
Linux Audit-Subsystem Design Documentation

Version 1.2 RC6

IBM/SuSE Confidential until LAuS Release

Changelog

Version Date Authors Reviewer Changes, Problems, Notes

0.1 2003−05−17 Emily − Based on Janak Desai’s design template and Thomas Biege’s design ab-
stract and API specification

0.2 2003−05−19 Emily,
Dan

− Added a section listing the system calls that are being audited and an-
other section for valid ioctls(). Updated picture and some info with new
material from today’s phone call.

0.3 2003−05−22 Thomas − try to merge 0.1 with 0.2

− try to answer some questions

− reflect current design

0.4 2003−05−26 Thomas − added description of user space tools

− added new log format

0.5 2003−06−03 Thomas − added auditd config file

− explain which tool uses which API call

− describe audit record

0.6 2003−06−04 Thomas − add section to describe the point all syscalls need to go through

− add filter config file example

0.7 2003−06−13 Thomas − filled table for CAPP requirements

− completed audited syscalls

1.0 2003−06−25 Thomas − migrated to LATEX

− rewrote everything

− changed API description

− completed Low Level Design

− added High Level Design

1.1 2003−06−27 Thomas − applied corrections made by Olaf

− added more information to answer afx’ questions

− added 3 pictures to illustrate data-flow

− completed bib.

− updates ToDo

1.2 rc2 2003−08−01 Thomas − try to answer open questions

− changes in respect to new PAM modifications

− describe audit tools

− mention action “shutdown“ as panic option to execute when we run out
of disk space

− describe new kernel hook design

− struct aud message changes due to timestamp creation in kernel space

− added Klaus’ PAM description

− added AUTH failure

− removed AUDIT shutdown

− changed origin of AUDIT start, AUDIT stop

1.2 rc3 2003−08−06 Thomas − removed confidential flag

− completed command line tool description

1.2 rc4 2003−08−12 Thomas − removed tag: FILE chpriv, FILE fchpriv, FILE facl, FILE fchmod,
FILE fchown

− added tag: FILE loginid

− expanded tag: FILE truncate, FILE owner, FILE mode

1.2 rc5 2003−08−18 Thomas − added new filter.conf file with audit-tags and device major/minor filter

− added warning for overwriting /var/log/audit

− glibc API vs. kernel API

− added warning because of overwriting /var/log/audit

− added description for audbin

1.2 rc6 2003−08−27 Thomas − added note about name collision due to using /dev/audit

− updated lists of ioctl(2) commands

1.2 rc6 2003−09−01 Thomas − updated filter.conf and filesets.conf

− updated lists of syscalls

1.2 rc6 2003−09−17 Thomas − updated list of audit tags

2

Copyright Notes

SuSE and its logo are registered trademarks of SuSE AG.
IBM and IBM logo are trademarks or registered trademarks of International Busi-
ness Machines Corporation in the United States, other countries, or both.
Linux is a registered trademark of Linus Torvalds.
Solaris is a registered trademark of Sun Microsystems.
UNIX is a registered trademark of The Open Group in the United States and
other countries.
Intel and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.
Other company, product, and service names may be trademarks or service marks
of others.
Copyright c© 2003 SuSE Inc.
Copyright c© 2003 by IBM Corporation or its wholly owned subsidiaries.

Abstract

This paper describes the development of the Linux Audit-Subsystem (LAuS), its
components, its configuration and its CAPP compliance. LAuS was developed
by SuSE Inc. to make Linux more secure and to attain the EAL3 certificate.

Contents

1 Introduction 4

2 CAPP Requirements 5
2.1 Audit Data Generation FAU GEN.1 5
2.2 User Identity Association FAU GEN.2 7
2.3 Audit Review FAU SAR.1 . 8
2.4 Restrict Audit Review FAU SAR.2 8
2.5 Selectable Audit Review FAU SAR.3 8
2.6 Selective Audit FAU SEL.1 . 9
2.7 Guarantees of Data Availability FAU STG.1 9
2.8 Action in Case of Audit Data Loss FAU STG.3 9
2.9 Prevention of Audit Data Loss FAU STG.4 9
2.10 Management of the Audit Trail FMT MDT.1 9
2.11 Management of audited Events FMT MDT.1 9
2.12 Reliable Time Stamps FPT STM.1 10
2.13 Mapping Events . 10

3 High Level Design 12
3.1 Why a Kernel-Patch? . 12
3.2 How can a Process be attached/detached to/from LAuS? 12
3.3 How will Events be generated? . 13

3.3.1 Kernel Source . 14
System Calls . 14
Netlink Sockets . 15
Process Creation and Termination 15

3.3.2 User Source . 15
The PAM Framework . 16
Enhanced System-Applications 17

3.4 What Information will be kept per Event? 17
3.5 How will a unbroken Audit-Trail be guaranteed? 18
3.6 How does the Audit-Record reach the User-Space? 18
3.7 How will the Audit-Record be written? 18
3.8 What about post-processing the Audit-Record? 18

1

3.9 Who can configure what in which way? 19
3.10 How is the configuration transfered to the Kernel? 19

4 Low Level Design 20
4.1 LAuS Components . 20

4.1.1 Kernel Patch . 21
Login ID . 21
Audit ID . 21
Task Structure . 21
Single Point of Entry and Exit (i386) 22
Audited System Calls . 24
Handling I/O Control Messages 26
Handling IP Device and Routing Changes 27
Device File . 28
LAuS I/O Messages . 28
Filter . 29

4.1.2 Kernel API Library . 30
4.1.3 Server API Library . 34
4.1.4 Audit Daemon . 37
4.1.5 Audit Tools . 38

aucat . 38
augrep . 39
aucfg . 41
aurun . 41
audbin . 42

4.1.6 Enhanced PAM Library and the PAM Module 42
4.1.7 Enhanced System Applications 43

4.2 LAuS Configuration . 43
4.2.1 Audit Daemon . 43

auditd.conf . 43
filesets.conf . 45
filter.conf . 45

4.3 LAuS Log Files . 56
4.3.1 Contents of Audit Record 56
4.3.2 Raw Log Format . 57
4.3.3 Cooked Log Format . 57

5 Open Issues 59

A Abbreviations 60

B List of Figures 62

2

C Bibliography 63

3

Chapter 1

Introduction

The purpose of this document is to describe the development of the Linux Audit-
Subsystem. LAuS is one important part for the Common Criteria evaluation for
SuSE Enterprise Server 8. The desired evaluation level is EAL3.

Additionally this document serves as a communication platform for the de-
velopment teams of IBM and SuSE to describe low and high level design, clarify
design decisions and answer open questions.

4

Chapter 2

CAPP Requirements

While developing and designing LAuS the CAPP version 1d of the Information
Systems Security Organization [4] has to be kept in mind, otherwise the devel-
opment of LAuS may become useless.

2.1 Audit Data Generation FAU GEN.1

Section Component Event How does LAuS meets
this?

5.1.1 FAU GEN.1 Start-up and shutdown of
the audit functions

Events: AUDIT start, AU-
DIT stop

5.1.2 FAU GEN.2 None
5.1.3 FAU SAR.1 Reading of information

from the audit records.
Events: FILE read,
FILE open

5.1.4 FAU SAR.2 Unsuccessful attempts to
read information from the
audit record

Like FAU SAR.1
(FILE read, FILE open),
but with a negative result

5.1.5 FAU SAR.3 None
5.1.6 FAU SEL.1 All modifications to the au-

dit configuration that occur
while the audit collection
functions are operating.

Events: FILE open,
FILE write, AUD-
CONF alter, AUD-
CONF reload

5.1.7 FAU STG.2 None
5.1.8 FAU STG.3 Actions taken due to ex-

ceeding of threshold.
Event: AUDIT disklow

5.1.9 FAU STR.4 Actions taken due to the au-
dit storage failure

Event: AUDIT diskfail

5.2.1 FDP ACC.1 None

5

5.2.2 FDP ACF.1 All requests to perform an
operation on an object cov-
ered by SFP.

Events: FILE mode,
FILE owner, FILE link,
FILE mknod, FILE open,
FILE create, FILE rename,
FILE truncate,
FILE unlink, FS rmdir,
FS mount, FS umount,
MSG owner, MSG mode,
MSG delete, MSG create,
SEM owner, SEM create,
SEM delete, SEM mode,
SHM create, SHM delete,
SHM owner, SHM mode

5.2.3 FDP RIP.2 None
5.2.4 Note 1 None
5.3.1 FIA ATD.1 None
5.3.2 FIA SOS.1 Rejection or acceptance by

the TSF of any tested se-
cret.

Events: AUTH pwchange,
AUTH success,
AUTH failure

5.3.3 FIA UAU.1 All use of the authentication
mechanism.

Events: AUTH pwchange,
AUTH success,
AUTH failure

5.3.4 FIA UAU.7 None
5.3.5 FIA UID.1 All use of the user identifica-

tion mechanism, including
the identity provided during
successful attempts

Events: AUTH pwchange,
AUTH success,
AUTH failure

5.3.6 FIA USB.1 Success and failure of bind-
ing user security attributes
to a subject (e.g. success
and failure to create a sub-
ject).

Events: PROC execute,
PROC realuid,
PROC auditid,
PROC loginid,
PROC setuserids,
PROC realgid,
PROC setgroups

6

5.4.1 FMT MSA.1 All modifications of the val-
ues of security attributes.

Events: PROC execute,
PROC realuid,
PROC auditid,
PROC loginid,
PROC setuserids,
PROC realgid,
PROC setgroups,
PROC privilege

5.4.2 FMT MSA.3 Modifications of the default
setting of permissive or re-
strictive rules. All modifi-
cations of the initial value of
security attributes.

