THE DEFINITIVE GUIDES TO THE
X WINDOW SYSTEM

VOLUME SIX B

Motif Reference Manual

for Motif 2.1

Open Source Edition

Antony Fountain and Paula Ferguson

Motif Reference Manual, Open Source Edition
by Antony Fountain and Paula Ferguson

December 2001

Copyright 0O 198, 2000, 2001 O’Reilly & Associates, Inc. and Antony Fountain. This
material may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

This is a modified version of the Motif Reference Manual, Second Edition, published
by O’Reilly & Associates in February 2000. The source files for the Second Edition can
be found at http://www.oreilly.com/openbook/motif/. A description of the
modifications is contained in the Preface to the Open Source Edition.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

Contents

Preface \%
Section 1 - Motif Functionsand Macros.. 1
Section 2 - Motif and Xt WidgetClasses 557
Section3-MrmFunctions i 961
Section4-MrmClients. i 999
Section5-UILFileFormat.............. o0 1033
Section6-UlL Data TYPES vt 1053
Section7-UILFunctions oo, 1113
Appendix A - Function Summaries 1125
AppendixB-Data Types 1159
Appendix C - Table of Motif Resources 1199
Appendix D Tableof UILObjects 1225
Appendix E - New Features in Motif2.0and2.1 1233

Motif Reference Manual iii

Contents

Motif Reference Manual

Preface

Preface to the Open Source Edition

Many thanks to all at O’Reilly and Associates for releasing this, Volume 6B, and the
companion Volume 6A, the Motif Programming Manual, in open source. Both have
been extensively revised for Motif 2.1; this, the Motif Reference Manual, has had
several alterations to the 2nd edition as printed:

» all the function prototypes and examples have been converted to strict ANSI format

» the UIL sections have been restored

» the Xt Session Shell is documented

* many bug patches have been folded in

* new examples have been added to Motif 2.1 procedure sections

» the book sources have been converted from the original troff into FrameMaker and PDF
formats

Removing the UIL portions from the original printed second edition was a hard
decision; the Motif 2.1 toolkit was a much expanded library since previous versions of
the book, and something had to give - the book was over a thousand pages as it was.
However, an electronic copy does not have the same space restrictions as the printed
tome, and so these materials, originally in the Motif 1.2 version of the manual, have
been restored. They also have been reworked for Motif 2.1.

Antony J. Fountain

Preface to the Second Edition

What to put in, and what to leave out, of this update to the Motif Reference Manual
was the hardest decision of all. The guiding principle has been to consider for whom
this material is intended. This is a Programmer’s Reference, and not a Widget Author’s
handbook. Accordingly, those aspects of the new Trait mechanisms which an
application programmer needs to know have been included, but the Xme utilities have
not. Specifying a Trait as a well-defined piece of behaviour which a widget supports,
it is enough to know which traits a Widget Class supports, and how this affects objects
in the widget instance hierarchy. How a Trait is implemented, and which methods are
associated with the given Trait, are generally the domain of the widget author. Hence
it is recorded that the VendorShell holds the XmQTspecifyRenderTableTrait, and that
this means that widget classes further down the widget instance hierarchy inherit
default Render Table information from the VendorShell. This is all that the Application
Programmer needs to know: the rest is silence.

Motif Reference Manual %

Preface

Conversely, the Motif Input Method utilities have been included. Although mostly
defined originally in the Motif 1.2 release, and although the Motif widget classes
generally handle connections to an Input Method when and where this is required, there
is an important exception. The Motif Drawing Area does not register itself with an Input
Method automatically, and hence anyone who needs to directly implement
internationalized input for this widget class most certainly would need to know about
the XmIm functions. The World does not all speak English: for these reasons, the XmiIm
functions are included in the Manual.

A brief note concerning the status of Motif as the premier Unix toolkit. A number of
alternative toolkits have arisen, particularly in the Linux domain, which offer an X-based
windowing system for the Unix, and other, platforms. | refer principally to the likes of
Qt, and GTK+. These on the whole dispense with the Xt layer, in order to provide small,
lightweight GUI components which are, from the application programmer’s perspective,
relatively easy to port to non-Unix domains. Although admirable in many ways, these
suffer from one crucial drawback, precisely because Xt has been excluded: there is no
object component model associated with any of the objects which can be created in an
interfacel. Compare and contrast with something like JavaBeans, where a GUI builder
can be designed which can dynamically load and query objects from whatever source,
and from thence inspect the attributes of the object, construct resource panels, and
generate code for the components, all without any external configuration. Based on Xt,
Motif also has this important property: | can in principle dynamically load into my GUI
builder any third party component, construct an internal attribute list, present resource
panels for object configuration to the user, and from there generate source code. Just by
interrogating the widget class. All the commercial GUI builders available for Motif
support this.

The newer alternative Linux toolkits do not have this introspective quality. Writing GUI
builders happens to be what | do for a living: sad to say, | cannot write one for these
toolkits precisely because these is no component model at the object level. Not
surprisingly, no third party component market exists for the toolkits either: there is no
GUI builder into which these components can be dynamically slotted. Each needs the
other, but there is nothing which allows them to talk. In the absence of either a
commercial component market, or a dynamic GUI builder, there remains serious
guestion marks concerning the scalability of the alternative toolkits, whatever merits
they hold. The only alternatives are to write all the code by hand, or pass control of the

1.True at the moment of writing. It is still true that all the information required to dynamically introspect an objeet’s entir
resource set, particularly if user-defined and not built-in to the basic set, is not completely forthcoming. Introspecting
third party components remains troublesome for a dynamic GUI builder.

Vi Motif Reference Manual

Preface

application to a private piece of hobbyware which masquerades as a support
environment. Ironically, the advent of Java has cemented Motif: the DK relies on Motif
for the native implementation on the Unix platform. Until such time as a native toolkit
surfaces which has this important introspective property, Motif remains what it has
long been, the only native toolkit for Unix which supports large scale internationalized
applications.

About the Motif Toolkit

The Motif toolkit, from the Open Software Foundation (OSF), is based on the X Toolkit
Intrinsics (Xt), which is the standard mechanism on which many of the toolkits written
for the X Window System are based. Xt provides a library of user-interface objects
called widgets and gadgets, which provide a convenient interface for creating and
manipulating X windows, colormaps, events, and other cosmetic attributes of the
display. In short, widgets can be thought of as building blocks that the programmer
uses to construct a complete application.

However, the widgets that Xt provides are generic in nature and impose no user-
interface policy whatsoever. Providing the look and feel of an interface is the job of a
user-interface toolkit such as Motif. Motif provides a complete set of widgets that are
designed to implement the application look and feel specified in the Motif Style Guide
and the Motif Application Environment Specification. The Motif toolkit also includes a
library of functions for creating and manipulating the widgets and other aspects of the
user interface.

