised to find that
you soon decide to only record many of them inwheérd file, or not record them at all. (For further discussion, see
the section on “crud” in [Pa99].)

7.24.1 Actions for “weird” events

The general approach taken by the module is to categorizeafdnt event the action to take when the event engine
generates the event. Table 7.24.1 summarizes the diffposstble actions.

7.24.2 weird variables

The standardveird script provides the following redefinable variables:

154

Action | Meaning

WEIRDUNSPECIFIED | No action specified.

WEIRDRIGNORE Ignore the event.

WEIRDFILE Record the event taweird _file , if it has not been seen for these hosts before. (But
weird _do_not _ignore _repeats .)

see

WEIRDLOGALWAYS | Recordthe eventtoeird _file and generate areal-time alert each time the event oc

Curs.

WEIRDLOGONCE Record the eventtaveird _file ; generate a real-time alert the first time the event occ

urs.

WEIRDLOGPERCONN| Record the event tweird _file ; generate a real-time alert the first time it occurs fqg
given connection.

WEIRDLOGPERORIG | Record the event twweird _file ; generate a real-time alert the first time it occurs fqg
given originating host.

ra

ra

Table 7.9: Different types of possible actions to take foelid” events.

weird _action : table[string] of count

Maps different weird events to actions as given in Table 1.24

Default: as specified irconn _weird , conn _weird _addl , flow _weird , net _weird , and § 7.24.8,
page 163. As usual, you can change particular values udingmngent. For example:

redef weird_action: table[string] of count += {
[["bad_TCP_checksum", "bad_UDP_checksum"]] = WEIRD_IGN ORE,
['fragment_overlap”] = WEIRD_LOG_PER_CONN,

3

would specify to ignore TCP and UDP checksum errors (ratheen the default oWEIRDFILE), and to alert
on fragment overlaps once per connection in which they gcatlrer than the default 8 EIRDLOGALWAYS

weird _action filters : table[string] of function(c: connection): count
Indexed by the name of a weird event, yields a function thagwtalled for a given connection exhibiting
the event, returns an action from Table 7.24.1. A returne/alfWEIRDUNSPECIFIED means “no special
action, use the action you normally would.” This variabledfallows arbitrary customization of the handling of

particular events.

Default: empty, for thaveird analyzer itself. Th@ortmapper analyzer redefines this variable as follows:

redef weird_action_filters += {
[["bad_RPC", "excess_RPC", "multiple_RPCs", "partial R PC"] =
RPC_weird_action_filter,

h

whereRPCweird _action filter
originating host is irRPCokay _nets

weird _ignore _host : set[addr, string]

is a function internal to the analyzer that retukl&€IRDFILE if the

, andWEIRDUNSPECIFIED otherwise.

Specifies that the analyzer should ignore the given weirdtgvemed by the second index) if it involves the
given address (as either originator or responder host).

155

Default: empty.

weird _do_not _ignore _repeats : sef[string]
Gives a set of weird events that, if their actionEIRDFILE , should still be recorded to theeird _file
each time they occur.

Default: the events relating to checksum errors, i‘bad _IP _.checksum" , "bad _-TCP.checksum" ,
"bad _UDPchecksum" , and"bad _ICMP_checksum" . These are recorded multiple times because it can
prove handy to be able to track clusters of checksum errors.

7.24.3 weird functions

Theweird analyzer includes the following functions:

report _weird (t: time, name: string, id: string, action: count, no _log: bool)
Processes an occurrence of the weird eveamhe associated with the connection described by the sidng
(which may be empty if no connection is associated with trengvaction is the action associated with the
event. Forreport _weird , the only distinctions made between the different actiopst@atWEIRDIGNORE
causes the function to do nothing; anyWEIRDLOGXXXcause the function to log a message, untesdog
is true; andNVEIRDUNSPECIFIED causes the function to look up the actionweird _action . If the func-
tion doesotfind an action for the event, then it uSa48£IRDLOGALWAY &nd prepends the log message with
a pair of asterisks (* ") to flag that this event does not have a specified action.

ForWEIRDFILE , report _weird only records the event once to the file, unless the given eésgmésent in
weird _do_not _ignore _repeats .Events with loggable actions are always recordegaad _file

report _weird _conn (t: time, name: string, id: string, c: connection)
Processes an occurrence of the weird emamie associated with the connectionwhich is described by the
stringid .

If report _weird _conn finds one of the hosts and the given event nameeird _ignore _host , then it
does nothing. Then, if the eventiswreird _action ,thenitlooksupthe eventimeird _action filters

and invokes the corresponding function if present, otheewaking the action fromveird _action . Itthenim-
plements the various flavors WEIRDLOGXXX by not logging events more than once per connection, origina
tor host, etc., though the events are still writtemvird _file . Finally, the function invokeseport _weird

to do the actual recording and/or writingweird _file

report _weird _orig (t: time, name: string, id: string, orig: addr)
Processes an occurrence of the weird evenhe associated with the source addressy . id textually
describes the flow frorarig to the destination, for example usiegdpoint _id .

The function looks up the event namevireird _action and passes it along teport _weird .

7.24.4 Events handled byonn _weird

conn _weird (name: string, c: connection)
Invoked for most “weird” eventsiame is the name of the weird event, ands the connection with which it's
associated.

conn _weird handles the following events, all of which have a defauliceccof WEIRDFILE :

156

active _connection _reuse
A new connection attempt (initial SYN) was seen for an alyeastablished connection that has not yet termi-
nated.

bad HTTPreply
The first line of a reply from an HTTP server did not includ€TP/version

bad _HTTP.version
The first line of a request from an HTTP client did not includiETP/version

bad _ICMP_checksum
The checksum field in an ICMP packet was invalid.

bad _rlogin _prolog
The beginning of an Rlogin connection had a syntacticalrerro

bad _RPC
A Remote Procedure Call was ill-formed.

bad _RPCprogram
A portmapper RPC call did not include the correct portmajpegram number.

bad _SYNack
A TCP SYN acknowledgment (SYN-ack) did not acknowledge #gugnce number sent in the initial SYN.

bad _-TCP.checksum
A TCP packet had a bad checksum.

bad _UDRchecksum
A UDP packet had a bad checksum.

baroque _SYN
A TCP SYN was seen with an unlikely combination of other flabs (URGent pointer).

blank _in _HTTP.request
The URL in an HTTP request includes an embedded blank.

connection _originator _SYNack
A TCP endpoint that originated a connection by sending a SMwWed this up by sending a SYN-ack.

data _after _reset
After a TCP endpoint sent a RST to terminate a connectioenit Some data.

data _before _established
Before the connection was fully established, a TCP endpeint some data.

excessive _RPClen
An RPC record sent over a TCP connection exceeded 8 KB.

excess _RPC
The sender of an RPC request or reply included leftover dayard what the RPC parameters or result value
themselves consumed.

157

FIN _advanced _last _seq
A TCP endpoint retransmitted a FIN with a higher sequencebaurthan previously.

FIN _after _reset
A TCP endpoint sent a FIN after sending a RST.

FIN _storm
The monitor saw a flurry of FIN packets all sent on the same ection. A “flurry” is defined as 1,000 packets
that arrived with less than 1 sec between successive B)Sfciency: Clearly, this numbers should be user-
controllable.

HTTP.unknown _-method
The method in an HTTP request was not GET, POST or HEAD.

HTTP.version _mismatch
A persistent HTTP connection sent a different version nurfitvea subsequent item than it did initially.

inappropriate _FIN
A TCP endpoint sent a FIN before the connection was fullytdisiaed.

multiple _HTTPrequest _elements
An HTTP request included multiple methods.

multiple _RPCs
A TCP RPC stream included more than one remote procedure call

NULin _line
A NUL (ASCII 0) was seen in a text stream that is expected tadée 6f NULs. Currently, the only such stream
is that associated with an FTP control connection.

originator _RPCreply
The originator (and hence presumed client) of an RPC coiumestnt an RPC reply (either instead of a request,
or in addition to a request).

partial _finger _request
When a Finger connection terminated, it included a final fi/inanalyzed text because the text was not
newline-terminated.

partial _ftp _request
When an FTP connection terminated, it included a final lingnanalyzed text because the text was not newline-
terminated.

partial _ident _request
When an IDENT connection terminated, it included a final lofeunanalyzed text because the text was not
newline-terminated.

partial _portmapper _request
A portmapper connection terminated with an unanalyzedesthecause the data stream was incomplete.

partial _RPC
An RPC was missing some required header information dueitcétion.

158

pending _data _when_closed
A TCP connection closed even though not all of the data in & aralyzed due to a sequence hole.

possible _split _routing
Bro appears to be seeing only one direction of some bi-dineatconnections;(10.9, page 177). This can also
occur due to certain forms of stealth-scanning.

premature _connection _reuse
A TCP connection tuple is being reused less than 30 sec #dtpravious use. (The standard requires waiting
2 - MSL = 4 minutes [RFC793, p. 27].)

repeated _SYNreply _wo_ack
A TCP responder that replied to an initial SYN with a SYN-adstsubsequently sent a SYiNthout an
acknowledgment.

repeated _SYNwith _ack
A TCP originator that sent an initial SYN has subsequentht aeSYN-ack.

responder _RPCcall
The responder (and hence presumed server) of an RPC cammgetit an RPC request (either instead of a reply,
or in addition to a reply).

rlogin _text _after _rejected
An Rlogin client sent additional text to an Rlogin serveeathe server already presumably rejected the client’s
service request.

RPCrexmit _inconsistency
An RPC call was retransmitted, and the retransmitted cH#réid from the original call. This could reflect an
attempt by an attacker to evade the monimte: This type of inconsistency checking is not availatm&iPC
replies because the transmission of the reply in generaksidre end of the RPC connection, and the monitor
deletes the connection state shortly afterward.

RST.storm
The monitor saw a flurry of RST packets all sent on the sameamdiion. Sed-IN _storm for the definition of
“flurry.”

RSTwith _data
A TCP RST packet included data. This actually is allowed leygpecification [RFC1122, 4.2.2.1PJeficiency:
This event should include the data.

simultaneous _open
The monitor saw a TCP simultaneous open, i.e., both endpsent initial SYNs to one another at the same
time. While the specification allows this [RFC793, p. 30lna®f the protocols analyzed by Bro should be using
it.

spontaneous _FIN
A TCP endpoint sent a FIN packet without sending any previaekets. This event can reflect stealth-scanning,
but can also occur when Bro has recently started up and haeeatother traffic on a connection and hence
does not know that the connection already exists.

159

spontaneous _RST
A TCP endpoint sent a RST packet without sending any preypagkets. As wittspontaneous _FIN, this
event can reflect either stealth scanning or a Bro startansitent.

SYNafter _close
A TCP endpoint sent a SYN (connection initiation) after saga FIN (connection termination), but before the
connection fully closed.

SYNafter _partial
A TCP endpoint in a “partial” connectior§ (L0.12, page 177) sent a SYN.

SYNafter _reset
A TCP endpoint sent a SYN after sending a RST (reset conmgctio

SYNinside _connection
A TCP endpoint sent a SYN during a connection (or partial eztion) on which it had already sent data.

SYNseq _jump
A TCP endpoint retransmitted a SYN or a SYN-ack, but with fedént sequence number.

SYNwith _data
A TCP endpointincluded data in a SYN packet it sent. Note, ¢ain legitimately occur for T/TCP connections
[RFC1644].

TCP.christmas
A TCP endpointsent a SYN packet that included the RST flagfaemsical combination). The term “Christmas
packet” has been used in this context (particularly if oftegs are set, too) because the packet'’s flags are “lit
up like a Christmas tree.”

UDPRdatagram _length _mismatch
The length field in a UDP header did not match the length fielthénlP header. This could reflect an attempt
by an attacker to evade the monitor.

unpaired _RPCresponse
An RPC reply was seen for which no request was seen. This evaftt reflect a Bro start-up transient (it started
running after the request was sent).

unsolicited _SYNresponse
A TCP endpoint sent a SYN-ack without first receiving an ali®YN. This event could reflect a Bro start-up
transient.

7.24.5 Events handled byonn _weird _addl

conn weird _addl (name: string, c: connection, addl: string)
Invoked for a few “weird” events that require an extra (g§)iargument to help clarify the evemeficiency:
It would likely be very handy if the general “weird” event hldiimg was more flexible, with the ability to have
various parameters associated with the events. Doing ddikgly have to wait on general Bro mechanism for
dealing with default parameters and/or polymorphic fuoot and event handlers.

conn _weird _addl handles the following events, all of which have a defaulivecof WEIRDFILE :

160

bad _ident _reply
A reply from an IDENT server was syntactically invalid.

bad _ident _request
A request to an IDENT server was syntactically invalid.

ident _request _addendum
An IDENT request included additional text beyond that fargihe request itself.

7.24.6 Events handled bylow _weird

flow _weird (name: string, src: addr, dst: addr)
is invoked for “weird” events that cannot be associated \itbarticular connection, but only with a pair of
hosts, corresponding to a flow of packets frera to dst . Presently, all of these events deal with fragments.

flow _weird handles the following events:

excessively _large _fragment
A set of IP fragments reassembled to a maximum size exceédifg0 bytesNote: Sizes between 64,000 and
65,535 bytes are allowed, strictly speaking, but are higimilikely in legitimate traffic. Sizes above 65,535 bytes
generally represent attempted denial-of-service attadke to IP implementations that crash upon receiving
such impossibly-large fragment sets.

Default: WEIRDLOGALWAYS

excessively _small _fragment
A fragment other than the last fragment in a set was less thdyts in sizeNote: The standard allows such
small fragments, but their presence may reflect an attacttengpting to evade the monitor by splitting header
information across multiple fragments.

Default: WEIRDLOGALWAYS

fragment _inconsistency
A fragment overlaps with a previously sent fragment, andweedisagree on data they share in common. This
event could reflect an attacker attempting to evade the wiiitcan also occur because Bro keeps previous
fragments indefinitely@eficiency: it needs to provide a means for flushing old fragshetherwise it becomes
vulnerable to a state-holding attagkand occasionally a fragment will overlap with one sent mearlier and
long-since forgotten by the endpoints.

Default: WEIRDLOGALWAYS

fragment _overlap
A fragment overlaps with a previously sent fragment. Asffagment _inconsistency , this event can
occur due to Bro keeping previous fragments indefinitelyisTévent does not in general reflect a possible
attempt at evasion.

Default: WEIRDLOGALWAYS

fragment _protocol _inconsistency
Two fragments were seen for the same flow and IP ID which diffén their transport protocol (e.g., UDP,
TCP). According to the specification, this is allowed [RFC/B. 24], but its use appears highly unlikely.

Default: WEIRDFILE , because it is difficult to see how an attacker can explataniomaly.

161

fragment _size _inconsistency
A “last fragment” was seen twice, and the two disagree on laogel the reassembled datagram should be. This
event could reflect an attacker attempting to evade the monit

Default: WEIRDFILE , since it is more likely that this occurs due to a high voluroe/fbf fragments wrapping
the IP ID space than due to an actual attack.

fragment _with _DF
A fragment was seen with the “Don’t Fragment” bit set in itatier. While strictly speaking this is not illegal,
and not impossible (a router could have fragmented a packkteen decided that the fragments should not be
further fragmented), its presence is highly unusual.

Default: WEIRDFILE , because it’s difficult to see how this could reflect malici@tivity.

incompletely _captured _fragment
A fragment was seen whose length field is larger than the feagatatagram appearing on the monitored link.

Default: WEIRDLOGALWAYS

7.24.7 Events handled byet _weird

net _weird (name: string)
is invoked for “weird” events that cannot be associated wiftarticular connection or set of hosts. Except as
noted, the default action for all such event®V&IRDFILE .

net _weird handles the following events:

bad_IP _checksum
A packet had a bad IP header checksum.

bad _TCP.header _len
The length of the TCP header (which is itself specified in teader) was smaller than the minimum allowed
size.

internally _truncated _header
A captured packet with a valid IP length field was smaller d@sally recorded, such that the captured version
of the packet was illegally small. This event may reflect anren Bro’s packet capture hardware or software.

Default: WEIRDLOGALWAY Sbecause this event can indicate a basic problem with Bexket capture.
truncated _IP

A captured packet either was too small to include a minimahéBder, or the full length as recorded by the
packet capture library was smaller than the length as itelicay the IP header.

truncated _header

An IP datagram’s header indicates a length smaller thamékaired for the indicated transport type (TCP, UDP,
ICMP).