Events generated:
FILE open, FILE write

5.4.3 FMT MTD.1 All modifications to the val-
ues of TSF data.

Events: FILE open,
FILE write, AUD-
CONF alter, AUD-
CONF reload

5.4.4 FMT MTD.1 All modifications to the val-
ues of TSF data.

Events: FILE open,
FILE write, FILE read,
AUDCONF alter, AUD-
CONF reload

5.4.9 FMT SMR.1 Modifications to the group
of users that are part of a
role.

Event: PRIV userchange

5.4.9 FMT SMR.1 Every use of the rights of a
role (Additional/Detailed)

Syscall: setuid(2) (???)

5.5.1 FPT AMT.1 Execution of the test of the
underlying machine and the
result of the test.

Audit events for the ab-
stract machine testing tool.
This might be also handled
by a log file from the di-
agnostics program. Events:
ADMIN amtu

5.5.2 FPT RVM.1 None
5.5.3 FPT SEP.1 None
5.5.4 FPT STM.1 Changes to the time. Event: SYS timechange

2.2 User Identity Association FAU GEN.2

To keep track of the owner of a process and to keep an audit trail for an interactive
user session a “Login ID“ is associated with every process. The “Login ID“ gets
inherited if a process spawns a new process. In example this enables the Security

7

Officer (SO) to determine the real owner of a malicious process even if the user
changes his “User IDs“.

2.3 Audit Review FAU SAR.1

LAuS will provide a user space tool, aucat, that will translate the on-disk binary
format to a human readable format at the request of an authorized administrator.

2.4 Restrict Audit Review FAU SAR.2

The audit log file will be protected by DAC controls so that only an authorized
administrator will be able to read the logs. The audit tools will also be protected
by DAC controls so that only authorized administrators can invoke the tools.

2.5 Selectable Audit Review FAU SAR.3

LAuS will provide a user space tool, augrep, that will allow the administrator to
filter the audit records to only display requested events. The administrator will
be able to filter on:

• user

• group

• syscall

• file

• file operations

• outcome (success/failure)

• remote hostname

• remote hostname address

• audit ID

• syscall arguments

8

2.6 Selective Audit FAU SEL.1

LAuS will provide the administrator the ability to select the events to audit.
This will be done by the administrator editing the filter configuration file of the
audit daemon and then using the aucfg tool to notify the audit daemon of the
change in configuration. The audit daemon in turn notifies the kernel of the new
auditing policy.

2.7 Guarantees of Data Availability FAU STG.1

LAuS will prevent unauthorized deletion and modification of audit records via
DAC controls.

2.8 Action in Case of Audit Data Loss FAU STG.3

If the system runs out of disc space, the audit daemon will stop reading from
the device file which will result in filling up the buffers of the audit subsystem.
Subsequently, the kernel will block any process trying to enqueue new audit events
for delivery to the audit daemon.

2.9 Prevention of Audit Data Loss FAU STG.4

To avoid the loss of data two so called ”bin files” are used. Each file has a fixed
size. If one file is full, it will be locked and processed by external commands
specified in the configuration file. During that time, the second bin file is used
for storing audit records. If the command fails (i.e. exits with a non-zero exit
status), the SO will be notified via syslog and the audit system will be suspended.

2.10 Management of the Audit Trail FMT MDT.1

The LAuS log files can be added to the set of audited objects to detect malicious
modifications of the audit trail. Furthermore, only the superuser is able to access
the audit trail due to the appropriate DAC settings of the file.

2.11 Management of audited Events FMT MDT.1

A user can not modify the set of audit events that is generated due to his or her
activity unless he is the superuser. Only the superuser is able to communicate
with the kernel and to modify the configuration files of the audit daemon.

9

2.12 Reliable Time Stamps FPT STM.1

LAuS uses the system time and only the superuser is able to modify the system
time.

2.13 Mapping Events

Event Syscall/Function/Program
AUDIT start audit module
AUDIT stop audit module
AUDIT disklow audit daemon
AUDIT diskfail audit daemon
AUDCONF alter audit daemon
AUDCONF reload audit daemon
AUTH pwchange passwd
AUTH success su, login, sshd, ftpd, PAM, ...
AUTH failure su, login, sshd, ftpd, PAM, ...
FILE mode chmod(2), fchmod(2)
FILE owner chown(2), lchmod(2), chown32(2), lch-

mod32(2), fchown(2)
FILE link link(2), symlink(2)
FILE mknod mknod(2)
FILE open open(2)
FILE create create(2), open(2)
FILE rename rename(2)
FILE truncate truncate(2), truncate64(2), ftrun-

cate(2), ftruncate64(2)
FILE unlink unlink(2)
FS rmdir rmdir(2)
FS mount mount(2)
FS umount umount(2), umount2(2)
MSG owner ipc(2)
MSG mode ipc(2)
MSG delete ipc(2)
MSG create ipc(2)
SEM owner ipc(2)
SEM create ipc(2)
SEM delete ipc(2)
SEM mode ipc(2)
SHM create ipc(2)

10

SHM delete ipc(2)
SHM owner ipc(2)
SHM mode ipc(2)
PRIV userchange setuid(2), setuid32(2), seteuid(2), se-

teuid32(2), setreuid(2), setreuid32(2),
setresuid(2), setresuid32(2)

PROC execute execve(2)
PROC realuid setuid(2)
PROC auditid ioctl(2)
PROC loginid ioctl(2)
PROC setuserids setuid(2), setuid32(2), seteuid(2), se-

teuid32(2), setreuid(2), setreuid32(2),
setresuid(2), setresuid32(2)

PROC realgid setgid(2), setgid32(2), setgroups(2),
setgroups32(2)

PROC setgroups setgid(2), setgid32(2), setegid(2), sete-
gid32(2), setregid(2), setregid32(2),
setresgid(2), setresgid32(2), set-
groups(2), setgroups32(2)

PROC privilege capset(2)
SYS timechange adjtimex(2), stime(2), settimeofday(2)
ADMIN amtu Abstract Machine Test Utility)

11

Chapter 3

High Level Design

The sections of this chapter try to clarify the abstract behavior of the Linux
Audit-subsystem. The sections are ordered by data flow to make it more logical
to the reader to understand.

(Please note that every action to configure or modify the audit-subsystem has
to be done with capability CAP SYS ADMIN (root user))

3.1 Why a Kernel-Patch?

The vanilla 2.4.x Linux kernel does not either provide a mechanism to trace
syscalls in the desired way nor does it contain the capability to track processes
and generate an audit trail. Due to this lack of functionality the Linux kernel
needs to be patched. The patch enhances internal kernel structures to keep track
of the process and provides an interface to the user space by defining I/O control
commands and a device file.

Beside filesystem DAC controls of the audit device file the kernel patch re-
stricts access by verifying if the caller of an I/O control command hast the capa-
bility CAP SYS ADMIN.

3.2 How can a Process be attached/detached

to/from LAuS?

A process can only attach itself to the audit-subsystem and only if it has root
(CAP SYS ADMIN) privileges. Attaching is done via special I/O control com-
mands or by using LAuS library functions. Several attributes, such as the “Login
ID“ and the “Audit ID“ are bound to the attached process.

Whenever an audited process forks a child process, the child process inherits
some attributes of the parent process to make the audit trail continuous.

12

Likewise, the only instance that can detach a process is the process itself, and
only if it has root privileges (CAP SYS ADMIN). When detaching, all session
information (such as the the Login ID and Audit ID) is lost.

Another way of detaching is to exit. Whenever a process terminates/aborts
it will be detached from the audit-subsystem, too.

In addition, a process is permitted to suspend and resume auditing. Again,
this is achieved through I/O control commands to the audit-subsystem, and re-
quires admininistrative privilege (CAP SYS ADMIN). This functionality is for
the benefit of trusted applications that do wish to generate a single audit event
describing their actions, instead of several system call events.

The major difference between suspending and detaching is that the former
retains all session information, including the “Login ID“ and “Audit ID“. The
suspend flag is not inherited to child processes, that is, if a process suspends
auditing and forks a new child process, that child will be subject to auditing as
usual.

A trusted application such as the passwd utility, for instance, suspends au-
diting before updating the password database, and generates a single record in-
dicating the (attempted) password change afterwards.

3.3 How will Events be generated?

There are two kinds of sources for an audit event, the kernel and user applications.
The main source, for sure, is the kernel space. System calls and network layer
actions are handled by the kernel. System calls and netlink operations are all
logged after processing by the kernel has been finished (except for: ioctl(2),
execve(2), ...). In order to avoid unnecessary data load user applications can
send their own, more abstract, information to the kernel. The kernel will add its
headers and attributes and send it back to the audit daemon via the device file.

Every event generated by the Kernel contains information on the process on
behalf of which the kernel generates the event, including the current uid, gid, the
“Login ID“ and “Audit ID“, etc. This fixed portion is followed by a variable data
portion, depending on the message type.

Event messages are placed into a queue, from where they can be retrieved
by the audit daemon through the read system call, one record at a time. If the
length of the queue exceeeds a certain compile-time limit, any processes trying to
generate new events will be blocked until there is room in the queue again. The
maximum size of the queue is 1024 entries with 8 KB per entry.

13

3.3.1 Kernel Source

Kernel Buffer

Event:
System Call

Event:
Netlink

Audit Hooks

Filtering

Device File

Audit
Daemon

Logs

read() binary log
data

Figure 3.1: Data Flow: Kernel Sources

The kernel patch creates several hooks for monitoring process creation/termination,
and system calls entry/return, as well as one hook to track modifications of the
system’s network configuration.

System Calls

As stated before the entry and the exit point of every system call will be mon-
itored. System call events will be generated for every traced process as long as
the filter policy does not discard it. The filter policy can be a simple yes/no
statement, but complex Boolean expressions involving properties of the process,
as well as the system call arguments, are possible, too.