The Motif toolkit has other components in addition to the widget set and related
functions. Motif provides a User Interface Language (UIL) for describing the initial
state of a user interface. UIL is designed to permit rapid prototyping of the user
interface for an application. The Motif Resource Manager (Mrm) functions provide the
interface between C language application code and UIL. Motif also provides the Motif
Window Manager (mwm). The appearance and behavior of this window manager is
designed to be compatible with the appearance and behavior of the Motif widget set.

About This Manual

This manual contains reference material on the Motif toolkit. This edition is based on
Motif 2.1, which is the latest major release of the Motif toolkit. Motif 1.2 is based on

1.The contents of this paragraph were true at the moment of writing. There is now a commercial GUI builder for the
Linux toolkits; whether it survives in a free software environment remains to be seen. It is still true that the large scale
commercial concerns continue to use Motif for their native Unix toolkit.

Motif Reference Manual vii

Preface

Release 6 of the Xlib and Xt specifications (X11R6). This release of Motif provides many
new features, including new widget classes and several new functions. In order to cover
all of the material, it became necessary to split Volume Six into two separate manuals, a
programming manual and a reference manual. Volume Six A is the Motif Programming
Manual and Volume Six B is the Motif Reference Manual.

This manual is part of the sixth volume in the O’Reilly & Associates X Window System
Series. It includes reference pages for each of the Motif functions and macros, for the
Motif and Xt Intrinsics widget classes, for the Mrm functions, for the Motif clients, and
for the UIL file format, data types, and functions. A permuted index and numerous quick
reference appendices are also provided.

Volume Six B includes reference pages for all of the new functions and widgets in Motif
2.0 and 2.1. When the functionality of an existing routine or widget has changed in Motif
2.0 or 2.1, the reference page explains the differences between the two versions. Volume
Six B also provides a complete set of reference material for UIL and Mrm, which was not
covered in the previous edition.

Volumes Six A and B are designed to be used together. Volume Six A provides a
complete programmer’s guide to the Motif toolkit. Each chapter of the book covers a
particular component of the Motif toolkit. Each chapter includes basic tutorial material
about creating and manipulating the component, intermediate-level information about
the configurable aspects of the component, and any advanced programming topics that
are relevant. The chapters also provide numerous programming examples.

To get the most out of the examples in Volume Six A, you will need the exact calling
sequences of each function from Volume Six B. To understand fully how to use each of
the routines described in Volume Six B, all but the most experienced Motif programmers
will need the explanations and examples in Volume Six A.

While the Motif toolkit is based on Xt, the focus of this manual is on Motif itself, not on
the X Toolkit Intrinsics. Reference pages for the Xt widget classes are included here to
provide a complete picture of the widget class hierarchy. Many reference pages mention
related Xt routines, but the functionality of these routines is not described. Detailed
information about Xt is provided by Volume 4, X Toolkit Intrinsics Programming Manual,
Motif Edition, and Volume 5, X Toolkit Intrinsics Reference Manual.

How This Manual is Organized

Volume Six B is designed to make it easy and fast to look up virtually any fact about the
Motif toolkit. It contains reference pages and numerous helpful appendices.

viii Motif Reference Manual

Preface

The book is organized as follows:

Preface

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Index

Motif Reference Manual

Describes the organization of the book and the conventions it fol-
lows.

Motif Functions and Macrqscontains reference pages for all of
Motif functions and macros.

Motif and Xt Widget Classesontains reference pages for the
widget classes defined by the Motif toolkit and the X Toolkit Intrin-
sics.

Mrm Functions contains reference pages for the Motif Resource
Manager functions that are used in conjuctions with the User Inter-
face Language.

Motif Clients contains reference pages for the Motif cliemsim
uil, andxmbind

UIL File Format, contains reference pages that describe the file for-
mat of a User Interface Language module.

UIL Data Typescontains reference pages for the data types sup-
ported by the User Interface Language.

UIL Functions contains reference pages for the User Interface Lan-
guage functions.

Function Summariegprovides quick reference tables that list each
Motif function alphabetically and also by functional groups.

Data Typeslists and explains in alphabetical order the structures,
enumerated types, and other typedefs used for arguments to Motif
and Mrm functions.

Table of Motif Resourceéists all of the resources provided by
Motif and Xt widget classes, along with their types and the classes
that define them.

Table of UIL Objectdlists all of the objects supported by the User
Interface Language, along with their corresponding Motif widget
classes.

New Features in Motif 1,2ists the new functions, widget classes,
and widget resources in Motif 1.2.

Should help you to find what you need to know.

Preface

Assumptions

This book assumes that the reader is familiar with the C programming language and
the concepts and architecture of the X Toolkit, which are presented in Volume 4, X
Toolkit Intrinsics Programming Manual, Motif Edition, and Volume 5, X Toolkit Intrinsics
Reference Manual. A basic understanding of the X Window System is also useful. For
some advanced topics, the reader may need to consult Volume 1, Xlib Programming
Manual, and Volume 2, Xlib Reference Manual.

Related Documents

The following books on the X Window System are available from O’Reilly &
Associates, Inc.:

Volume Zero X Protocol Reference Manual

Volume One Xlib Programming Manual

Volume Two Xlib Reference Manual

Volume Three X Window System User’s Guide, Motif Edition
Volume Four X Toolkit Intrinsics Programming Manual, Motif
Edition

Volume Five X Toolkit Intrinsics Reference Manual

Volume Six A Motif Programming Manual

Volume Seven XView Programming Manuatith accompany-

ing reference volume.

Volume Eight X Window System Administrator's Guide
PHIGS Programming Manual

PHIGS Reference Manual

PEXIib Programming Manual

PEXIlib Reference Manual

Quick Reference The X Window System in a Nutshell

Programming Supplement for Release 6 of the X Window System

Conventions Used in This Book

Italic is used for:

Motif Reference Manual X

Preface

e UNIX pathnames, filenames, program names, user command names, options for user
commands, and variable expressions in syntax sections.
» New terms where they are defined.

Constant Width Font is used for:

* Anything that would be typed verbatim into code, such as examples of source code and
text on the screen.

» Variables, data structures (and fields), symbols (defined constants and bit flags), functions,
macros, and a general assortment of anything relating to the C programming language.

» All functions relating to Motif, Xt, and Xlib.

* Names of subroutines in example programs.

Constant Width Italic Font is used for:

» Arguments to functions, since they could be typed in code as shown but are arbitrary
names that could be changed.

Helvetica Italic is used for:
» Titles of examples, figures, and tables.
Boldface is used for:

« Chapter headings, section headings, and the names of buttons and menus.

We'd Like to Hear From You

We have tested and verified all of the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing:

O’Reilly & Associates, Inc.

103 Morris Street, Suite A
Sebastopol, CA 95472

1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

Motif Reference Manual Xi

Preface

Acknowledgements

This book developed out of the realization that it would be impossible to update the
first edition of Volume Six to cover Motif 1.2 without dividing the original book into
two books. Dan Heller, David Flanagan, Adrian Nye, and Tim O’Reilly all provided
valuable suggestions on how best to expand the original reference appendices into a
full-fledged reference manual.