162

7.24.8 Events generated by the standard scripts

The following events are generated by the standard schiptagelves:

bad _pm_port
Seepmbad _port . Handled byconn _weird _addl , where the extra parameter is the tégbrt < bad-
port>" .

Land _attack
A TCP connection attempt was seen with identical initiatod aesponder addresses and ports. This event
likely reflects an attempted denial-of-service attack kn@s a “Land” attack. Seeheck _spoof . Handled
by conn _weird .

7.24.9 Additional handlers for “weird” events

In addition to the above, generalized events, Bro includesspecific events that are defined by themselves so they
can include additional parameterization:

rexmit _inconsistency (c: connection, tl: string, t2: string)
Invoked when a retransmission associated with connectigiffered in its data from the contents transmitted
previouslytl gives the original data art@ the different retransmitted data.

This event may reflect an attacker attempting to evade thatarobinfortunately, however, experience has
shown tha{i) inconsistent retransmissions do in fact happen due to (ampar CP implementation bugs, and
(i) once they occur, they tend to cascade, because often theesofuthe bug is that the two endpoints have
become desynchronized.

The handler logs the message in the forfridt rexmit inconsistency (<t1>) (<t2>)" . However,
the handler only logs the first instance of an inconsistetheg,to the cascade problem mentioned above.

Deficiency: The handler is not told which of the two connecéindpoints was the faulty transmitter.

ack _above _hole (c: connection, tl: string, t2: string)
Invoked when Bro sees a TCP receiver acknowledge data alsmguance hole. In principle, this should never
occur. Its presence generally means one of two thi(ipst TCP implementation with an appalling bug (these
definitely exist), or(ii) a packet drop by Bro’s packet capture facility, such thaeiter saw the data now being
acknowledged.

Because of the seriousness of this latter possibility, #malker logs a messaf@ck above a hole” . Note:

You can often distinguish between a truly broken TCP ackeagvhent and Bro dropping packets by the fact
that in the latter case you generally see a cluster of ackvakm-hole messages among otherwise unrelated
connections.

Deficiency: The handler is not told which of the two connecéndpoints sent the acknowledgment.

163

7.25
7.26
1.27
7.28
7.29

Theicmp Analyzer
Thestepping Analyzer
Thessh-stepping Module
Thebackdoor Analyzer

Theinterconn Analyzer

164

Chapter 8

Signhatures

8.1 Overview

In addition to the policy language, Bro provides anothegleage which is specifally designed to defgignatures
Signatures precisly describe how network traffic looks fentain, well-known attacks. As soon as a attack described
by a signature is recognized, Bro may generate an event ifsitinature matclwhich can then be analyzed by a
policy script. To define signatures, Bro’s language prosisieveral powerful constructs like regular expressj@ns,
page 25 and dependencies between multiple signatures.

Signatures are independent of Bro’s policy scripts andgefioee, are put into their own file(s). There two ways
to specify which files contain signatures: By using tkeflag when you invoke Bro, or by extending the Bro vari-
ablesignatures _files using the+= operator. If a signature file is given without a path, it isrsbad along
$BROPATHThe default extension of the file namessy which Bro appends automatically.

8.2 Signature language

Each individual signature has the format
signature id { attribute-set }

id is an unique label for the signature. There are two typestnbates:conditionsandactions The conditions
definewhenthe signature matches, while the actions declenat to doin the case of a match. Conditions can be
further divided into four typesheader content dependencgyandcontext We will discuss these in more detail in the
following subsections.

This is an example of a signature:

signature formmail-cve-1999-0172 {
ip-proto == tcp
dst-ip == 1.2.0.0/16
dst-port = 80
http /.*formmail.*\?.*recipient=["&]*[;|]/
event "formmail shell command"

}

165

8.2.1 Conditions
Header conditions

Header conditions limit the applicability of the signattimea subset of traffic that contains matching packet headers.
For TCP, this match is performed only for the first packet obarection. For other protocols, it is done on each
individual packet. There are pre-defined header condifimnsome of the most used header fields:

dst-ip conp address-|li st
Destination address of IP packet (may include CIDR masksgdecifying networks)

dst-port conp integer-list
Destination port of TCP or UDP packet

ip-proto conp protocol -1i st
IP protocol;protocolmay betcp , udp, oricmp .

src-ip conp address-1li st
Source address of IP packet (may include CIDR masks for fjieginetworks)

src-port conp integer-list
Source port of TCP or UDP packet

compis one of==, I=, <, <=, >, >=. All lists are comma-separated values of the given type waie sequentially
compared against the corresponding header field. If at wastof the comparisions evaluates to true, the whole
header condition matches (exceptiorcdimpis != , the header condition only matcheslf values differ) addresss
an dotted IP address optionally followed by a CIDR/mask findea subnet instead of an individual addresstocol
is either one ofp , tcp , udp andicmp , or an integer.

In addition to this pre-defined short-cuts, a general heeoledition can be defined either as

header proto[offset:size] conp val ue-1li st
oras
header proto[offset:size] & integer conp val ue-1li st

This compares the value found at the given position of thdgtareader with a list of valuesffsetdefines the
position of the value within the header of the protocol defibg proto (which canip , tcp , udp oricmp . sizeis
either 1, 2, or 4 and specifies the value to have a size of thig/rhgtes. If the optinak i nt eger is given, the
packet’s value is first masked with tireegerbefore it is compared to the value-lisbmpis one of==, I= , <, <=, >,
>=. value-listis a list of comma-separated integers similar to those destabove. The integers within the list may
be followed by an additiondlmask wheremaskis a value from 0 to 32. This correponds to the CIDR notatian fo
netmasks and is translated into a corresponding bitmasthvigapplied to the packet’s value prior to the comparision
(similar to the optiona& i nt eger).

Putting all together, this is an example which is aequivitiedst-ip == 1.2.3.4/16, 5.6.7.8/24

header ip[16:4] == 1.2.3.4/16, 5.6.7.8/24

166

Content conditions

Content conditions are defined by regular expressions. Wiereltiate two kinds of content conditions: first, the

expression may be declared with thayload statement, in which case it is matched against the raw payba

connection (for reassembled TCP streams) or of a each patketnatively, it may be prefixed with an analyzer-

specific label, in which case the expression is matched aghie data as extracted by the corresponding analyzer.
A payload condition has the form

payload / regul ar expression/

Currently, the following analyzer-specific content coiafit are defined (note that the corresponding analyzer has
to be activated by loading its policy script):

http-request / regul ar expression/
The regular expression is matched against decoded URIg &fTH P requests.

http-request-header / regul ar expression/
The regular expression is matched against client-side Hi€&@lers.

http-reply-header / regul ar expression/
The regular expression is matched against server-side Hi€aBers.

ftp / regul ar expression/
The regular expression is matched against the commandiing of FTP sessions.

finger / regul ar expression/
The regular expression is matched against the finger rexjuest

For example,http /(etc(passwd|shadow)/ matches any URI containing eithatc/passwd or
etc/shadow
Dependency conditions

To define dependencies between different signatures, éneitwvo conditions:

requires-signature [! id]
Defines the current signature to match only if the signativergbyid matches for the same connection. Using
‘I " negates the condition: The current signature only matdhedsdoes not match for the same connection (this
decision is necessarily deferred until the connectionitgaies).

requires-reverse-signature [! id]
Similar torequires-signature , butid has to match for the other direction of the same connectiuas t
the current signature. This allows to model the notion ofiesgis and replies.

Context conditions

Context conditions pass the match decision on to variower @tbmponents of Bro. They are only evaluated if all other
conditions have already matched. The following contextitions are defined:

167

type signature_state: record {

id: string; # ID of the signature

conn: connection; # Current connection

is_orig: bool; # True if current endpoint is originator

payload_size: count; # Payload size of the first pkt of curr. endpoint
h

Figure 8.1: Definition of theignature _state record.

eval policy function
The given policy function is called and has to return a bawoladicating the match result. The function has to be
of the typefunction cond(state: signature _state): bool . See Figure 8.2.1 for the definition
of signature _state

ip-options
Not implemented currently.

payload-size conp i nteger
Compares the integer to the size of the payload of a packeteBssembled TCP streams, the integer is com-
pared to the size of the first in-order payload chunk. Notettialatter is not well defined.

same-ip
Evaluates to true if the source address of the IP packetd=itgidestination address.

tcp-state state-1list
Poses restrictions on the current TCP state of the conmecttate-listis a comma-separated list of
established (the three-way handshake has already been perforroddjnator (the current data is
send by the originator of the connection), amdponder (the current data is send by the responder of the
connection).

8.2.2 Actions

Actions define what to do if a signature matches. Curreritsréd is only one action defineeivent st ri ng raises
asignature _match event. The event handler has the following type:

event signature _match(state: signature _state, msg: string, data:
string)

See Figure 8.2.1 for a description sifjnature _state . The given string is passed assg, and data is the
current part of the payload that has eventually lead to timeasure match (this may be empty for signatures without
content conditions).

8.3 snort2bro

The open-source IDS Snort provides an extensive librarygofagures. The Python script snort2bro converts Snort'’s
signature into Bro signatures. Due to different internah#ectures of Bro and Snort, it is not always possible tqpkee

168

the exact semantics of Snort’s signatures, but most of the iti works very well.

To convert Snort signatures into Bro's formatnort2bro needs a workable Snort configuration file
(snort.cfg) which, in particular, defines the variables used in the Smignatures (usally things like
$EXTERNALNET or $HTTP.SERVER$E The conversion is performed by callingnort2bro [-1 dir]
snort.cfg ~ where the directory optionally given by contains the files imported by Snorireclude statement.
The converted signature set is written to standard outplit@ay be redirected to a file. This file can then be evaluated
by Bro using thes flag or thesignatures _files variable.

Deficiencyssnort 2br o does not know about some of the newer Snort sighature ogiwhgnores them (but it
gives a warning).

169

Chapter 9

Interactive Debugger

9.1 Overview

Bro’s interactive debugger is intended to aid in the develept, testing, and maintenance of policy scripts. The de-
bugger’s interface has been modeled after the poallardebugger; the command syntax is virtually identical. While
at present the Bro debugger supports only a small subggdlo's features, these were chosen to be the most com-
monly used commands. Additional features beyond thogelof such as wildcarding, have been added to specifically
address needs created by Bro policy scripts.

9.2 A Sample Session

The transcript below should look very familiar to those fianiwith gdb . The debugger's command prompt accepts
debugger commands; before each prompt, the line of polide tioat is next to be executed is displayed.
First we activate the debugger with the command-line switch.

bobcat:"/bro/bro$./bro -d -r slice.trace mt
Policy file debugging ON.

In bro_init() at policy/ftp.bro:437

437 have_FTP = T,

Next, we set a breakpoint in thmnnection _finished event handler [reference this somehow]. A breakpoint
causes the script’s execution to stop when it reaches tho#figgefunction. In this case, there are many event handlers
for theconnection _finished event, so we are given a choice.

(Bro [0]) break connection_finished
Setting breakpoint on connection_finished:

There are multiple definitions of that event handler.
Please choose one of the following options:

[1] policy/conn.bro:268

[2] policy/active.bro:14

[3] policy/ftp.bro:413

170

[4] policy/demux.bro:40

[5] policy/login.bro:496

[a] All of the above

[n] None of the above

Enter your choice: 1

Breakpoint 1 set at connection_finished at policy/conn.br

0:268

Now we resume execution; when the breakpoint is reacheduére stops and the debugger prompt returns.

(Bro [1]) continue

Continuing.

Breakpoint 1, connection_finished(c = ’[id=[orig_h=1.0.
orig_p=2048/tcp, resp_h=1.0.0.6, resp_p=23/tcp], orig=
state=5], resp=[size=46, state=5], start_time=92972969
duration=0.0773319005966187, service=, addl=, hot=0])
policy/conn.bro:268

In connection_finished(c = ’[id=[orig_h=1.0.0.163, orig
resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5]
state=5], start time=929729696.316166, duration=0.077
service=, addl=, hot=0]") at policy/conn.bro:268

268 if (cPoriggsize == 0 || c$resp$size == 0)

We now step through a few lines of code and intoréaeord _connection

(Bro [2]) step
274

(Bro [3]) step
In record_connection(c = ’'[id=[orig_h=1.0.0.163, orig_p
resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5]
state=5], start time=929729696.316166, duration=0.077
service=, addl=, hot=0]', disposition = ’finished’) at
policy/conn.bro:162

record_connection(c, "finished");

0.163,
[size=0,
6.316166,

at

_p=2048/tcp,
, resp=[size=46,
3319005966187,

call.

=2048l/tcp,
, resp=[size=46,
3319005966187,

162 local id = c$id;
(Bro [4]) step
163 local local_init = to_net(id$orig_h) in local_nets;

We now print the value of thiel variable, which was set in the previously executed stat¢foeal id = c$id;
We follow that with a backtraced{) call, which prints a trace of the currently-executing ftioes and event handlers
(along with their actual arguments). We then remove thekp@iat and continue execution to its end (the remaining

output has been trimmed off).

(Bro [5]) print id

[orig_h=1.0.0.163, orig_p=2048/tcp, resp_h=1.0.0.6, re
(Bro [6]) bt

#0 In record_connection(c = ’'[id=[orig_h=1.0.0.163, orig
resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5]
resp=[size=46, state=5], start_time=929729696.316166,
duration=0.0773319005966187, service=, addl=, hot=0],

171

sp_p=23/tcp]

_p=2048/tcp,

disposition =

'finished’) at policy/conn.bro:163

#1 In connection_finished(c = ’[id=[orig_h=1.0.0.163, or ig_p=2048/tcp,
resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5] ,
resp=[size=46, state=5], start_time=929729696.316166,
duration=0.0773319005966187, service=, addl=, hot=0]) at
policy/conn.bro:274

(Bro [7]) delete

Breakpoint 1 deleted

(Bro [8]) continue

Continuing.

9.3 Usage

The Bro debugger is invoked with thd command-line switch. It is strongly recommended that tHaudger be used
with a tcpdump capture file as input (thre switch) rather than in “live” mode, so that results are replelz.

Execution tracing is a feature which generates a completzrdeof which code statements are executed during a
given run. It is enabled with the switch, whose argument specifies a file which will containtthee.

Debugger commands all are a single word, though many of th&maddditional arguments. Commands may be
abbreviated with a prefix (e.din for finish); if the same prefix matches multiple commands, the debugijer
list all that match. Certain very frequently-used commarsdgh asmext , have been given specific one-character
shortcuts (in this casa,). For more details on all the debugger commands, see thedRefein section 9.5, below.

The debugger’s prompt can be activated in three ways. Fitstn the-d switch is supplied, Bro stops in the
bro _init initialization function (more precisely, after globalegie code has been executed; see section 9.4). It is
also activated when a breakpoint is hit. Breakpoints arevghtthebreak command (see the Reference). The final
way to invoke the debugger’s prompt is to interrupt exeauby pressing Ctrl-C (sending an Interrupt signal to the
process). Execution will be suspended after the curreaxfcuting line is completed.

9.4 Notes and Limitations

e Statements at global scope, i.e., those executed befobedhénit function, may not be debugged at present.
This is because those statements load declarations for fathetions needed for the debugger to function

properly.

9.5 Reference

Summary of Commands
Note: all commands may be abbreviated with a unique prefiartSats below are special exceptions to this rule.

172

| Command | Shortcut | Description |

help Get help with debugger commands
quit Exit Bro
next| n Step to the following statement, skipping function calls
step| s Step to following statements, stepping in to function callg
continue| ¢ Resume execution of the policy script
finish Run until the currently-executing function completes
break| b Set a breakpoint
condition Set a condition on an existing breakpoint
delete| d Delete the specified breakpoints; delete all if no arguments
disable Turn off the specified breakpoint; do not delete permaneptly
enable Undo a prior ‘disable’ command
info Get information about the debugging environment
print | p Evaluate an expression and print the result
set Alias for ‘print’
backtrace| bt Print a stack trace
frame Select frame number N
up Select the stack frame one level up from the current one
down Select the stack frame one level down from the current gne
list | | Print source lines surrounding specified context
trace Turn on or off execution tracing
Getting Help

help Help for each command may be invoked with thelp command. Calling the command with no arguments
displays a one-line summary of each command.

Command-Line Options
- d switch The-d switch enables the Bro script debugger.

-t switch The-t enables execution tracing. There is an argument to the Iswithich indicates a file that will
contain the result of the trace. Trace output consists o$tluece code lines executed, indented for each nested
function invocation.

