

UP2000 Technical Reference Manual

Part Number: 51-0029-3A

www.alpha-processor.com

© 2000 Alpha Processor, Inc. All rights reserved.

Part #: 51-0029-3A

Date: 4/6/00

Alpha Processor, Inc. A Samsung Company 130C Baker Avenue Extension Concord, MA 01742 Tel: 978.318.1100 Fax: 978.371.3177

Alpha Processor, Inc. reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

This document is considered to be preliminary with further revisions and corrections in process. Alpha Processor, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication or the information contained herein, and reserves the right to make changes at any time, without notice. Alpha Processor, Inc. disclaims responsibility for any consequences resulting from the use of the information included in this publication.

This publication neither states nor implies any representations or warranties of any kind, including but not limited to, any implied warranty of merchantability or fitness for a particular purpose. Alpha Processor, Inc.'s products are not authorized for use as critical components in life support devices or systems without Alpha Processor, Inc.'s written approval. Alpha Processor, Inc. assumes no liability whatsoever for claims associated with the sale or use (including the use of engineering samples) of Alpha Processor, Inc. products except as provided in Alpha Processor, Inc.'s Terms and Conditions of Sale for such products.

Trademarks

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Preliminary Product Information

The information in this publication is preliminary, and is believed to be accurate at the time of publication.. API makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication or the information contained herein, and reserves the right to make changes at any time, without notice.

Revision History

Date	Rev	Description
07/06/99	51-0029-0A	UP2000 Technical Reference Manual initial release.
07/13/99	51-0029-0Arev2	UP2000 Technical Reference Manual second review.
	51-0029-0Arev3	UP2000 Technical Reference Manual third review.
07/21/99		This publication describes the UP2000 Motherboard part number 40-0005-F.
		Future versions of the TRM will have change bars turned on to track changes to the information presented.
07/90/00	51-0029-1A	UP2000 Technical Reference Manual first product release.
07/29/99	51-0029-1A	Alpha Slot B Cartridge renamed Alpha Slot B Module.
10/21/99	51-0029-2A	API Acceptance of UP2000 Technical Reference Manual.
		Modified the following information:
	51-0029-3A	• Firmware platform moved to Reset PAL code, Alpha SRM Console and Alpha Diagnostics
4/07/00		COM1 port reserved for serial console devices
		Add remote reset capabilities
		 Add thermal sensitivity information

Table of Contents

	Revision History iii
	Table of Contents iv List of Figures
	Preface x
Chapter 1	UP2000 Introduction 1-1
	1.1 Features. 1-1 1.2 System Components 1-3
Chapter 2	System Configuration 2-1
	2.1 Board Layouts and Components
	2.2 Configuration Jumpers
	2.2.1 Diagnostics and Flash Recovery .
Chapter 3	Electrical, Environmental and Physical Data 3-1
	3.1 Power Specifications
	3.4.3 UP2000 Motherboard Mounting Hole Specification 3-7

Chapter 4	Functional Description4-1
	4.1 21272 Core Logic Chipset
	4.1.1 Cchip Functional Overview
	4.1.2 Dchip Functional Overview 4-2
	4.1.3 Pchip Functional Overview 4-2
	4.2 Subsystems
	4.2.1 Memory Subsystem
	4.2.2 CPU (Alpha Slot B Module) Interface
	4.2.3 Clock Subsystem
	4.2.4 System Bus
	4.2.5 PCI Interface
	4.2.6 On-Board I/O
	4.3 Logic
	4.3.1 CPU Speed Logic
	4.3.2 Interrupt Logic
	4.3.3 Reset PAL Code Access Logic
	4.3.4 Fan Connector Logic
	4.3.5 On-board LED Logic
	4.3.6 Alpha Slot B Connector Logic
	4.3.7 Reset Logic
	4.3.8 I2C Logic
	4.4 Firmware
	4.4.1 Supported OS
	4.4.2 Reset PAL Code
	4.4.3 Alpha Diagnostics
	4.4.4 Anna Skill Console
Chapter 5	System Memory and Address Mapping 5-1
	5.1 Memory Subsystem
	5.2 Configuring SDRAM Memory
	5.3 System Address Mapping
	5.3.1 CPU Address Mapping to PCI Space 5-3
	5.3.2 TIGbus Address Mapping 5-4
Appendix A	Connectors and Pinouts A-1
FF	A.1 Alpha Slot B Connector Pinouts
	A.2 Power Connector Pinouts
	A.3 Configuration Jumper Pinouts
	A.5 Standard Connectors

Appendix B	Sup	port, Products and Documentation	B-1
	B.1	Customer Support	B-2
	B.2	Supporting Products	B-2
	B.3	Alpha Products	B-2
	B.4	Documentation	B-3
	Inde	ex Inde	ex-1
	Pub	lication Evaluation Form For	m-1

List of Figures

1-1	UP2000 Functional Block Diagram 1-3
2-1	UP2000 Motherboard Layout
2-2	Configuration Jumpers
2-3	Configuration Settings for J27, J29, and J34
2-4	Configuration Settings for J36
3-1	Thermally-sensitive Components
3-2	Mounting Hole Specifications
4-1	CPU and System Clock Block Diagram 4-7
4-2	Memory Interface Clock Block Diagram 4-8
4-3	PCI Clock Generation Block Diagram 4-9
4-4	System Bus Block Diagram
4-5	SCSI Controller Block Diagram
4-6	CPU Speed Logic
4-7	Interrupt Logic Block Diagram
4-8	Reset PAL Code Access Logic
4-9	LED Locations
4-10	Alpha Slot B Module Reset Logic
4-11	System Reset Logic
4-12	I2C Bus Logic
5-1	Memory DQM Configuration 5-2
5-2	Gpen4 Register
5-3	Gpen5 Register
5-4	Gpen6 Register
	2-1 2-2 2-3 2-4 3-1 3-2 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 5-1 5-2 5-3

List of Tables

Table: 1-1	UP2000 Product Features	1-1
2-1	UP2000 Motherboard Jumper and Connector Component List .	2-3
2-2	Configuration Bits	2-6
2-3	Diagnostics and Flash Recovery Configuration Settings (J29) .	2-8
3-1	Estimated Power Consumption–UP2000 Motherboard	3-2
3-2	Estimated Power Consumption–Primary Alpha Slot B Module, 8 MB Bcache	3-2
3-3	Estimated Power Consumption–Secondary Alpha Slot B Module 8 MB Bcache	e, 3-2
3-4	Environmental Requirements	3-3
3-5	Maximum Component Case Temperatures	3-6
3-6	UP2000 Motherboard Physical Parameters	3-7
3-7	Alpha Slot B Module Physical Parameters	3-7
4-1	SDRAM DIMMs Supported	4-3
4-2	Bcache Size	4-4
4-3	PLL Input Frequency	4-5
4-4	Reference Clock and CPU Clock for FID.	4-5
4-5	System Clock and 21272 Operating Frequency.	4-6
4-6	PCI Clock Frequency Multiplier	4-8
4-7	PCI 0 Configuration ID.	4-11
4-8	Primary PCI Arbitration	4-11
4-9	PCI 1 Configuration ID.	4-12
4-10	Secondary PCI Arbitration	4-12
4-11	On-board I/Os	4-12
4-12	C Logical Interrupt Map	4-16
4-13	ELED Functions	4-20
4-14	I2C Address Map.	4-23
5-1	UP2000 SDRAM Memory Configurations	5-3
5-2	TIGbus Address Mapping.	5-4
A-1	Alpha Slot B Connector Pinouts (J22, J23)	
A-2	ATX Power Connector Pinouts (J26)	A-7
A-3	AUX ATX Power Connector (PSCONN6) Pinouts (J28)	A-8

A-4	Alpha Slot B Module Power Connector (PSCONN4) Pinouts (J25)A-8			
A-5	Programmable Jumper Pinouts (J27, J29, J34, J36)	•		. A-8
A-6	COM1 Pinout of Parallel/Serial D-SUB Connector (J5) .	•		.A-10
A-7	Speaker Connector Pinout (J41)	•		.A-10
A-8	Debug Port Connector Pinouts (J42, J43)	•	•	. A-11
A-9	System Power Button Connector Pinout (J44)	•	•	. A-11
A-10	Halt Button Connector Pinout (J45) .	•		. A-11
A-11	Reset Button Connector Pinout (J47)			.A-12
A-12	UP2000 Standard Connectors	•	•	.A-12