If the system call passes the filter rules, an audit event will be generated.
This event data includes information about the process, system call number, the
return value (outcome), and a TLV (tag/length/value) encoded representation of
the system call arguments, where applicable. (For instance, the argument data
to a number of ioctl calls are included, but data passed to the write system call
is generally not included).

14

Netlink Sockets

The Linux kernel network code can be controlled either by using the ioctl(2)

system call of by using a netlink socket. The first case is handled as described
above in sub-section “System Calls“. The latter case needs special handling. To
become aware of netlink messages the kernel patch needs to apply another hook
in the kernel. LAuS only observes netlink routing messages because these are the
once we are interessted in. To get the result of the message processing the audit
hook is triggered right after the message had been processed. The message data,
message length and the outcome will be logged.

Process Creation and Termination

The audit-subsystem can generate audit events for process creation (including
processes generated by fork and clone, but also for kernel threads), and pro-
cess termination. For both events, filter policies can be configured to select just
specific events (such as processes exiting due to a signal).

3.3.2 User Source

Kernel Buffer

Device File

Audit
Daemon

Logs

read()
binary log

data

System
Application

PAM
System

Audit
Subsystem

ioctl()
ioctl()

Figure 3.2: Data Flow: User Sources

15

In addition to the kernel, user space applications should be able to generate
their own, more descriptive, audit records. This type of records is called “Audit
User Messages“. Two types of user applications need this special feature:

a. applications that authenticate users and/or change privileges

b. applications that change the configuration of the system

The first group of applications can be served by a special PAM library and a
PAM module. The PAM library and the module attach the current process
and set various attributes like the “Login ID“, the terminal name, hostname, IP
address and alike through a special

”
Audit Login Message

”
. The PAM module can

serve as an authentication, account or session module. It is used as workaround
for applications that handle authentications apart from PAM but use the PAM
framework for other tasks.

The latter group of applications needs to be modified manually to handle the
LAuS interface to the kernel and to send the “Audit User Messages“.

The PAM Framework

The PAM module is used together with the modified PAM library patch to acti-
vate the audit subsystem for the current application. The module is responsible
for the following tasks:

• open the audit device file

• if configured to do so, detach the current audit data

• attach the current process to the audit subsystem

• close the audit device file

The PAM Library is patched to write audit logs for success and failure re-
turned by the PAM module stacks called on behalf of applications. The library
framework is responsible for the following tasks:

• open the audit device file

• emit an “Audit User Message“ indicating success or failure

• on successful authentication, set the login UID for the process and emit an
“Audit Login Message“

• close the audit device file

The kernel does not care about the format of the “Audit User Messages“, he
just adds the attributes and header to it and puts it in the audit record queue.

All system applications that handle authentication for changing user privileges
are linked against the PAM library. Therefore the PAM library provides a central
point for handling LAuS operations.

16

Enhanced System-Applications

All system applications that change the system configuration need to be modified
to notify the SO about the changes they made. This does not need system call
auditing, so the trusted application can suspend auditing and perform their own
logging. To accomplish this task just a few lines of code need to be added:

1. open LAuS interface

2. suspend auditing

3. format user message and send it to the kernel

4. close LAuS interface

3.4 What Information will be kept per Event?

Additional information is generated and stored with each event. The following
list gives an overview (please note: some informations a accessed indirectly by
referencing the “Audit ID“):

• Timestamp: Every audit record is timestamped

• Login ID: User ID of the user authenticated by the system

• Audit ID: unique 32 bit identifier

• Login Message:

– Hostname: Remote host name in case of remote login

– IP Address: IP address of remote host in case of remote login

– Service: Name of service that authenticates the user

• Text Message:

– arbitrary User-Text

• System Call:

– System call name

– Arguments

– Result/Outcome

17

3.5 How will a unbroken Audit-Trail be guar-

anteed?

To guarantee a continuous audit trail, three mechanism will be used:

• Putting audited processes to sleep when the audit record buffer is full or
something is wrong with the log file.

• pre-allocated bin files

• or alternatively: monitoring disk-space while in stream- or file- mode and
notify the SO if threshold is reached.

3.6 How does the Audit-Record reach the User-

Space?

First the audit daemon has to register itself to LAuS to receive all audit records.
The audit records themselves are written to an internal queue and can be read,
one at a time, from there by invoking the read system call on the audit device
file. The audit daemon is the only process that is able to read these records.
Every record read will be deleted from the queue to free memory for new ones.

3.7 How will the Audit-Record be written?

After the audit daemon read an audit record from the device file it will add
another header containing just a timestamp. The payload data will not be pro-
cessed in any way. Therefore the audit log just contains the time and the binary
data that was directly read from the kernel.

3.8 What about post-processing the Audit-Record?

Tools like aucat and audbin use various library functions to parse the binary
audit log and output it in a human readable form. These library calls can be
used by every application that likes to post- process the log files.

18

3.9 Who can configure what in which way?

Text
Editor aucfg

Config
Files

Audit
Daemon

Audit Subsystem

1.)
modify

2.)
notify

3.)read

4.)
update

Figure 3.3: Data Flow: Configuration

By using the DAC controls of the filesystem only the users (typically root)
with capability CAP DAC OVERRIDE or CAP DAC READ SEARCH are al-
lowed to access and modify the configuration file of LAuS. The only component of
LAuS that uses configuration files is the audit daemon. The audit daemon needs
a main configuration file for defining thresholds and corresponding actions etc,
and two files for defining filter rules and filter object sets. These configuration
files need to be modified directly by using a text editor and can be made effective
by using the tool aucfg. Aucfg emits a reload message to force re-reading of the
configuration. By applying DAC controls only the root user is able to execute
aucfg, additionally the audit-subsystem only accepts messages generated by user
root.

3.10 How is the configuration transfered to the

Kernel?

The audit daemon reads the configuration files, parses them and sends the filter
rules to the kernel by using a special I/O control command. The filter rules
are part of the kernel now and can only be modified or cleared by a user with
sufficient administrative privilege (CAP SYS ADMIN).

19

Chapter 4

Low Level Design

4.1 LAuS Components

The core component of LAuS is a kernel patch to enable system call logging, fil-
tering, checking network traffic and keeping track of user activities. In addition, it
contains an audit daemon to handle kernel messages, several command line tools,
LAuS API libraries, a modified Lib-PAM, a PAM module, and modified system
applications. The following diagram is an overview of the LAuS components:

Figure 4.1: LAuS Overview

20

4.1.1 Kernel Patch

The native Linux kernel does not contain any mechanism to monitor system
calls and to keep track of user activities. Therefore the Linux kernel has to be
enhanced to provide the SO with an audit trail. The kernel patch modifies the
process task structure for storing additional information/attributes, adds two
intercept functions and an additional flag to the ptrace framework, provides an
interface to the user space, and applies filter policies. All these tasks will be
described in the following subsections.

Login ID

In order to fulfill the CAPP requirements, the kernel must be modified to track
the “Login ID“ for each process. The “Login ID“ is part of the Audit Login

Message that is send to the kernel and includes information like hostname, IP
address, terminal name, name of the executeable too. The “Login ID“ is stored
in the structure aud process and should not be confused with the “Audit ID“.
The “Login ID“ it he “User ID“ of the user logged in, and the “Audit ID“ is a
unique session identifier. Therefore, there can be a session with the same “Login
ID“ but never with the same “Audit ID“.

Audit ID

In addition to the “Login ID“, a “Audit ID“ is stored in the structure aud process

to identify the trail of a process tree. The “Audit ID“ is unique and will be as-
signed to every process attached to the audit-subsystem. If the process spawns
a child process this ID gets inherited.

Task Structure

The process task structure as defined in linux-2.4.19.SuSE/include/linux/sched.h
is enhanced by a void pointer.

#if defined(CONFIG_AUDIT) || defined(CONFIG_AUDIT_MODULE)

void *audit;

#endif /* CONFIG_AUDIT */

This void pointer is used by the audit device driver to point to audit related data.
The audit driver manages the following data for every audited process:

struct aud_process {

struct list_head list;

uid_t login_id;

unsigned int audit_id;

/* Auditing suspended? */

21

unsigned char suspended;

};

If an audited process forks, the child process will receive a fresh aud process

structure, and the audit uid and audit id fields will be copied from the parent
process. The suspended field is initialized to zero.

Single Point of Entry and Exit (i386)

To intercept every system call that is made, the kernel patch needs to hook the
audit-subsystem into the ptrace framework. These entry points are located in the
assembler source file entry.S at the jump points traxesys and tracesys exit.
The following piece of code will describe this method:

ENTRY(system_call)

pushl %eax # save orig_eax

SAVE_ALL

GET_CURRENT(%ebx)

testb $0x22,tsk_ptrace(%ebx) # PT_TRACESYS|PT_AUDITED

jne tracesys

cmpl $(NR_syscalls),%eax

jae badsys

call *SYMBOL_NAME(sys_call_table)(,%eax,4)

movl %eax,EAX(%esp) # save the return value

[...]

tracesys:

movl $-ENOSYS,EAX(%esp)

movl %esp,%eax

pushl %eax

call SYMBOL_NAME(syscall_trace_enter)

addl $4,%esp

movl ORIG_EAX(%esp),%eax

cmpl $(NR_syscalls),%eax

jae tracesys_exit

call *SYMBOL_NAME(sys_call_table)(,%eax,4)

movl %eax,EAX(%esp) # save the return value

tracesys_exit:

movl %esp,%eax

pushl %eax

call SYMBOL_NAME(syscall_trace_leave)

addl $4,%esp

jmp ret_from_sys_call

22

Here you can see that the assembler code relating to the audit-subsystem in
conjunction with ptrace.