Example. The following command invokes Bro, usirigpdump file for the input packets and outputting
the result of the trace texecution _trace

Jbro -t execution_trace -r tcpdump_file policy_script.b ro

Example.If the argument tet is a single dash character (), then the trace output is sent stderr

Jbro -t - -r tcpdump_file policy_script.bro

173

Example. Lastly, execution tracing may be combined with the debugdere we send output tetderr , so
it will be intermingled with the debugger’s output. Tracimgy be turned off and on in the debugger using the
trace command.

Jbro -d -t - -r tcpdump_file policy_script.bro

Running the Script
quit Exit Bro, aborting execution of the currently executingscr

restart (r) (Currently UnimplementedRestart the execution of the script, rewinding to the beigigof the input
file(s), if appropriate. Breakpoints and other debuggeesiee preserved.

continue (c) Resume execution of the script file. The script will contimwening until interrupted by a breakpoint or
a signal.

next (n) Execute one statement, without entering any subroutiriksida that statement.
step (s) Execute one statement, but stop on entry to any called stibeou
finish Run until the currently executing function returns.

Breakpoints

break (b) Set a breakpoint. A breakpoint suspend execution when &raaeaches a particular location and returns
control to the debugger. Breakpoint locations may be sgekifi a number of ways:

break With no argument, the current line is used.

break [FILE:JLINE The specified line in the specified file; if no policy file is sifiedl, the
current file is implied.

break FUNCTION The first line of the specified function or event handler. Ifrsmthan one
event handler matches the name, a choice will be presented.

break WILDCARD Similar to FUNCTION but a POSIX-compliant regular expression (see
theregex(3) man page)is supplied, which is matched against all func-
tions and event handlers. One exception to the the POSDéasysthat,
as in the shell, th&é character may be used to match zero or more of any
character without a preceding period charactér (

condition N expressionThe numeric argumenY indicates which breakpoint to add a condition to, and theesq
sion is the conditional expression. A breakpoint with a dthad will only stop execution when the supplied
condition is true. The condition will be evaluated in the t&t of the breakpoint’s location when it is reached.

enable With no arguments, enable all breakpoints previously deshlwith thedisable command. If numeric
arguments separated by spaces are provided, the breakpitimthose numbers will be enabled.

disable With no arguments, disable all breakpoints. Disabled hpeadts will not stop execution, but will be retained
to be enabled later. If numeric arguments separated by spae@rovided, the breakpoints with those numbers
will be disabled.

174

delete (d) With no arguments, permanently delete all breakpointsutheric arguments separated by spaces are
provided, the breakpoints with those numbers will be delete

Debugger State

info Give information about the current script and debuggingremment. A subcommand should follow th&o
command to indicate which information is desired. At preéstre following subcommands are available:

info break List all breakpoints and their status
Inspecting Program State

print (p) / set The print command and its aliaset , are used to evaluate any expression in the policy script
language. The result of the evaluation is printed out. Resfl the evaluation affect the current execution
environment; expressions may include things like assigrinidhe expression is evaluated in the context of the
currently selected stack frame. Thiame , up, anddown commands (below) are used to change the currently
selected frame, which defaults to the innermost one.

backtrace (bt) Print a description of all the stack frames (function invbmas) of the currently executing script.
With no arguments, prints out the currently selected steaké.
With a numeric argument NV, prints the innermost frames if the argument is positive, or the outermiyst
frames if the argument is negative.

frame With no arguments, prints the currently selected frame.
With a numeric argumeny, selects framév. Frame numbers are numbered inside-out from 0O; the

up Selectthe stack frame that called the currently selectedlba numeric argumeny¥ is supplied, go up that many
frames.

down Select the stack frame called by the currently selectedlbaemumeric argumend is supplied, go down that
many frames.

list (I) With no argument, print the ten lines of script source codiyidng the previous listing. If there was no
previous listing, print ten lines surrounding the nextesta¢nt to be executed. If an argument is supplied, ten
lines are printed around the location it describes. Theraggu may take one of the following forms:

[FILE:]]LINE The specified line in the specified file; if no policy file is sified, the
current file is implied.

FUNCTION The first line of the specified function or event handler. Ifrmithan one
event handler matches the name, a choice will be presented.

+N With a numeric argument preceded by a plus or minus sign,ilecalt
the supplied offset from the previously selected line.

175

Chapter 10

Missing Documentation

This chapter holds stubs for subjects that have yet to berdented. Some of these are actually already somewhat
covered elsewhere in the manual. In addition, a major nasgiace for the manual is the Bro language itself; below
we mention some Bro language topics that come up elsewhéne rurrent version of the manual.

10.1 The use oprefixes

10.2 The tcpdump save file that Bro writes
10.3 Thebro.init initialization file

10.4 Assignment operators such as=

10.5 The notion of redefinition/refinement

10.6 The logging model

176

10.7 Timer management

10.8 SYN-FIN filtering

10.9 Split routing

10.10

10.11

10.12

10.13

10.14

10.15

10.16

Scan dropping

Operator precedence

Partial connections

Packet drops

The@load directive

Global statements

Inserting tables into tables

177

10.17

Demultiplexing

10.18 Broinit file

10.19 Hostnames vs. addresses
10.20 The hot-report script
10.21 Use of libpcap/BPF

[MJ93, MLJ94]

10.22 The problem of evasion
[PN98]

10.23 Backscatter

10.24 Playing back traces

10.25 Discarders

10.26 Differences between this release and the previous one

178

10.27 Alert cascade

10.28 The need for subtyping

E.g.,src addr vs.dst addr , perhaps using attributes.

10.29 The need for CIDR masks

10.30 The wish list

10.31 Known bugs

179

Bibliography

[RFC2373] R. Hinden and S. Deering, “IP Version 6 Addresginchitecture,” RFC 2373, Jul. 1998.

[MJ93] S. McCanne and V. Jacobson, “The BSD Packet Filter:edvMrchitecture for User-level Packet Cap-
ture,” Proc. 1993 Winter USENIX Conferen&an Diego, CA.

[MLJ94] S. McCanne, C. Leres and V. Jacobddipcap , available via anonymous ftp to ftp.ee.lbl.gov, 1994.

[Pa9s8] V. Paxson, “Bro: A System for Detecting Network Iteus in Real-Time,” Proc. 7th USENIX Security
Symposium, Jan. 1998.

[Pa99] V. Paxson, “Bro: A System for Detecting Network Irttens in Real-Time,Computer Networkspecial
issue on intrusion detection, 31(23—-24), pp. 2435-2468, D@99.

[PN98] T. Ptacek and T. Newsham, “Insertion, Evasion, andil@f Service: Eluding Network Intrusion Detec-
tion,” Secure Networks, Inc., http://www.aciri.org/véiPtacek-Newsham-Evasion-98.ps, Jan. 1998.

[RFC791] J. Postel, “Internet Protocol,” RFC 791, Sep. 1981

[RFC793] J. Postel, “Transmission Control Protocol,” RFB,/Sep. 1981.

[RFC854] J. Postel and J. Reynolds, “Telnet Protocol Sgtifin,” RFC 854, May 1983.

[RFC855] J. Postel and J. Reynolds, “Telnet Option Spetifina,” RFC 855, May 1983.

[RFC959] J. Postel and J. Reynolds, “File Transfer Prot@€®P),” RFC 959, Oct. 1985.

[RFC1013] R. Scheifler, “X Window System Protocol, versidn Alpha update,” RFC 1013, Apr. 1987.
[RFC1094] Sun Microsystems, “NFS: Network File System &cot specification,” RFC 1094, Mar. 1989.
[RFC1122] B. Braden, “Requirements for Internet hosts - emmication layers,” RFC 1122, Oct. 1989.
[RFC1282] B. Kantor, “BSD Rlogin,” RFC 1282, Dec. 1991.

[RFC1288] D. Zimmerman, “The Finger User Information Pratly’ RFC 1288, Dec. 1991.

[RFC1413] M. St. Johns, “Identification Protocol,” RFC 14138n. 1993.

[RFC1644] B. Braden, “T/TCP — TCP Extensions for Transaxtibunctional Specification,” RFC 1644, Jul. 1994.
[RFC1813] B. Callaghan, B. Pawlowski, P. Staubach, “NFSMar 3 Protocol Specification,” RFC 1813, June 1995.

180

[RFC1831] R. Srinivasan, “RPC: Remote Procedure Call RadtSpecification Version 2,” RFC 1831, Aug. 1995.
[RFC1832] R. Srinivasan, “XDR: External Data RepresentaStandard,” RFC 1832, Aug. 1995.
[RFC1939] J. Myers and M. Rose, “Post Office Protocol - Ver8¢g RFC 1939, May 1996.

[RFC1945] T. Berners-Lee, R. Fielding and H. Frystyk, “Hypteat Transfer Protocol — HTTP/1.0,” RFC 1945,
May 1996.

[RFC2616] J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Bers-Lee, “Hypertext Transfer Protocol - HTTP/1.1,”
RFC 2626, Jun. 1999.

[YKSRLOO] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and.®htinen, “SSH Connection Protocol,” Internet Draft
draft-ietf-secsh-connect-07.play 2000.

[SSLv2] Kipp E.B. Hickman, “The SSL Protocol,” Netscape Guoomications Corp.
http://wp.netscape.com/eng/security/25htm| February 1995.

[SSLv30] Alan O. Freier, Philip Karlton, Paul C. Kocher, “@I8SL Protocol Version 3.0,” Internet Draftaft-
freier-ssl-version3-02.txtNovember 1996.

[TLSvl] T. Dierks, C. Allen, “ The TLS Protocol Version 1.(RFC 2246, January 1999.

[SSL-FIPS] Nelson Bolyard, Wan-Teh Chang, “FIPS SSL Cigtuities, http://www.mozilla.org/projects/security/pki/ns$/fgs-
ssl-ciphersuites.htmlune 2001.

[SSL-AES] P. Chown, “Advanced Encryption Standard (AESpi@rsuites for Transport Layer Security (TLS),”
RFC 3268, June 2002.

[TLS-56] John Banes, Richard Harrington, “56-bit Exporpf&r Suites For TLS,” Internet Drafiraft-ietf-tls-56-
bit-ciphersuites-00.tx#April 1999.

[X509] R. Housley, W. Polk, W. Ford, D. Solo, “Internet X.58@blic Key Infrastructure Certificate and Certifi-
cate Revocation List (CRL) Profile,” RFC 3280, June 2002.

181

Index

I operator, 46

lin operator, 51

%modulus operator, 23

|| short-circuit “or”, 22, 47

&& short-circuit “and”, 22, 47

! “not” operator, 22

(operator, 50

) operator, 50

+ operator, 47

++ operator, 46

+ addition operator, 23, 28, 47

+ unary operator, 23

- subtraction operator, 23, 28, 47

- unary operator, 23, 27

* multiplication operator, 23, 28, 47
/ division operator, 23, 28, 47

+= operator, 93

- operator, 46

-- operator, 46

. operator, 48

= operator, 48

== equality operator, 24, 26, 47,51
I~ exact match negation, 26

~ exact pattern match operator, 26
I= inequality operator, 24, 26, 47, 51
< less-than operator, 24, 48

<= less-or-equal operator, 24, 48
> greater-than operator, 24, 48
>= (greater-or-equal operator, 24, 48
? operator, 48

?$ record field test, 52

[operator, 50, 52

$ record field access operator, 52
$ record field access operator, 32
%format, 87

\a alertescape, 24

\a bell escape, 24

\b backspace escape, 24

\f formfeed escape, 24

\n newline escape, 24

%modulus operator, 47

\r carriage return escape, 24

\t tabescape, 24

] operator, 50, 52

4Dgifts username, 121

aborted execution, 18

182

absolute time, 27

access
allowable /16 network pairs, 107
allowable address pairs, 107
allowable services, 108
fatal inbound services, 109
forbidden attempted services, 109
forbidden inbound services, 109
forbidden services, 109
sensitive /24 destination networks, 108
sensitive /24 source networks, 107
sensitive destination addresses, 107
sensitive source addresses, 107
service allowed to a particular host, 108
service allowed to particular host pairs, 108

account _tried event, 114

accounts _tried variable, 77

ack above a hole (possible packet drop message),

163
ack _above _hole event, 95, 163
acknowledgment holes, 163
actions, 149, 155
SIG_FILE , 149
SIG_IGNORE 149
SIG_LOG 149
SIG_QUIET, 149
WEIRDFILE , 155
WEIRDIGNORE 155
WEIRDLOGALWAYS155
WEIRDLOGONCE155
WEIRDLOGPERCONN155
WEIRDLOGPERORIG, 155
WEIRDUNSPECIFIED, 155
activating _encryption event, 142
active module, 117
active _conn variable, 57, 117
active _connection function, 85
active _connection _reuse (“weird” event), 156
active _file function, 85
actually _rejected _PTRanno variable, 64
add keyword, 45
add statement, 45
&add_func attribute, 56
add _interface function, 85
add _tcpdump filter function, 85
addition

numeric, 23
temporal, 28

additional information associated with a connection, 98,

103
addl , 98
connection field, 98
addl _web variable, 77, 113
addr , seetypes,addr
address masking, 29, 88, 91
address scanning, 112
address type, 29
constants, 29
operators, 29
addresses
hot destinations, 107
hot sources, 107
in a connection, 101
local, 105-106
mapping to hostnames, 20
neighbor, 106
addrs , 119
dns _mapping field, 119
alert _action filters variable, 57
alert _file variable, 57
allow _16_net _pairs variable, 67, 107
allow _excessive _ntp _requests variable, 74
allow _pairs variable, 67, 107
allow _PTRscans variable, 65
allow _service _pairs variable, 67
allow _services variable, 67,108
allow _services _pairs variable, 108
allow _services _to variable, 67,108
allow _spoof _services variable, 67, 107
allowable /16 network pairs, 107
allowable address pairs, 107
altering log files, 133
always _hot _ids variable, 68, 121
always _hot _login _ids variable, 74, 136
analy analyzer, 148
analysis
bidirectional vs. unidirectional, 159
off-line, 16, 17, 89, 105
on-line, 16, 17, 84, 89, 105
analyzers, 92-164
@load, 92
activating, 92
analy , 148
application-specific, 120-147
conn, 95
filtering, 93-94
finger , 120
event handlers, 120
variables, 120
ftp ,122
event handlers, 126-127

183

functions, 125
variables, 123-125
generic, 95-105
hot , 106
functions, 110
variables, 106-110
http , 127
event handlers, 128
variables, 127-128
ident , 128
event handlers, 129
variables, 129
instantiating, 92
loading, 92
login ,130
event handlers, 138-142
functions, 137-138
variables, 131-136
portmapper , 142
event handlers, 146-147
functions, 144-145
variables, 143-144
print-filter , 94
scan, 112
event handlers, 114
functions, 114
variables, 112-113
signature , 148
site , 105
site-specific information, 105-106
SSL, 149
event handlers, 152-154
variables, 151-152
tcp , 100
udp, 100
&&"and” operator, 22, 47
anon _log variable, 57
anonymize _ip _addr variable, 62
anonymous functioexpression, 48
anticode.com133
“any” type, 42
replacing with union type, 88
any RPCokay variable, 75, 144
appending to a file, 89
arithmeticexpression, 47
array
associative, 33
multi-dimensional, 34
as, 39
RLIMIT _NOFILE, 39
ASCII
as usual character set, 25
assigning records, 32-33
assignmenéxpression, 48
associative array, 33

attack

Land, 110
attackers

weenie, 121
attacks

smurf, 133
ATTEMPTINTERVAL internal variable, 99
attempted connections, 99
attempted services

forbidden, 109
attributes, 55

&add _func , 56

&create _expire , 36
&default , 35
&delete _func , 56
&expire _func , 36
&read _expire , 36
record fields, 32
&redef , 56
&write _expire , 36
auth error (RPC status code), 146

auth-failed/ authentication annotation, 141
auth/ authentication annotation, 141
authentication

accepted, 141

rejected, 141

skipped, 141
authentication annotations, 129, 139-141
auth-failed/ , 141
auth/ , 141
confused/ , 139, 140
ident/ ,129
(skipped) ,141
authentication dialog, 87, 90, 130, 131
evasion, 132
authentication _accepted event, 141
authentication _rejected event, 141
authentication _skipped event, 141

avoiding processing, 90

backdoor

avoiding false positives, 133

prompts, 133

triggered by ephemeral port, 134

triggered by terminal type, 133
backdoor _annotate _standard _ports variable, 59
backdoor _demux_disabled variable, 58
backdoor _demux_skip _tags variable, 58
backdoor _ignore _dst _addrs variable, 58
backdoor _ignore _ports variable, 58
backdoor _ignore _src _addrs variable, 58
backdoor _log variable, 58
backdoor _min_7bit _ascii _ratio
backdoor _min_bytes variable, 58
backdoor _min _normal _ine _ratio variable, 58
backdoor _min _numlines variable, 58

variable, 58

184

backdoor
backdoor

_prompts variable, 73, 133
_standard _ports variable, 58
backdoor _stat _backoff variable, 59
backdoor _stat _period variable, 58
backscatter _ports variable, 78
backspace character, 86
bad address mask
run-time error, 88
bad fmt date argument
run-time error, 87
bad fmt editing character
run-time error, 86
bad fmt field width
run-time error, 86
bad fmt floating-point argument
run-time error, 87
bad fmt format specifier
run-time error, 87
bad fmt integer argument
run-time error, 87
bad fmt precision
run-time error, 86
bad format ,87
bad length argument (not a table or set)
run-time error, 88
bad second argument to mask
format conversion error
bad time , 87
bad type for Date format , 87
bad type for floating-point format
bad type for integer format , 87
bad _HTTPreply (“weird” event), 157
bad HTTPversion (“weird” event), 157
bad _ICMP_checksum (“weird” event), 157
bad _ident _reply (“weird” event), 160
bad _ident _request (“weird” event), 161
bad _IP _checksum (“weird” event), 162
bad _option event, 141
bad _option _termination event, 141
bad _pmport (“weird” event), 163
bad rlogin _prolog (“weird” event), 157
bad _RPC(“weird” event), 157
bad _RPCprogram (“weird” event), 157
bad _SYNack (“weird” event), 157
bad _TCP.checksum (“weird” event), 157
bad _TCP.header _len (“weird” event), 162
bad _UDPchecksum (“weird” event), 157
baroque _SYN(“weird” event), 157
beginning time of a connection, 98, 101
bidirectional vs. unidirectional analysis, 159
big endian, 87, 148
/bin/eject exploit, 131
BIND
non-blocking DNS lookups, 13
blank _in _HTTPrequest (“weird” event), 157