The Motif reference pages in this book are based on the reference appendices from the
first edition, which were developed by Daniel Gilly. His work meant that | didn’t have
to start from scratch, and thus saved many hours of toil. The OSF/Motif reference
material also provided a helpful foundation from which to explore the complexities of
the Motif toolkit. Many of the Motif examples in the book were borrowed from the first
edition of Volume Six. These example were written by Dan Heller, although they have
been updated for Motif 1.2

Dave Brennan, of HaL Computer Systems, took on the unenviable task of learning
everything there is to know about UIL and Mrm, so that he could write the UIL
reference material. He did a great job.

Adrian Nye deserves special recognition for freeing me to work on this project, when
I’m sure that he had other projects he would have liked to send my way. | don’t think
either one of us had any idea how involved this update project would become. The
other inhabitants of the "writer’s block" at O’Reilly & Associates, Valerie Quercia,
Linda Mui, and Ellie Cutler, provided support that kept me sane while | was working
on the book. Extra gratitude goes to Linda Mui for her work on the cross references and
the reference tables; her knowledge of various tools prevented me from doing things
the hard way. Tim O’Reilly also provided editorial support that improved the quality
of the reference material.

Special thanks go to the people who worked on the production of this book. The final
form of this book is the work of the staff at O’Reilly & Associates. The authors would
like to thank Chris Reilly for the figures, Ellie Cutler for indexing, Lenny Muellner for
tools support, Eileen Kramer for copy editing and production of the final copy, and
Clairemarie Fisher O’Leary for final proofing and printing. Thanks also to Donna
Woonteiler for her patience in answering my questions and helping me to understand
the production process.

Despite the efforts of all of these people, the authors alone are responsible for any
errors or omissions that remain.

Paula M. Ferguson

Motif Reference Manual Xii

Preface

Acknowledgements to the Motif 2.1 Edition

Many thanks to all at IST who gave me the time and opportunity to perform this work.
I would like to thank all those who reviewed the material, which in a Reference Manual
of this type is a tedious but necessary task: a very big "Thank You" to Andy Bartlett
who took the trouble of sitting down with the Motif sources whilst pouring over every
technical detail, and to Tricia Lovell who reviewed the format at particularly short
notice.

A special thanks also to Richard Offer and Doug Rand from Silicon Graphics, and
Mark Riches for casting expert and independent eyes over the materials. | would also
like to thank Andy Lovell and Derek Lambert for allowing and freeing me up to
perform the task. To the rest of the company, who have had to wait whilst yet another
batch of print jobs ran to completion, all | can say is "Sorry".

A very big “Thank You” indeed to all at O’Reilly for allowing me to undertake this
important task, and especially to Paula Ferguson, my editor: | could not have done this
without you.

But to my wife Emma, who put up with some seriously late nights over a long period,
goes the biggest "Thank You" of all. This would not have happened without any of you,
and | am extremely grateful.

Antony J. Fountain

Acknowledgements to the Open Source Edition

Again, many thanks to all at IST who helped me convert the original troff to Frame and
PDF formats. A special thank you to Denise Huxtable who enlightened me on the
mysteries of Reference Pages, Indexes, and Tables of Contents. Denise also performed
much of the cross-referencing in the manual. Thank you also to Ruth Lambert, who
showed me how to mark up the document sources.

Again, avery big “Thank You” to all at O’Reilly, and Paula Fergusson in particular, for
helping this open source edition come about.

And again, to my wife Emma: a big kiss, and I’'ll be home real soon now.

Antony J. Fountain

Motif Reference Manual Xiii

Section 1 - Motif Functions and Macros

Name

Synopsis

This page describes the format and contents of each reference page in Section 1,
which covers the Motif functions and macros.

Function — a brief description of the function.
This section shows the signature of the function: the names and types of the argu-

ments, and the type of the return value. If header file othertkiariXm.h>is
needed to declare the function, it is shown in this section as well.

Inputs

This subsection describes each of the function arguments that pass information to
the function.

Outputs

This subsection describes any of the function arguments that are used to return
information from the function. These arguments are always of some pointer type,
so you should use the C address-of operator (&) to pass the address of the varia-
ble in which the function will store the return value. The names of these argu-
ments are sometimes suffixed witteturnto indicate that values are returned in
them. Some arguments both supply and return a value; they will be listed in this
section and in the "Inputs" section above. Finally, note that because the list of
function arguments is broken into "Input" and "Output" sections, they do not
always appear in the same order that they are passed to the function. See the
function signature for the actual calling order.

Returns

This subsection explains the return value of the function, if any.

Availability

This section appears for functions that were added in Motif 2.0 and later, and also
for functions that are now superseded by other, preferred, functions.

Description

Usage

This section explains what the function does and describes its arguments and
return value. If you've used the function before and are just looking for a
refresher, this section and the synopsis above should be all you need.

This section appears for most functions and provides less formal information
about the function: when and how you might want to use it, things to watch out
for, and related functions that you might want to consider.

Motif Reference Manual 1

Motif Functions and Macros

Example
This section appears for some of the most commonly used Motif functions, and
provides an example of their use.

Structures
This section shows the definition of any structures, enumerated types, typedefs,
or symbolic constants used by the function.

Procedures
This section shows the syntax of any prototype procedures used by the function.

See Also
This section refers you to related functions, widget classes, and clients. The num-
bers in parentheses following each reference refer to the sections of this book in
which they are found.

2 Motif Reference Manual

Motif Functions and Macros XmActivateProtocol

Name
XmActivateProtocol — activate a protocol.
Synopsis
#include <Xm/Protocols.h>
void XmActivateProtocol (Widgethell Atom property Atom protocol)
Inputs
shell - Specifies the widget associated with the protocol property.
property - Specifies the property that holds the protocol data.
protocol - Specifies the protocol atom.
Description
XmActivateProtocol () activates the specified protocol. If the shell is real-
ized,XmActivateProtocol () updates its protocol handlers and the specified
property. If the protocol is active, the protocol atom is stored in property; if the
protocol is inactive, the protocol atom is not stored in property.
Usage

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmActivateProtocol () makes the shell able to respond to ClientMessage
events that contain the specified protocol. Before you can activate a protocol, the
protocol must be added to the shell witmAddProtocols (). Protocols are
automatically activated when they are added. The inverse roudmeDgacti-
vateProtocol ().

See Also
XmActivateWMProtocol (1), XmAddProtocols (1) XmDeactivate-
Protocol (1), XminternAtom (1), VendorShell (2).

Motif Reference Manual 3

XmActivateWMProtocol Motif Functions and Macros

Name

Synopsis

XmActivateWMProtocol — activate the XA_WM_PROTOCOLS protocol.