Preface

Overview	
	This manual describes the Alpha Processor, Inc. (API) UP2000 product, including the UP2000 Motherboard used with the Alpha Slot B Module, for computing systems based on Samsung's Alpha 21264 microprocessor and the Compaq 21272 core logic chipset.
Audience	
	This manual is intended for system designers and others who use the UP2000 to design or evaluate computer systems based on the Alpha Slot B Module with the 21264 microprocessor and the 21272 core logic chipset.
Scope	
	This manual describes the features, configuration, functional operation, and interfaces of the UP2000. This manual does not include specific details on industry standards (for example, on PCI or ISA bus specifications). Additional information is available in the appropriate vendor and IEEE specifications. See Appendix B for information on how to order related documentation and obtain additional technical support.
Manual Organ	ization
	The UP2000 Technical Reference Manual is organized as follows:
	 Chapter 1, "UP2000 Introduction," contains a description of the UP2000's features. A functional block diagram of the UP2000 is included.
	 Chapter 2, "System Configuration," describes the UP2000 configuration options, including jumper functions and settings. Board layouts are provided, which identify component locations.
	 In Chapter 3, "Electrical, Environmental and Physical Data," a description is provided of the electrical and environmental

 A functional description of the UP2000 is provided in Chapter 4, "Functional Description." This includes the 21272 core logic chipset and a brief description of its implementation with the 21264 microprocessors.

requirements and physical board dimensions for the UP2000.

Descriptions of the functional subsystems, logic design and firmware design for the UP2000 are also provided.

- Chapter 5, "System Memory and Address Mapping," provides a description of the memory subsystem and address mapping for the UP2000.
- Pinouts for the Alpha Slot B Connector and all power connectors used in the UP2000 are provided in Appendix A, "Connectors and Pinouts." This appendix also contains a list of all other connectors used in the UP2000, which are industry standard parts.
- Appendix B, "Support, Products and Documentation," describes how to obtain technical information and support for the UP2000, and where to order parts and accessories for the UP2000. It includes information on how to obtain API products and supporting literature.

Conventions and Definitions

This section defines product-specific terminology, abbreviations, and other conventions used throughout this manual.

Signals and Bits

- Signal Ranges—In a range of signals, the highest and lowest signal numbers are contained in brackets and separated by a colon (for example, D[63:0]).
- Reserved Bits and Signals—Signals or bus bits marked *reserved* must be driven inactive or left unconnected, as indicated in the signal descriptions. These bits and signals are reserved by API for future implementations. When software reads registers with reserved bits, the reserved bits must be masked. When software writes to these registers, it must first read the register and change only the non-reserved bits before writing back to the register.

Data

The following list defines data terminology:

- Units
 - A word is two bytes (16 bits)
 - A *doubleword* is four bytes (32 bits)
 - A quadword is eight bytes (64 bits)
- Addressing—Memory is addressed as a series of bytes on eight-byte (64-bit) boundaries in which each byte can be separately enabled.

- Abbreviations—The following notation is used for bits and bytes:
 - Kilo—K, as in 4-Kbyte page (2¹⁰)
 - Mega—M, as in 4 Mbits/sec (2^{20})
 - Giga—G, as in 4 Gbytes of memory space (2^{30})

Acronyms

The following is a list of the acronyms used in this document and their definitions.

Abbreviation	Meaning
API	Alpha Processor, Inc.
BIOS	Basic Input/Output System
BIST	Built-In Self Test
CE	European Conforming
CSR	Control/Status Register
CPU	Central Processing Unit
CUL	Canadian Underwriters Laboratory
DBM	Debug Monitor
DIMM	Dual Inline Memory Module
DMA	Direct Memory Access
DRAM	Direct Random Access Memory
DQM	Data Input/Output Mask
EIDE	Enhanced Integrated Device Electronics
EMI	Electromagnetic Interference
EPLD	Electrically Programmable Logic Device
ESBGA	Enhanced Super Ball Grid Array
FCC	Federal Communications Commission
FDC	Floppy Disk Controller
FDD	Floppy Disk Drive
FID	Frequency Identification
FIFO	First In, First Out
FPGA	Field Programmable Gate Array
HDD	Hard Disk Drive
I ² C	Inter-integrated Circuit
IDE	Integrated Device Electronics

Abbreviation	Meaning
I/O	Input/Output
ISA	Industry Standard Architecture
ISP	In-system Programmability
LED	Light Emitting Diode
LVD	Low Voltage Differential
LVTTL	Low Voltage Transistor-Transistor Logic
NDA	Non-disclosure Agreement
OEM	Original Equipment Manufacturer
OS	Operating System
PAL	Privileged Architecture Library
РСВ	Printed Circuit Board
PCI	Peripheral Component Interconnect
PIO	Programmed Input/Output
PLL	Phase Locked Loop
ROM	Read-only Memory
RTC	Real-time Clock
SCSI	Small Computer System Interface
SDRAM	Synchronous Direct Random Access Memory
SE	Single-ended
SPD	Serial Presence Detect
SROM	Serial Read-only Memory
SRAM	Static Random Access Memory
SRM	System Reference Manual
SSRAM	Synchronous SRAM
TIG	TTL Integrated Glue Logic
UL	Underwriters Laboratory
USB	Universal Serial Bus
VRM	Voltage Regulator Module

Chapter 1 UP2000 Introduction

This chapter provides an overview of the UP2000 product, including its components and features.

The UP2000 product consists of a UP2000 Motherboard and one or two Alpha Slot B Modules. The Alpha Slot B Module consists of the 21264 microprocessor, Bcache (level 2 cache) and voltage converters to convert from 12 or 5 volts to between 2.2 and 1.5V.

Note: The position in which you use an Alpha Slot B Module on the UP2000 Motherboard, primary connection or secondary connection, determines the following:

- J23 provides the connection for the primary, or first, Alpha Slot B Module and runs on 12V
- J22 provides the connection for the secondary, or second, Alpha Slot B Module and runs on 5V

1.1 Features

Table 1-1 provides a summary of the UP2000 product features.

Feature	Description	Manufacturer
Physical Form Factor:	ATX Extended (12 inch X 13 inch)	
Daughter Card Interface:	Supports one or two Alpha Slot B Modules using the Alpha 21264 microprocessor, at speeds of 667 or 750 MHz	Alpha Processor, Inc.
	21272 (Tsunami)—One Cchip, four Dchips, and two Pchips provide the following:	
Chipset:	 Maximum 83 MHz system bus with Double Data Rate (DDR) transfers, maximum bandwidth of 2.67 GBytes/second 	Compaq
•	One 256-bit memory bus	• •
	• One 64-bit, 33 MHz PCI bus with two 64-bit slots and one 32-bit slot, and one 32-bit, 33 MHz PCI bus with three 32-bit slots	

Table 1-1	UP2000 Product Features
-----------	--------------------------------

Feature	Description	Manufacturer
	External Bcache with 128-bit data path for an Alpha Slot B Module supports:	
Cache:	• 2 MB or 4 MB cache per 667 MHz processor	
	• 4 MB or 8 MB cache per 750 MHz processor	
	Late Write (LW) Synchronous SRAMS (SSRAMs)	
	 Eight 168-pin Dual Inline Memory Module (DIMM) sockets, up to 2 GB (256 MB per DIMM) 	
Main Memory:	 Supports Phase Locked Loop (PLL) or Register-based Synchronous Direct Random Access Memory (SDRAM) Serial Presence Detect (SPD) modules of 64 MB, 128 MB, and 256 MB 	
	 Low Voltage Transistor-Transistor Logic (LVTTL) compatible memory I/O 	
Power:	ATX power connector, supplying +3.3 Vdc, \pm 5 Vdc, and \pm 12 Vdc	
	• CY82C693UB Peripheral Component Interconnect (PCI)/Industry Standard Architecture (ISA) Bridge (PCI Local Bus Specification Revision 2.1 compliant), Enhanced Integrated Device Electronics (EIDE) controller, and two Universal Serial Bus (USB) ports	Cypress
On-board I/O:	• AIC-7891 Small Computer System Interface (SCSI) Controller (Ultra2 SCSI), connections for up to 15 SCSI devices	Adaptec
	 FDC37C669 Super Input/Output (I/O) Controller— 2.88 MB Floppy Disk Controller (FDC), Parallel port, two NS16C550-compliant Serial ports, Real-time Clock (RTC) port, Keyboard, and Mouse 	SMC
	 Four 32-bit, 33 MHz PCI Slots, PCI Local Bus Specification Revision 2.1 compliant 	
I/O Slots:	 Two 64-bit, 33 MHz PCI Slots, PCI Local Bus Specification Revision 2.1 compliant 	
	One ISA Slot (Shared)	
Firmware:	Embedded Alpha System Reference Manual (SRM) Console	
System Management	Monitoring of processor thermal state	
(via PCI-ISA Bridge I ² C Controller PCF8584):	Detection of processor asset record	Philips

Table 1-1	UP2000 Product Features (Continued)
Table 1-1	01 2000 I Touuct Features (Continueu)

I

I

1.2 System Components

The UP2000 is implemented in industry-standard parts and uses one or two 21264 central processing units (CPUs). The functional components of the UP2000 are shown in block diagram form in Figure 1-1. A detailed description of system components is provided in Chapter 4, "Functional Description".