_addr() ,88

, 87

bool , seetypes,bool

booleans, 22

Bourne shell, 90

BPF (Berkeley Packet Filter)
tuning, 13

BPF buffers

ensuring they are large, 13

break keyword, 45
break statement, 45
Bro
checkpointing, 18
execution aborted, 18
flags
-F, 18
-0, 18
-P, 18,118
-W, 18
-f , 17
-h, 17
-i 17
-p,17
-r,17
-s,17
-v, 18
-w, 18
installing, 12
interactive use, 14
not running as root, 13
optimizer, 18
private caches, 18
references, 10
running, 12
search path, 19
shadow, 94
source code, 12

system configuration, 13

usage, 17
version, 18
watchdog, 18
web page, 12
wedging, 18
Bro bugs/limitations

causing “weird” events, 154

.bro suffix, 19
.bro-dns-cache ,118
bro _done event, 95

$BRQID environment variable, 115

bro _init event, 94

bro _log -file variable, 84,115
$BRQPREFIXESenvironment variable, 17, 19

bro _signal event, 95

$BROPATHNVironment variable, 19

BS, 86
buffer overflow tools, 133

buffer size patch folibpcap, 13

185

buffers
large for BPF, 13
buggy implementations
causing “weird” events,
bugs
$ pattern operator not s
appalling, 163
causing “weird” events,
tcpdump , 94
building Bro, 12
byte _len function, 85
bytes in connection, 101, 10

caches
Bro’s private ones, 18

154
upported, 27

154

3

CALLIT portmapper call, 142

can’'t open

run-time error, 19
can _drop _connectivity
cannot create directory

variable, 113
,88

capture filter global variable, 17

capture filter variable,
casting
not provided in Bro, 42
cat function, 85
Central Intelligence Agency
detection, 108
cf utility program, 20
character set
ASCII, 25
check _hot function, 110
check _info record, 137
forbidden , 137
hot , 137
hot _id , 137

84,93-94

check relay _3variable, 74
check _relay _4 variable, 74

check _scan function, 114
check _spoof function, 110
checkpointing Bro, 18
checksum error

ICMP, 157

IP, 162

TCP, 157

UDP, 157
Christmas packet, 160
CIA detection, 108
CIDR, 29, 88, 91, 105
clean function, 85
cleanup event, 95
client port

triggering a backdoor, 134

client _cert , 150

ssl _connection _info
clock time, 86, 88
close function, 85

field, 150

code red _listl variable, 63
code red _list2 variable, 63
code _red _log variable, 63
Cold Fusion exploits, 127
command shell, 90

setuid root, 133
compiling Bro, 12
completed connections, 99
compoundstatement, 45
concatenation of strings, 85
conditionalexpression, 48
configuration options

--enable-brov6 , 13
confused login analysis, 131
confused/ authentication annotation, 139, 140
confusion of heuristics, 131
conn analyzer, 95
conn _id record, 96, 97
conn _size function, 103
conn _state function, 103
conn _stats event, 148
conn _tag _info variable, 81
conn _weird event, 156
conn weird _addl event, 160
connection

additional information, 98, 103

addresses, 96, 101

analysis, 95, 106, 148

attempt, 99

bytes, 96, 101, 103

completion, 99, 100

definitions, 98

detecting sensitive, 110

duration, 98, 101

establishment, 99

events, 99

finished, 99

flags, 101

functions, 103

generic analysis, 95

half finished, 100

hosts, 101

hot, 98, 104, 138

hot analysis, 106

ICMP, 98

ID, 103, 104

initiator, 96

logging, 104

new, 99

non-existing, 91

originator, 96

partial, 99

partial close, 100

pending, 100

ports, 96

186

recording, 105
rejected, 99
reset, 100
reuse, 159
sensitivity, 98
sequence numbers, 87
service, 98, 101, 103, 105
simultaneous open, 159
size, 96, 101, 103
start time, 98, 101
state, 96, 101, 103
summaries, 101
TCP, 98
terminating with extreme prejudice, 105
testing for existence, 85
UDP, 98
connection events
TCP-specific, 99
connection id is not a known

connection , 86,91
connection id is not a known login
connection , 87,90

connection record, 96-98
connection size

undetermined for RST termination, 125
connection states, 102

OTH 102

REJ, 102

RSTQ 102

RSTOS(102

RSTR 102

RSTRH 102

S0, 102

S1, 102

S2,102

S3, 102

SF, 102

SH 102

SHR 102
connection summary files, 102

red , 102
connection
connection
connection

event, 99
_established event, 99, 141

finished event, 99
connection _half _finished event, 100
connection _id , 150
ssl _connection
connection
157
connection
connection
connection
connection
connection
connectivity

_attempt

dinfo field, 150
_originator

_partial _close event, 100
_pending event, 100
_record function, 85
_rejected event, 99

_reset event, 100

_SYNack (“weird” event),

dropping, 113, 114 day interval unit, 27

const statement, 45 debugging
const variable declaration, 54 filtering problems, 94
constantexpression, 46 decremenexpressions, 46
constant variables, 45 deep copy, 32, 38
constants, 148 default
address, 29 filtering, 93
boolean, 22 &default attribute, 35
count, 23 default values, 35
ENDIANBIG, 148 DEL, 85-86
ENDIAN.CONFUSE[148 delete character, 85
ENDIANLITTLE , 148 delete keyword, 45
ENDIAN.UNKNOWNI48 delete statement, 45
floating-point, 23 &delete _func attribute, 56
hostname, 29 demux module, 117
integer, 23 demux_conn function, 117
interval, 27 demux_dir variable, 64
net, 30 demuxed _conn variable, 64
pattern, 25-26 denial of service
port, 28 excessively large fragments, 161
record, 31 Land attack, 163
string, 24-25 detected _stones variable, 81
temporal, 27 detecting scans, 112
time, 27 _ detecting sensitive connections, 110
contains _string function, 86 determine _service function, 103
CONTENT®OTHdirection, 89 /devibpf 13

CONTENTSNONHlirection, 89

CONTENT®RIGdirection, 89

CONTENTSRESPdirection, 89

control packets (SYN/FIN/RST), 18, 100

conversion of non-IPv4 address to net ,
91

converting an IPv6 address to net

did _PTRscan _event variable, 65

did _sigconns variable, 60

did _ssh _version variable, 81

did _stone _summary variable, 82

direct _login _prompts variable, 84, 134
directions, 89

run-time error, 91 CONTENTSBOTH89
copy ' CONTENTSNONES89
shallow vs. deep, 32, 38 28EEm§gg gg
corrupted packets, 157, 162 directories '
t, f . t -
count , seetypes,coun creating, 88

count maximum, 88

count minimum, 88

&create _expire attribute, 36
creating directories, 88

directory names
sensitive, 131
discarder _check _icmp function, 86

creation _time , 118 discarder _check _ip function, 86
dns _mapping field, 118 discarder _check _tcp function, 86
crud, 99, 154 discarder _check _udp function, 86
current _time function, 86 discarder _maxlen variable, 84
display _pairs variable, 81
Dformat, 87 distinct _answered _PTRrequests variable, 65
d format, 87 distinct _backscatter _peers variable, 78
daemon username, 121, 129 distinct _peers variable, 76
daemons distinct _ports variable, 76
as innocuous user names, 129 distinct _PTRrequests variable, 64
data distinct rejected _PTRrequests variable, 64
unanalyzed, 158 diverse network use
data _after _reset (“weird” event), 157 causing “weird” events, 154
data _before _established (“weird” event), 157 division

187

numeric, 23 ENDIAN.CONFUSEDonstant, 148

temporal, 28 ENDIANLITTLE constant, 148

DMZ endian _type statistic, 148
spoof detection, 107 ENDIAN.UNKNOW®bnstant, 148

DNS endpoint record, 96, 97, 101
Bro's private cache, 118 endpoint _id function, 115

forcing access to, 18 enum, seetypes,enum, seetypes,enum

mappings, 118 enumerations, 24

DNS lookups environment
non-blocking, 13 accessing, 87

dns module, 118 responder, 132

dns _interesting _changes variable, 65, 119 Telnet options, 132

dns_log variable, 64 environment variables

dns _-mapping record, 118, 119 $BRQID, 115

dns _mapping _altered event, 119 $BRQPREFIXES, 17, 19

dns _mapping _lost _nameevent, 119 $BROPATH19

dns _mapping -name_changed event, 119 $USER 132

dns _mapping _new_name event, 119 ephemeral port, 104

dns _mapping _unverified event, 119 triggering a backdoor, 134

dns _mapping _valid event, 119

dns _session _timeout variable, 62
dns _sessions variable, 64

done _with _network global variable, 50
done _with _network variable, 84

dotted quads, 20 letc/inetd.confl09
double , seetypes,double letc/passwd127
double maximum, 88 /etc/shadow127

double minimum, 88
drop-connectivityshell script, 114
drop _address function, 114
dropping connectivity, 113, 114
DUMP portmapper call, 142
duration ,98

connection field, 98
duration of a connection, 98, 101
dynamic defaults, 35

ephemeral ports
confused with sensitive services, 109
equalityexpression, 47
escape sequences, 24
established connections, 99

evasion
authentication dialog, 130, 132
excessively small fragments, 161
inconsistent fragment size, 161
inconsistent fragments, 161
inconsistent RPC retransmission, 159
inconsistent TCP retransmission, 163
inserting NULs, 24
length mismatch, 160

e format, 87 using tunneling, 140

edit function, 86 event , seetypes,event

edit _and_check _line function, 137 event engine, 41

edit _and _check _password function, 138 event handler

edit _and_check _user function, 137 invocation, 41

edited _input _trouble variable, 72,131 event handlers, 41

editing, 86 event handling

eggdrop sensitive filename, 124 weird, 156-163

eggdrop sensitive login input, 131 event keyword, 44

eject exploit, 131 event schedulingxpression, 50

else keyword, 44 event statement, 44

embedded NUL event type, 41
run-time error, 91 events

--enable-brov6 configuration option, 13 account _tried ,114

encrypted login sessions, 142 ack _above _hole , 95, 163

encryption activating _encryption , 142
leading to “excessive lines”, 141 authentication _accepted , 141

endian issues, 87, 148 authentication rejected |, 141

ENDIANBIG constant, 148 authentication _skipped , 141

188

bad _option , 141

bad _option _termination , 141
bro _done, 95

bro _init ,94

bro _signal , 95

conn _stats , 148

conn _weird , 156

conn _weird _addl , 160
connection _attempt , 99
connection _established
connection _finished ,99
connection _half _finished ,100
connection _partial _close , 100
connection _pending , 100
connection _rejected ,99
connection _reset , 100

dns _mapping _altered , 119

dns _mapping _lost _name, 119

dns _mapping _name_changed , 119
dns _mapping _new_name, 119

dns _mapping _unverified , 119
dns _mapping _valid , 119
exceptional, 154-163

excessive _ine ,140

finger _reply , 120

finger _request ,120

, 99, 141

finish, 95
flow _weird , 161
ftp _reply ,126

ftp _request ,126

general Bro processing, 94
generic TCP connection, 99
http _request ,128

ident _error ,129

ident _reply , 129

ident _request , 129
inconsistent _option , 140
initialization, 94

login _confused , 139
login _confused _text , 140
login _failure ,138

login _input _line , 139
login _output _line ,139
login _success ,138

login _terminal , 140

net _done, 95

net _stats _update , 95

net _weird , 162
new_connection , 99
partial _connection 99, 141
pmattempt _callit 147
pmattempt _dump, 147
pmattempt _getport , 147
pmattempt _null , 147
pmattempt _set , 147

189

pmattempt _unset , 147

pmbad _port , 147

pmrequest _callit 146

pmrequest _dump, 146

pmrequest _getport , 146

pmrequest _null , 146

pmrequest _set , 146

pmrequest _unset , 146

PTRscan , 65

rexmit _inconsistency , 163

scheduling, 50

signature _match , 148

ssl _certificate , 153

ssl _certificate _seen, 153

ssl _conn _alert , 153

ssl _conn _attempt , 152

ssl _conn _established , 153

ssl _conn _reused , 153

ssl _conn _server _reply , 153

ssl _conn _weak, 154

startup, 94

termination, 95

udp _reply , 100

udp _request , 100
exceptional events, 154-163
excess _RPC(“weird” event), 157
excessive _line event, 140

excessive _ntp _request variable, 74
excessive _RPClen (“weird” event), 157
excessive _typeahead (login confusion state), 132

excessively long lines, 140

excessively _large _fragment (“weird” event), 161
excessively _small _fragment (“weird”event), 161

excluding hosts, 93
executables
running, 90
exit function, 86
expanded _line , 137
check _info field, 137
expiration
timer, 50, 84
&expire _func attribute, 36
explicit typing, 54
exploit scans, 148
exploit tools, 133
smashdu.c , 133
exploits, 131
/bin/eject ,131
buffer overflow, 133
eject ,131
loadmodule , 131
Unix, 131
expressiorstatement, 43
expressions, 46-52
anonymous functiq8

arithmetic 47
assignment48
conditional 48
constant46
equality, 47
event scheduling0
function cal| 48
index 50
logical, 47
memberships51
negation 46
parenthesize46
pattern matching51
positivation 47
record constructor52
record field acces$2
record field test52
relational, 48
variable 46
decrement46
increment46

extra _repeat _text (login confusion state), 132

EZsetup username, 121

F, 22
-F flag, 18
-f flag, 17
f format, 87
failure of heuristics, 131
fatal run-time error
non-existing connection, 86
fetchutility, 133
fflush 86
field attributes, 32
file ,seetypesfile
file type, 39
flenames
sensitive, 124, 131
files
appending, 89
opening, 89
testing if open, 85
filtering
default, 93
filters, 93-94
displaying, 94
errors, 94
FIN control packet, 18, 100
FIN _advanced _last _seq (“weird” event), 157