If auditing is enabled for a process the code jumps to tracesys and executes
our intercept function right before the system call is entered. Futhermore the file
ptrace.c needs adjustment to call the audit functions.

asmlinkage void syscall_trace_enter(struct pt_regs *regs)

{

#if defined(CONFIG_AUDIT) || defined(CONFIG_AUDIT_MODULE)

if (current->ptrace & PT_AUDITED)

audit_intercept(regs);

#endif

if ((current->ptrace & (PT_PTRACED|PT_TRACESYS)) == (PT_PTRACED|PT_TRACESYS))

syscall_ptrace();

}

asmlinkage void syscall_trace_leave(struct pt_regs *regs)

{

#if defined(CONFIG_AUDIT) || defined(CONFIG_AUDIT_MODULE)

if (current->ptrace & PT_AUDITED)

audit_result(regs);

#endif

if ((current->ptrace & (PT_PTRACED|PT_TRACESYS)) == (PT_PTRACED|PT_TRACESYS))

syscall_ptrace();

}

If auditing is enabled while compiling the kernel, either as module or as part of
the kernel, and the process has the flag PT AUDITED set, then all necessary infor-
mations will be gathered and processed by audit intercept or audit result.

The disadvantage of this mechanism is that every architecture has it’s own
entry.S file and it’s own type of CPU registers. So, the changes have to be
ported to the other architectures too.

Another problem may occur due to the fact that Linux provides different
execution domains for different formats like a.out, Solaris executables and so
on. To circumvent this problem the EAL3 kernel has to be shipped without the
corresponding kernel modules and additionally disabled kernel options.

If other execution level domains are disabled and auditing is enabled every
system call has to pass the auditing functions as described above.

23

Audited System Calls

LAuS catches every syscall that is made. But at the moment not all syscall argu-
ments are analyzed. The following table shows all syscalls where LAuS analyses
the arguments and all syscalls that are needed for CAPP.

Syscall Name needed? analyzed?
sysctl no yes

access yes yes
adjtimex no yes
brk yes yes
capset yes yes
chdir yes yes
chmod yes yes
chown yes yes
chown32 yes yes
chroot no yes
clone no yes
close no yes
create yes yes
create module yes yes
delete module yes yes
execve yes yes
exit no yes
fchdir no yes
fchmod yes yes
fchown yes yes
fchown32 yes yes
fgetxattr no yes
flistxattr no yes
fork no yes
fremovexattr yes yes
fsetxattr yes yes
ftruncate no yes
ftruncate64 no yes
getxattr no yes
init module yes yes
ioperm yes yes
iopl yes yes
ipc (msgctl, msgget, sem-
ctl, semget, shmat, shmctl,
shmget)

yes yes

24

kill no yes
lchown yes yes
lchown32 yes yes
lgetxattr no yes
link yes yes
listxattr no yes
llistxattr no yes
lremovexattr yes yes
lsetxattr yes yes
mkdir yes yes
mknod yes yes
mount yes yes
open yes yes
ptrace yes yes
query module no yes
read no yes
reboot no yes
removexattr yes yes
rename yes yes
rmdir yes yes
sched setaffinity no yes
sched setparam no yes
sched setscheduler no yes
setdomainname no yes
setfsgid yes yes
setfsgid32 yes yes
setfsuid yes yes
setfsuid32 yes yes
setgid yes yes
setgid32 yes yes
setgroups yes yes
setgroups32 yes yes
sethostname no yes
setpriority no yes
setregid yes yes
setregrid32 yes yes
setresgid yes yes
setresgid32 yes yes
setresuid yes yes
setresuid32 yes yes

25

setreuid yes yes
setreuid32 yes yes
setrlimit no yes
settimeofday no yes
setuid yes yes
setuid32 yes yes
setxattr yes yes
socketcall (bind) yes yes
stime no yes
swapoff no yes
swapon yes yes
symlink yes yes
syslog no yes
tkill no yes
truncate yes yes
truncate64 yes yes
umask yes yes
umount no yes
umount2 no yes
unlink yes yes
uselib no yes
utime yes yes
vfork no yes
write no yes

Handling I/O Control Messages

For specific I/O control messages, the audit module will intercept the data passed
by the caller and include it in the audit event. For all other I/O control messages,
data is not included in the audit event. The list of I/O control messages for which
data is included in the event is (network):

SIOCADDMULTI: Multicast address lists
SIOCADDDLCI: Create new DLCI device
SIOCADDRT: add routing table entry
SIOCCHGTUNNEL
SIOCDELTUNNEL
SIOCADDTUNNEL
SIOCDARP
SIOCDELRT: delete routing table entry

26

SIOCETHTOOL:
SIOCDELMULTI.
SIOCDIFADDR: delete PA address
SIOCDARP: delete ARP table entry
SIOCDELDLCI: Delete DLCI device
SIOCGIFBR:
SIOCSIFADDR: set PA address
SIOCSIFDSTADDR: set remote PA address
SIOCSIFBRDADDR: set broadcast PA address
SIOCSIFNETMASK: set network PA mask
SIOCSIFMETRIC: set metric
SIOCSIFMEM: set memory address (BSD)
SIOCSIFMTU. set MTU size
SIOCSIFNAME. set interface name
SIOCSIFBR
SIOCSIFFLAGS: set flags
SIOCSIFHWADDR:
SIOCSIFLINK: set iface channel
SIOCSIFTXQLEN:
SIOCSMIIREG:
SIOCSIFHWADDR. set hardware address
SIOCSIFENCAP:
SIOCSIFSLAVE:
SIOCSIFPFLAGS. set/get extended flags set
SIOCSIFHWBROADCAST: set hardware broadcast addr
SIOCSIFBR: Set bridging options
SIOCSIFTXQLEN: Set the tx queue length
SIOCSARP: set ARP table entry
SIOCSIFMAP: Set device parameters

Handling IP Device and Routing Changes

The Linux kernel supports two mechanisms for configuring IP network devices,
and IP routing:

• through ioctl(2)

• through AF NETLINK sockets

I/O control messages are handled by identifying the messages we’re interested
in, and copying the data that comes with them. Netlink messages are the more
advanced mechanism of network configuration, and is used by utilities such as
ip(8). Netlink messages are sent through sockets of type AF NETLINK, where the

27

destination is identified by numeric IDs such as NETLINK ROUTE. Alternatively,
netlink messages can be delivered to specific processes.

The only recipient ID relevant to our TOE is NETLINK ROUTE. Delivery to spe-
cific processes is not relevant to auditing network configuration. CAP NET ADMIN

privilege is required to create a netlink socket capable of receiving/sending NETLINK
ROUTE messages. A netlink message consists of one or more parts, each compris-
ing a header of type struct nlmsghdr, followed by data specific to the recipient
ID. The common data part of all NETLINK ROUTE messages consists of a struct

rtgenmsg containing the address family.
The IPv4 routing code receives these messages by registering a handler for

PF INET with the rtnetlink component. Similarly, the IPv6 code registers a han-
dler for PF INET6.

The audit code taps into the rtnetlink code, specifically into rtnetlink rcv skb

which takes care of delivering NETLINK ROUTE messages through these handlers.
The function delivers each portion of the message individually, and sends the out-
come of the code back to the calling sockets. The call hooks to the audit module
is invoked after the netlink message has been processed, passing the message
itself, the message length and the outcome for inspection by the audit module.

If the audit module decides to generate an audit event for the netlink message,
the event generated includes the contents of the message and the outcome.

Device File

To enable bidirectional communication between user space and kernel space LAuS
provides a device file. Communication happens via ioctl(2) calls and by using
read(2). The latter function call is used to read audit records from kernel buffers
and i.e. write them to disk.

The format of the audit record will be explained in detail in section “Contents
of Audit Record“, the ioctl(2) commands are explained in the next subsection.

The LAuS device file is named /dev/audit and has the major number 10
(misc devices) and minor number 224. Note: Namespace-collisions can happen
with block device /dev/audit, major number 103.

LAuS I/O Messages

The following table shows the ioctl(2) commands, their arguments, and their
description.

Command Argument Description
AUIOCATTACH none Attach current process to

audit-subsystem
AUIOCDETACH none detach current process from

audit-subsystem

28

AUIOCSUSPEND none Suspend auditing for cur-
rent process

AUIOCRESUME none Resume auditing for current
process

AUIOCCLRPOLICY none Clear policy
AUIOCSETPOLICY struct audit policy Add policy
AUIOCCLRFILTER none Clear filter
AUIOCSETFILTER struct audit filter Add filter
AUIOCIAMAUDITD none Register current process as

audit daemon
AUIOCSETAUDITID none Set Audit-ID
AUIOCLOGIN struct audit login
AUIOCUSERMESSAGE struct audit message

Filter

To reduce the I/O load and to reduce the amount of logging data the kernel is able
to perform filtering by using predicates and logical operations. Basic predicates
can be combined to user defined and more complex predicates like the following
example illustrates:

predicate is-one-or-two = eq(1) || eq(2);

The predicates can be used by defining a filter or by attaching the predicate to a
syscall.

filter uid-is-one-or-two = is-one-or-two(uid);

...

syscall sleep = is-one-or-two(arg0);

The filter is used to bind the predicate to a so called target (syscall argument,
process property, syscall result, etc.)

To handle a class of objects more easily the audit filter allows to specify a so
called ‘set‘.

set sensitive = { /etc, /root, /usr }

...

predicate is-sensitive = prefix(@sensitive);

The example above illustrates the use of sets. A set can be referenced by a
leading ‘@‘ sign. The man page audit-filter.conf(5) gives a more detailed
description the filtering scheme.