Note: Refer to the list of Acronyms on page xii of the Preface for an explanation of terminology used in the block diagram.

Figure 1-1 UP2000 Functional Block Diagram

Chapter 2 System Configuration

This chapter describes the layout and configuration of the UP2000 Motherboard and the Alpha Slot B Module.

2.1 Board Layouts and Components

The UP2000 uses jumpers to implement variations in clock frequency for the 21272 and 21264, and for Bcache configuration. Jumpers for the 21264 speed and Bcache configuration are located on the UP2000 Motherboard. You must configure these jumpers according to the configuration of the Alpha Slot B Module.

On-board connectors are provided for the following:

- I/O
- Memory DIMMs
- Serial and parallel peripherals
- SCSI devices
- Integrated device electronics (IDE) devices

These connectors and the configuration jumpers are shown in Figure 2-1, which depicts the UP2000 Motherboard and its components. Table 2-1 specifies the components as indicated in Figure 2-1.

Refer to Appendix A for a complete description of the connectors and pinouts used in the UP2000.

Figure 2-1 UP2000 Motherboard Layout

I.

Comp. No.	Specification	Comp. No.	Specification
J1	System Chassis Fan Connector	J2	System Chassis Fan Connector
J3	Keyboard/Mouse Connector	J4	USB Connector
J5	D-SUB Connector (Serial IO/ Parallel IO)*	J6	ISA Expansion Bus Connector
J7	32-bit PCI Slot 5, Bus 1 Connector	J8	32-bit PCI Slot 4, Bus 1 Connector
J9	32-bit PCI Slot 3, Bus 1 Connector	J10	32-bit PCI Slot 2, Bus 0 Connector
J11	64-bit PCI Slot 1, Bus 0 Connector	J12	64-bit PCI Slot 0, Bus 0 Connector
J13	Reset Electrically Programmable Logic Device (EPLD) In-system Programmability (ISP) Connector	J14	168-pin DIMM 0 Socket
J15	168-pin DIMM 4 Socket	J16	168-pin DIMM 1 Socket
J17	168-pin DIMM 5 Socket	J18	168-pin DIMM 2 Socket
J19	168-pin DIMM 6 Socket	J20	168-pin DIMM 3 Socket
J21	168-pin DIMM 7 Socket	J22	Alpha Slot B Connector for Secondary Module (5V)
J23	Alpha Slot B Connector for Primary Module (12V)	J24	Floppy Drive Connector
J25	Alpha Slot B Module Power Connector (4 pin)	J26	ATX Power Connector (20 pin)
J27	System Configuration Jumper	J28	AUX ATX (Optional) Power Connector for 3.3V (6 pin)
J29	Configuration Jumper	J30	IDE Bus Connector
J31	Not Used	J32	Ultra-wide SCSI Single-ended (SE) Connector
J33	Ultra-wide SCSI Low Voltage Differential (LVD) Connector	J34	CPU Speed/Flash_Sel Jumper
J35	Alpha Slot B Module Fan Connector (Secondary)	J36	Bcache Configuration Jumper
J37	Alpha Slot B Module Fan Connector (Primary)	J38	Alpha Slot B Module Fan Connecto (Secondary)
J39	Alpha Slot B Module Fan Connector (Primary)	J40	Power Light Emitting Diode (LED) Connector
J41	Speaker Connector	J42	Secondary Alpha Slot B Module Debug Port Connector

Table 2-1 UP2000 Motherboard Jumper and Connector Component List

Note: Connector J5 includes the COM1 and COM2 ports. COM1 is reserved for a serial console device. Connect all other serial devices to COM2 or any expansion serial ports.

Comp. No.	Specification	Comp. No.	Specification		
J43	Primary Alpha Slot B Module Debug Port Connector	J44	Power Button Connector		
J45	Halt Button Connector	J46	SCSI LED Connector		
J47	Reset Button Connector				
Note:	Note: Connector J5 includes the COM1 and COM2 ports. COM1 is reserved for a serial console device. Connect all other serial devices to COM2 or any expansion serial ports.				

Table 2-1 UP2000 Motherboard Jumper and Connector Component List (Continued)

2.2 Configuration Jumpers

The UP2000 Motherboard has four programmable jumper blocks, located at J27, J29, J34, and J36. Locations of J27, J29, J34 and J36 are shown in Figure 2-2, on the front left side of the UP2000 Motherboard. Table A-5 in section A.3, "Configuration Jumper Pinouts," on page A-8 provides a complete list of the pinouts for these jumpers.

Figure 2-2 Configuration Jumpers

The configuration jumpers each define 8 bits of data. Configuration bits for the UP2000 are defined in Table 2-2.

		Configuration Jumper			
	Bit	J27	J29	J34	J36
I	Bit 0 (pins 0 and 1)	TIG Data 7	Alpha Diagnostics	Flash Select 2	Primary Bcache Configuration 0
	Bit 1 (pins 2 and 3)	TIG Data 6	Memory Timing, Primary CPU	Flash Select 1	Primary Bcache Con- figuration 1
	Bit 2 (pins 4 and 5)	TIG Data 5	Memory Timing, Secondary CPU	Flash Select 0	Primary Bcache Configuration 2
I	Bit 3 (pins 6 and 7)	TIG Data 4	Reset PAL code Mini-Debug	Flash Select Bypass	Primary Bcache Con- figuration 3
	Bit 4 (pins 8 and 9)	TIG Data 3	21272 Speed 0	CPU Speed 0	Secondary Bcache Configuration 0
	Bit 5 (pins 10 and 11)	TIG Data 2	21272 Speed 1	CPU Speed 1	Secondary Bcache Configuration 1
	Bit 6 (pins 12 and 13)	Spare	21272 Speed 2	CPU Speed 2	Secondary Bcache Configuration 2
	Bit 7 (pins 14 and 15)	Flash Write Protection	Password Bypass	Spare	Secondary Bcache Configuration 3

Table 2-2Configuration Bits

UP2000 configuration bit settings for jumpers J27, J29, and J34 are shown in Figure 2-3. Settings for J27, J29, and J34 vary depending on CPU speed selected.

Figure 2-3 Configuration Settings for J27, J29, and J34

UP2000 configuration bit settings for J36 are shown in Figure 2-4. These settings vary depending on Bcache size selected.

Figure 2-4 Configuration Settings for J36

2.2.1 Diagnostics and Flash Recovery

The Alpha Diagnostics utility provides the emergency recovery mechanism when the primary firmware image contained in flash memory is corrupted. When flash memory is corrupted, and no image can be loaded safely from the flash ROM, you can run Alpha Diagnostics and boot another image from a diskette that is capable of reprogramming the flash ROM.

By default, a jumper is not installed on pins 0 and 1 (bit 0) of J29 on the UP2000 Motherboard (the OFF position), and Alpha Diagnostics is not enabled.

Configuration of diagnostics and flash recovery is managed through settings of pins 0–1, 6–7, and 14–15 of J29. Table 2-3 shows the possible configuration settings for diagnostics and flash recovery of the UP2000. The default function is Normal Boot Sequence, with no shunts installed on pins 0–1, 6–7, and 14–15 of J29.

Note: All remaining jumpers on J29 must remain in the default positions. These jumpers control other functions.

