ACPI BIOS Guideline for Linux

Thomas Renninger - Copyright SUSE Linux GmbH, 2008
August 7, 2008

Abstract

This specification is intended for PC hardware vendors and PC BIOS
developers. It documents and describes ACPI implementations of the
Linux kernel which are important for BIOS developers. Irregularities to
the ACPI specification are discussed. Problems that may occur when
Linux is used with ACPI driven BIOSes are outlined, with explanations
on how to avoid them.

Contents

‘1 Introduction

‘2 Vendor specific ACPI implementations

3 Avoid the use of the _OSI function if possible

3.1 Whatis OSI and howisitused
3.2 How _OSI is implemented on Linux
3.3 BIOS providers have to take care about _OSI on Linux

4 WMI - Windows Management Instrumentation

5 Post Video BIOS after Suspend to Ram

6 Check ACPI operation region declarations

Miscellaneous

7.1 Smart Battery
7.2 Thermal Zones‘
7.3 Always return valid values if possible

57

‘8 Get used to Intel’s BIOS tools‘
8.1 ACPICA - ACPI Component Architecture
8.2 Linuxfirmwarekit

9 Summar;/{

mUseful Links and Mailing Lists
10.1 Tinks

10.2 Mailing LiSES .« v v oot e e e

11 Credits

1 Introduction

Many PC hardware vendors have recently started to offer Linux pre-loaded on
their hardware. Linux fully supports version 2.0 of the ACPI specification and
partly supports version 3.0. There are still some pitfalls for vendors, which can
easily be avoided. This paper describes problems that can occur with ACPI
implementations on Linux. Input and feedback from vendors and programmers
is welcomed. If you have any ideas for improving or expanding this documenta-
tion, please send suggestions to trenn@suse.de or to the linux-acpi mailing list
8]

2 Vendor specific ACPI implementations

Linux supports most ACPI specified devices perfectly (e.g. “battery”, “battery
vs. plugged-in status”, “lid”, “cpufreq frequency scaling (P-states)”, “proces-
sor sleep states (C-states)” and much more). Vendors often implement devices
through ACPI which are not included in the general ACPI or other specifica-
tions. Examples include wireless LAN on/off switches, and buttons for volume
up/down and mute.

Vendors provide proprietary drivers for Windows for their specific devices
and in many cases there also is a re-engineered Linux driver (e.g. asus_acpi,
sony_acpi, thinkpad_acpi). Those Linux drivers are often not complete, and are
hard to maintain. It is possible, for example, for parts of the undocumented
interface to change from one model to another, or even worse, through a BIOS
update. Vendors should:

1. Use devices described in the ACPI specification whenever possible.

2. If new devices or functions are introduced, document how to use them. A
short specification or a request for comments (RFC) can form the basis of
a new standard which follows your needs.

3. Use a unique Hardare ID to describe the device. This makes it easy for
the corresponding Linux driver to match and register for the device.

4. Support mainline developers. Open source developers are often not bound
to a company. Most of the drivers implemented by open source developers
are for private use only; many do not fit other machines or models. Many
open source developers appreciate incentives such as a trip to the next
Linux symposium, a machine from their favorite hardware vendor and
such, and this can be a quick, inexpensive way to get your driver into the
shape you would like it to be.

5. Provide an input channel (such as a mailing list) to get feedback. This
can enormously help you get informed about problems such as planned
breakages in future Linux code. ACPI BIOS bugs are also likely to affect
your supported Microsoft operating system, or an upcoming version also
of it, and it may happen that these problems have already been analyzed
in detail and debugged by open source developers. People may discuss a
specific firmware bug, assisting BIOS developers in their search to identify
the problem and potentially saving precious time producing an update for
customers.

mailto:trenn@suse.de

3 Avoid the use of the _OSI function if possible

3.1 What is _OSI and how is it used

_OSI is an ACPI method provided by the operating system that can be invoked
by ACPI BIOS code. It is used by BIOS developers to detect which operating
system is running. The method that should be used (cmp. ACPI spec[l],
chapter 5.7.2 and 5.7.3) is _OS, but for various reasons, _OSI is used to identify
recent operating systems.