#include <Xm/Protocols.h>

void XmActivateWMProtocol (Widgeshell, Atom protoco)

Inputs

shell - Specifies the widget associated with the protocol property.
protocol - Specifies the protocol atom.

Description

Usage

See Also

XmActivateWMProtocol () is a convenience routine that calis\Acti-
vateProtocol () with property set to XA WM_PROTOCOL, the window
manager protocol property.

The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. Before you can activate the
protocols, they must be added to the shell WitlhAddProtocols () or XmAd-
dWMProtocols (). Protocols are automatically activated when they are added.
The inverse routine XmDeactivateWMProtocol ().

XmActivateProtocol (1), XmAddProtocols (1),
XmAddWMProtocols (1), XmDeactivateWMProtocol (1),
XminternAtom (1), VendorShell (2).

Motif Reference Manual

Motif Functions and Macros XmAddProtocolCallback

Name
XmAddProtocolCallback — add client callbacks to a protocol.

Synopsis
#include <Xm/Protocols.h>

void XmAddProtocolCallback (Widget shell
Atom property
Atom protocol,
XtCallbackProc callback
XtPointer closurg

Inputs
shell - Specifies the widget associated with the protocol property.
property - Specifies the property that holds the protocol data.
protocol - Specifies the protocol atom.

callback - Specifies the procedure to invoke when the protocol message

is received.
closure - Specifies any client data that is passed to the callback.

Description

XmAddProtocolCallback() adds client callbacks to a protocol. The routine veri-
fies that the protocol is registered, and if it is not, it calls XmAddProtocols().
XmAddProtocolCallback() adds the callback to the internal list of callbacks, so

that it is called when the corresponding client message is received.
Usage

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
To communicate using a protocol, a client sends a ClientMessage event contain-
ing a property and protocol, and the receiving client responds by calling the asso-

ciated protocol callback routine. XmAddProtocolCallback() allows you to
register these callback routines.

See Also

XmAddProtocols (1), XmAddWMProtocolCallback (1),
XminternAtom (1), VendorShell (2).

Motif Reference Manual

XmAddProtocols Motif Functions and Macros

Name

Synopsis

XmAddProtocols — add protocols to the protocol manager.

#include <Xm/Protocols.h>

void XmAddProtocols (Widgethell Atom property Atom *protocols Cardinal
num_protocols

Inputs

shell Specifies the widget associated with the protocol property.
property Specifies the property that holds the protocol data.
protocols Specifies a list of protocol atoms.
num_protocolsSpecifies the number of atoms in protocols.

Description

Usage

See Also

XmAddProtocols () registers a list of protocols to be stored in the specified
property of the specified shell widget. The routine adds the protocols to the pro-
tocol manager and allocates the internal tables that are needed for the protocol.

A protocol is a communication channel between applications. Protocols are sim-
ply atoms, stored in a property on the top-level shell window for the application.
XmAddProtocols () allows you to add protocols that can be understood by
your application. The inverse routine¥mRemoveProtocols (). To commu-

nicate using a protocol, a client sends a ClientMessage event containing a prop-
erty and protocol, and the receiving client responds by calling the associated
protocol callback routine. UsémAddProtocolCallback () to add a call-

back function to be executed when a client message event containing the speci-
fied protocol atom is received.

XmAddProtocolCallback (1), XmAddwWMProtocols (1),
XminternAtom (1), XmRemoveProtocols (1), VendorShell (2).

Motif Reference Manual

Motif Functions and Macros XmAddTabGroup

Name
XmAddTabGroup — add a widget to a list of tab groups.

Synopsis

void XmAddTabGroup (Widgetab_group

Inputs
tab_group Specifies the widget to be added.

Avalilability
In Motif 1.1, XmAddTabGroup() is obsolete. It has been superceded by setting
XmNnavigationType to XmEXCLUSIVE_TAB_GROUP.

Description
XmAddTabGroup() makes the specified widget a separate tab group. This rou-
tine is retained for compatibility with Motif 1.0 and should not be used in newer
applications. If traversal behavior needs to be changed, this should be done
directly by setting the XmNnavigationType resource, which is defined by Man-
ager and Primitive.

Usage
A tab group is a group of widgets that can be traversed using the keyboard rather
than the mouse. Users move from widget to widget within a single tab group by
pressing the arrow keys. Users move between different tab groups by pressing
the Tab or Shift-Tab keys. If the tab_group widget is a manager, its children are
all members of the tab group (unless they are made into separate tab groups). If
the widget is a primitive, it is its own tab group. Certain widgets must not be
included with other widgets within a tab group. For example, each List, Scroll-
bar, OptionMenu, or multi-line Text widget must be placed in a tab group by
itself, since these widgets define special behavior for the arrow or Tab keys,
which prevents the use of these keys for widget traversal. The inverse routine is
XmRemoveTabGroup().

See Also
XmGetTabGroup (1), XmRemoveTabGroup(1),
XmManager(2), XmPrimitive (2).

Motif Reference Manual 7

XmAddToPostFromList Motif Functions and Macros

Name
XmAddToPostFromList — make a menu accessible from a widget.

Synopsis
#include <Xm/RowColumn.h>

void XmAddToPostFromList (Widgeheny Widgetwidge)

Inputs
menu Specifies a menu widget

widget Specifies the widget from which to make menu accessible

Avalilability
In Motif 2.0 and later, the function prototype is removed from RowColumn.h,
although there is otherwise no indication that the procedure is obsolete.

Description
XmAddToPostFromList () is a convenience function which makes menu
accessible from widget. There is no limit to how many widgets may share the
same menu. The event sequence required to popup the menu is the same in each
widget context.

Usage
Rather than creating a new and identical hierarchy for each context in which a
pulldown or popup menu is required, a single menu can be created and shared. If
the type of the menu is XmMENU_PULLDOWN, the value of the XmNsubMen-
uld resource of widget is set to menu. If the type of the menu is
XmMENU_POPUP, button and key press event handlers are added to widget in
order to post the menu.

There are implicit assumptions that widget is a CascadeButton or CascadeBut-
tonGadget when menu is XmMENU_PULLDOWN, and that widget is not a
Gadget when menu is XmMENU_POPUP. These are not checked by the proce-
dure.

See Also
XmGetPostedFromWidget (1), XmRemoveFromPostFromList (1),
XmCascadeButton (2), XmCascadeButtonGadget (2), XmGadget(2),
XmPopupMeny2), XmPulldownMenu (2), XmRowColumr{2).

8 Motif Reference Manual

Motif Functions and Macros XmAddWMProtocolCallback

Name

Synopsis

Inputs

Descriptio

Usage

Example

XmAddWMProtocolCallback — add client callbacks to an
XA_WM_PROTOCOLS protocol.