E	Install	Install Jumper on Pins:		
Function	0/1	6/7	14/15	
Normal Boot Sequence (using firmware)—Default	0	0	0	
Restore Factory Defaults (Bypass password check)	0	0	1	
Normal Recovery (using firmware)	1	0	0	
Alpha Diagnostics Recovery (using firmware)	1	0	1	

Table 2-3Diagnostics and Flash Recovery Configuration
Settings (J29)

Notes: 1. 0 = No shunt installed.

1 = Shunt installed.

2. The Debug Ports (primary Alpha Slot B Module port J43 and secondary Alpha Slot B Module port J42) default to 9600 baud. When using the Interactive Reset PAL code function, type an uppercase U to set the interactive baud rate higher.

3. Refer to section 4.4.2 on page 4-24 for information on Reset PAL code.

4. Refer to section 4.4.3 on page 4-24 for information on Alpha Diagnostics.

Ever et i e e	Install	Install Jumper on Pins:		
Function	0/1	6/7	14/15	
Interactive Alpha Diagnostics (using operator console)	1	1	0	
Interactive Alpha Diagnostics (using Debug Port J42/J43)	1	1	1	
Interactive Reset PAL Code (using Debug Port J42/J43)	0	1	0	
 Notes: 1. 0 = No shunt installed. 1 = Shunt installed. 2. The Debug Ports (primary Alpha Slot B Module port J42) default to 9600 bau Reset PAL code function, type an uppercase higher. 3. Refer to section 4.4.2 on page 4-24 for inform 	d. When using U to set the .	g the Intera interactive	active e baud rate	

Table 2-3Diagnostics and Flash Recovery Configuration
Settings (J29) (Continued)

4. Refer to section 4.4.3 on page 4-24 for information on Alpha Diagnostics.

I

2.2.2 Memory Timing

Memory bus timing is controlled by jumper settings on pins 2 through 5 (bits 1 and 2) of J29. Both jumpers are OFF by default, and they must remain OFF.

2.2.3 Mini–Debugger

The Alpha Reset PAL code mini-debugger is enabled/disabled by pins 6 and 7 (bit 3) of J29 on the UP2000 Motherboard (see Figure 2-1). The default position for this jumper is OFF. When this jumper is ON, the Reset PAL code initialization traps to the mini-debugger after all initialization is completed, but before starting the execution of the system flash ROM code.

2.2.4 Password Bypass

If the use of passwords is enabled and you forget the current password, there are ways to bypass password protection under the Alpha System Reference Manual (SRM) console.

The Alpha SRM console requires a password only after the Set Secure command has been issued. To clear a password if you forget the value:

- 1. Enter the Login command.
- 2. At the Enter Password prompt:
 - a. Press the Halt button.
 - b. Press Enter.

The password is now cleared and the console cannot be put into secure mode until a new password is set.

2.2.5 Flash Write Protection

The UP2000 provides write protection for the firmware flash ROM. By default, a jumper is installed on pins 14 and 15 (bit 7) of J27 on the UP2000 Motherboard (the OFF position), and writing to the flash ROM is not enabled.

2.2.6 System Speed

The system base frequency system is determined by pins 8–9, 10–11 and 12–13 (bits 4, 5 and 6) of J29 on the UP2000 Motherboard. The valid configurations for these jumpers are as follows:

- 83 MHz: Pins 8–9 and 10–11 are jumpered, Pins 12–13 are open
- 75 MHz: Pins 8–9 are open, Pins 10–11 and 12–13 are jumpered

Alpha Slot B Module processors that run at 600 and 750 MHz require a base system speed of 75 MHz. Alpha Slot B Module processors that run at 667, 833, and 1000 MHz require a base system speed of 83 MHz.

Chapter 3 Electrical, Environmental and Physical Data

In this chapter, a description is provided of the UP2000 power requirements, environmental and enclosure specifications, and physical parameters.

3.1 Power Specifications

3.1.1 Power Connectors

The power connectors specified to support dual Alpha Slot B Modules are as follows:

- ATX Standard: One 10 x 2 (20-pin)
 - AUX ATX: One 6 x 1 (6-pin)
- Alpha Slot B Module Power Supply: One 4 x 1 (4-pin)

12V is input to the L7571C Voltage Regulator Module (VRM), which outputs the core voltage to the CPU. Because over 9A is required by the Alpha Slot B Module, one Alpha Slot B Module Power Supply 4 x 1 (4-pin) connector is added. To support 3.3V, an AUX ATX 6 x 1 (6-pin) connector is used.

3.1.2 Estimated Power Consumption

The UP2000 Motherboard has a maximum total power consumption of 97.05W. The primary Alpha Slot B Module has a maximum total power consumption of 165.8W, while the secondary Alpha Slot B Module has a maximum total power consumption of 142W.

Table 3-1 lists the current requirement for each direct current supply voltage (Vdc) for the UP2000 Motherboard. Table 3-2 and Table 3-3 list the current requirement for each direct current supply voltage (Vdc) for the primary and secondary Alpha Slot B Modules, respectively. All requirements assume maximum usage applied.

Note: These tables do not include requirements for SDRAM, peripheral slots or disk drives. Be sure to allow for adequate additional current when selecting a power supply for the UP2000.

Mo	otherboard		
V _{DD} Source	Current	Power	Remarks
3.3V	17.2A	56.8W	
5V	6.8A	34.0W	
-5V	0.05A	0.25W	
12V	0.4A	4.8W	Fans
-12V	0.1A	1.2W	
Total Power Co	nsumption:	97.05W	

Table 3-1	Estimated Power Consumption-UP2000
	Motherboard

Table 3-2	Estimated Power Consumption–Primary Alpha
	Slot B Module, 8 MB Bcache

V _{DD} Source	Current	Power	Remarks
3.3V	6.3A	20.8W	
5V	0.2A	1.0W	
12V	12A	144W	VRM
Total Power Con	nsumption:	165.8W	

Table 3-3Estimated Power Consumption–Secondary AlphaSlot B Module, 8 MB Bcache

V _{DD} Source	Current	Power	Remarks
3.3V	6.3A	20.8W	
5V	24A	120W	VRM
12V	0.1A	1.2W	
Total Power Con	sumption:	142.0W	

3.1.3 Power Supply

The UP2000 requires the use of a 600W ATX power supply. Refer to Application Note 51-0038-0A, *MACASE Chassis RFI Upgrade Kit*, for

specific information about the power supply requirements.

3.2 Environmental Specifications

Each 21264 microprocessor is cooled by two small fans blowing directly into the chip's heat sink. The UP2000 is designed to run efficiently using only these fans. Additional fans may be necessary depending upon cabinetry and requirements of plug-in cards.

The UP2000 Motherboard and Alpha Slot B Module are specified to run within the environment listed in Table 3-4.

Parameter	Specification
Operating temperature	+5 to +35° C (+41 to +95° F)
Storage temperature	-35 to +85° C (-31 to +185° F)
Relative Humidity	10% to 90%, with maximum wet bulb temperature of 35° C (95° F) and minimum dew point of 2° C (36° F)
Rate of (dry bulb) temperature change	11° C/hr. ±2° C/hr. (20° F/hr. ±4° F/hr.)

 Table 3-4
 Environmental Requirements

2 2 2

3.2.1 Safety

The UP2000 Motherboard meets registered product-safety certification for the U.S. and Canadian Underwriters Laboratories (UL and CUL). It also meets the European Conforming (CE) standard EN60950:1992 "Safety of Information Technology Equipment Including Electrical Business Equipment Incorporating Amendment Nos 1, 2, 3, 4." European Norm (EN) standards which conform to the relevant directives are published in the Official Journal of the European Community.

3.2.2 EMI

Note: API recommends the use of high-quality, shielded cables for all I/O.

The UP2000 meets electro-magnetic interference (EMI) emission certification for the following:

- Federal Communications Commission (FCC) 47 CFR Part 15 Class A (USA)
- EN 55022:1994/A1:1995/A2:1997 Class A ITE emissions requirements (EU)
- ICES-003 Issue 3 Class A Digital Apparatus (Canada)
- VCCI Class A ITE (Japan)
- AS/NZS 3548:1995/CISPR 22 Class A ITE (Australia)
- SABS CISPR 22:1993 Class A ITE (South Africa)
- **Note:** Application Note 51-0038-0A contains detailed information about requirements for EMI certification notices which must appear on assemblies that use the UP2000.