The intent of the _OSI function is to identify features provided by the OS.
For example some BIOSes check for Vista which supports and demands the
latest ACPI backlight functions (compare ACPI spec Appendix B).

Vendors sometimes update BIOS to use _OSI to work around specific oper-
ating system problems. This is very dangerous and should always be avoided.

Here is an example of how a vendor wrongly fixed his ACPI BIOS implemen-
tation trying to work around a Linux bug. It then broke when newer kernels were
fixed after the bug got identified: http://bugzilla.kernel.org/show_bug.cgi?id=7787

3.2 How _OSI is implemented on Linux

Since version 2.6.23 the mainline kernel no longer returns true for _OSI(“Linux”)
BIOS invocations. The intent is to prevent BIOS providers and kernel developers
from a maintenance nightmare. Linux specific implementations should never be
needed.

The Linux kernel returns true when _OSI is invoked with any known Win-
dows OS string (compare with drivers/acpi/utilities/uteval.c in the kernel sources
for the recent list):

e “Windows 2000”, /* Windows 2000 */

e “Windows 2001”7, /* Windows XP */

e “Windows 2001 SP1”, /* Windows XP SP1 */
e “Windows 2001 SP2”, /* Windows XP SP2 */
e “Windows 2001.17, /* Windows Server 2003 */

e “Windows 2001.1 SP1”,
/* Windows Server 2003 SP1 - Added 03/2006 */

e “Windows 2006”7, /* Windows Vista - Added 03/2006 */

According to Windows Hardware Developer Central[6], Windows operating
systems behave similar and also return true for all or at least most, previous
introduced, above Windows _OSI strings.

Therefore it is currently not possible for BIOS developers to identify that
the machine is running on Linux.

The goal is to be compatible with the latest Microsoft operating system. It is
currently tried to adopt or be compatible with the bugs of these other operating
systems.

http://bugzilla.kernel.org/show_bug.cgi?id=7787

3.3 BIOS providers have to take care about _OSI on Linux

It may happen that vendors must add a BIOS hotfix which could break other
supported operating systems. Vendors should be aware that adding operating
system specific _OSI hooks are as dangerous regarding maintenance as any other
ACPI code.

Windows Vista specific code for example, will also be processed on the latest
Linux kernels returning true for Vista. Thus it may happen that you break
supported Linux distributions with a Windows _OSI hook. Be aware that the
code will also be processed on the next Windows operating system version.

If vendors have to add BIOS fixes for other operating systems which po-
tentially do break supported Linux distributions, they may exclude them by
checking for a distribution specific _OSI string. In general it is always a good
idea to not make use of distribution specific _OSI strings. This code will not be
executed in future kernel versions and should only be used in emergency cases
as described above.

4 WMI - Windows Management Instrumenta-
tion

WDMI is a Microsoft specific service. A small part of it describes possible ACPI
WMI implementations provided by the BIOS. This is not part of the official
ACPI specification and BIOS developers should avoid using it. The Linux kernel
driver supports basic WMI ACPI functionality (since 2.6.25), but it is marked
experimental. ACPI functionality should not depend on the WMI interface.

5 Post Video BIOS after Suspend to Ram

Graphics drivers on Linux are located in userspace, therefore they cannot ini-
tialize the graphics device in the early resume phase. There are efforts to move
necessary parts of the graphics device drivers into the kernel, but this is complex
and needs maturity for it to be stable on all recent graphics devices. Therefore
BIOS vendors still have to provide the legacy way for resuming graphics cards
and have to make sure the BIOS does “post” the video BIOS when resuming, or
at least make sure the operating system can do so (by issuing “lcall $0xc000, 3”).
Also, regular software interrupt calls (“int $0x10”) must work during resume
from suspend to ram.

6 Check ACPI operation region declarations

Sanity check ACPI operation region declarations and PNP resources. ACPI
operation region declarations define the 10 port, memory and other resources to
control devices in BIOS through the ACPI language. PNP resource declarations
are bound to an ACPI device and reserve resources to be exclusively used by an
operating system driver which serves and registers this ACPI device. Sometimes
several region declarations exist for the same device, or they partly overlap. This
must not happen. Resources must be declared or used exclusively by either

ACPI BIOS parts or system drivers. Neither Operation Region declarations
nor PNP resources may overlap.