29

4.1.2 Kernel API Library

Author: Thomas Biege <thomas@suse.de>

Date: 2003-06-17

Version: 0.4

Todo: - add filter-functions

--

Kernel-API Library Functions

============================

definition: int laus_init(void)

return value: < 0: error

error codes: none

arguments: none

used by: audit daemon, audit tools, system applications

description: Initialise runtime parameters

definition: int laus_open(char *dev_file)

return value: < 0: error, file descriptor

error codes: LERR_OPEN_FAILED

arguments: device-file of systrace, if NULL a default value

will be used

used by: audit daemon, audit tools, system applications

description: Opens systrace-interface.

definition: int laus_log(const char *fmt, ...)

return value: < 0: error

arguments: printf-style format-string

error codes: LERR_NOT_OPENED

LERR_IOCTL_FAILED

description: Write printf-style message to kernel. The kernel will fill

in the regular headers and forward the message to the audit-

daemon

definition: int laus_registerauditid(void)

return value: < 0: error

error codes: LERR_NOT_OPENED

LERR_IOCTL_FAILED

30

arguments: none

used by: audit daemon

description: Register the current process as audit-daemon to

the kernel.

definition: pid_t laus_exec(int flags, char *prog_name, ...)

return value: < 0: error, process-id

error codes: LERR_FORK_FAILED

LERR_OUT_OF_MEMORY

LERR_EXEC_FAILED,

LERR_PROCESS_CRASHED

arguments: file descriptor, execution flags (NONE, DETACH), program-

name, optional program-arguments

used by: audit tools (i.e. wrapper for other daemons), system

applications

description: Fork and execute a program.

definition: int laus_attach(void)

return value: < 0: error

error codes: LERR_NOT_OPENED

LERR_IOCTL_FAILED

arguments: none

used by: audit tools, system applications

description: Attach the current process.

definition: int laus_setauditid(void)

return value: < 0: error

error codes: LERR_NOT_OPENED

LERR_IOCTL_FAILED

arguments: none

used by: audit tools, system applications

description: Set the audit-id for the current process. The audit-id

is needed to keep track of user activities even if they

change their user/group-id.

definition: int laus_setsession(id_t uid, const char *hostname,

const char *address, const char *terminal)

return value: < 0: error

error codes: LERR_NOT_OPENED

31

LERR_IOCTL_FAILED

arguments: user-id, remote hostname, remote ip-address, terminal

used by: audit tools, system applications

description: Set the terminal-id for the current process. The terminal-id is

needed to keep track of the "line" a user chooses to enter the

system. (Also refered to as "audit login message")

definition: int laus_clrpolicy(void)

return value: < 0: error

error codes: LERR_NOT_OPENED

LERR_IOCTL_FAILED

arguments: none

used by: audit daemon

description: Clear policies in kernel-space.

definition: int laus_setpolicy(int syscall, int action, int filter)

return value: < 0: error

error codes: LERR_NOT_OPENED

LERR_IOCTL_FAILED

arguments: syscall to audit, action, filter to apply

used by: audit daemon

description: Assign an action to a syscall. Asigning a filter is not

implemented yet.

definition: int laus_read(void *buffer, size_t size)

return value: < 0: error, > 0: number of bytes read, = 0: EOF

error codes: LERR_NOT_OPENED

LERR_READ_FAILED

arguments: pointer to a buffer, buffer size

used by: audit daemon

description: Read output from the kernel.

definition: const char * laus_strerror(int code)

return value: error string

error codes: none

arguments: return value of laus-functions

used by: audit daemon, audit tools, system applications

description: This function can be used to translate numerical

error-codes into a more descriptive error-string.

32

definition: int laus_detach(void)

return value: < 0: error

error codes: none

arguments: none

used by: audit tools, system applications

description: Detach the running process.

definition: int laus_close(int fd)

return value: < 0: error

arguments: file descriptor

used by: audit daemon, audit tools, system applications

description: Close systrace-interface.

Kernel-API Library Structures

=============================

struct aud_message {

u_int32_t msg_seqnr;

u_int16_t msg_type;

u_int16_t msg_arch;

pid_t msg_pid;

size_t msg_size;

unsigned long msg_timestamp;

unsigned int msg_audit_id;

unsigned int msg_login_uid;

unsigned int msg_euid, msg_ruid, msg_suid, msg_fsuid;

unsigned int msg_egid, msg_rgid, msg_sgid, msg_fsgid;

union {

char dummy;

} msg_data;

};

struct aud_msg_child {

pid_t new_pid;

};

33

struct aud_msg_syscall {

int personality;

/* System call codes can have major/minor number.

* for instance in the socketcall() case, major

* would be __NR_socketcall, and minor would be

* SYS_ACCEPT (or whatever the specific call is).

*/

int major, minor;

int result;

unsigned int length;

unsigned char data[1]; /* variable size */

};

struct aud_msg_netlink {

unsigned int groups, dst_groups;

int result;

unsigned int length;

unsigned char data[1]; /* variable size */

};

struct aud_msg_login {

uid_t uid;

char hostname[AUD_MAX_HOSTNAME];

char address[AUD_MAX_ADDRESS];

char terminal[AUD_MAX_TERMINAL];

char executable[PATH_MAX];

};

For more information see man page laus record(7).

4.1.3 Server API Library

Author: Thomas Biege <thomas@suse.de>

Date: 2003-06-18

Version: 0.3 (Changes are very likely)

Todo:

--

Server-API Library Functions

============================

34

Parsing:

definition: int laussrv_process_log(const char *filename,

audit_callback_fn_t *func)

return value: < 0: error

arguments: name of log-file, callback function.

used by: system applications

description: Read audit-logs and call the callback function to handle the

data.

Controlling:

definition: void laussrv_ctrl_open(void)

return value: < 0: error

arguments: none

used by: audit tools

description: This function opens the control-channel (unix domain

socket) to the audit-server. It enables the LAuS

command-line tools to control the Linux-Auditsubsystem

in a predefined and less error-prone way.

definition: int laussrv_ctrl(struct ctrl_message *msg)

return value: < 0: error

arguments: control-message pointer

used by: audit tools

description: Send control-message to audit-server.

definition: int laussrv_ctrl_setpolicy(int fd, pid_t pid, char *policy)

return value: < 0: error, policy-id

arguments: none, process-id, policy

used by: audit tools

description: Set policy for a given process.

definition: int laussrv_ctrl_getpolicy(int fd, int policy_id)

return value: < 0: error

arguments: none, policy-id

used by: audit tools

description: Get policy for a given policy-id.

definition: int laussrv_ctrl_delpolicy(int fd, int policy_id)

return value: < 0: error

35

arguments: none, policy-id

used by: audit tools

description: Delete policy belonging to policy_id.

definition: int laussrv_ctrl_close(int fd)

return value: < 0: error

arguments: none

used by: audit tools

description: close connection to audit-server

definition: int audit_print(time_t timestamp, struct aud_message *msg,

int flags)

return value: 0

arguments: the arguments are set via the callback function by

laussrv_process_log()

used by: audit tools

description: Output audit data in human readable format.

Server-API Library Structures

=============================

Parsing:

typedef int audit_callback_fn_t(time_t timestamp,

struct aud_message *msg,

struct aud_message *related,

int flags);

Controlling:

#define LAUS_TYPE_GO

#define LAUS_TYPE_HALT

#define LAUS_TYPE_RELOAD

#define LAUS_TYPE_GET_STATUS

#define LAUS_TYPE_DBG_INC

#define LAUS_TYPE_DBG_DEC

struct ctrl_message

{

36

int version_major, version_minor;

int endian;

u_long type;

union

{

struct status state;

} data;

}

struct status

{

pid_t pid;

pid_t ppid

boolean traced;

int audit_id;

int audit_session_id

tid_t terminal_id;

}

4.1.4 Audit Daemon

The audit daemon performs the following functions

• announce himself to the audit-subsystem

• turns kernel auditing on and off

• sends the audit filter policy to the kernel audit-subsystem

• reads the audit records from the device file

• writes the audit records to the disk (file-, stream-, bin-mode)

• monitors the current state of the system for potential audit record loss

• notifies the system administrator via syslog in case of impending audit data
loss

The audit daemon provides three ways of writing audit records to disk. The
choice of which method to use is configurable by the administrator. The choices
are ‘file mode‘, ‘bin mode‘ and ‘stream mode‘. In file mode, data is written
pretty much the same way as syslogd(8) does, i.e. records are appended to a
file that is allowed to grow arbitrarily.

37

In stream mode, an audit record stream is piped to an user defined program
for post-processing.

In bin mode, four fixed length files are maintained with a pointer to the
current location. The audit records are written until the current file has reached
it maximum capacity and then the secondary file is utilized until it reaches its
maximum capacity at which point the first file is used again. This allows the
administrator to specify the maximum disk space that audit records will ever
take.

Note: The default configuration uses /var/log/audit as append-file and
also as symlink to the current bin-file in bin-mode. If you use append-mode and
switch to bin-mode your audit data in /var/log/audit gets lost! Please backup
your data before switching modes or change your configuration.

The following command–line options are recognized:

–r Reload the system call filters in the kernel with
out interrupting collection of audit events. This
is better than restarting the daemon, because no
audit events will be lost.

–F Run in foreground, and log all error diagnostics
and debug messages to standard error rather than to
syslog.

–d Enable debugging messages. Specifying this option
repeatedly will increase verbosity

4.1.5 Audit Tools

The user space tools consist of aucat, augrep, aurun, aucfg, and audbin. Aucat
reads the audit log files and outputs the records in human readable format. The
administrator can select between ASCII, SQL and IDMEF [1] format. Augrep

performs a similar function but it allows the administrator to optionally filter the
records based on user, audit id, outcome, system call, or file. aucfg provides the
interface that allows the administrator to inform the audit daemon of changes to
the configuration and to start and stop auditing. Aurun can be used as a wrap-
per to start applications, like Apache, and attach them to the audit-subsystem
without modifying the applications source code. Audbin is for post-processing
bin-files.

aucat

To read and post-process the audit logs aucat can be used wih the following
options:

–f Process audit records read from FILENAME.
Default is “/var/log/audit“.