#include <Xm/Protocols.h>

void XmAddWMProtocolCallback (Widget shell
Atom protocol,
XtCallbackProc callback
XtPointer closurg

shell Specifies the widget associated with the protocol property.

protocol Specifies the protocol atom.

callback Specifies the procedure to invoke when the protocol message

is received.
closure Specifies any client data that is passed to the callback.
n

XmAddWMProtocolCallback () is a convenience routine that cafsnAd-
dProtocolCallback () with property set to XA_ WM_PROTOCOL, the win-
dow manager protocol property.

The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window managers. To communicate using a pro-
tocol, a client sends a ClientMessage event containing a property and protocol,
and the receiving client responds by calling the associated protocol callback rou-
tine. XmAddWMProtocolCallback () allows you to register these callback
routines with the window manager protocol property. The inverse routine is
XmRemoveWMProtocolCallback ().

The following code fragment shows the us&XofAddWMProtocolCall-
back () to save the state of an application using the WM_SAVE_YOURSELF
protocol:

Atom wm_save_yourself;

wm_save_yourself = XinternAtom 1 (XtDisplay
(toplevel),

1.From Motif 2.0, XmiInternAtom() is marked for deprecation.

Motif Refere

nce Manual 9

XmAddWMProtocolCallback Motif Functions and Macros

"WM_SAVE_YOURSELF
", False);

XmAddWMProtocols (toplevel, &wvm_save_yourself, 1);

XmAddWMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_statés a callback routine that saves the state of the application.

See Also
XmAddProtocolCallback (1), XminternAtom (1),
XmRemoveWMProtocolCallback (1), VendorShell (2).

10 Motif Reference Manual

Motif Functions and Macros XmAddWMProtocols

Name
XmAddWMProtocols — add the XA_WM_PROTOCOLS protocols to the proto-
col manager.

Synopsis
#include <Xm/Protocols.h>
void XmAddWMProtocols (Widgetshell Atom *protocols Cardinal
num_protocols

Inputs

shell Specifies the widget associated with the protocol property.
protocols Specifies a list of protocol atoms.
num_protocols Specifies the number of atoms in protocols.

Description
XmAddWMProtocols() is a convenience routine that calls XmAddProtocols()
with property set to XA_WM_PROTOCOL, the window manager protocol prop-
erty.

Usage
The property XA_WM_PROTOCOLS is a set of predefined protocols for com-
munication between clients and window manag€nsAddWMProtocols ()
allows you to add this protocol so that it can be understood by your application.
The inverse routine KmRemoveWMProtocols (). To communicate using a
protocol, a client sends a ClientMessage event containing a property and proto-
col, and the receiving client responds by calling the associated protocol callback
routine. UseXmAddWMProtocolCallback () to add a callback function to
be executed when a client message event containing the specified protocol atom
is received.

Example

The following code fragment shows the useXofiAddWMProtocols () to add the
window manager protocols, so that the state of an application can be saved using the
WM_SAVE_YOURSELF protocol:

Atom wm_save_yourself;

wm_save_yourself = XmiInternAtom (XtDisplay
(toplevel),
"WM_SAVE_YOURSELF
", False);

XmAddWMProtocols (toplevel, &wm_save_yourself, 1);

Motif Reference Manual 11

XmAddWMProtocols Motif Functions and Macros

XmAddWMProtocolCallback (toplevel,
wm_save_yourself,
save_state, toplevel);

save_state is a callback routine that saves the state of the application.

See Also
XmAddProtocols (1), XmAddWMProtocolCallback (1),
XminternAtom (1), XmRemoveWMProtocols (1), VendorShell (2).

12 Motif Reference Manual

Motif Functions and Macros XmCascadeButtonHighlight

Name

Synopsis

XmCascadeButtonHighlight, XmCascadeButtonGadgetHighlight — set the high-
light state of a CascadeButton.

#include <Xm/CascadeB.h>
void XmCascadeButtonHighlight (WidgeascadeButtarBoolearhighlight)
#include <Xm/CascadeBG.h>

void XmCascadeButtonGadgetHighlight (WidgesscadeButtarBooleanhigh-
light)

Inputs

cascadeButton Specifies the CascadeButton or CascadeButtonGadget.
highlight Specifies the highlight state.

Description

Usage

See Also

XmCascadeButtonHighlight () sets the state of the shadow highlight
around the specifiechscadeButtonwhich can be a CascadeButton or a Cascade-
ButtonGadget.

XmCascadeButtonGadgetHighlight () sets the highlight state of the
specifiedcascadeButtonwhich must be a CascadeButtonGadget.

Both routines draw the shadowhifghlightis True and erase the shadowiifh-
light is False.

CascadeButtons do not normally display a shadow like other buttons, so the high-
light shadow is often used to show that the button is arkreascadeBut-
tonHighlight () andXmCascadeButtonGadgetHighlight () provide a

way for you to cause the shadow to be displayed.

XmCascadeButton (2), XmCascadeButtonGadget (2).

Motif Reference Manual 13

XmChangeColor Motif Functions and Macros

Name

Synopsis

XmChangeColor — update the colors for a widget.

void XmChangeColor (Widget widget, Pixel background)

Inputs

widget Specifies the widget whose colors are to be changed.
background Specifies the background color.

Description

Usage

See Also

14

XmChangeColor () changes all of the colors for the specified widget based on
the new background color. The routine recalculates the foreground color, the
select color, the arm color, the trough color, and the top and bottom shadow
colors and updates the corresponding resources for the widget.

XmChangeColor () is a convenience routine for changing all of the colors for a
widget, based on the background color. Without the routine, an application would
have to calKmGetColors () to get the new colors and then set the XmNfore-
ground, XmNtopShadowColor, XmNbottomShadowColor, XmNtroughColor,
XmNarmColor, XmNselectColor resources for the widget WitBetVal-

ues (). The XmNhighlightColor is set to the value of the XmNforeground.

XmChangeColor () callsXmGetColors () internally to allocate the required
pixels. In Motif 1.2 and earlier, this uses the default color calculation procedure
unless a customized color calculation procedure has been seétmftét-
ColorCalculation (). In Motif 2.0 and later, color calculation can be speci-
fied on a per-screen basis, and any specified XmNcolorCalculationProc
procedure of the XmScreen object associated with the widget is used in prefer-
ence.

XmGetColorCalculation(1), XmGetColors(1),
XmSetColorCalculation(1), XmScreen(2).

Motif Reference Manual

Motif Functions and Macros XmClipboardBeginCopy

Name
XmClipboardBeginCopy — set up storage for a clipboard copy operation.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardBeginCopy (Display display
Window window
XmString clip_label
Widget widget
VoidProc callback
long *item_id
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
clip_label Specifies a label that is associated with the data item.
widget Specifies the widget that receives messages requesting data that has
been passed by name.
callback Specifies the callback function that is called when the clipboard
needs data that has been passed by name.
Outputs
item_id Returns the ID assigned to the data item.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardBeginCopy () is a convenience routine that calls\Clip-
boardStartCopy () with identical arguments and with a timestamp of Cur-

rentTime.