It is expected that some hardware vendors do get ACPI BIOS parts from
several external sources. ACPI BIOS templates for specific devices may be
added to the BIOS. This makes it difficult for vendors to know if a device is
addressed through ACPI parts themselves or whether its resources are exported
to an external driver via PNP resources. If both are done, the device may be
accessed through two instances without access coordination, which can lead to
severe and very hard to identify system stability problems. The linuxfirmwarekit
discussed below should soon be able to identify most such issues, and could be
of great help to vendors to smoothly glue several ACPI parts together into one
integrated, sanity checked, ACPI aware BIOS.

7 Miscellaneous

7.1 Smart Battery

The Smart Battery specification should be avoided. There were some hardware
vendors, e.g. Acer, using the more complex battery specification called “Smart
Battery” (compare with ACPI specification 10.1). Linux provides a driver for
it, but because few BIOS implementations use it, the driver is not well tested.
Instead of the Smart Battery Interface, make use of the “Control Method Bat-
teries” interface (compare with ACPT specification 10.2).

7.2 Thermal Zones

Make use of ACPI thermal zones. Thermal control is important, and Linux can
do quite a good job in this area. Provide thermal zones when you can (that will
mean Linux can monitor temperatures inside the case) and provide reasonable
passive trip points and polling intervals as specified by the ACPI specification.
With properly set passive trip points, the machine can continue working even
with a failed fan. This is very important for servers.

7.3 Always return valid values if possible

Make sure sane figures are returned for all specified values of an implemented
ACPI device. For example the battery voltage is sometimes wrong or the wrong
unit of current (mAh vs mW) is used. While other applications may not need
these values, Linux applications could make use of them, and wrong values can
be shown, or the system could even be wrongly shutdown or suspended when
the remaining battery capacity is not calculated correctly.

ACPIT lacks the possibility to return error values. This is a general problem
for BIOS developers. When an error code path must be covered and it makes
no sense to return a valid value to the OS for the invoked function, there is
no possibility to tell the OS about the error. We hope this will change in the
future; for now it is best to ask on the ACPI kernel developers list[6] what value
would be best to return for specific problems.

8 Get used to Intel’s BIOS tools
8.1 ACPICA - ACPI Component Architecture

While Microsoft uses its own proprietary, closed source ACPI compiler, Linux
uses Intel’s ACPI Component Architecture. The code base is used as ACPI
parser and interpreter inside the kernel, and also provides a lot of easy-to-use
tools for general ACPI development and stability testing.

Most important for vendors is the iasl binary which can disassemble and
recompile raw ACPI tables provided by the BIOS. It uses the same code base
as the ACPI parser in the kernel. Vendors should check whether their ACPI
implementation sticks to the ACPI specification and works with the ACPICA
tools. (For a quick, easy test, see (8.2l below.)

The Intel compiler is more strict. Warnings often lead to general ACPI BIOS
errors that may also affect Microsoft Windows or other operating systems. Some
may just point to ACPI specification violations which the Microsoft compiler
allows. The Intel parser may also be able to cope with this code, but fixing
such violations is easy in most cases and makes the ACPI BIOS implementation
more robust against future operating system changes. You may get help if you
are unsure whether a compiler warning is serious or how to fix it, by subscribing
to and asking on the ACPICA developer mailing list.

8.2 Linuxfirmwarekit

Intel provides a tool to check the BIOS for Linux compatibility. The tool is
distribution independent. A bootable CD image can be downloaded from lin-
uxfirmwarekit.org. Once the CD image is booted, the BIOS tests are started
automatically. One test is to disassemble the ACPI tables provided by the BIOS
and recompile them again with Intel’s iasl ACPI compiler. It may happen that
there are misleading warnings. If in doubt, ask on the acpica or linuxfirmwarekit
mailing list (see chapter [10).

OpenSuSE and SLES provide the same test application on their installation
media. The kernel used for booting and starting the application is the same one
used by the SuSE distribution. The BIOS test can be chosen in the boot loader
when booting the installation media or invoked at runtime when the firmwarekit
package is installed.