The UP2000 also meets the EMI immunity certification EN 50082-1:1992 "EMC Residential, Commercial and Light Industrial Generic Immunity Standard."

3.2.3 Thermal

Figure 3-1 shows the location of thermally-sensitive components on the UP2000 Motherboard. A list of maximum allowable case temperatures for these components is provided in Table 3-5.

Case temperatures are a vital factor in determining airflow on a motherboard. Variables which may affect a component's case temperature include the following:

- Operating temperature
- Operating frequency
- Current load

I.

Figure 3-1 Thermally-sensitive Components

51-0029-3A

Component	Maximum Temperature
Primary Alpha Slot B Module*	<70°C (158°F)
Secondary Alpha Slot B Module*	<64°C (147°F)
21272 D-chips	<69°C (156°F)
21272 P-chips	<66°C (151°F)
21272 C-chip	<54°C (129°F)
Adaptec AIC-7891 SCSI Controller	<69°C (156°F)
approved Southbridge peripheral bus controller	<55°C (131°F)

Table 3-5 Maximum Component Case Temperatures

Note: * Data from results of test using 667 MHz, 4 MB Alpha Slot B Modules. All other components' data from results of test using 750 MHz, 8 MB Alpha Slot B Modules.

Thermal tests conducted by Alpha Processor, Inc. determined that these components remained within maximum specified temperatures. The test system configuration comprised the following:

- Dual 750 MHz, 8 MB Alpha Slot B Modules
- Fully-populated I/O and memory
- Minimum firmware to boot operating system (OS)
- 35°C ambient chamber

A thermocouple was placed on the base of each Alpha Slot B Module's heat sink, between the heat-sink mounting studs. All other components were instrumented at the top center of the case.

3.3 Enclosure Requirements

This product has been approved for use in either of following chassis:

- MACASE KA-S80FP chassis with AT-shaped power supply backplate, with the modification described in Application Note 51-0038-0A
- API CH320 3U Rack-mount Chassis

3.4 Physical Parameters

3.4.1 UP2000 Motherboard Parameters

The UP2000 Motherboard is a printed circuit board (PCB) with the dimensions specified in Table 3-6.

Dimension	Value
Length	330.2 mm (13 in)
Width	304.8 mm (12 in)
Height	1.6 mm (.06 in)

 Table 3-6
 UP2000 Motherboard Physical Parameters

3.4.2 Alpha Slot B Module Parameters

The Alpha Slot B Module is a PCB with the dimensions specified in Table 3-7.

Table 3-7	Alpha Slot B Module Physical Parameters
-----------	---

Dimension	Value
Length	168.8 mm (6.6 in)
Width	47.8 mm (1.9 in)
Height	114.3 mm (4.5 in)
Weight	1.2 kg (2.6 lb)

3.4.3 UP2000 Motherboard Mounting Hole Specification

The UP2000 Motherboard mounting hole specification is depicted in Figure 3-2.

Note: All values are in inches.

Figure 3-2 Mounting Hole Specifications

Chapter 4 Functional Description

This chapter describes the functional operation of the UP2000. It introduces the 21272 core logic chipset and briefly describes its implementation with the 21264 microprocessors.

Descriptions are also provided in this chapter of the subsystem structure of the UP2000, and the logic and firmware used.

4.1 21272 Core Logic Chipset

The UP2000 uses a Compaq 21272 (Tsunami) chipset to implement a uni-processor or dual-processor system based on the 21264 microprocessor, which is located on the Alpha Slot B Module. The chipset provides a 256-bit memory interface and includes the following three gate arrays:

- Cchip—controls address and commands, and is 432-pin Enhanced Super Ball Grid Array (ESBGA). The Cchip connects to the system interrupts by the TTL Integrated Glue Logic (TIG) block.
- Dchips—four 304-pin ESBGAs control the data path. Dchips provide the data path between the CPU, the memory and the Pchips.
- Pchips—two 304-pin ESBGAs control the PCI interface.

A 32-byte bus from the SDRAM arrays splits into two memory ports at the Dchips.

Refer to Compaq's documentation for a full explanation of the 21272 chipset.

4.1.1 Cchip Functional Overview

The Cchip provides the control interface between the Alpha Slot B Module, containing the 21264 microprocessor, and the UP2000 Motherboard 21272 chipset. In addition, it provides control for the Dchips, Pchips, memory subsystem and access to the TIG block.

The CPU and the Cchip communicate with each other through the system port. The system port is made up of unidirectional address and command buses. The Cchip system interface logic decodes the system port address for CPU requests to determine what action to take. It also decodes Direct Memory Access (DMA) requests. The Cchip supports cacheable memory accesses, programmed I/O, interrupts, TIG addresses, and accesses to 21272 control/status register (CSR) space.

4.1.2 Dchip Functional Overview

The Dchips provide the data path from the 21264 to main memory. Four Dchips are used for the interface on the UP2000 Motherboard. The Dchips contain the CPU, Pchip, and memory interface data paths, which include DMA and Programmed Input/Output (PIO) queues.

The Dchips interface to the CPU using the CPU bus (sysdata). The CPU bus, between the Dchips and each CPU, passes 128 bits of data (64 bits, or 8 bytes, from each CPU).

There is also a 256-bit, bidirectional memory bus (memdata) between the Dchips and the memory banks. The memory bus connects to banks 0 and 1 (see Figure 4-4).

Dchips interface with each Pchip through the 32-bit I/O bus (padbus; padbus0 connects to Pchip 0 and padbus1 connects to Pchip 1). The I/O bus is a 32-bit data bus that allows a Pchip and the Dchips to pass data back and forth.

4.1.3 Pchip Functional Overview

The Pchip is a fully-compliant PCI host bridge between the PCI and the CPU and its cache and memory. Pchip interface protocol is compliant with *PCI Local Bus Specification, Revision 2.1.*

The Pchip contains all control functions of the PCI bridge and some data path functions. It acts as a master on the PCI for CPU-initiated transactions, and is a target on memory space transactions initiated by PCI masters. Two Pchips are used on the UP2000 Motherboard to provide one 64-bit PCI bus and one 32-bit PCI bus.

4.2 Subsystems

The following paragraphs describe the designs of the UP2000 functional subsystems.
4.2.1 Memory Subsystem

The UP2000 Motherboard has eight DIMM sockets arranged in two banks: bank 0 and bank 1. Each bank has four sockets and provides a 256-bit wide data path. DIMMs in the same bank must be the same type, size, and speed; DIMMs in different banks may differ in type, size, and speed. At least one memory bank must be filled for the UP2000 Motherboard to work.

The UP2000 supports memory DIMMs such as the sample list described in Table 4-1. This is not a comprehensive list of DIMMs supported.

Vendor	Size	Vendor Part Number
Samsung	64 MB	KMM350S823BT1
	64 MB	KMM377S823BT1
	128 MB	KMM377S1620BT1
	256 MB	KMM377S3320T1
	256 MB	KMM377S3323T
	256 MB Stack	KMM377S3227BT1
Viking	128 MB	PE16721R4SN3-2226

Table 4-1 SDRAM DIMMs Supported

4.2.2 CPU (Alpha Slot B Module) Interface

The UP2000 is designed to interface to one or two Alpha Slot B Modules. Two 330-pin connectors accept two Alpha Slot B Module connections for dual-21264 configuration. The board also works with a single Alpha Slot B Module connected, with the secondary Alpha Slot B Module connector left open.

Interface Connection The Alpha Slot B Connector provides signal pins (154 total), 5 Volt pins (2A), 3.3 Volt pins (8A), 2V_TERM (58A), static RAM (SRAM) power pins (2A), and ground pins (70 total) from the UP2000 Motherboard. The VRM power source, connected on odd-numbered pins between 145–165, is auto-switched between 12V and 5V.

Alpha Slot B Module interface specifications are as follows:

- Molex part number: 74191-0002
- Designed for signal transmissions with rise and fall times of 0.5 nsec or greater

- Current rating: Signal contact = 1A, Ground contact = 1.5A
- Bcache SubsystemThe external Bcache subsystem on the Alpha Slot B Module supports
2 MB, 4 MB or 8 MB cache sizes using a 128-bit data bus. Nine
synchronous SRAMs (SSRAMs) are required per Alpha Slot B Module for
4 MB and 8 MB Bcache, and five SSRAMs are required per Alpha Slot B
Module for 2 MB Bcache. Both Alpha Slot B Modules use late-write
SSRAMs.