Usage
XmClipboardBeginCopy () can be used to start a normal copy operation or a
copy-by-name operation. In order to pass data by namejdgetandcallback
arguments t&XmClipboardBeginCopy () must be specified.

Procedures

The VoidProc has the following format:

typedef void (*VoidProc) (Widgetvidget int *data_id int *private_id int
*reasor)

Motif Reference Manual 15

XmClipboardBeginCopy Motif Functions and Macros

See Also

16

The VoidProc takes four arguments. The first argunwiaiget is the widget
passed to the callback routine, which is the same widget as passaclip-
boardBeginCopy (). Thedata_idargument is the ID of the data item that is
returned byXmClipboardCopy () andprivate_idis the private data passed to
XmClipboardCopy().

Thereasonargument takes the value XmCR_CLIPBOARD_DATA REQUEST,
which indicates that the data must be copied to the clipboard, or
XmCR_CLIPBOARD_DATA_ DELETE, which indicates that the client can

delete the data from the clipboard. Although the last three parameters are pointers
to integers, the values are read-only and changing them has no effect.

XmClipboardCancelCopy (1), XmClipboardCopy (1),
XmClipboardCopyByName (1), XmClipboardEndCopy (1),
XmClipboardStartCopy (1).

Motif Reference Manual

Motif Functions and Macros XmClipboardCancelCopy

Name
XmClipboardCancelCopy — cancel a copy operation to the clipboard.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardCancelCopy (Displaydisplay Windowwindow longitem_id
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.
Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardCancelCopy () cancels the copy operation that is in progress
and frees temporary storage that has been allocated for the operation. The func-
tion returns ClipboardFail KmClipboardStartCopy () has not been called
or if the data item has too many formats.

Usage
A call to XmClipboardCancelCopy () is valid only between calls to
XmClipboardStartCopy () andXmClipboardEndCopy (). XmClip-
boardCancelCopy () can be called instead EmClipboardEndCopy ()
when you need to terminate a copying operation before it completes. If you have
previously locked the clipboardmClipboardCancelCopy () unlocks it, so
you should not calkKmClipboardUnlock ().

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardEndCopy (1), XmClipboardStartCopy (1).

Motif Reference Manual 17

XmClipboardCopy Motif Functions and Macros

Name
XmClipboardCopy — copy a data item to temporary storage for later copying to
the clipboard.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardCopy (Display display
Window window
long item_id
char *format_name
XtPointer buffer,
unsigned long length
long private_id
long *data_ig
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
item_id Specifies the ID of the data item.
format_name Specifies the name of the format of the data item.
buffer Specifies the buffer from which data is copied to the clipboard.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.
Outputs
data_id Returns an ID for a data item that is passed by name.
Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.
Description
XmClipboardCopy () copies the data item specified by buffer to temporary
storage. The data item is moved to the clipboard data structureXuh@lip-
boardEndCopy () is called. Thétem_idis the ID of the data item returned by
XmClipboardStartCopy () andformat_namas a string that describes the
type of the data.
18 Motif Reference Manual

Motif Functions and Macros XmClipboardCopy

Usage

Example

Since the data item is not actually stored in the clipboard Ximlip-

boardEndCopy () is called, multiple calls to XmClipboardCopy() add data item
formats to the same data item or will append data to an existing format. The func-
tion returns ClipboardFail KmClipboardStartCopy () has not been called

or if the data item has too many formats.

XmClipboardCopy () is called between calls XmClipboardStart-

Copy() andXmClipboardEndCopy (). If you need to make multiple calls to
XmClipboardCopy () to copy a large amount of data, you should call
XmClipboardLock () to lock the clipboard for the duration of the copy opera-
tion.

When there is a large amount of clipboard data and the data is unlikely to be
retrieved, it can be copied to the clipboard by name. Since the data itself is not
copied to the clipboard until it is requested with a retrieval operation, copying by
name can improve performance. To pass data by nam&ne@lipboard-

Copy() with buffer specified as NULL. A unique number is returned in data_id
that identifies the data item for later use. When another application requests data
that has been passed by name, a callback requesting the actual data will be sent to
the application that owns the data and the owner must thexm@llipboard-
CopyByNameg() to transfer the data to the clipboard. Once data that is passed by
name has been deleted from the clipboard, a callback notifies the owner that the
data is no longer needed.

The following callback shows the sequence of calls needed to copy data to the
clipboard:

void to_clipbd (Widget widget,
XtPointer client _data,

XtPointer call_data)

long item_id = 0O;

int status;

XmString clip_label,

char buffer[32];

Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

Motif Reference Manual 19

XmClipboardCopy Motif Functions and Macros

char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);

clip_label = XmStringCreateLocalized ("Data");
[* start a copy; retry until unlocked */

do

status = XmClipboardStartCopy (dpy, window,
clip_label,

CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

/* copy the data; retry until unlocked */
do {

status = XmClipboardCopy (dpy, window,
item_id, "STRING",
(XtPointer) buffer,

(unsigned long) strlen
(buffer) + 1,

(long) O, (long *) 0);
} while (status == ClipboardLocked);
/* end the copy; retry until unlocked */
do

status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardCopyByName (1), XmClipboardEndCopy (1),
XmClipboardStartCopy (1).

20 Motif Reference Manual

Motif Functions and Macros XmClipboardCopyByName

Name
XmClipboardCopyByName — copy a data item passed by name.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardCopyByName (Display dfsplay
Window window
long data_id
XtPointer buffer,
unsigned long length
long private_id
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
data_id Specifies the ID number assigned to the data item by XmClip-
boardCopy().
buffer Specifies the buffer from which data is copied to the clipboard.
length Specifies the length of the data being copied to the clipboard.
private_id Specifies the private data that is stored with the data item.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardCopyByName () copies the actual data to the clipboard for a data
item that has been previously passed by name. The data that is copied is specified
by buffer. Thedata idis the ID assigned to the data itemXmClipboard-
Copy ().

Usage
XmClipboardCopyByName () is typically used for incremental copying; new
data is appended to existing data with each cadht€&lipboardCopyBy-
Namsd). If you need to make multiple calls XanClipboardCopyByName ()
to copy a large amount of data, you should X&allClipboardLock () to lock
the clipboard for the duration of the copy operation.

Copying by name improves performance when there is a large amount of clip-
board data and when this data is likely never to be retrieved, since the data itself
is not copied to the clipboard until it is requested with a retrieval operation. Data
is passed by name wh&mClipboardCopy () is called with auffervalue of

NULL. When a client requests the data passed by name, the callback registered

Motif Reference Manual 21

XmClipboardCopyByName Motif Functions and Macros

by XmClipboardStartCopy () is invoked. SeXmClipboardStart-
Copy () for more information about the format of the callback. This callback calls
XmClipboardCopyByName () to copy the actual data to the clipboard.