38

–? Print out help screen.
–h, —header Print out a header at the top of output

that identifies the columns of the output.
-t- TIMEFORMAT Change format of time that is output.

Default is “iso8601“.
Options are:
iso8601: print time in iso 8601 format. (YYYY-MM-DDT hh:mm:ss)
unix: print time in (DD MM YY hh:mm:ss).
raw: print raw time.
none: do not print time.

–v Print out all variables in message, not all are
printed by default.

augrep

Augrep can be used to search by using various attributes. The output can be
formated. The following options are supported.

–f Process audit records read from FILENAME.
Default is “/var/log/audit“.

–? Print out help screen.
–h, —header Print out a header at the top of output

that identifies the columns of the output.
–t TIMEFORMAT Change format of time that is output.

Default is “iso8601“.
Options are:
iso8601: print time in iso 8601 format.
(YYYY-MM-DDT hh:mm:ss)
unix: print time in (DD MM YY hh:mm:ss).
raw: print raw time.
none: do not print time.

–v, —verboseall Print out all variables in message, not all are
printed by default.

–a SESSION ID,
—auditid=SESSION ID Find audit record(s) with specified session id.

–l LOGIN NAME,
—loginid=LOGIN NAME Find audit record(s) with specified login id.

(NOTE: This option cannot be used if option “uid“
has already been specfied.)

–n SEQ NUM,
—sequencenum=SEQ NUM Find audit record(s) with specified sequence number.

–p PID, —pid=PID Find audit record(s) with specified pid.
–u UID, —uid=UID Find audit record(s) with specified uid.

39

(NOTE: This option cannot be used if option
“loginid“has already been specfied.)

—euid=EUID Find audit record(s) with specified euid.
—egid=EGID Find audit record(s) with specified egid.

—fsuid=FSUID Find audit record(s) with specified fsuid.
—fsgid=FSGID Find audit record(s) with specified fsgid.

—ruid=RUID Find audit record(s) with specified ruid.
—rgid=RGID Find audit record(s) with specified rgid.
—suid=SUID Find audit record(s) with specified suid.
—sgid=SGID Find audit record(s) with specified sgid.
–s STARTT ,

—starttime=STARTT Find audit record(s) that started at or after a
specified start time.
(Note: Time must be in iso8601 Format “YYYY-MM-
DDThh:mm:ss“)

–s ENDT,
—endtime=ENDT (Note: Time must be in iso8601 Format “YYYY-MM-

DDThh:mm:ss“)
–x EVENT,

—event=EVENT Find audit record(s) with specified event type.
Options:
LOGIN: Find login messages.
NETLINK: Find netlink messages.
SYSCALL: Find syscall messages.
TEXT: Find messages that come from userspace
tools (ex. cron and at)

–A ADDRESS,
—address=ADDRESS Find LOGIN message(s)with specified address.

–E EXECUTE,
—execute=EXECUTE Find LOGIN message(s) with specified executable.

–H HOSTNAME,
—hostname=HOSTNAME Find LOGIN message(s) with specified hostname.

–T TERMINAL,
—terminal=TERMINAL Find LOGIN message(s) with specified terminal.

–G GROUP,
—group=GROUP Find NETLINK message(s) with specified group.

–I GROUP,
—dstgroup=DSTGROUP Find NETLINK message(s) with specified dstgroup.

–L RESULT,
—netresult=RESULT Find NETLINK message(s) with specified result.

–K DATA,
—netdata=DATA Find NETLINK message(s) that contain specified DATA.

–X DATA,

40

—textdata=DATA Find TEXT message(s) that contain DATA.
–S name,

—syscall name Find system call messages matching the given name.
This also covers calls such as accept and listen,
which are multiplexed through socketcall on some
architectures.

–M MAJOR NUMBER,
—major=MAJOR NUMBER Find SYSCALL message(s) with specified major number.

–N MINOR NUMBER,
—minor=MAJOR NUMBER Find SYSCALL message(s) with specified minor number.

–R RESULT,
—sysresult=RESULT Find SYSCALL message(s) with specified result.

–D DATA,
—sysdata=DATA Find SYSCALL message(s) that contain specified DATA.

aucfg

To control the audit daemon via the command line aucfg can be used. Control-
ling the audit daemon is done by using the following options:

—reload: Reload configuration
—suspend: Suspend auditing, but keep configuration
—resume: Resume auditing
—dbg inc: More verbose debugging
—dbg dec: Less verbose debugging

aurun

To attach an application like dhcpd, apache or alike to the audit-subsystem,
aurun can be used as a wrapper. The following option are recognized:

–u user By default, the process will be run with the privilege
of the current user. By specifying the -u command
line switch, you can specify the name of a
user account, the privileges of which the program
will be executed with.

–N Do not write a login session record, use this for
programs such as FTP servers that do their own PAM
authentication.

Trailing arguments will be used as arguments for the wrapped applications.

41

audbin

Audbin‘s purpose is post-processing and managing of log-files. The following
option are recognized:

–S file Copies the log file to the given destination. The
destination can contain the following substituion
strings:
%u: generate a number to make the file name unique.
%t: include the current time stamp as integer
%h: include the hostname as given in the header of the original log file.
%%: include a verbatim percent character.
The special filename “-“ indicates standard output.

–C Clear the log file after saving its contents. This
option can also be used without the -S option.

–o If the destination file exists, overwrite it.
–a If the destionation file exists, append the contents of the log file to it.
–q Do not print any diagnostic messages to standard output

The last option given must be the file containing the audit–data.

4.1.6 Enhanced PAM Library and the PAM Module

The modified PAM library and the PAM LAuS module work together to set up
the auditing environment.

A complication here is that not all applications use the PAM framework in
exactly the same way, for example sshd bypasses PAM authentication when the
user authenticates using a private key instead of a password.

Also, there are two conflicting requirements concerning the attached audit
information. On the one hand, actions done by an administrator must be audited
with the admin’s original non-root login UID, including for processes started using
su. On the other hand, if the administrator restarts a system daemon such as
sshd, users who log in using that restarted daemon must receive a fresh login
record, and not have their actions audited with the data of the administrator
who restarted the service.

Therefore, some flexibility in configuring the PAM system is required.
The pam laus module is responsible for activating auditing for the current

process. It calls laus init() and laus open() to open the audit device file,
then laus attach() to attach the current process to the audit subsystem and
laus setauditid() to assign a fresh audit session ID.

As a special case, if the module flag detach is set, a call to laus detach()

is done before the call to laus attach() to disassociate any previously attached
audit data from the process. This flag MUST be used in the PAM configuration
file of services such as sshd or ftpd that require a clean environment for newly

42

logged-in users. It MUST NOT be used for reauthenticating services such as su
or screen savers, where the currently attached audit data remains valid for the
new process.

The PAM library implements a central intercept hook pam auditlog() that
is called at the end of each stack of auth, account or session modules. An
Audit User Message is written to the audit log indicating success or failure as
determined by the module stack’s returned value. An Audit Login Message is
also written using laus setsession() if no session data is currently associated
with the process.

The PAM configuration for each service MUST ensure that the pam laus

module is run in every case before control is given to the user. This can be done
in any one of the auth, account or session stacks, but the application code
MUST be verified to ensure that this stack is used in every case. For example,
sshd always runs the account stack, but bypasses the auth stack in the case of
public key authentication.

Note that the audit functions require CAP SYS ADMIN capabilities (usually
equivalent to root rights), so if a stack is not run as root, they will fail. For
example, sshd runs the session stack with the logged-in user’s rights, so putting
the pam laus module in that path will not work.

4.1.7 Enhanced System Applications

Applications like login or passwd can write arbitrary text messages to the audit
daemon through the kernel by using the ioctl command AUIOCUSERMESSAGE.
This enables security relevant system applications to write short and descriptive
messages into the audit logs without using syscall logging.

4.2 LAuS Configuration

Currently just the audit daemon has configuration files. All other components
are simple enough to configure via command line arguments.

4.2.1 Audit Daemon

The audit daemon needs three configuration files. The main config file (audit.conf)
is used to set the path to the filter rules, to define threshold and alike. The files
filter.conf and filesets.conf (not mandatory, just used to ease configura-
tion) are used for filtering.

auditd.conf

The following just shows an example config file:

43

kernel interface

device-file = "/dev/audit";

filter config

filter = "/etc/audit/filter.conf";

output {

mode = append; # append to log

file-name = "/var/log/audit";

};

Alternative output

output {

mode = stream;

command = "/usr/local/sbin/send_to_syslog"

}

Another output alternative:

output {

mode = bin;

num-files = 4;

file-size = 20M;

file-name = "/var/log/audit.d/bin";

notify = "/usr/local/sbin/audbin-notify";

}

threshold for running out of disc space

threshold disk-space-low {

space-left = 10M;

action {

type = syslog

facility = security;

priority = warning;

};

action {

type = notify

command = "/usr/local/bin/page-admin";

};

};

threshold disk-full {

space-left = 0;

action {

44

type = shutdown

no options

};

};

The audit daemon is able to handle more then one output section simultaneously.
As you can see, the system will be shutdown when the disk runs out of space.

filesets.conf

The following just shows an example config file:

#

This file contains file name sets etc used in the default

audit filter configuration file.

#

The syntax of this file is described in filter.conf(5).

#

#

Set of files for which we track read access.