Note: In a dual-processor system, the Bcache size must be the same for both Alpha Slot B Modules.

The UP2000 supports Bcache using the SSRAM sizes shown in Table 4-2.

Table 4-2Bcache Size

Bcache Size	SRAM Type
2 MB	Four 128 K x 36 data SSRAMs and one 128 K x 36 tag SSRAM
4 MB	Eight 256 K x 18 data SSRAMs and one 128 K x 36 tag SSRAM
8 MB	Eight 512 K x 18 data SSRAMs and one 128 K x 36 tag SSRAM

4.2.3 Clock Subsystem

The CPU and system clock frequency is decided by the UP2000 Motherboard's external PLL logic and the CPU internal PLL logic. The external PLL logic provides the reference clock input to the CPU and the 21272 chipset.

All external and internal PLL input parameters are set by TIG Field Programmable Gate Array (FPGA) logic configured by the UP2000 Motherboard CPU speed jumper (J34) and 21272 speed jumper (J29). This TIG FPGA has an internal PLL look-up table used to set the value of M[6:0] and N[1:0], which are input parameters of external PLL devices, and the value of Y-divider, which is an input parameter of CPU internal PLL logic.

These input values of the external PLL device are set through the TIG FPGA device using Inter-integrated Circuit (I2C) protocol.

Table 4-3 describes how the input parameters of external PLL are set.

External PLL Output Freq.	M[6:0] Value	N[1:0] Value
83 MHz	28h	10b
133 MHz	20h	01b
150 MHz	24h	01b
166 MHz	28h	01b

Table 4-3PLL Input Frequency

The output frequency of this external PLL device is used as the CPU reference clock and system clock of the UP2000. The CPU reference clock produces the internal processor clock [GCLK] through internal PLL logic and the Y-divider value, which is multiplied as shown in Table 4-4.

FID Value	Max Speed	Used Speed	CPU_sp x TSU_sp x Y-Div	CLKin
00000	500 MHz	500 MHz	3 x 4 x 3	166 MHz
00010	600 MHz	600 MHz	4 x 1 x 4	150 MHz
00011	666 MHz	666 MHz	5 x 4 x 4	166 MHz
00101	750 MHz	750 MHz	6 x 1 x 5	150 MHz
00111	866 MHz	833 MHz	6 x 4 x 5	166 MHz
01000	933 MHz	900 MHz	7 x 1 x 6	150 MHz
01001	1000 MHz	1000 MHz	7 x 4 x 6	166 MHz

 Table 4-4
 Reference Clock and CPU Clock for FID

Note: The Y-divider value is set through IRQ[3:0] input signals and configured by the TIG FPGA internal PLL look-up table, with the CPU speed jumper and the 21272 speed jumper.

The PLL look-up table for the UP2000 is shown in Table 4-5. The value of the column Flash Select Jumper indicates one among eight established Reset PAL codes for the Alpha Slot B Module.

Setting Jumper MC439 Input Val		IRQ[3:0]	Operating Frequency (MHz)					
CPU Spd (J34)	21272 Spd (J29)	Flash Select (J34)	M[6:0] Value (Dec)	N[1:0] Value (Dec)	Y-Div Value	CLKIN (To CPU)	CPU Clock (GCLK)	System Clock
3 (011)	4	7	40	1	3	166	500	83
4 (100)	1	0	36	1	4	150	600	75
5 (101)	4	1	40	1	4	166	667	83
5 (101)	4	6	40	1	7	166	1162	83
C (110)	1	2	36	1	5	150	750	75
6 (110)	4	3	40	1	5	166	833	83
7 (111)	1	4	36	1	6	150	900	75
7 (111)	4	5	40	1	6	166	1000	83

 Table 4-5
 System Clock and 21272 Operating Frequency

I

The CPU and system clock design is shown in block diagram form in Figure 4-1.

Figure 4-1 CPU and System Clock Block Diagram

The LVE37 clock driver receives PLL clock signals, and performs an x 1 or x $\frac{1}{2}$ operation and sends the output to the LVE222 clock driver (1:15 differential x 1 or x $\frac{1}{2}$). The x 1 clock is sent to LVE222 for the CPU clock and for the forward clock drive for each chipset, and x $\frac{1}{2}$ clock is sent to the other LVE222 for system clock for each chipset.

Memory InterfaceThe low voltage PLL clock driver (MPC951), which received system clockClockthrough the clock drive, goes through each DIMM as 1:1 clock output. One
clock is used as a feedback clock to reduce the skew.

There are a total of nine clock outputs. Since the 168-pin DIMM used in the

UP2000 is registered (including PLL), only one clock source is needed to do the loading.

Figure 4-2 shows a block diagram of the UP2000 memory interface clock design.

Figure 4-2 Memory Interface Clock Block Diagram

PCI Clock

The set value of the internal register PCLKX determines which divide ratio the Pchips use for dividing the forward clock signal. Refer to Table 4-6 for a list of the divide ratio values.

Table 4-6 PCI Clock Frequency Multiplier

PCLKX	Forward Clk Divide Ratio
0	6
1	4
2	5

Pchip register PCTL contains PCLKX[41:40], which can be used to configure the PCI clock frequency multiplier.

The PCLKX value is set in the Reset PAL code. The value is used when the Reset PAL code starts initializing the Pchip when the code goes into the Icache (instruction cache) of the CPU.

Refer to Figure 4-3 for a block diagram of the PCI clock design.

Figure 4-3 PCI Clock Generation Block Diagram

4.2.4 System Bus

The clock speed of the bus between the CPU and the chipsets is set up as 83 MHz.

The maximum bandwidth is designed as 2.67 GBytes/second. The bus between CPU and Dchips is designed as a 64-data bit bus, and the bus between Dchips and memory is designed as a 1-bus, 2-bank, and 32-byte bus.

Figure 4-4 shows a block diagram of the system bus design.

Figure 4-4 System Bus Block Diagram

The UP2000 has two CPU buses with an 8-byte data width, and one memory bus with a 32-byte data width. This is accomplished by using one Cchip, four Dchips and two Pchips. Each of the dynamic RAM (DRAM) banks is split into two memory ports of the Dchips. A cache block is read or written to the memory using two transfers on this bus. Each Dchip supplies two bytes to each installed CPU.

The instantaneous peak data transfer rates between the Dchips and the DRAM bank is 32 Bytes at 83 MHz, which is equal to 2.67 GB/sec. The instantaneous peak transfer rates between the CPUs and Dchips is 8 Bytes at 333 MHz (that is, a 167 MHz, double data rate), which is also equal to 2.67 GB/sec. The interface between Pchips and Dchips is 4 bytes at 83.3 MHz, which results in an instantaneous peak data transfer rate of 333 MB/sec.

4.2.5 PCI Interface

The UP2000 supports six PCI slots (two 64-bit and four 32-bit) and one shared PCI/ISA slot. The PCI interface has a 33 MHz system clock. The UP2000 also provides a PCI-to-ISA bridge (CY82C693UB). The on-board AIC-7891 has up to 80 MB/sec data transfer rates and a 64-bit PCI interface.

The primary Pchip is connected to the CY82C693UB PCI/ISA bridge, the Ultra2 SCSI Controller (AIC-7891), two 64-bit PCI slots, and one 32-bit PCI slot.

The secondary Pchip is connected to three 32-bit PCI slots.

Primary PCI Bus The primary PCI bus (bus 0) has the following interconnections, as described in Table 4-7 and Table 4-8:

- Two 64-bit, 5V PCI slots
- One 32-bit, 5V PCI slot
- One CY82C693UB PCI/ISA bridge interface
- One AIC-7891 Ultra2 SCSI controller interface

Table 4-7	PCI 0 Configuration ID
-----------	------------------------

IDSEL Value	Device
AD16	CY82C693UB
AD17	AIC-7891
AD18	PCI Slot 0
AD19	PCI Slot 1
AD20	PCI Slot 2

Table 4-8	Primary	PCI	Arbitration
-----------	---------	-----	-------------

Arbitration Signals	Device Connected
P_REQ0#/P_GNT0#	CY82C693UB
P_REQ1#/P_GNT1#	AIC-7891
P_REQ2#/P_GNT2#	PCI Slot 0
P_REQ3#/P_GNT3#	PCI Slot 1
P_REQ4#/P_GNT4#	PCI Slot 2

Secondary PCI Bus The secondary PCI bus (bus 1) has three 32-bit, 5V PCI slots, as described in Table 4-9 and Table 4-10.