Example
The following XmCutPasteProc callback shows the usém€lipboard-
CopyByNameg() to copy data passed by name:

void copy_by name (Widget widget,
long *data_id,
long *private_id;

int *reason)
{
Display *dpy = XtDisplay (toplevel);
Window window = XtWindow (toplevel);
int status;
char buffer[32];
if (*reason == XmCR_CLIPBOARD_DATA_REQUEST) {
(void) sprintf (buffer, "stuff");
do
status = XmClipboardCopyByName (dpy, win-
dow, *data_id,
(XtPointer) buffer,
(unsigned long)
strlen (buffer)+1,
*private_id);
while (status != ClipboardSuccess);
}

See Also
XmClipboardBeginCopy (1), XmClipboardCopy (1),
XmClipboardEndCopy (1), XmClipboardStartCopy (1).

22 Motif Reference Manual

Motif Functions and Macros XmClipboardEndCopy

Name
XmClipboardEndCopy — end a copy operation to the clipboard.
Synopsis
#include <Xm/CutPaste.h>

int XmClipboardEndCopy (Displaydisplay Windowwindow longitem_id

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
item_id Specifies the ID of the data item.

Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardFail on failure.

Description
XmClipboardEndCopy () locks the clipboard, places data that has been accu-
mulated by calling<mClipboardCopy () into the clipboard data structure, and
then unlocks the clipboard. Titem_idis the ID of the data item returned by
XmClipboardStartCopy(). The function returns ClipboardFaXrifClip-
boardStartCopy () has not been called previously.

Usage
XmClipboardEndCopy () frees temporary storage that was allocated by
XmClipboardStartCopy (). XmClipboardStartCopy () must be called
beforeXmClipboardEndCopy (), which does not need to be called if
XmClipboardCancelCopy () has already been called.

Example
The following callback shows the sequence of calls needed to copy data to the
clipboard:

static void to_clipbd (Widget widget,

XtPointer client_data,
XtPointer call_data)

long item_id =0;

int status;

XmString clip_label;

char buffer[32];

Display *dpy = XtDisplayOfObiject (widget);
Window window = XtWindowOfObject (widget);

Motif Reference Manual 23

XmClipboardEndCopy Motif Functions and Macros

char *data = (char *) client_data;

(void) sprintf (buffer, "%s", data);
clip_label = XmStringCreateLocalized ("Data");

[* start a copy; retry until unlocked */

do
status = XmClipboardStartCopy (dpy, window,
clip_label,
CurrentTime,
NULL, NULL,
&item_id);

while (status == ClipboardLocked);
XmStringFree (clip_label);

[* copy the data; retry until unlocked */
do
status = XmClipboardCopy (dpy, window,
item_id, "STRING",
(XtPointer) buffer,
(unsigned
long)strlen(buffer)+1,
0, NULL);
while (status == ClipboardLocked);

/* end the copy; retry until unlocked */

do
status = XmClipboardEndCopy (dpy, window,
item_id);

while (status == ClipboardLocked);

See Also
XmClipboardBeginCopy (1), XmClipboardCancelCopy (1),
XmClipboardCopy (1), XmClipboardCopyByName (1),
XmClipboardStartCopy (1).

24 Motif Reference Manual

Motif Functions and Macros XmClipboardEndRetrieve

Name
XmClipboardEndRetrieve — end a copy operation from the clipboard.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardEndRetrieve (Displaydisplay Windowwindow)
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
Returns
ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.
Description
XmClipboardEndRetrieve() ends the incremental copying of data from the clip-
board.
Usage
A call to XmClipboardEndRetrieve () is preceded by a call ¥mClip-
boardStartRetrieve (), which begins the incremental copy, and calls to
XmClipboardRetrieve (), which incrementally retrieve the data items from
clipboard storageXmClipboardStartRetrieve () locks the clipboard and
it remains locked untKXmClipboardEndRetrieve () is called.
Example

The following code fragment shows the sequence of calls needed to perform an
incremental retrieve. Note that this code does not store the data as it is retrieved:

int status;

unsigned long received,;

char buffer[32];

Display *dpy = XtDisplayOfObiject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardStartRetrieve (dpy, window,
CurrentTime);

while (status == ClipboardLocked);

do {
[* retrieve data from clipboard */
status = XmClipboardRetrieve (dpy, window,

Motif Reference Manual 25

XmClipboardEndRetrieve Motif Functions and Macros

"STRING",
(XtPointer) buffer,
(unsigned long)
sizeof (buffer),
&received,
(long *) 0);

} while (status == ClipboardTruncate);

status = XmClipboardEndRetrieve (dpy, window);

See Also
XmClipboardRetrieve (1), XmClipboardStartRetrieve D).

26 Motif Reference Manual

Motif Functions and Macros XmClipboardinquireCount

Name
XmClipboardInquireCount — get the number of data item formats available on
the clipboard.

Synopsis
#include <Xm/CutPaste.h>

int XmClipboardinquireCount (Display display
Window window
int *count
unsigned long fmax_length
Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.

Outputs
count Returns the number of data item formats available for the data on

the clipboard.

max_length Returns the maximum length of data item format names.
Returns

ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by

another application, or ClipboardNoData if there is no data on the clipboard.

Description
XmClipboardinquireCount () returns the number of data formats available
for the current clipboard data item and the length of its longest format name. The
count includes the formats that were passed by name. If there are no formats
available, count is O (zero).

Usage
To inquire about the formats of the data on the clipboard, yoXms§dip-
boardinquireCount () andXmClipboardinquireFormat () in con-
junction.XmClipboardinquireCount () returns the number of formats for
the data item andmClipboardinquireFormat () allows you to iterate
through all of the formats.

See Also
XmClipboardinquireFormat (D).

Motif Reference Manual 27

XmClipboardinquireFormat Motif Functions and Macros

Name
XmClipboardinquireFormat — get the specified clipboard data format name.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardinquireFormat (Display dfsplay
Window window
int index
XtPointer format_name_buf
unsigned long buffer_len
unsigned long ¢opied_len
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
index Specifies the index of the format name to retrieve.
buffer_len Specifies the length of format_name_buf in bytes.
Outputs
format_name_buf Returns the format name.
copied_len Returns the length (in bytes) of the string copied to
format_name_buf.
Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, ClipboardTruncate if format_name_buf is not long enough
to hold the returned data, or ClipboardNoData if there is no data on the clipboard.
Description

XmClipboardlnquireFormat () returns a format name for the current data
item in the clipboard. The format name returned is specified by index, where 1
refers to the first format. If index exceeds the number of formats for the data item,
thenXmClipboardinquireFormat () returns a value of O (zero) in the
copied_len argumenXmClipboardinquireFormat () returns the format

name in the format_name_buf argument. This argument is a buffer of a fixed
length that is allocated by the programmer. If the buffer is not large enough to
hold the format name, the routine copies as much of the format name as will fit in
the buffer and returns ClipboardTruncate.