#

set secret-files = {

"/etc/shadow",

"/etc/gshadow",

"/var/log/audit",

"/var/log/audit.d",

"/var/log/audit.d/bin.0",

"/var/log/audit.d/bin.1",

"/var/log/audit.d/bin.2",

"/var/log/audit.d/bin.3",

};

filter.conf

The following section shows an example configuration for the audit filter. It
includes enuogh comments and covers a wide range of cases and is an excellent
starting point for writing futher filter rules. Note: The glibc-API is different from
the kernel-API. Using setreuid(2) in a program doesn’t necessarily trigger the
setreuid(2) system-call, instead setreuid32(2) reveals. This is due to the fact
that the glibc wrappes architecture-specific behaviour.

#

This is a sample filter.conf file.

45

Please take a look at filesets.conf first if you

wish to customize what system calls will be logged.

#

The syntax of this file is described in filter.conf(5).

#

#

Various primitive predicates

predicate is-null = eq(0);

predicate is-negative = lt(0);

predicate is-system-uid = lt(100);

#

Predicate to check open(2) mode: true iff

(mode & O_ACCMODE) == O_RDONLY

predicate is-rdonly = mask(O_ACCMODE, O_RDONLY);

#

Predicates for testing file type, valid when applied

to a file type argument

predicate __isreg = mask(S_IFMT, S_IFREG);

predicate __isdir = mask(S_IFMT, S_IFDIR);

predicate __ischr = mask(S_IFMT, S_IFCHR);

predicate __isblk = mask(S_IFMT, S_IFBLK);

predicate __issock = mask(S_IFMT, S_IFSOCK);

predicate __islnk = mask(S_IFMT, S_IFLNK);

predicate s_isreg = __isreg(file-mode);

predicate s_isdir = __isdir(file-mode);

predicate s_ischr = __ischr(file-mode);

predicate s_isblk = __isblk(file-mode);

predicate s_issock = __issock(file-mode);

predicate s_islnk = __islnk(file-mode);

predicate is-tempdir = mask(01777, 01777);

predicate is-world-writable = mask(0666, 0666);

#

Predicates dealing with process exit code

predicate if-crash-signal =

!mask(__WSIGMASK, 0)

&& (mask(__WSIGMASK, __WSIGILL) ||

mask(__WSIGMASK, __WSIGABRT) ||

mask(__WSIGMASK, __WSIGSEGV) ||

mask(__WSIGMASK, __WSIGSTKFLT));

46

#

Predicates for audit-tags

predicate is-o-creat = mask(O_CREAT, O_CREAT);

predicate is-ipc-remove = eq(IPC_RMID);

predicate is-ipc-setperms = eq(IPC_SET);

predicate is-ipc-creat = mask(IPC_CREAT, IPC_CREAT);

predicate is-auditdevice = prefix("/dev/audit");

predicate is-cmd-set-auditid = eq(AUIOCSETAUDITID);

predicate is-cmd-set-loginid = eq(AUIOCLOGIN);

#

Misc filters

filter is-root = is-null(uid);

filter is-setuid = is-null(dumpable);

filter syscall-failed = is-negative(result);

predicate is-af-packet = eq(AF_PACKET);

predicate is-af-netlink = eq(AF_NETLINK);

predicate is-sock-raw = eq(SOCK_RAW);

#

Include filesets.

#

include "filesets.conf";

#

"Secret" files should not be read by everyone -

we also log read access to these files

#

predicate is-secret = prefix(@secret-files);

#

All regular files owned by a system uid are deemed sensitive

#

predicate is-system-file = is-system-uid(file-uid)

&& !prefix("/var")

&& !is-world-writable(file-mode);

#

Define ioctls we track

#

set sysconf-ioctls = {

47

SIOCADDDLCI,

SIOCADDMULTI,

SIOCADDRT,

SIOCBONDCHANGEACTIVE,

SIOCBONDENSLAVE,

SIOCBONDRELEASE,

SIOCBONDSETHWADDR,

SIOCDARP,

SIOCDELDLCI,

SIOCDELMULTI,

SIOCDELRT,

SIOCDIFADDR,

SIOCDRARP,

SIOCETHTOOL,

SIOCGIFBR,

SIOCSARP,

SIOCSIFADDR,

SIOCSIFBR,

SIOCSIFBRDADDR,

SIOCSIFDSTADDR,

SIOCSIFENCAP,

SIOCSIFFLAGS,

SIOCSIFHWADDR,

SIOCSIFHWBROADCAST,

SIOCSIFLINK,

SIOCSIFMAP,

SIOCSIFMEM,

SIOCSIFMETRIC,

SIOCSIFMTU,

SIOCSIFNAME,

SIOCSIFNETMASK,

SIOCSIFPFLAGS,

SIOCSIFSLAVE,

SIOCSIFTXQLEN,

SIOCSMIIREG

};

predicate is-sysconf-ioctl = eq(@sysconf-ioctls);

#

System calls on file names

#

set file-ops = {

"mkdir", "rmdir", "unlink",

48

"chmod",

"chown", "lchown",

"chown32", "lchown32",

};

#

General system related ops

#

set system-ops = {

swapon, swapoff,

create_module, init_module, delete_module,

sethostname, setdomainname,

};

set priv-ops = {

"setuid",

"setuid32",

"seteuid",

"seteuid32",

"setreuid",

"setreuid32",

"setresuid",

"setresuid32",

"setgid",

"setgid32",

"setegid",

"setegid32",

"setregid",

"setregid32",

"setresgid",

"setresgid32",

"setgroups",

"setgroups32",

"capset",

};

#

Audit-Tags (only syscall related tags are handled here)

#

define sets of syscalls related to audit-tags

System calls for changing file modes

49

set mode-ops = {

"chmod",

"fchmod",

};

System calls for changing file owner

set owner-ops = {

"chown", "lchown",

"chown32", "lchown32",

"fchown",

};

System calls doing file link operations

set link-ops = {

"link", "symlink",

};

System calls for creating device files

set mknod-ops = {

"mknod",

};

System calls for opening a file

set open-ops = {

"open",

};

File renaming

set rename-ops = {

"rename",

};

File truncation

set truncate-ops = {

"truncate", "truncate64",

"ftruncate", "ftruncate64",

};

Unlink files

set unlink-ops = {

"unlink",

};

50

Deletion of directories

set rmdir-ops = {

"rmdir",

};

Mounting of filesystems

set mount-ops = {

"mount",

};

Unounting of filesystems

set umount-ops = {

"umount",

"umount2"

};

Changing user (-role)

set userchange-ops = {

"setuid",

"setuid32",

"seteuid",

"seteuid32",

"setreuid",

"setreuid32",

"setresuid",

"setresuid32",

};

Execute another program

set execute-ops = {

"execve",

};

Set real user-ID

set realuid-ops = {

"setuid",

"setuid32",

};

Set user-IDS in gerneral

set setuserids-ops = {

"setuid",

51

"setuid32",

"seteuid",

"seteuid32",

"setreuid",

"setreuid32",

"setresuid",

"setresuid32",

};

Set real group-ID

set realgid-ops = {

"setgid",

"setgid32",

"setgroups",

"setgroups32",

};

Set group-IDs in gerneral

set setgroups-ops = {

"setgid",

"setgid32",

"setegid",

"setegid32",

"setregid",

"setregid32",

"setresgid",

"setresgid32",

"setgroups",

"setgroups32",

};

Set other kind of privileges (capabilities)

set privilege-ops = {

"capset",

};

Change system-time

set timechange-ops = {

"adjtimex",

"stime",

"settimeofday",

};

52

bring sets and tags in conjunction

tag "FILE_mode"

syscall @mode-ops = always;

tag "FILE_owner"

syscall @owner-ops = always;

tag "FILE_link"

syscall @link-ops = always;

tag "FILE_mknod"

syscall @mknod-ops = always;

tag "FILE_create"

syscall open = is-o-creat(arg1);

tag "FILE_create"

syscall creat = always;

#tag "FILE_open"

#syscall @open-ops = always;

tag "FILE_open"

syscall @open-ops = (is-system-file(arg0) && !(is-rdonly(arg1)))

|| is-secret(arg0);

tag "FILE_rename"

syscall @rename-ops = always;

tag "FILE_truncate"

syscall @truncate-ops = always;

tag "FILE_unlink"

syscall @unlink-ops = always;

tag "FS_rmdir"

syscall @rmdir-ops = always;

tag "FS_mount"

syscall @mount-ops = always;

tag "FS_umount"

53

syscall @umount-ops = always;

I think owner changing doesnt make much sense

tag "MSG_owner"

syscall msgctl = is-ipc-setperms(arg1);

tag "MSG_mode"

syscall msgctl = is-ipc-setperms(arg1);

tag "MSG_delete"

syscall msgctl = is-ipc-remove(arg1);

tag "MSG_create"

syscall msgget = always;

tag "SEM_owner"

syscall semctl = is-ipc-setperms(arg2);

tag "SEM_mode"

syscall semctl = is-ipc-setperms(arg2);

tag "SEM_delete"

syscall semctl = is-ipc-remove(arg2);

tag "SEM_create"

syscall semget = always;

tag "SHM_owner"

syscall shmctl = is-ipc-setperms(arg1);

tag "SHM_mode"

syscall shmctl = is-ipc-setperms(arg1);

tag "SHM_delete"

syscall shmctl = is-ipc-remove(arg1);

tag "SHM_create"

syscall shmget = always;

tag "PRIV_userchange"

syscall @userchange-ops = always;

tag "PROC_execute"

54

syscall @execute-ops = always;

tag "PROC_realuid"

syscall @realuid-ops = always;

tag "PROC_auditid"

syscall ioctl = (is-auditdevice(arg0) && is-cmd-set-auditid(arg1));

tag "PROC_loginid"

syscall ioctl = (is-auditdevice(arg0) && is-cmd-set-loginid(arg1));

tag "PROC_setuserids"

syscall @setuserids-ops = always;

tag "PROC_realgid"

syscall @realgid-ops = always;

tag "PROC_setgroups"

syscall @setgroups-ops = always;

tag "PROC_privilege"

syscall @privilege-ops = always;

tag "SYS_timechange"

syscall @timechange-ops = always

not required by CAPP

syscall ipc = always;

syscall socket = is-af-packet(arg0) || is-sock-raw(arg1);

syscall ioctl = is-sysconf-ioctl(arg1);

#

Special filters for process/termination

event process-exit = if-crash-signal(exitcode);

#

Events we want to log unconditionally:

event network-config = always;

event user-message = always;

event process-login = always;

55

4.3 LAuS Log Files

In the default configuration the audit daemon writes its log data to /var/log/audit.
The log date can be read with command aucat.