9 Summary

This section summarizes the above discussed topics and describes key points
that vendors should take care over to ensure proper ACPI Linux support.

e Avoid the use of ACPI WMI implementations.
e Avoid _OSI workarounds whenever possible.

e If the supported Linux kernel is transparent to Windows, patch it so that
it returns true for the specific OS the vendor claims to support. Only
use this hook to not break the supported Linux distribution by Microsoft
Windows specific bug workarounds.

http://acpica.org
http://www.acpica.org/mailman/listinfo/devel
http://www.linuxfirmwarekit.org/download.php#bootcd

e Report any Linux bugs to the linux-acpi mailing list. Fix the bug in the
source code of the supported Linux distribution (ask for help, this is open
source software): do not fix such bugs in the BIOS or it will fail on future,
fixed Linux kernels.

e Avoid the Smart Battery ACPI interface, use the more common Control
Method Batteries interface.

e Implement the ACPI specification strictly.

e Use Intel’s ACPICA compiler tools to detect ACPI Source Language syn-
tax errors.

e Use Intel’s linuxfirmwarekit to detect general and known BIOS errors.

10 Useful Links and Mailing Lists

10.1 Links
1 ACPI Specification (Used for this paper: version 3.0b, 2006)
http://www.acpi.info
2 ACPI Component Architecture
http://acpica.org
3 Linuxfirmwarekit

http://linuxfirmwarekit.org

4 Linux bug workaround in BIOS via _OSI - A fix in the kernel broke it
http://bugzilla.kernel.org/show_bug.cgi?id=7787

5 Kernel bug tracking system - Report problems there if you think you hit
a kernel bug

http://bugzilla.kernel.org
6 Windows Hardware Development Center How to Identify Windows Version in ACPI Using _OSI

10.2 Mailing Lists
6 ACPICA developer list

http://www.acpica.org/mailman/listinfo /devel

7 Firmwarekit Developer and Discussion List
http://www.bughost.org/mailman/listinfo /firmwarekit-discuss

8 ACPI kernel developer list Send a mail with “subscribe linux-acpi” in the
body to majordomo@vger.kernel.org.

Further details can be found here: http://vger.kernel.org/majordomo-info.html

Disclaimer: Trademarks and trade names used in this document may
refer to either the entities claiming the marks and names or their products. The
author of this document disclaims any proprietary interest in trademarks and
trade names other than its own.

http://www.acpi.info
http://acpica.org
http://linuxfirmwarekit.org
http://bugzilla.kernel.org/show_bug.cgi?id=7787
http://bugzilla.kernel.org
http://www.microsoft.com/whdc/archive/_OSI-method.mspx
http://www.acpica.org/mailman/listinfo/devel
http://www.bughost.org/mailman/listinfo/firmwarekit-discuss
http://vger.kernel.org/majordomo-info.html

11 Credits

Thanks to all who have reviewed the paper or contributed contents to it. I
only list people who did some significant work, thanks to all who sent minor
corrections like a corrected link or word.

e Andi Kleen

Initial review, lots of spelling corrections and technical advises.

e Pavel Machek

Initial review, lots of spelling corrections. Contributed the section “Post
Video BIOS after Suspend to Ram”

e Esther Renninger

Thanks darling for going through this boring computer things, I love you!

e David Newall

The first native speaker going through this. A full review, 544 lines diff,
thanks a lot!

	Introduction
	Vendor specific ACPI implementations
	Avoid the use of the _OSI function if possible
	What is _OSI and how is it used
	How _OSI is implemented on Linux
	BIOS providers have to take care about _OSI on Linux

	WMI - Windows Management Instrumentation
	Post Video BIOS after Suspend to Ram
	Check ACPI operation region declarations
	Miscellaneous
	Smart Battery
	Thermal Zones
	Always return valid values if possible

	Get used to Intel's BIOS tools
	ACPICA - ACPI Component Architecture
	Linuxfirmwarekit

	Summary
	Useful Links and Mailing Lists
	Links
	Mailing Lists

	Credits