FIN _after _reset (“weird” event), 158
FIN _storm (“weird” event), 158
Finger

analysis, 120

weird events, 158
finger analyzer, 120
finger _reply event, 120

190

finger _request event, 120
finish event, 95
firewall

reactive, 113, 114

flag _rejected _service variable, 68,109

flag _successful _inbound _service variable, 68,
109
flag _successful _service variable, 67,109
flags
-F, 18
-0, 18
-P, 18,118
-W, 18
-f, 17
-h, 17
-i , 17
-p,17
-r, 17
-s,17
-v, 18
-w, 18
flags of connection, 101
flex utility, 25
flow _weird event, 161
flush _all function, 86
fmt function, 86
for keyword, 44
for statement, 44
forbidden check _info record, 137
forbidden _id _patterns variable, 68, 121
forbidden _ids variable, 68, 121
forbidden _.ids _if _no_password variable, 68, 121

forcing access to Bro’s private DNS cache, 18
format
% 87
D, 87
d, 87
e, 87
f,87
g, 87
precision, 86
width, 86
formatting text, 86
forward ,124
frag module, 121
fragment reassembly, 121
fragment _inconsistency “weird” event), 161
fragment _overlap (“weird” event), 161

fragment _protocol _inconsistency (“weird”
event), 161

fragment _size _inconsistency (“weird” event),
161

fragment _with _DF(“weird” event), 162

fragments

excessively large, 161

excessively small, 161
inconsistent, 161
inconsistent protocols, 161
inconsistent sizes, 161
overlapping, 161

TCP vs. UDP, 121

frogs

FTP

full
full
full

function

dissecting, 127

analysis, 122

ephemeral ports confused with sensitive services, 109
log file, 125

session information, 122

weird events, 158

analyzer, 122

session summary file, 125

_data _expected variable, 66

_data _expected _session variable, 66

_excessive _filename _len variable, 66

_excessive _filename _trunc _len variable, 66
_guest _ids variable, 65, 123

_hot _cmds variable, 66

_hot files variable, 66, 124

_hot _guest _files variable, 66, 124

_ignore _invalid _PORTvariable, 66

_ignore _privileged _PASVsvariable, 66

_log variable, 65

_not _actually _hot files
_port record, 89

_reply event, 126
_request event, 126
_session _info record, 122,123
_sessions variable, 65

_sig _disabled variable, 59
_skip _hot variable, 65, 123

_id _string function, 103
_input _trouble variable, 72
_output _trouble variable, 72
, seetypes,function

variable, 124

function callexpression, 48
function invocation, 48

function

keyword, 48

function type, 39-40
functions, 39—-40

active _connection ,85
active _file ,85

add _interface , 85

add _tcpdump filter , 85
anonymous, 48

byte _len , 85

cat , 85

check _hot , 110

check _scan, 114

check _spoof , 110

clean , 85

191

close , 85
conn _size , 103

conn _state , 103
connection _record , 85
contains _string , 86
current _time , 86
demux_conn, 117
determine _service ,103
discarder _check _icmp, 86
discarder _check _ip , 86
discarder _check _tcp , 86
discarder _check _udp, 86
drop _address , 114

edit , 86

edit _and_check _line , 137

edit _and_check _password , 138

edit _and_check _user , 137

endpoint _id , 115
exit , 86

flush _all , 86
fmt , 86

full _id _string , 103
get _login _state ,87

get _orig _seq, 87
get _resp _seq, 87
getenv , 87
has _signature
hot _login ,137
id _string , 104
is _forbidden .d , 137
is _ftp _data _conn, 125
is _hot _id , 137

is _local _addr ,106

is _login _conn, 137

is _tcp _port , 87

length , 88

log _file _name, 88

log _hook, 85,115,116
log _hot _conn, 104
mask_addr , 88
max_count , 88
max_double , 88
max.interval , 88

min _count , 88

min _double , 88

min _interval , 88
mkdir , 88
network _time , 88
open, 39, 89

open _for _append, 39, 89
open _log file ,89
parse _ftp _pasv, 89
parse _ftp _port , 89
pmactivity 144
pmattempt , 145

_matched , 149

pmcheck _getport , 144 headers

pmrequest , 145 truncated, 162

reading _live _traffic ,89 heartbeat _interval variable, 62
record _connection 105 help message, 17

redefining, 40 heuristics

report _weird , 156 attacker-induced confusion, 132
report _weird _conn, 156 confusion, 131

report _weird _orig , 156 environment, 132

rpc _prog , 144 extracting username information, 130, 131
service _name, 105 missing login prompt, 132

set _buf , 89 missing username, 132

set _contents file ,89 multiple login prompts, 132

set _login _state , 90 multiple usernames, 132

set _record _packets ,90 type-ahead, 132

site-specific, 106 VMS, 132

skip _further _processing 90 \x hex-digitshexadecimal escape, 24
sub _bytes , 90 hf utility program, 20

system , 90 horiz _scan _thresholds variable, 76, 149
terminate _connection , 105 horizontal exploit scans, 148

to _lower , 90 host order (vs. network order), 87

to net , 91 hostname , 119

to _upper , 91 dns _mapping field, 119

hostnames, 29

g format, 87 .

garbage args (RPC status code), 146 host;‘napplng addresses to, 20
general Bro processing events, 94 excluding, 93

general scripting, 88 ina connéction 101
generic connection analysis, 95 hot . 98 '

GETHTTP method, 127
get login _state function, 87
get _orig _seq function, 87
get _resp _seq function, 87
getenv function, 87
GETPORT portmapper call, 142
global scope
of enumerations, 24
global variable declaration, 53
global variables, 53
capture filter 17
done _with _network , 50
interfaces , 16,17
restrict Afilter ;17
gnutella _sig _disabled variable, 59
gtld _servers variable, 78

connection field, 98
hot /24 destination networks, 108
hot /24 source networks, 107
hot analyzer, 106
hot check _info record, 137
hot connection
analysis, 106
logging, 104
hot connections, 138
hot destination addresses, 107
hot detection, 110
hot source addresses, 107
hot usernames, 121
hot-ids module, 121
hot _conns _reported variable, 63
hot _dst _24nets variable, 67, 108

-h flag, 17 hot _dsts variable, 67, 107

half-finished connections, 100 hot _id check _info record, 137

handling signals, 95 hot _ident _exceptions variable, 70, 129

handshake _cipher , 151 hot _ident _ids variable, 70, 129
ss|l _connection _info field, 151 hot _ids variable, 68, 122

has _signature _matched function, 149 hot _login function, 137

have _FTP variable, 63 hot _login _ids variable, 74, 136

have _skip _remote _sensitive _URIs variable, 69 hot _names variable, 65, 120

have _SMTPvariable, 63 hot _src _24nets variable, 67, 107

have _stats variable, 63 hot _srcs variable, 67, 107

HEADHTTP method, 127 hot _ssh _orig _ports variable, 134

192

hot _telnet _orig _ports variable, 73,134
hot _terminal _types variable, 73, 133
hr (hours) interval unit, 27
HTTP

analysis, 127

log file, 127

weird events, 157
http analyzer, 127
HTTP methods, 127

GET, 127

HEAD 127

POST 127
HTTP packets

contents not being recorded, 18
http session summary file, 127
http _abstract _maxlength variable, 69
http _log variable, 68
http _proxy _sig _disabled variable, 60
http _request event, 128
http _sessions variable, 68
http _sig _disabled variable, 60
HTTP.unknown _method (“weird” event), 158
HTTPversion _mismatch (“weird” event), 158
HUP signal, 95

-i flag, 17
ICMP
checksum error, 157
connections, 98
timeout, 98
weird events, 157
icmp _flows variable, 70
id , 96, 122, 150
ftp _session _info field, 122
ssl _connection _info field, 150
ID of connection, 103, 104
id _index , 151
ssl _connection _info field, 151
id _string function, 104
IDENT
analysis, 128
weird events, 160
ident analyzer, 128
ident/ authentication annotation, 129
ident _error event, 129
ident _reply event, 129
ident _request event, 129
ident _request _addendum (“weird” event), 161
IEUser
useless FTP username, 125
if keyword, 44
if statement, 44
ignore _checksums variable, 60
implicit typing, 54
in operator, 26, 51
in-order delivery, 148

lin negation ofn operator, 27
inactivity _timeout variable, 61
inappropriate _FIN (“weird” event), 158
inbound services

fatal, 109

forbidden, 109
include _HTTPabstract variable, 69
incompletely _captured _fragment (“weird”

event), 162

inconsistent acknowledgment, 163
inconsistent retransmission, 159, 163
inconsistent _option event, 140
incremeniexpressions, 46
index

of atable, 33
indexexpression, 50
inetd.conf 109
inferring types, 55
information associated with a connection, 98, 103
ingreslock popular backdoor, 109
initialization event, 94
initialization of variables, 55
input

analysis, 130

editing, 131
input _trouble variable, 72,131
input _wait _for _output variable, 72
installing Bro, 13
int , seetypes,int
INT signal, 95
integers

network vs. host order, 87
interconn _conns variable, 70
interconn _default _pkt _size variable, 70
interconn _demux_disabled variable, 72
interconn _ignore _standard _ports variable, 72
interconn _log variable, 70
interconn _max.interarrival variable, 70
interconn _maxkeystroke _pkt _size variable, 70
interconn _min _7bit _ascii _ratio variable, 71
interconn _min _alpha variable, 72
interconn _min _bytes variable, 71
interconn _min _duration variable, 71
interconn _min _gammavariable, 72
interconn _min _interarrival variable, 70
interconn _min _normal _line _ratio variable, 71
interconn _min _num.lines variable, 71
interconn _min _num.pkts variable, 71
interconn _min _ssh _pkts _ratio variable, 71
interconn _ssh _len _disabled variable, 71
interconn _standard _ports variable, 72
interconn stat _backoff variable, 71
interconn _stat _period variable, 71
interfaces global variable, 16, 17
interfaces variable, 84

internal networks
spoof detection, 107
internal variables
ATTEMPTINTERVAL, 99

PARTIAL_CLOSEINTERVAL, 100

WATCHDQIBITERVAL, 18

internally truncated _header
162

Internet Relay Chat (IRC)

attacker subpopulation, 131
interval , seetypes,interval
interval maximum, 88
interval minimum, 88
interval units

day, 27

hr, 27

min, 27

sec, 27

usec , 27
invocation

function, 48
invoking event handlers, 41
IP

checksum error, 162

fragments, 161

identification field, 148

weird events, 162
IPv4/IPv6 address constants, 29
IPv6 and lack of CIDR prefixes, 30
IPv6 support, 29
IRC, 131
is not a TCP connection , 87
is _forbidden _d function, 137
is _ftp _data _conn function, 125
is _hot _id function, 137

is _local _addr function, 106
is _login _conn function, 137
is _tcp _port function, 87
isascii 90, 91
islower, 91
isupper 90
kazaa _sig _disabled variable, 59
keystrokes

analysis, 130

editing, 131
keywords

add, 45

break , 45

delete ,45

else , 44

event , 44

for ,44

function ,48

if ,44

log , 43

(“weird” event),

194

next , 44

print ,43

return , 45

schedule ,50
kiddies

script, 107

Land attack, 110, 163
Land _attack (“weird” event), 163
large BPF buffers, 13
last _stat variable, 63
last _stat _time variable, 64
(operator, 46, 48
length
of strings, 85
of table or set, 88
length function, 88
length mismatch
UDP, 160

length() requires a table/set argument

88

length() takes exactly one argument

lex utility, 25
libpcap buffer size patch, 13
libpcaplibrary, 13
libraries
libpcap, 13
line editing, 86
Linux
compiling Bro under, 13
super exploit, 133
little endian, 87, 148
live traffic, 44, 89
load
shedding, 90
loadmodule exploit, 131
local addresses, 105, 106
spoofing, 106, 107, 110
local statement, 45
local variable declaration, 53
local variables, 45, 53

local _16_nets variable, 79, 105

local _24_nets variable, 79, 105

local _code _red _response _pgmvariable, 63
local _mail _addr variable, 79

local _nets variable, 79, 105

log file, 84, 88, 115
altering, 133
connection summaryéd), 105
FTP, 125
HTTP, 127
signatures, 148
SSL, 152
weird events, 154
log keyword, 43
log module, 115

log statement, 43
log file _namefunction, 88
log _hook function, 115, 116
log _hook predefined function, 85
log _hot _conn function, 104
log HTTPdata variable, 69
log _if _not _denied , 123
ftp _session _info field, 123
log _if _not _unavail ,123
ftp _session _info field, 123
log .t ,123
ftp _session _info field, 123
LOGNOTICEsyslog level, 44
logging
connection, 104
control of, 85
logical expression, 47
logical negation, 22
login analysis
confusion, 131
login analyzer, 130
login confusion states, 132
excessive _typeahead , 132
extra _repeat _text ,132
multiple _login _prompts , 132
multiple _USERs 132
no_login _prompt , 132
no_username , 132
no_username? , 132
non_empty _multi _login , 132
possible _login _ploy , 132
repeat _without _username , 132
responder _environment 132
username _with _embedded repeat ,132
login prompts
missing, 132
repeated, 132
login session, 130
state, 87, 90
login _confused event, 139
login _confused _text event, 140
login _failure event, 138
login _failure _msgs variable, 73, 134
login _input _line event, 139
login _non _failure _msgs variable, 73, 135
login _output _line event, 139
login _prompts variable, 73, 134
login _sessions variable, 74

LOGIN.STATEAUTHENTICATEstate of login connec-

tion, 87

LOGIN.STATECONFUSEBtate of login connection, 87
LOGIN.STATELOGGEDN state of login connection, 87

LOGIN_STATESKIP state of login connection, 87
login _success event, 138
login _success _msgs variable, 73, 135

login _terminal event, 140

login _timeouts variable, 73, 136
Is utility, 133

lynx utility, 133

magic terminal types, 133
maintain _http _sessions variable, 69
management

of state, 36
mask_addr function, 88
masking, 88, 91
max_count function, 88
max_double function, 88
max_finger _request _len variable, 65
max_interval function, 88
max request _length variable, 120
max_timer _expires variable, 84
maximum, 88
Maximum Segment Lifetime (MSL), 159
maximums, 88

count , 88
double , 88
interval , 88

membershigxpression, 51
memory management, 36
message
bad format , 87
bad second argument to mask _addr()

88
bad type for Date format , 87
bad type for floating-point format

87
bad type for integer format , 87
cannot create directory , 88

connection id is not a known
connection , 86,91
connection id is not a known login
connection 87,90
conversion of non-IPv4 address to
net ,91
is not a TCP connection , 87
length() requires a table/set
argument , 88
length() takes exactly one argument
88
not exactly one edit character , 86
precision specified for
non-floating point format , 86
ridiculous field width or precision
86
string with embedded NUL ,91
string without NUL terminator , 91
too few arguments for format , 87
too many arguments for format , 87
wrong number of fnt arguments , 87
mime_log variable, 74

mime_sessions variable, 74
min (minutes) interval unit, 27
min _count function, 88
min _double function, 88
min _interval function, 88
minimum, 88
minimums, 88
count , 88
double , 88
interval , 88
mismatch (RPC status code), 146
missing login prompts, 132
missing username, 132
mkdir failure
run-time error, 88
mkdir function, 88
modifiability of variables, 54
modules
active , 117
demux, 117
dns, 118
event handlers, 119
variables, 119
frag ,121
hot-ids , 121
log , 115
mt, 115
port-name , 115
weird , 154
MSL (Maximum Segment Lifetime), 159
mt module, 115
multi-dimensional table, 34
multiple login prompts, 132
multiple usernames, 132
multiple _HTTPrequest _elements
event), 158
multiple _ogin _prompts
132
multiple _RPCs(“weird” event), 158
multiple _USERs(login confusion state), 132
multiplication
numeric, 23
temporal, 28

name
of log file, 88
names
case-sensitive, 31
Napster
tunneled over Telnet or Rlogin, 140
napster _sig _disabled variable, 59
negation
logical, 22
temporal, 27
negationexpression, 46
neighbor addresses, 106