28 Motif Reference Manual

Motif Functions and Macros XmClipboardinquireFormat

Usage
To inquire about the formats of the data on the clipboard, yoXms§dip-
boardInquireCount () andXmClipboardinquireFormat () in con-
junction.XmClipboardinquireCount () returns the number of formats for
the data item andmClipboardinquireFormat () allows you to iterate
through all of the formats.

See Also

XmClipboardinquireCount Q).

Motif Reference Manual 29

XmClipboardinquireLength Motif Functions and Macros

Name
XmClipboardinquireLength — get the length of the data item on the clipboard.
Synopsis
#include <Xm/CutPaste.h>
int XmClipboardinquireLength (Display display
Window window
char *format_name
unsigned long tength
Inputs
display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().
window Specifies a window ID that identifies the client to the clip-
board.
format_name Specifies the format name for the data.
Outputs
length Returns the length of the data item for the specified format.
Returns
ClipboardSuccess on success, ClipboardLocked if the clipboard is locked by
another application, or ClipboardNoData if there is no data on the clipboard for
the requested format.
Description
XmClipboardIinquireLength () returns the length of the data stored under
the specifiedormat_namdor the current clipboard data item. If no data is found
corresponding téormat_nameor if there is no item on the clipboadnClip-
boardinquireLength () returns a length of 0 (zero). When a data item is
passed by name, the length of the data is assumed to be passed in a call to
XmClipboardCopy (), even though the data has not yet been transferred to the
clipboard.
Usage
XmClipboardlnquireLength () provides a way for an application to find
out how much data is on the clipboard, so that it can allocate a buffer that is large
enough to retrieve the data with one calktnClipboardRetrieve 0.
Example
The following code fragment demonstrates how toXre€lipboardin-
quireLength () to retrieve all of the data on the clipboard:
int status;
unsigned long recvd, length;
30 Motif Reference Manual

Motif Functions and Macros XmClipboardinquireLength

char *data;
Display *dpy = XtDisplayOfObject (widget);
Window window = XtWindowOfObject (widget);

do
status = XmClipboardinquireLength (dpy, window,
"STRING",
&length);
while (status == ClipboardLocked);

if (length !=0) {
data = XtMalloc ((unsigned) (length+1) * sizeof

(char));
do
status = XmClipboardRetrieve (dpy, window,
"STRING",
(XtPointer)
data,
(unsigned long)
length+1,
&recvd, (long *)
0);
while (status == ClipboardLocked);
if (status != ClipboardSuccess || recvd !=
length) {
XtWarning ("Failed to receive all clipboard
data");
}

See Also
XmClipboardRetrieve ().

Motif Reference Manual

XmClipboardinquirePendingltems Motif Functions and Macros

Name

XmClipboardinquirePendingltems — get a list of pending data ID/private ID
pairs.

Synopsis

#include <Xm/CutPaste.h>

int XmClipboardinquirePendingltems (Display display
Window window
char

*format_name
XmClipboardPendingList item_list
unsigned long &oun)

Inputs

display Specifies a connection to an X server; returned from XOpenDis-

play() or XtDisplay().

window Specifies a window ID that identifies the client to the clipboard.

format_name Specifies the format name for the data.

Outputs
item_list Returns an array of data_id/private_id pairs for the specified for-
mat.

count Returns the number of items in the item_list array.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description

XmClipboardlnquirePendingltems () returns for the specified
format_namaea list of pending data items, representedi&ia_idprivate_id

pairs. Thedata_idandprivate_idarguments are specified in the clipboard func-
tions for copying and retrieving. A data item is considered pending under these
conditions: the application that owns the data item originally passed it by name,

the application has not yet copied the data, and the data item has not been deleted

from the clipboard. If there are no pending items for the speddi@dat_name

the routine returns a count of 0 (zero). The application is responsible for freeing
the memory that is allocated BynClipboardinquirePendingltems (Oto

store the list. Use XtFree() to free the memaory.

Usage

32

An application should call XmClipboardIinquirePendingltems() before exiting, to
determine whether data that has been passed by name should be copied to the
clipboard.

Motif Reference Manual

Motif Functions and Macros XmClipboardinquirePendingltems

Structures
The XmClipboardPendingList is defined as follows:

typedef struct {
long Datald,;
long Privateld,;
} XmClipboardPendingRec, *XmClipboardPendingList;

See Also
XmClipboardStartCopy (1).

Motif Reference Manual

33

XmClipboardLock Motif Functions and Macros

Name
XmClipboardLock — lock the clipboard.
Synopsis
#include <Xm/CutPaste.h>

int XmClipboardLock (Display display Windowwindow)

Inputs
display Specifies a connection to an X server; returned from XOpenDis-
play() or XtDisplay().
window Specifies a window ID that identifies the client to the clipboard.
Returns

ClipboardSuccess on success or ClipboardLocked if the clipboard is locked by
another application.

Description
XmClipboardLock () locks the clipboard on behalf of an application, which
prevents access to the clipboard by other applications. If the clipboard has
already been locked by another application, the routine returns ClipboardLocked.
If the same application has already locked the clipboard, the lock level is

increased.

Usage
An application useXmClipboardLock () to ensure that clipboard data is not
changed by calls to clipboard functions by other applications. An application
does not need to lock the clipboard between caldé€lipboardStar-
tRetrieve () andXmClipboardEndRetrieve (), because the clipboard is
locked automatically between these cafisiClipboardUnlock () allows
other applications to access the clipboard again.

See Also
XmClipboardEndCopy (1), XmClipboardEndRetrieve 1),
XmClipboardStartCopy (1), XmClipboardStartRetrieve (2),

XmClipboardUnlock (1).

34 Motif Reference Manual

Motif Functions and Macros XmClipboardRegisterFormat

Name

Synopsis

XmClipboardRegisterFormat — register a new format for clipboard data items.

#include <Xm/CutPaste.h>

int XmClipboardRegisterFormat (Displagisplay char format_nameint
format_length

Inputs

display Specifies a connection to an X server; returned from XOpenD-
isplay() or XtDisplay().

format_name Specifies the string name for the format.

format_length Specifies the length of the format in bits (0, 8, 16, or 32).

Returns

ClipboardSuccess on success, ClipboardBadFormat if the format is not properly
specified, ClipboardLocked if the clipboard is locked by another application, or
ClipboardFail on failure.

Description

Usage

See Also

XmClipboardRegisterFormat () registers a new format having the speci-
fied format_namendformat_lengthXmClipboardRegisterFormat 0

returns ClipboardFail if the format is already registered with the specified length
or ClipboardBadFormat fbormat_namas NULL orformat_lengths not 0, 8,

16, or 32 bits.

XmClipboardRegisterFormat () is used by applications that support cut-
ting and pasting of arbitrary data types. Every format that is stored on the clip-
board needs to have a length associated with it, so that clipboard operations
between applications that run on platforms