4.3.1 Contents of Audit Record

The audit record written to the device file depends on the type of message (enter
syscall, leave syscall). The audit record will include the major and minor version
number of LAuS and a flag for specifying the byte order. An audit record is
constructed by using the following data structures:

struct laus_record_header {

time_t r_time;

size_t r_size;

}

struct aud_message {

u_int32_t msg_seqnr;

u_int16_t msg_type;

u_int16_t msg_arch;

pid_t msg_pid;

size_t msg_size;

unsigned long msg_timestamp;

unsigned int msg_audit_id;

unsigned int msg_login_uid;

unsigned int msg_euid, msg_ruid, msg_suid, msg_fsuid;

unsigned int msg_egid, msg_rgid, msg_sgid, msg_fsgid;

union {

char dummy;

} msg_data;

};

The following structures are optional and depend on the message type. They
can be accessed by using the dummy variable of struct aud message.

struct aud_msg_child {

pid_t new_pid;

};

struct aud_msg_syscall {

56

int personality;

/* System call codes can have major/minor number.

* for instance in the socketcall() case, major

* would be __NR_socketcall, and minor would be

* SYS_ACCEPT (or whatever the specific call is).

*/

int major, minor;

int result;

unsigned int length;

unsigned char data[1]; /* variable size */

};

struct aud_msg_netlink {

unsigned int groups, dst_groups;

int result;

unsigned int length;

unsigned char data[1]; /* variable size */

};

4.3.2 Raw Log Format

The raw log format just contains the binary data from the kernel and a header
to add the time since the Epoch (00:00:00 UTC, January 1, 1970), measured in
seconds.

4.3.3 Cooked Log Format

By using the function laussrv process log() of the server API library it is
possible to obtain the timestamp and raw kernel data via a callback function.
The callback function can use the various print functions of the server API library
to output the data in human readable informations. Example:

2003-08-21T04:30:00 31 1060 root [PROC_execute] execve("/bin/rm",

[data, len=0], [data, len=0])

2003-08-21T04:30:00 32 1060 root [FILE_unlink] unlink("/tmp/run-crons

.zxPaul"); result=-21 ["Is a directory"]

2003-08-21T04:30:00 33 1060 root [FS_rmdir] rmdir("/tmp/run-crons.

zxPaul"); result=0

2003-08-21T04:42:30 34 1061 -1 [AUTH_success] pam: Accounting

succeeded for user=thomas (hostname=

57

ras.suse.de, addr=10.0.8.6, terminal

=NODEVssh)

2003-08-21T04:44:07 35 1099 -1 [AUTH_success] pam: Authentication

succeeded for user=root (hostname=?,

addr=?, terminal=pts/0)

2003-08-21T04:44:07 36 1099 -1 [AUTH_success] pam: Accounting

succeeded for user=root (hostname=?,

addr=?, terminal=pts/0)

2003-08-21T04:44:07 37 1099 -1 [AUTH_success] pam: Session open

succeeded for user=root (hostname=?,

addr=?, terminal=pts/0)

2003-08-21T04:45:00 38 1136 -1 cron: executing cron job - crontab=

/etc/crontab, uid=0, gid=0, cmd=

test -x /usr/lib/cron/run-crons &&

/usr/lib/cron/run-crons >/dev/null

2>&1

2003-08-21T04:45:00 39 1136 -1 [PROC_auditid] ioctl("/dev/audit",

AUIOCSETAUDITID, [data, len=0]);

result=0

2003-08-21T04:45:00 40 1136 root LOGIN: uid=0, terminal=cron job,

executable=/usr/sbin/cron

2003-08-21T04:45:00 41 1136 root [PROC_loginid] ioctl("/dev/audit",

AUIOCLOGIN, [data, len=0]);

result=0

2003-08-21T04:45:00 42 1136 root [PROC_execute] execve("/bin/bash",

[data, len=0], [data, len=0])

2003-08-21T04:45:00 43 1136 root [FILE_open] open("/dev/tty", O_RDWR

|O_NONBLOCK|O_LARGEFILE, 0); result=

-6 ["No such device or address"]

2003-08-21T04:45:00 62 1152 root [FILE_unlink] unlink("/tmp/run-crons

.PxjwME"); result=-21 ["Is a directory"]

2003-08-21T04:45:00 63 1152 root [FS_rmdir] rmdir("/tmp/run-crons

.PxjwME"); result=0

2003-08-21T04:51:48 64 1362 -1 useradd: user added - user=ntp, uid=

74, gid=65534, home=/var/lib/ntp,

shell=/bin/false, by=0

This trail shows a process started via aurun, which opened the shadow file
for reading, and a user logging via /bin/login, and trying to open the shadow
file as well.

58

Chapter 5

Open Issues

• proofreading by Olaf

• proofreading by Andreas and Helmut

59

Appendix A

Abbreviations

BSI Bundesamt fuer Sicherheit in der Informationstechnik

BSM Basic Security Module

CAPP Controlled Access Protection Profile

CC Common Criteria

CERT Computer Emergency Response Team

DAC Discretionary Access Control

DoS Denial–of–Service

EAL Evaluation Assurance Level

FIFO First In, First Out; Named Pipe; local Interprocess Communication

GNU GNU’s Not Unix!, Projekt of the Free Software Foundation

GUI Graphical User Interface

IDMEF Intrusion Detection Message Exchange Format

IDS Instrusion Detection System

IP Internet Protocol, s. RFC–791 [3]

LAuS Linux Audit-Subsystem

LKM Loadable Kernel Modul

PAM Pluggable Authentication Module

SO Security Officer

60

SQL Structured Query Language

SSL Secure Socket Layer, Encryption on presentationlayer

Syslog native Unix Logging System

TCP Transmission Control Protocol, s. RFC–793 [3]

UDP User Datagram Protocol, s. RFC–768 [3]

UML Unified Modeling Language

XML Extensible Markup Language

61

Appendix B

List of Figures

3.1 Data Flow: Kernel Sources . 14
3.2 Data Flow: User Sources . 15
3.3 Data Flow: Configuration . 19

4.1 LAuS Overview . 20

62

Appendix C

Bibliography

[1] D. Curry, H. Debar, Intrusion Detection Message Exchange Format — Data
Model and Extensible Markup Language (XML) Document Type Definition,
IDWG, February 2002

[2] LibIDMEF, http://www.silicondefense.com/idwg/libidmef/index.htm

[3] RFC Datenbank, http://www.rfc-editor.org/

[4] CAPP Version 1d, http://www.radium.ncsc.mil/tpep/library/protection_profiles/CAPP-1.d.pdf

63

http://www.silicondefense.com/idwg/libidmef/index.htm
http://www.rfc-editor.org/
http://www.radium.ncsc.mil/tpep/library/protection_profiles/CAPP-1.d.pdf

	Introduction
	CAPP Requirements
	Audit Data Generation FAU_GEN.1
	User Identity Association FAU_GEN.2
	Audit Review FAU_SAR.1
	Restrict Audit Review FAU_SAR.2
	Selectable Audit Review FAU_SAR.3
	Selective Audit FAU_SEL.1
	Guarantees of Data Availability FAU_STG.1
	Action in Case of Audit Data Loss FAU_STG.3
	Prevention of Audit Data Loss FAU_STG.4
	Management of the Audit Trail FMT_MDT.1
	Management of audited Events FMT_MDT.1
	Reliable Time Stamps FPT_STM.1
	Mapping Events

	High Level Design
	Why a Kernel-Patch?
	How can a Process be attached/detached to/from LAuS?
	How will Events be generated?
	Kernel Source
	System Calls
	Netlink Sockets
	Process Creation and Termination

	User Source
	The PAM Framework
	Enhanced System-Applications

	What Information will be kept per Event?
	How will a unbroken Audit-Trail be guaranteed?
	How does the Audit-Record reach the User-Space?
	How will the Audit-Record be written?
	What about post-processing the Audit-Record?
	Who can configure what in which way?
	How is the configuration transfered to the Kernel?

	Low Level Design
	LAuS Components
	Kernel Patch
	Login ID
	Audit ID
	Task Structure
	Single Point of Entry and Exit (i386)
	Audited System Calls
	Handling I/O Control Messages
	Handling IP Device and Routing Changes
	Device File
	LAuS I/O Messages
	Filter

	Kernel API Library
	Server API Library
	Audit Daemon
	Audit Tools
	aucat
	augrep
	aucfg
	aurun
	audbin

	Enhanced PAM Library and the PAM Module
	Enhanced System Applications

	LAuS Configuration
	Audit Daemon
	auditd.conf
	filesets.conf
	filter.conf

	LAuS Log Files
	Contents of Audit Record
	Raw Log Format
	Cooked Log Format

	Open Issues
	Abbreviations
	List of Figures
	Bibliography