(login confusion state),

196

neighbor _16_nets variable, 79, 106
neighbor _24 _nets variable, 106
neighbor _nets variable, 79, 106
net , seetypes,net

constants, 30

operators, 30
net type, 29-30
net _done event, 95
net _stats , seetypes,net _stats
net _stats record, 96
net _stats _update event, 95
net _weird event, 162
network cleanup event, 95
Network File System (NFS), 143
network interfaces, 16, 17, 84
network order (vs. host order), 87
network prefixes, 29, 91, 105
network statistics, 95
Network Virtual Terminal (NVT), 140
network _time function, 88
networks

hot destinations, 108

hot sources, 107
never _shut _down variable, 113
new connection, 99
new_connection event, 99
next keyword, 44
next statement, 44
NFS (Network File System), 143
NFS traffic

high volume fragments, 121
NFSservices variable, 75, 143
NFSworld _servers variable, 75, 143
no such connection

run-time error, 91
no_login _prompt (login confusion state), 132
no_username (login confusion state), 132
no_username? (login confusion state), 132
non-blocking DNS lookups, 13
non-existing connection

fatal run-time error, 86
non _analyzed _lifetime variable, 61
non _ASCII _hosts variable, 73, 136
non _backdoor _prompts variable, 73,133

non_empty _multi _login (login confusion state), 132

<none> username, 132
not a login connection
run-time error, 87, 90
not a TCP connection
run-time error, 87
not exactly one edit character , 86
lin negation ofn operator, 27
I “not” operator, 22
NT
not supported, 12

ntp _session _timeout variable, 62 [| “or”, 22,47

NUL, 85) parenthesis, 46, 48
NULin _line (“weird” event), 158 operators
NULL portmapper call, 142 1,46
null statement, 45 lin ,51
NULs, 158 (,50
allowed in strings, 24, 91), 50
disallowed in certain function calls, 91 * 23,28, 47
terminating string constants, 25 +, 23, 28, 47
termination, 91 ++, 46
terminator missing +=, 93
run-time error, 91 -, 23,27, 28,46, 47
numaccounts _tried variable, 77 --,46
numbackscatter _peers variable, 78 /,23,28,47
numdistinct _peers variable, 76 1,48
numddistinct _ports variable, 76 =, 48
numdns _sessions variable, 64 ?,48
numin _order statistic, 148 [,50,52
num_OOstatistic, 148 $, 32
num.pkts statistic, 148],50,52
numrepl statistic, 148 address, 29
numrequests , 123 arithmetic, 23
ftp _session _info field, 123 associativity, 23
numrxmit — statistic, 148 operand conversion, 23
numrxmit _bytes statistic, 148 precedence, 23
numscan _triples variable, 77 comparison, 24
number of elements associativity, 24
in table or set, 88 operand conversion, 24
numeric types precedence, 24
count , 21 in ,51,seein operator
double , 21 logical, 22
int ,21 associativity, 22
nuucp username, 121, 129 precedence, 22
NVT (Network Virtual Terminal), 140 net, 30
NVT options pattern, 26
authentication, 141 ports, 29
bad, 141 string, 25
bad termination, 141 temporal, 27
encryption, 142 optimizer for policy script interpreter, 18
inconsistent, 140 optimizing your system for Bro, 13
options
-O flag, 18 Telnet, 130
\ octal-digitsoctal escape, 24 || “or”operator, 22, 47
off-line analysis, 16, 17, 89, 105 orig , 96
ok (RPC status code), 146 orig _h, 96
okay _to _lookup _sensitive _hosts variable, 64 conn _id field, 96
omit _rewrite _place _holder variable, 63 orig _p, 96
on-line analysis, 16, 17, 84, 89, 105 conn _id field, 96
open function, 39, 89 originator ~ _RPCreply (“weird” event), 158
open _for _append function, 39, 89 OTHconnection state, 102
open log file function, 89 out-of-order delivery, 148
opening a file, 89 OutOfBox username, 121
operator output _trouble variable, 72, 133
&&"and”, 22, 47
(parenthesis, 46, 48 -P flag, 18, 118
I “not”, 22 -p flag, 17

197

packet filter
access, 13
permissions, 13
packets
control (SYN/FIN/RST), 18, 100
corrupted, 157, 162
drops, 95, 163
recording, 90
replication, 148
storms, 158
time, 88
(O ,46,48
parenthesizeéxpression, 46
parse _ftp _pasv function, 89
parse _ftp _port function, 89
partial connections, 99
PARTIAL_CLOSEINTERVAL internal variable, 100

partial _connection event, 99, 141

partial _connection _ok variable, 60

partial _finger _request (“weird” event), 158
partial _ftp _request (“weird” event), 158

partial _ident _request (“weird”event), 158
partial _portmapper _request (“weird” event), 158
partial _RPC(“weird” event), 158

partially closed connections, 100

passwd127

passwords

guessing, 112

inadvertently exposed, 130

sniffing, 130
PATHUTMPsensitive pattern, 133
pattern , seetypes,pattern
pattern matching, 25

embedded, 26

exact, 26
pattern matchingxpression, 51
patterns, 25-27
pending connections, 100
pending _data _when_closed (“weird” event), 158

performance

analysis tradeoffs, 92

filtering, 93
pm.activity function, 144
pmattempt function, 145
pmattempt portmapper attempt, 147
pmattempt _callit event, 147
pmattempt _dumpevent, 147
pmattempt _getport event, 147
pmattempt _null event, 147
pmattempt _set event, 147
pmattempt _unset event, 147
pmbad _port event, 147
pmcallit _request portmapper call, 147

pmcheck _getport function, 144
pm.mapping portmapper mapping record, 146

198

pmport _request portmapper request, 146

pmrequest function, 145
pmrequest _callit event, 146
pmrequest _dumpevent, 146
pmrequest _getport event, 146
pmrequest _null event, 146
pmrequest _set event, 146
pmrequest _unset event, 146

policy/ policy directory, 19
policy directories, 19
policy script interpreter
optimizer, 18
policy/local/ policy directory, 19
polymorphic functions
need for, 88, 160
popular backdoors, 109
ingreslock , 109
port , seetypes,port
ephemeral, 104
port scanning, 112
port type, 28-29
port-name module, 115
port _names variable, 74, 98, 103, 115
portmapper analyzer, 142
portmapper attempts, 147
pmattempt , 147
portmapper calls, 147
CALLIT, 142
DUMP, 142
GETPORT, 142
NULL, 142
pm.callit
SET, 142
UNSET, 142
portmapper mapping records, 146
pmmapping , 146
portmapper requests, 146
pmport _request , 146
ports
constants, 28
operators, 29
TCP, 28
TCP vs. UDP, 87
UDP, 28
positivationexpression, 47
possible future changes
breaking string constants across multiple lines, 24
constants for absolute times, 27
timer type, 50
use ofany type for bypassing strong typing, 42
possible packet drop messages, 163
ack above a hole ,163

_request , 147

possible _login _ploy (login confusion state), 132
possible _port _scan _thresh variable, 77,112
possible _scan _sources variable, 77

possible _split _routing (“weird” event), 159

POSTHTTP method, 127
precision
of formatted strings, 86
precision specified for non-floating
point format , 86
predefined functions, 85-91
active _connection ,85
active file ,85
add_interface , 85
add _tcpdump filter , 85
byte _len , 85
cat , 85
clean , 85
close , 85
connection _record , 85
contains _string , 86
current _time , 86
discarder _check _icmp , 86
discarder _check _ip , 86
discarder _check _tcp , 86
discarder _check _udp, 86
edit , 86

exit , 86
flush _all , 86
fmt , 86

get login _state ,87
get _orig _seq, 87
get _resp _seq, 87
getenv , 87

is _tcp _port , 87
length , 88

log file _name, 88
log _hook, 85
mask_addr , 88
max_count , 88
max.double , 88
max.interval , 88
min _count , 88
min _double , 88

min _interval , 88
mkdir , 88
network _time , 88
open, 89

open _for _append, 89

open _log file ,89

parse _ftp _pasv, 89

parse _ftp _port , 89
reading _live _traffic ,89
set _buf , 89

set _contents _file ,89
set _login _state , 90

set _record _packets , 90
skip _further _processing ,90
sub _bytes , 90

system , 90
to _lower , 90
to _net , 91
to _upper , 91

predefined variables, 57-84

accounts _tried ,77

active _conn,57

actually _rejected _PTRanno, 64
addl _web, 77

alert _action filters , 57

alert file ,57

allow _16_net _pairs , 67

allow _excessive _ntp _requests ,74
allow _pairs , 67

allow _PTRscans , 65

allow _service _pairs ,67

allow _services ,67

allow _services _to,67

allow _spoof _services ,67

always _hot _ids , 68

always _hot _login _ids ,74

anon _log , 57

anonymize _ip _addr , 62

any _RPCokay , 75

backdoor _annotate _standard _ports
backdoor _demux_disabled ,58
backdoor _demux_skip _tags , 58
backdoor _ignore _dst _addrs ,58
backdoor _ignore _ports ,58
backdoor _ignore _src _addrs , 58
backdoor _og , 58

backdoor _min _7bit _ascii _ratio ,58
backdoor _min _bytes , 58

, 59

backdoor _min_normal _line _ratio ,58

backdoor _min_numlines ,58
backdoor _prompts , 73
backdoor _standard _ports ,58
backdoor _stat _backoff ,59
backdoor _stat _period ,58
backscatter _ports , 78

bro _log file ,84

capture fiter ,84

check relay _3,74

check relay 4,74

code red _listl , 63

code _red _list2 ,63

code _red _log , 63

conn _tag _info , 81
demux_dir , 64

demuxed _conn, 64

detected _stones , 81

did _PTRscan _event , 65

did _sigconns , 60

did _ssh _version ,81

did _stone _summary, 82

direct _login _prompts , 84
discarder _maxlen , 84
display _pairs ,81

distinct _answered _PTRrequests , 65
distinct _backscatter _peers , 78
distinct _peers , 76

distinct _ports , 76

distinct _PTRrequests , 64

distinct _rejected _PTRrequests , 64
dns _interesting _changes , 65

dns log , 64

dns _session _timeout , 62

dns _sessions , 64

done _with _network , 84

edited _input _trouble ,72

excessive _ntp _request ,74

flag _rejected _service ,68

flag _successful _inbound _service ,68
flag _successful _service ,67
forbidden _id _patterns , 68

forbidden _ids , 68

forbidden _ids _if _no_password , 68

ftp _data _expected , 66

ftp _data _expected _session , 66

ftp _excessive _filename _en , 66

ftp _excessive _filename _trunc _en , 66
ftp _guest .ids , 65

ftp _hot _cmds, 66

ftp _hot files ,66

ftp _hot _guest files ,66

ftp _ignore _invalid _PORTG66

ftp _ignore _privileged _PASVs 66

ftp _log , 65

ftp _sessions , 65

ftp _sig _disabled ,59

ftp _skip _hot , 65

full _input _trouble ,72
full _output _trouble ,72
gnutella _sig _disabled ,59
gtld _servers ,78

have _FTP, 63

have _skip _remote _sensitive
have _SMTR 63

have _stats , 63

heartbeat _interval 62
horiz _scan _thresholds , 76
hot _conns _reported , 63
hot _dst _24nets , 67

hot _dsts , 67

hot _ident _exceptions ,70
hot _ident _ids , 70

hot _ids , 68

hot _login _ids , 74

hot _names, 65

hot _src _24nets , 67

-URIs, 69

200

hot _srcs , 67

hot _telnet _orig _ports ,73
hot _terminal _types ,73

http _abstract _maxlength , 69
http _log , 68

http _proxy _sig _disabled , 60
http _sessions , 68

http _sig _disabled , 60

icmp _flows , 70

ignore _checksums , 60
inactivity _timeout , 61
include _HTTPabstract ,69
input _trouble ,72

input _wait _for _output ,72

interconn _conns , 70

interconn _default _pkt _size , 70
interconn _demux_disabled , 72
interconn _ignore _standard _ports , 72
interconn _log , 70

interconn _max.interarrival , 70
interconn _maxkeystroke _pkt _size , 70
interconn _min _7bit _ascii _ratio ,71
interconn _min _alpha , 72

interconn _min _bytes , 71

interconn _min _duration ,71

interconn _min _gamma 72

interconn _min _interarrival , 70
interconn _min _normal _line _ratio ,71
interconn _min _numlines ,71
interconn _min _numpkts , 71

interconn _min _ssh pkts _ratio ,71
interconn _ssh _len _disabled ,71
interconn _standard _ports , 72
interconn _stat _backoff ,71
interconn _stat _period ,71

interfaces , 84

kazaa _sig _disabled ,59

last _stat , 63

last _stat _time ,64

local _16_nets ,79

local _24 _nets ,79

local _code _red _response _pgm, 63
local _mail _addr , 79

local _nets ,79

log HTTPdata , 69

login _failure _msgs, 73
login _non_failure _msgs, 73
login _prompts , 73

login _sessions , 74

login _success _msgs, 73
login _timeouts ,73

maintain _http _sessions , 69
max_finger _request _len , 65
max_timer _expires , 84
mime_log , 74

mime_sessions , 74 RPCdump_okay , 75

napster _sig _disabled ,59 RPCokay , 75
neighbor _16_nets , 79 RPCokay _nets , 75
neighbor _nets , 79 RPCokay _services ,75
NFSservices ,75 rpc _programs , 75
NFSworld _servers ,75 RPCserver _map, 64
non _analyzed _lifetime ,61 rpc _timeout , 62
non _ASCII _hosts , 73 rule _actions ,76
non _backdoor _prompts ,73 rule file ,76
ntp _session _timeout , 62 same_local _net _is _spoof , 67
num.accounts _tried ,77 scan _triples ,77
numbackscatter _peers , 78 sensitive _lookup _hosts , 64
numddistinct _peers , 76 sensitive _post _URIs, 69
numddistinct _ports , 76 sensitive _URIs, 69
numdns _sessions , 64 skip _accounts _tried ,77
numwscan _triples 77 skip _authentication , 73
okay to _lookup _sensitive _hosts , 64 skip _clear _ssh _reports ,82
omit _rewrite _place _holder , 63 skip _logins _to,74
output _trouble ,72 skip _outbound _services ,77
partial _connection _ok, 60 skip _remote _sensitive _URIs, 69
port _names, 74 skip _scan _nets _16, 78
possible _port _scan _thresh , 77 skip _scan _nets 24,78
possible _scan _sources , 77 skip _scan _sources ,78
preserved _net,57 skip _services ,77
preserved _subnet ,57 skip _unexpected , 66
process _HTTPdata , 69 skip _unexpected _net , 66
process _HTTP.replies ,69 smtp _hot _cmds, 80
process _smtp _relay ,79 smtp _legal _cmds, 80
public _ident _systems ,70 smtp _log , 79
public _ident _user _ids ,70 smtp _relay _table , 80
relay _log , 80 smtp _sensitive _cmds, 80
remote _code _red _response _pgm, 63 smtp _session _by_content _hash, 81
report _accounts _tried ,77 smtp _session _by_message .id , 80
report _backscatter ,78 smtp _session _by _recipient , 80
report _outbound _peer _scan, 76 smtp _sessions , 79
report _peer _scan, 76 software _file ,81
report _port _scan, 76 software _ident _by _major , 81
report _rejected _PTRfactor ,65 software _table ,81
report _rejected _PTRthresh ,65 ssh _len _conns , 60
report _remote _accounts _tried ,77 ssh _log , 81
restrict filter ,84 ssh _min _.num.pkts , 60
rewrite _finger _trace ,65 ssh _min _ssh _pkts _ratio , 60
rewrite _ident _trace ,70 ssh _sig _disabled ,59
rewriting _http _trace , 63 step _log , 81
rewriting _smtp _trace , 63 stp _.commonhost _thresh , 82
rlogin _conns , 60 stp _delta ,82
rlogin _id _okay _if _no_password _exposed , stp _.demux_disabled , 82

74 stp _idle _min, 82
rlogin _sig _lbyte _disabled ,59 stp _random _pair _thresh , 82
rlogin _sig _disabled ,59 stp _ratio _thresh ,82
root _backdoor _sig _conns , 60 stp _scale , 82
root _backdoor _sig _disabled ,59 suppress _pmlog , 75
root _servers ,78 suppress _scan _checks , 76
router _prompts , 73 table _expire _interval 62
RPCdo_not _.complain , 75 tag _to _conn _map, 81

201

tcp _attempt _delayv , 61
tcp _close _delay , 61
tcp _connection _inger ,61
tcp _match _undelivered , 61
tcp _partial _close _delay , 61
tcp _reassembler _ports _orig , 62
tcp _reassembler _ports _resp , 62
tcp _reset _delay , 61
tcp _session _timer ,61
tcp _storm _interarrival
tcp _storm _thresh , 62
tcp _SYNack _ok, 61
tcp _SYNtimeout , 61
telnet _sig _3byte _conns, 60
telnet _sig _3byte _disabled ,59
telnet _sig _conns, 60
telnet _sig _disabled ,59
terminate _successful _inbound _service
68
tftp _alert _count , 83
udp _did _summary, 83
udp _rep _count , 83
udp _req _count , 83
vert _scan _thresholds ,76
watchdog _interval , 62
weird _action , 83
weird _action filters , 83
weird _do_not _ignore _repeats , 83
weird _ignore _host , 83
weird _log , 83
worm_list , 83
worm_log , 83
worm_type _list ,83
worm_URlIs, 69
prefixes, 17, 19
network, 29, 91, 105