Table 4-9PCI 1 Configuration ID

IDSEL Value	Device
AD18	PCI Slot 3
AD19	PCI Slot 4
AD20	PCI Slot 5

 Table 4-10
 Secondary PCI Arbitration

Arbitration Signals	Device Connected
P_REQ0#/P_GNT0#	PCI Slot 3
P_REQ1#/P_GNT1#	PCI Slot 4
P_REQ2#/P_GNT2#	PCI Slot 5
P_REQ4#/P_GNT4#	Not Used

4.2.6 On–Board I/O

The on-board I/O provided on the UP2000 Motherboard are defined in Table 4-11.

Table 4-11 On-board I/Os

I/O Component	Specification
FDC37C669	• 2.88 MB floppy disk controller
	Two Serial ports, NS16C550 compatible
	One Parallel port

I/O Component	Specification				
	 PCI-to-ISA bridge, PCI Local Bus Specification Revision 2.1 compliant 				
	• DMA controllers with type A, B, and F support				
	Interrupt controllers				
	Timer/counters				
	 Real-time clock with 256 bytes of battery- backed SRAM 				
CY82C693UB	 Dual-channel, EIDE controller with PCI bus mastering, CD-ROM support, PIO modes 0 through 4 operation, and single-word and multi-word DMA modes 0 through 2 				
	Keyboard and mouse controller				
	 PCI-ISA/ISA-PCI/IDE-PCI/PCI-IDE post writing 				
	USB controller				
	Two USB ports				
	 Supports Ultra2 LVD devices with 80 Mbyte/sec data transfer rate in 16-bit mode or 40 MByte/sec in 8-bit mode. 				
AIC-7891	 Supports single-ended SCSI devices with an additional driver IC, AIC-3860 				
(SCSI Controller)	• 512-byte data First In, First Out (FIFO) buffer for efficient PCI bus utilization				
	 PCI-tagged command queuing allows changes in the order of SCSI command execution 				
	Connection for up to 15 SCSI devices on 12 meter cable				

 Table 4-11
 On-board I/Os (Continued)

Refer to Figure 4-5 for a block diagram of the SCSI controller design.

Figure 4-5 SCSI Controller Block Diagram

4.3 Logic

4.3.1 CPU Speed Logic

The CPU speed is set by the Y-divider value, FID[3:0], sent on the initial IRQH signal input through the interrupt bus, which resulted from the combination of CPU speed and the 21272 speed input to the Reset EPLD from configuration jumper J34.

The UP2000 supports only same-speed CPUs on both processors. CPU speed is determined by configuration jumper J34 on the UP2000 Motherboard. Refer to Figure 2-3 on page 2-7 for details.

A diagram of the CPU speed logic is shown in Figure 4-6.

Figure 4-6 CPU Speed Logic

4.3.2 Interrupt Logic

The TIG FPGA decoder divides a total of 64 interrupt sources by eight, then transfers them through the TIGbus.

The UP2000 receives the thermal sensor interrupt signal I2C_INTR_L from each Alpha Slot B Connector, and uses a flip-flop design to support the interrupt even if only one interrupt is received.

The UP2000 was designed to support only one on-board SCSI controller interrupt. It uses the AIC-7891, which supports one LVD port, and the AIC3860, which supports one single-ended port.

A block diagram of the interrupt logic design is shown in Figure 4-7. Table 4-12 provides a map of the UP2000 logical interrupts.

Figure 4-7 Interrupt Logic Block Diagram

INT_EN	Interrupt Level	Signal Name
	16	Reserved
	17	I2C_INT I2C Controller (PCF8584)
	18	Reserved
INT_EN0	19	PCI0_IRQ_ADPTA
_	20	PCI0_INTD2
	21	PCI0_INTC2
	22	PCI0_INTB2
	23	PCI0_INTA2

Table 4-12Logical Interrupt Map

INT_EN	INT_EN Interrupt Signal Name	
	24	PCI0_INTD1
	25	PCI0_INTC1
	26	PCI0_INTB1
INIT ENII	27	PCI0_INTA1
INT_EN1	28	PCI0_INTD0
	29	PCI0_INTC0
	30	PCI0_INTB0
	31	PCI0_INTA0
	32	PCI1_INTD3
	33	PCI1_INTC3
	34	PCI1_INTB3
INT_EN2	35	PCI1_INTA3
IINI_LINZ	36	PCI1_INTD2
	37	PCI1_INTC2
	38	PCI1_INTB2
	39	PCI1_INTA2
	40	PCI1_INTD0
	41	PCI1_INTC0
	42	PCI1_INTB0
INT_EN3	43	PCI1_INTA0
IINI_EINS	44	PCI1_INTD1
	45	PCI1_INTC1
	46	PCI1_INTB1
	47	PCI1_INTA1
	48	Reserved
	49	Reserved
	50	THERM_WARN (Alpha Slot B Module Thermal Interrupts)
INT_EN4	51	Reserved
	52	Reserved
	53	CYP_NMI
	54	SMI_INT
	55	ISA_INT

 Table 4-12
 Logical Interrupt Map (Continued)

INT_EN	Interrupt Level	Signal Name	
	56	Reserved	
	57	Reserved	
	58	Reserved	
INT ENIS	59	Reserved	
INT_EN5	60	Reserved	
	61	PCI1_ERROR	
	62	PCI0_ERROR	
	63	Reserved	

4.3.3 Reset PAL Code Access Logic

Reset EPLD supplies the Reset PAL code data to initialize the CPUs at reset. Settings on J34 on the UP2000 Motherboard configure a flash select value (see Table 2-2 on page 2-6). This flash select value determines which of the eight Reset PAL code images stored in flash ROM is sent to the CPU. The CPU holds the Reset PAL code output enable signal until the data load is complete.

Reset EPLD performs the following steps to load each CPU:

- 1. Dcok_A_H becomes active with Power_on_reset.
- 2. After Dcok_A_H is input, CPU0 holds about 8 GCLK cycles and the real EV6CLK_x cycle occurs.
- 3. The Reset EPLD receives Mod_reset, then sends Real_reset_A_L to the CPU.
- 4. The CPU0 which receives Real_reset_A_L finishes the PLL setting and enables Srom_En_A_L.
- 5. The Reset EPLD which receives Srom_En_A_L checks whether CPU1 is present.
 - If one CPU is used (CPU0 only):
 - a. Reset EPLD bypasses Srom_En_A_L and sends the signal to the Cchip.
 - b. When the Cchip receives this signal, it enables ClkFwdRst_H.
 - c. The CPU which received ClkFwdRst_H performs Built-in Self Test (BIST), and loads SROM_Data into the CPU Icache.
 - d. After loading SROM_Data, the CPU deasserts Srom_En_L.
 - e. The Cchip checks this signal, and finishes it by deasserting ClkFwdRst_H.
 - If two CPUs are used (CPU0 and CPU1):

- a. After Srom_En_A_L is input, SROM_Data finishes loading into the Icache of CPU0, and Srom_En_A_L is deasserted. This Srom_En_A_L signal is latched so that the enabled signal goes into the Cchip.
- b. When Srom_En_A_L is deasserted in the Reset EPLD internally, it enables Dcok_B_H and Real_reset_B_L.
- c. When Srom_En_B_L goes into Reset EPLD after being enabled, the Reset EPLD bypasses the signal and sends it to the Cchip.
- d. At this time, Reset EPLD deasserts the Real_reset_B_L which is latched. This causes both CPUs to enter RUN mode (that is, the execution of Reset PAL code data) at the same time by receiving ClkFwdRst_H from the Cchip.

In other words, Reset EPLD receives Srom_En_L of the primary Alpha Slot B Module and maintains the signal low until the Reset PAL code data gets loaded into the Icache of the secondary Alpha Slot B Module. After Reset PAL code data is finished loading by both Alpha Slot B Modules, Srom_En_L is deasserted in both Alpha Slot B Modules at the same time to initialize the CPUs.