_thresh , 62

premature _connection _reuse (“weird” event), 159
preserved _net variable, 57

preserved _subnet variable, 57

priming Bro’s private DNS cache, 18

print keyword, 43

print statement, 43

print-filter analyzer, 94

printf, 86

process _HTTP.data variable, 69
process _HTTPreplies variable, 69
process _smtp _relay variable, 79
processing

avoiding, 90
prog unavail
programs

cf, 20

hf, 20
PTRscan event, 65
public _ident _systems variable, 70

(RPC status code), 146

202

public _ident _user _ids variable, 70
-r flag, 17
reactive firewall, 113, 114
&read _expire attribute, 36
readingtcpdump files, 17
reading _live _traffic
record , seetypes,record
connection , 96
ftp _port , 89
record constructoexpression, 52
record field accesexpression, 52
record field tesexpression, 52
record _connection function, 105
recorded traffic, 89
recording connections, 105
recording packets, 90

function, 89

records, 30-33, 89, 96-98, 101, 118, 122,137, 150, 168

assignment, 32—-33

check _info , 137
conn _id , 96, 97
connection ,96-98
dns _mapping , 118
endpoint , 96,97, 101
field attributes, 32
fields, 30

accessing, 32

legal names, 31
ftp _port , 89
ftp _session _info , 122
net _stats , 96

signature _state , 168
ssl _connection _info , 150
x509, 150

red connection summary file, 102
&redef attribute, 56
redefining functions, 40
redefining variables, 56
refinement, 56
regular expressionseepatterns
REJ connection state, 102
rejected connections, 99
relational expression, 48
relationals

address, 29

net, 30

numeric, 24

string, 25

temporal, 28
relative time, 27
relay _log variable, 80
remote procedure call (RPC), 142
remote _code _red _response _pgmvariable, 63
repeat text, 132
repeat text (VMS), 132

repeat _without _username (login confusion state),
132

repeated _SYNreply _wo_ack (“weird” event), 159

repeated _SYNwith _ack (“weird” event), 159

replication of packets, 148

report _accounts _tried variable, 77,112

report _backscatter variable, 78

report _outbound _peer _scan variable, 76, 112

report _peer _scan variable, 76, 112

report _port _scan variable, 76

report _rejected _PTRfactor variable, 65

report _rejected _PTRthresh variable, 65

report _remote _accounts _tried variable, 77,112

report _weird function, 156

report _weird _conn function, 156

report _weird _orig function, 156

req _addr , 118

dns _mapping field, 118
req _host , 118

dns _mapping field, 118

request

, 123

ftp _session _info field, 123

request
ftp _session _info

1,123
field, 123

reserved multicast addresss, 144

sun-rpc.mcast.net

,144

reset connections, 100
resp , 96
resp _h, 96

conn _id field, 96
resp _p, 96

conn _id field, 96

responder
responder

restrict
restrict

_environment
_RPCcall
Afilter
Afilter

(“weird” event), 159
global variable, 17
variable, 84, 93-94

restricting traffic, 93
retransmission
inconsistent, 159, 163

return keyword, 45

return statement, 45

rewrite _finger _trace variable, 65
rewrite _ident _trace variable, 70
rewriting _http _trace variable, 63
rewriting _smtp _trace variable, 63
rewt username, 121,131

rexmit _inconsistency event, 163
rhosts |, 124,130,131, 136, 138

ridiculous field width or precision

, 86

) operator, 46, 48
RLIMIT _NOFILE a, 39

Rlogin

session state, 87, 90
sessions, 130
weird events, 157

(login confusion state), 132

203

rlogin _conns variable, 60

rlogin _id _okay _if _no_password _exposed vari-
able, 74, 136

rlogin _sig _lbyte _disabled variable, 59

rlogin _sig _disabled variable, 59

rlogin _text _after _rejected (“weird” event), 159

root

backdoors, 131

Bro not running as, 13

setuid, 133
root _backdoor _sig _conns variable, 60
root _backdoor _sig _disabled variable, 59
root _servers variable, 78

router _prompts variable, 73, 135
routing
split, 159

RPC (Remote Procedure Call), 142
reserved multicast address, 144
weird events, 157

RPC status codes, 146
auth error | 146
garbage args , 146
mismatch , 146

ok, 146

prog unavail ,146
system err , 146
timeout , 146

unknown , 146
RPCdo_not _complain variable, 75
RPCdump_okay variable, 75, 144
RPCokay variable, 75, 143
RPCokay _nets variable, 75, 143
RPCokay _services variable, 75, 143
rpc _prog function, 144
rpc _programs variable, 75, 143
RPCrexmit _inconsistency
RPCserver _mapvariable, 64
rpc _timeout variable, 62
RST control packet, 18, 100
RST termination

causing undetermined connection size, 125
RST.storm (“weird” event), 159
RST.with _data (“weird” event), 159
RSTCOconnection state, 102
RSTOSOconnection state, 102
RSTRconnection state, 102
RSTRHconnection state, 102
rule _actions variable, 76
rule _file variable, 76
run-time error

bad address mask, 88

bad fmt date argument, 87

bad fmt editing character, 86

bad fmt field width, 86

bad fmt floating-point argument, 87

(“weird” event), 159

bad fmt format specifier, 87

bad fmt integer argument, 87

bad fmt precision, 86

bad length argument (not a table or set), 88

can'topen, 19

converting an IPv6 address to net, 91

embedded NUL, 91

mkdir failure, 88

no such connection, 91

non-existing connection, 86

not a login connection, 87, 90

not a TCP connection, 87

NULs

terminator missing, 91

watchdog timer expired, 18

wrong number of fmt arguments, 87

wrong number of length arguments, 88
running Bro, 12
running outside scripts or executables, 90

-s flag, 17
S0 connection state, 102
S1 connection state, 102
S2 connection state, 102
S3 connection state, 102
same_local _net _is _spoof variable, 67, 106
save file
control over what's recorded, 90

reading, 17
writing, 18
scalars, 33

scan analyzer, 112
scan detection, 112-114

scan _triples variable, 77
scanning

address, 112

port, 112

shutting down, 113, 114
stealth, 99, 111, 114, 159
scans
exploit, 148
schedule keyword, 50
scheduling events, 50
scoping of variables, 53
script kiddies, 107
scripting
general, 88
scripts
running, 90
standard, 92-164
search path, 19
searching for strings, 25
sec (seconds) interval unit, 27
semi-colon statement termination, 43
sensitive /24 destination networks, 108
sensitive /24 source networks, 107

204

sensitive destination addresses, 107
sensitive filenames, 124, 131
eggdrop , 124
sensitive information
inadvertently exposed, 130
sensitive login inputs, 131
eggdrop , 131
sensitive patterns, 133
PATHUTMP 133
sensitive POST URIs, 127
wwwroot , 127
sensitive services
confused with ephemeral ports, 109
sensitive source addresses, 107
sensitive usernames, 121

sensitive _lookup _hosts variable, 64
sensitive _post _URIs variable, 69, 127
sensitive _URIs variable, 69, 127

sensitivity associated with a connection, 98
sequence numbers

connection originator, 87

connection responder, 87
server _cert , 151

ssl _connection _info field, 151
service ,98
connection field, 98

service associated with a connection, 98, 101, 103, 105

service

services
allowable, 108
allowed to a particular host, 108
allowed to particular host pairs, 108
fatal if inbound, 109
forbidden, 109
forbidden if attempted, 109
forbidden if inbound, 109

set , seetypes,set

SET portmapper call, 142

set size, 88

set type, 38-39

set _buf function, 89

set _contents file function, 89

set _login _state function, 90

set _record _packets function, 90

setrlimit system calls, 39

setuid root, 133

SF connection state, 102

sgiweb username, 121

sh, 90

SHconnection state, 102

shadow 127

shadowing, 94

shallow copy, 32, 38

shedding load, 90

shell escape, 90

_name function, 105

shell scripts

drop-connectivityl114
short-circuit&& “and” operator, 22, 47
short-circuit|| “or” operator, 22, 47
SHRconnection state, 102
shut _down_all _scans variable, 113
shut _down_scans variable, 113
shut _down_thresh variable, 113
shutting down scans, 113, 114
sig _actions variable, 149
SIG_FILE action, 149
SIG_IGNOREaction, 149
SIG_LOGaction, 149
SIG_QUIET action, 149
SIGHUR, 95
SIGINT, 95
signal handling, 95
signature analysis, 148

signature analyzer, 148
signature _match event, 148
signature _state record, 168
signatures

log file, 148
SIGTERM 95

simultaneous open, 159
simultaneous _open (“weird” event), 159
site addresses, 106
site analyzer, 105
site-specific

functions, 106

information, 105

variables, 105-106
size , 96

endpoint field, 96

of table or set, 88
size of connection, 101, 103
skip _accounts _tried variable, 77,112
skip _authentication variable, 73, 134
skip _clear _ssh _reports variable, 82
skip _further _processing function, 90
skip _logins _to variable, 74, 136
skip _outbound _services variable, 77,113
skip _remote _sensitive _URIs variable, 69
skip _scan _nets _16 variable, 78
skip _scan _nets _24 variable, 78,113
skip _scan _sources variable, 78,113
skip _services variable, 77
skip _unexpected variable, 66, 124
skip _unexpected _net variable, 66, 124
(skipped) authentication annotation, 141
smashdu.c exploit tool, 133
smtp _hot _cmds variable, 80
smtp _legal _cmds variable, 80
smtp _log variable, 79
smtp _relay _table variable, 80

205

smtp _sensitive _cmds variable, 80
smtp _session _by_content _hash variable, 81
smtp _session _by_message _.id variable, 80
smtp _session _by recipient variable, 80
smtp _sessions variable, 79
smurf attacks, 133
sniffer logs, 133
sniffing, 130
software _file variable, 81
software _ident _by_major variable, 81
software _table variable, 81
source code
for Bro, 12
split routing, 159
spontaneous _FIN (“weird” event), 159
spontaneous _RST(“weird” event), 159
spoofing
allowable services, 107
detection, 106, 110
spook detection, 108
sprintf, 86
ssh _len _conns variable, 60
ssh _log variable, 81
ssh _min _numpkts variable, 60

ssh _min _ssh pkts _ratio variable, 60
ssh _sig _disabled variable, 59
SSL

analysis, 149

connection information, 150

log file, 152

x509, 150

SSL analyzer, 149
SSL session summary file, 152

ssl _analyze _certificates variable, 151
ssl _certificate event, 153

ssl _certificate _seen event, 153

ssl _compare _cipherspecs variable, 151
ssl _conn _alert event, 153

ssl _conn _attempt event, 152

ssl _conn _established event, 153

ssl _conn _reused event, 153

ssl _conn _server _reply event, 153

ssl _conn _weak event, 154

ssl _connection _info record, 150, 151
ssl _maxcipherspec _size variable, 151
ssl _store _cert _path variable, 151

ssl _store _certificates variable, 151
ssl _store _key material variable, 152
ssl _verify _certificates variable, 151

standard scripts, 92-164
start time of a connection, 98, 101
start _time , 98
connection
startup
event, 94

field, 98

transients, 159
state , 96
endpoint field, 96
of a Telnet/Rlogin session, 87, 90
state management, 36
state of connection, 101, 103
state of login connections
LOGIN.STATEAUTHENTICATES87
LOGIN.STATECONFUSE[B7
LOGIN.STATELOGGEDN, 87
LOGIN.STATESKIP, 87
statements, 43-46
compound45
expression43
null, 45
add, 45
break , 45
const , 45
delete ,45
event , 44
for ,44
if ,44
local ,45
log , 43
multi-line, 43
next , 44
print 43
return ,45
semi-colon termination, 43
static typing, 22
statistical analysis, 148
statistics, 148
endian _type , 148
numin _order , 148
num.OQ 148
num.pkts , 148
numrepl , 148
numrxmit , 148
numurxmit _bytes , 148
stderr, 84, 90, 115
stdout 43, 90
stealth scans, 99, 111, 114, 159
step _log variable, 81
storms, 158
stp _commonhost _thresh variable, 82
stp _delta variable, 82
stp _demux_disabled variable, 82
stp _idle _min variable, 82
stp _random _pair _thresh variable, 82
stp _ratio _thresh variable, 82
stp _scale variable, 82
strftime 87
string , seetypes,string
extraction, 90
formatting, 86

206

string constants

NUL terminated, 25
string with embedded NUL ,91
string without NUL terminator
<string-with-NUL> error value, 91
strings, 24-25

cleaned up, 85

concatenation, 85

length, 85

termination with NULs, 91
strlen, 85
strstr, 86
sub-tables

lack of, 37
sub _bytes function, 90
subnets, 29, 88, 91, 105
substrings, 90
subtraction

numeric, 23

temporal, 28
sun-rpc.mcast.net
suppress _pmlog variable, 75, 144
suppress _scan _checks variable, 76
SYN control packet, 18, 100
SYNafter _close (“weird”event), 160
SYNafter _partial
SYNafter _reset (“weird”event), 160
SYNinside _connection
SYNseq _jump (“weird” event), 160
SYNwith _data (“weird” event), 160
syslog 44
syslog levels, 44

LOGNOTICE 44
system callss, 39

setrlimit , 39
system configuration, 13
system err (RPC status code), 146
system function, 90

T, 22
T/ITCP, 160
table , seetypes,table
table size, 88
table _expire _interval
tables, 33-38
clearing entries, 38
tag _to _conn _mapvariable, 81
TCP
analysis, 100
checksum error, 157
Christmas packet, 160
connections, 98
corrupted header, 162
events, 99
fragments, 121
transaction, 160

variable, 62

, 91

reserved multicast address, 144

“weird” event), 160

(“weird” event), 160

weird events, 157
tcp analyzer, 100
TCP control packets (SYN/FIN/RST), 18, 100
TCP vs. UDP ports, 87
TCP Wrappers
reset vs. rejected connections, 99
TCP-specific connection events, 99
tcp _attempt _delayv variable, 61
TCPchristmas (“weird” event), 160
tcp _close _delay variable, 61
tcp _connection _inger variable, 61
tcp _match _undelivered variable, 61
tcp _partial _close _delay variable, 61
tcp _reassembler _ports _orig variable, 62
tcp _reassembler _ports _resp variable, 62
tcp _reset _delay variable, 61
tcp _session _timer variable, 61
tcp _storm _interarrival _thresh variable, 62
tcp _storm _thresh variable, 62
tcp _SYNack _ok variable, 61
tcp _SYNtimeout variable, 61
tcpdump , 13, 15,17, 18,93, 94
bugs, 94
filters, 17, 93
merging save files, 18
reading save files, 15, 17
running concurrently with Bro, 13
shadow, 94
turning off optimization, 94
writing save files, 18
Telnet
options, 130
authentication, 141
bad, 141
bad termination, 141
encryption, 142
environment, 132
inconsistent, 140
session state, 87, 90
sessions, 130
telnet _sig _3byte _conns variable, 60
telnet _sig _3byte _disabled variable, 59
telnet _sig _conns variable, 60
telnet _sig _disabled variable, 59
temporal
addition, 28
constants, 27
division, 28
multiplication, 28
negation, 27
relationals, 28
subtraction, 28
types, 27
TERMsignal, 95
terminal type backdoors, 134

207

VT666, 134
terminate _connection function, 105
terminate _successful _inbound _service
able, 68, 109

terminating connections forcibly, 105
termination event, 95
text
formatting, 86
TFreak, 133
tfitp _alert _count variable, 83
time , seetypes,time , 27-28
clock, 86, 88
packet, 88
timeout (RPC status code), 146
timer expiration, 50, 84
timers, 50
timestamps
mapping to readable form, 20
to _lower function, 90
to _net function, 91
to _upper function, 91

tolower, 90
too few arguments for format , 87
too many arguments for format , 87
toupper 91
trace file
control over what'’s recorded, 90
reading, 17
writing, 18
traffic

live vs. recorded, 44, 89

restricting, 93
transaction TCP, 160
transients

startup, 159
trojaning, 133
truncated headers, 162
truncated _header (“weird” event), 162
truncated _IP (“weird” event), 162
tunneling, 140
type casting

not provided in Bro, 42
type inference, 55
type-ahead

maximum allowed, 132
types

addr , 21

bool , 21, 22

conversion, 22

automatic, 22

count , 21, 23

double , 21, 23

enum, 21, 24

enumeration21

event , 22

vari-

file ,21
function 21
int ,21,23
interval |, 21, 27
net , 21

numeric 21, 23-24
bool not numeric, 23
intermixing, 23

overview, 21

pattern , 21,25

port , 21

record ,21

set ,21

string , 21,24

table ,21

temporal 21

time , 21, 27

types, need fors, 98

union , 98

typing

static, 22

typing of variables, 54

UDP
analysis, 100
checksum error, 157
“connections”, 98
fragments, 121
length mismatch, 160
timeout, 98
weird events, 157

udp analyzer, 100

UDRdatagram _length

160

udp _did _summary variable, 83

udp _rep _count variable, 83

udp _reply event, 100

udp _req _count variable, 83

udp _request event, 100

unanalyzed data, 158

undirectional analysis, 159

union type
need for, 88

union types, need for, 98

Unix analysis, 130

Unix support, 12

Unix timestamps, 20

unknown (RPC status code), 146

unpaired _RPCresponse (“weird” event), 160

UNSET portmapper call, 142

unsolicited _SYNresponse (“weird” event), 160

unusual events, 154-163
prevalence in actual network traffic, 154

usage message, 17

usec (microseconds) interval unit, 27

user , 123

_mismatch (“weird” event),

208

ftp _session _info field, 123
$USERenvironment variable, 132
user keystrokes

analysis, 130

editing, 131
Username: (VMS login prompt), 132
username _with _embedded repeat

state), 132
usernames, 121, 129, 131

4Dgifts , 121

daemon, 121, 129

extracting, 130, 131

EZsetup , 121

missing, 132

<none>, 132

nuucp, 121, 129

OutOfBox , 121

repeated, 132

rewt , 121,131

sensitive, 121

sgiweb , 121

uucp, 121,129
lusr/local/lib/bro/ policy directory, 19
utilities

fetch 133

flex 25

lex, 25

Is, 133

lynx, 133
utility programs

cf, 20

hf, 20
uucp username, 121,129

(login confusion

-v flag, 18

valid ,118
dns _mapping field, 118

values
overview, 21

vantage point, 159

variable declarations, 53, 54
const , 54
global ,53
local ,53

variable expression, 46

variables
accounts _tried ,77
active _conn, 57,117
actually _rejected _PTRanno, 64
addl _web, 77,113
alert _action filters
alert _file ,57
allow _16_net _pairs , 67,107
allow _excessive _ntp _requests
allow _pairs , 67,107
allow _PTRscans , 65

, 57

, 74

allow _service _pairs ,67
allow _services ,67,108

allow _services _pairs , 108
allow _services _to, 67,108
allow _spoof _services ,67,107
always _hot _ids , 68,121
always _hot _login _ids , 74, 136
anon _log , 57

anonymize _ip _addr , 62

any _RPCokay , 75, 144
attributes, 55

backdoor _annotate _standard _ports ,59

backdoor _demux_disabled ,58
backdoor _demux_skip _tags , 58
backdoor _ignore _dst _addrs ,58
backdoor _ignore _ports , 58
backdoor _ignore _src _addrs , 58
backdoor _og , 58

backdoor _min _7bit _ascii _ratio ,58
backdoor _min _bytes , 58

backdoor _min _normal _ine _ratio ,58
backdoor _min_numdlines , 58
backdoor _prompts , 73,133
backdoor _standard _ports ,58
backdoor _stat _backoff ,59
backdoor _stat _period ,58
backscatter _ports , 78

bro _log -file ,84,115

can _drop _connectivity , 113
capture filter ,84,93-94

check relay 3,74

check relay 4,74

code red _listl ,63

code red _list2 ,63

code _red _log , 63

conn _tag _info ,81

constant, 45

demux_dir , 64

demuxed _conn, 64

detected _stones , 81

did PTRscan _event , 65

did _sigconns , 60

did _ssh _version ,81

did _stone _summary, 82

direct _login _prompts , 84,134
discarder _maxlen , 84

display _pairs ,81

distinct _answered _PTRrequests , 65
distinct _backscatter _peers , 78
distinct _peers , 76

distinct _ports , 76

distinct _PTRrequests , 64
distinct _rejected _PTRrequests ,64
dns _interesting _changes , 65, 119
dns log , 64

209

dns _session _timeout |, 62

dns _sessions , 64

done with _network , 84

edited _input _trouble ,72,131
excessive _ntp _request ,74
flag _rejected _service , 68,109

flag _successful _inbound _service |, 68,109

flag _successful _service ,67,109
forbidden _.id _patterns , 68, 121
forbidden _ids , 68,121

forbidden _ids _if _no_password , 68,121
ftp _data _expected , 66

ftp _data _expected _session , 66
ftp _excessive _filename _len , 66
ftp _excessive _filename _trunc _len , 66
ftp _guest _ids , 65,123

ftp _hot _.cmds, 66

ftp _hot files , 66,124

ftp _hot _guest _files , 66,124

ftp _ignore _invalid _PORTG66

ftp _ignore _privileged @ _PASVs 66
ftp _log , 65

ftp _not _actually _hot files ,124
ftp _sessions , 65

ftp _sig _disabled ,59

ftp _skip _hot , 65, 123

full _input _trouble ,72

full _output _trouble ,72

gnutella _sig _disabled ,59

gtld _servers ,78

have FTP, 63

have _skip _remote _sensitive _URIs, 69
have _SMTR 63

have _stats , 63

heartbeat _interval ,62

horiz _scan _thresholds , 76, 149
hot _conns _reported , 63

hot _dst 24nets , 67, 108

hot _dsts , 67, 107

hot _ident _exceptions ,70,129
hot _ident _ids , 70, 129

hot _ids , 68, 122

hot _login _ids , 74, 136

hot _names, 65, 120

hot _src _24nets , 67, 107

hot _srcs , 67,107

hot _ssh _orig _ports ,134

hot _telnet _orig _ports , 73,134
hot _terminal _types , 73,133

http _abstract _maxlength , 69
http _log , 68

http _proxy _sig _disabled , 60

http _sessions , 68

http _sig _disabled , 60

icmp flows , 70

ignore _checksums , 60

inactivity _timeout ,61

include _HTTPabstract ,69
initialization, 55

input _trouble , 72,131

input _wait _for _output ,72
interconn _conns , 70

interconn _default _pkt _size , 70
interconn _demux_disabled , 72
interconn _ignore _standard _ports ,72
interconn _og , 70

interconn _max.interarrival , 70
interconn _maxkeystroke _pkt _size , 70
interconn _min_7bit _ascii _ratio ,71
interconn _min _alpha , 72
interconn _min _bytes , 71
interconn _min _duration ,71
interconn _min _gamma 72
interconn _min _interarrival , 70
interconn _min_normal _line _ratio ,71
interconn _min _numlines ,71
interconn _min _num.pkts , 71
interconn _min _ssh _pkts _ratio ,71
interconn _ssh _len _disabled ,71
interconn _standard _ports , 72
interconn _stat _backoff ,71
interconn _stat _period ,71
interfaces , 84

kazaa _sig _disabled ,59

last _stat , 63

last _stat _time ,64

local, 45

local _16_nets , 79, 105

local 24 nets , 79,105

local _code _red _response _pgm, 63
local _mail _addr , 79

local _nets , 79,105

log HTTPdata , 69

login _failure _msgs, 73, 134
login _non_failure _msgs, 73, 135
login _prompts , 73,134

login _sessions , 74

login _success _msgs, 73, 135

login _timeouts , 73,136

maintain _http _sessions , 69
maxfinger _request _len , 65
max_request _length , 120
max_timer _expires , 84

mime_log , 74

mime_sessions , 74

modifiability, 54

napster _sig _disabled ,59
neighbor _16_nets , 79, 106
neighbor 24 nets , 106

neighbor _nets , 79, 106

210

never _shut _down, 113

NFSservices , 75,143

NFSworld _servers , 75,143

non _analyzed _lifetime ,61

non _ASCII _hosts , 73, 136

non _backdoor _prompts , 73,133

ntp _session _timeout , 62
numaccounts _tried ,77
numbackscatter _peers , 78
numdistinct _peers , 76
numdistinct _ports , 76

num.dns _sessions , 64

num.scan _triples 77

okay _to _lookup _sensitive _hosts , 64
omit _rewrite _place _holder ,63
output _trouble 72,133

overview, 53

partial _connection _ok, 60

port _names, 74, 98, 103, 115

possible _port _scan _thresh , 77,112
possible _scan _sources , 77
preserved _net ,57

preserved _subnet ,57

process _HTTPdata , 69

process _HTTPreplies ,69

process _smtp _relay ,79

public _ident _systems ,70

public _ident _user .ids ,70
redefining, 56

refinement, 56

relay _log , 80

remote _code _red _response _pgm, 63
report _accounts _tried ,77,112
report _backscatter ,78

report _outbound _peer _scan, 76,112
report _peer _scan, 76,112

report _port _scan, 76

report _rejected _PTRfactor ,65
report _rejected _PTRthresh ,65
report _remote _accounts _tried ,77,112
restrict filter , 84,93-94
rewrite _finger _trace ,65

rewrite _ident _trace ,70

rewriting _http _trace ,63
rewriting _smtp _trace , 63

rlogin _conns , 60

rlogin _id _okay _if _no_password _exposed ,

74,136
rlogin _sig _lbyte _disabled ,59
rlogin _sig _disabled ,59
root _backdoor _sig _conns, 60
root _backdoor _sig _disabled ,59
root _servers ,78
router _prompts , 73,135
RPCdo_not _complain , 75

RPCdump_okay , 75, 144
RPCokay , 75, 143

RPCokay _nets , 75, 143
RPCokay _services , 75,143
rpc _programs , 75, 143
RPCserver _map, 64

rpc _timeout , 62

rule _actions ,76

rule file ,76

same_local _net _is _spoof , 67, 106
scan _triples ,77

scope, 46

scoping, 53

sensitive _lookup _hosts , 64
sensitive _post _URIs, 69, 127
sensitive _URIs, 69, 127

shut _down_all _scans , 113

shut _down_scans , 113

shut _down_thresh , 113

sig _actions , 149

skip _accounts _tried ,77,112
skip _authentication , 73,134
skip _clear _ssh reports ,82
skip _logins _to, 74,136

skip _outbound _services ,77,113
skip _remote _sensitive _URIs, 69
skip _scan _nets _16, 78

skip _scan _nets 24,78, 113

skip _scan _sources , 78,113

skip _services ,77

skip _unexpected , 66,124

skip _unexpected _net , 66,124
smtp _hot _cmds, 80

smtp _legal _cmds, 80

smtp _log , 79

smtp _relay _table , 80

smtp _sensitive _cmds, 80

smtp _session _by_content _hash, 81
smtp _session _by_message _id , 80
smtp _session _by _recipient , 80
smtp _sessions , 79

software file ,81

software _ident _by _major , 81
software _table , 81

ssh _len _conns , 60

ssh _log , 81

ssh _min _num_pkts , 60

ssh _min _ssh _pkts _ratio , 60

ssh _sig _disabled ,59

ssl _analyze _certificates , 151
ssl _compare _cipherspecs , 151
ssl _maxcipherspec _size , 151
ssl _store _cert _path , 151

ssl _store _certificates , 151
ssl _store _key _material ,152

211

ssl _verify _certificates , 151
step _log , 81

stp _commonhost _thresh , 82
stp _delta , 82

stp _demux_disabled , 82

stp _idle _min, 82

stp _random _pair _thresh , 82
stp _ratio _thresh ,82

stp _scale , 82

suppress _pmlog , 75, 144
suppress _scan _checks , 76
table _expire _interval 62
tag _to _conn _map, 81

tcp _attempt _delayv , 61

tcp _close _delay , 61

tcp _connection _inger ,61
tcp _match _undelivered , 61
tcp _partial _close _delay , 61
tcp _reassembler _ports _orig , 62
tcp _reassembler _ports _resp , 62
tcp _reset _delay , 61
tcp _session _timer , 61
tcp _storm _interarrival
tcp _storm _thresh ,62
tcp _SYNack _ok, 61

tcp _SYNtimeout ,61
telnet _sig _3byte _conns, 60
telnet _sig _3byte _disabled ,59
telnet _sig _conns , 60

telnet _sig _disabled ,59

_thresh

terminate _successful _inbound
68, 109

tftp _alert _count , 83

typing, 54

udp _did _summary, 83
udp _rep _count , 83
udp _req _count , 83

vert _scan _thresholds , 76, 149
watchdog _interval , 62

weird _action , 83,154

weird _action filters , 83,155

weird _do_not _ignore _repeats , 83, 156

weird _ignore _host , 83, 155

weird _log , 83

worm_list , 83

worm_log , 83

worm_type _list ,83

worm_URIs, 69

x509 _trusted _cert _path ,151
version , 150

ssl _connection _info field, 150
version message, 18
vert _scan _thresholds
vertical exploit scans, 148
VMS input editing, 132

variable, 76, 149

VMS login prompts, 132
Username: , 132
VT666 terminal type backdoor, 134

-Wflag, 18
-w flag, 18
walld, 143, 144, 146, 147
watchdog, 18
watchdog timer expired
run-time error, 18
WATCHDOQIBITERVAL internal variable, 18
watchdog _interval variable, 62
“weird” event, 156-163
active _connection _reuse , 156
bad HTTPreply , 157
bad _HTTP.version , 157
bad _ICMP_checksum , 157
bad _ident _reply , 160
bad _ident _request , 161
bad _IP _checksum , 162
bad _pmport ,163
bad rlogin _prolog , 157
bad _RPC 157
bad _RPCprogram , 157
bad _SYNack, 157
bad _TCP.checksum , 157
bad _TCP.header _len , 162
bad _UDRchecksum , 157
barogque _SYN 157
blank _in _HTTPrequest , 157
connection _originator _SYNack, 157
data _after _reset , 157
data _before _established ,157
excess _RPC 157
excessive _RPClen , 157
excessively _large _fragment , 161
excessively _small _fragment , 161
FIN _advanced _last _seq, 157
FIN _after _reset , 158
FIN _storm , 158
fragment _inconsistency , 161
fragment _overlap , 161

fragment _protocol _inconsistency ,161

fragment _size _inconsistency , 161
fragment _with _DF, 162
HTTP.unknown _method , 158
HTTPversion _mismatch , 158

ident _request _addendum, 161
inappropriate _FIN, 158

incompletely _captured _fragment , 162

internally _truncated _header ,162
Land _attack , 163

multiple _HTTPrequest _elements , 158
multiple _RPCs 158

NULin _line , 158

originator _RPCreply , 158

partial _finger _request ,158
partial _ftp _request , 158
partial _ident _request , 158
partial _portmapper _request , 158
partial _RPC 158
pending _data _when_closed , 158
possible _split _routing , 159
premature _connection _reuse , 159
repeated _SYNreply _wo_ack, 159
repeated _SYNwith _ack, 159
responder _RPCcall , 159
rlogin _text _after _rejected ,159
RPCrexmit _inconsistency , 159
RST.storm , 159
RST.with _data , 159
simultaneous _open, 159
spontaneous _FIN, 159
spontaneous _RST, 159
SYNafter _close , 160
SYNafter _partial , 160
SYNafter _reset , 160
SYNinside _connection ,160
SYNseq _jump, 160
SYNwith _data , 160
TCP.christmas , 160
truncated _header , 162
truncated _IP, 162
UDRdatagram _length _mismatch , 160
unpaired _RPCresponse , 160
unsolicited _SYNresponse , 160
weird event summary file, 154
weird events, 154-163
actions, 154
additional handlers, 163
generated by standard scripts, 163
handled byconn _weird , 156
handled byconn _weird _addl , 160
handled byflow _weird , 161
handled bynet _weird , 162
prevalence in actual network traffic, 154
weird module, 154
weird _action variable, 83, 154
weird _action filters variable, 83, 155

weird _do_not _ignore _repeats variable, 83, 156

WEIRDFILE action, 155
WEIRDIGNOREaction, 155
weird _ignore _host variable, 83, 155
weird _log variable, 83
WEIRDLOGALWAY Sction, 155
WEIRDLOGONCHEaction, 155
WEIRDLOGPER CONNMaction, 155
WEIRDLOGPERORIGaction, 155
WEIRDUNSPECIFIED action, 155
whitespace

in statements, 43

width
of formatted strings, 86
Windows
not supported, 12
worm_list variable, 83
worm_log variable, 83
worm_type _list variable, 83
worm_URIs variable, 69
write file
control over what’s recorded, 90
&write _expire attribute, 36
writing tcpdump files, 18
wrong number of fnt arguments , 87
wrong number of fmt arguments
run-time error, 87
wrong number of length arguments
run-time error, 88
www.anticode.comn33
wwwroot sensitive POST URI, 127

x509 record, 150
x509 _trusted _cert _path variable, 151

yield
of atable, 33
ypsery 144

213