Reset EPLD is an ALTERA EPM7256A, 144-Pin ISP type component. Input Clock uses the CY2081 output clock of 14.318 MHz.

Figure 4-8 provides a diagram of the Rest PAL code access logic design used in the UP2000.

Figure 4-8 Reset PAL Code Access Logic

4.3.4 Fan Connector Logic

Each Alpha Slot B Module supports two fans, resulting in the use of a total of four fans and four fan connectors. On the UP2000 Motherboard, each slot's FAN_OK signal goes through a logical AND gate in Reset EPLD. If all four fans function normally, the CPU_Dcok signal is asserted to the CPU.

4.3.5 On-board LED Logic

Six LEDs are used to indicate the status of the SROM_CLK, DC_OK, and 2V PWRGOOD signals on both the primary and secondary Alpha Slot B Modules. Two LEDs are used to indicate signal activity for the SCLK and SDATA clock generator configuration signals.

Figure 4-9 provides a diagram of the LED locations. All eight LEDs are located on the front edge of the UP2000 Motherboard, to the left of the secondary Alpha Slot B Module. Table 4-13 describes the LED functions.

Table 4-13	LED Functions
-------------------	---------------

LED	Function
D4	SCLK_L for clock generator configuration
D5	SDATA_L for clock generator configuration
D6	Secondary Alpha Slot B Module DC_OK

LED	Function
D7	Secondary Alpha Slot B Module SROM_CLK
D8	Secondary Alpha Slot B Module PWRGOOD
D9	Primary Alpha Slot B Module DC_OK
D10	Primary Alpha Slot B Module SROM_CLK
D11	Primary Alpha Slot B Module PWRGOOD

Table 4-13LED Functions

L

4.3.6 Alpha Slot B Connector Logic

Both Alpha Slot B Connectors use a 330-pin Molex connector, designed to support 12V and 5V. The primary Alpha Slot B Connector is hardwired with 12V and the secondary Alpha Slot B Connector is hardwired with 5V.

4.3.7 Reset Logic

The UP2000 reset logic starts from the Power OK signal of the power supply. The processor reset starts from the Alpha Slot B Module reset FPGA logic. System reset and peripheral I/O reset signals are derived from the Cchip as shown in Figures 4-10 and 4-11.

Figure 4-10 Alpha Slot B Module Reset Logic

Figure 4-11 System Reset Logic

4.3.8 I2C Logic

The I2C controller (PCF8584) changes serial I2C data from the Alpha Slot B Modules to parallel signals, then sends them to the PCI/ISA bridge interface. The UP2000 also supports the memory DIMM I2C data from the I2C controller in the PCI/ISA bridge interface.

Table 4-14 shows the address mapping of the PCF8582C I2C EPROM and the LM75CIM3 thermal sensor. Figure 4-12 provides a diagram of the I2C Bus logic used in the UP2000.

Table 4-14 I2C Address Map

Component	Primary Alpha Slot B Module	Secondary Alpha Slot B Module	Memory Bank 0	Memory Bank 1	On-board
PIO PCF8582C	1010010	1010110			1010001
PIO LM75CIM3 thermal sensor	1001010	1001110			
Cchip			000	100	

4.4 Firmware

This section describes the UP2000 target operating system (OS), and the Reset PALcode, Alpha Diagnostics, and Alpha SRM console firmware. A description is included of the order in which firmware loads.

The UP2000 supports the following firmware versions:

- Reset PALcode (SROM code)—version 1.9.3 or higher
- Alpha Diagnostics—version 1.1 or higher
- Alpha SRM Console—version A5.5-82 or higher

4.4.1 Supported OS

The UP2000 supports Linux kernels 2.2.13 or later.

Note: Refer to product support at the Alpha Processor, Inc. web site for current information on specific distributors and OS versions supported by the UP2000.

4.4.2 Reset PAL Code

When the UP2000 is turned on or reset, Reset PALcode automatically loads into Icache in the CPU. This Reset PALcode performs the following:

- 1. Initialize CPU.
- 2. Initialize CSR values—memory timing, Cchip, Dchip, and Pchip values.
- 3. Detect configuration jumpers, CPU configuration setting, and memory.
- 4. Initialize Bcache and set core logic chipset CSRs according to configuration.

- 5. Initialize system memory.
- 6. Detect CPU speed by polling of Periodic Interrupt Flag in the RTC.
- 7. Load the next level of firmware and pass control to that code. (See section 4.4.5, "Firmware Loading Order.")

Each Alpha Slot B Module requires a specific Reset PALcode image, depending on the CPU speed. CPU speed is supplied by the FID value determined by the Alpha Slot B Module.

Note: If you use two Alpha Slot B Modules, both modules must use the same CPU speed. This means that both Alpha Slot B Modules also use the same Reset PALcode.

4.4.3 Alpha Diagnostics

The Alpha Diagnostics firmware is used internally by Alpha Processor, Inc. for diagnostic purposes.

Native mode diagnostics depends on various system components to be functioning correctly. When Reset PALcode determines that the UP2000 is capable of supporting the higher level environment, it fetches this image from the firmware and transfers control to it.

An Alpha Slot B Module using an 21264 processor implements a serial communications link directly connected to the processor. This link, called

Note: In the 21272 chipset, there are 23 CSRs for the Cchip, 4 CSRs for the Dchips, and 48 CSRs for the Pchips.

the Debug Port, can be used for reporting and interacting in the earliest stages of system initialization, after execution passes from PAL mode. It is accessed through J43 (primary) or J42 (secondary) on the UP2000 Motherboard (see Figure 2-1 on page 2-2).

The Alpha Diagnostics firmware includes the following tests:

- Interrupt handling—Raise interrupts with a known response
- UP2000 Motherboard components—chipset, Flash ROM integrity, on-board devices
- Memory—stress test
- ISA cards
- PCI bus—Initialization, stressing and interrupts
- SM timer support and EEPROMs
- FDD and IDE disks—DMA

If the Alpha Diagnostics detects a working keyboard and video console, it displays a graphical interface containing a menu of diagnostics. This is the console interface to the Alpha Diagnostics. If the Alpha Diagnostics does not detect a video console, the Alpha Diagnostics uses the Debug Port interface.

4.4.4 Alpha SRM Console

The Alpha SRM Console firmware provides service functions commonly provided in most computers systems, including the following:

- Power-up diagnostics and initialization
- Operator interface
- OS bootstrap and restart

Alpha SRM Console firmware provides SRM support for Linux and for booting the firmware update image.

Users (operators) communicate with the SRM Console through a system console device. SRM Console firmware supports the use of either of the following:

- VT-style terminal attached to the standard serial port
- Standard VGA monitor and keyboard

SRM Console firmware provides a command line interface (CLI), or command shell. It supports both a scripting facility and one of two shells. The shell is either a simple shell for single-command line execution, or a UNIX-style shell (a subset of a Bourne shell) providing a rich set of commands and operators.

4.4.5 Firmware Loading Order

UP2000 firmware loads in the following order:

- 1. Load Reset PALcode firmware.
 - If system firmware is corrupted, load Alpha Diagnostics. See 2.2.1, "Diagnostics and Flash Recovery," on page 2-5 for information on Alpha Diagnostics.
 - When Reset PALcode firmware is loaded, go to step 2.
- 2. Check for configuration to enable Alpha Diagnostics.
 - If enabled, load Alpha Diagnostics. See 2.2.1, "Diagnostics and Flash Recovery," on page 2-5 for information on Alpha Diagnostics.
 - If Alpha Diagnostics is not enabled, go to step 3.
- 3. Load Alpha SRM console.

SRM loads and runs the Linux kernel and its PALcode.

Chapter 5 System Memory and Address Mapping

The following sections describe the UP2000 system memory, and includes a list of valid memory configurations. Mapping information for system addresses is also provided.

5.1 Memory Subsystem

The UP2000 has eight DIMM sockets arranged in two banks: bank 0 and bank 1. Each bank has four sockets and provides a 256-bit wide data path.

The minimum memory size is 256 MB (four 64 MB DIMMs), and the maximum size is 2 GB (eight 256 MB DIMMs). When the system clock is 83.3 MHz, the maximum bandwidth becomes 2.67 GB/sec. System firmware automatically detects memory type and size.

The UP2000 supports the following:

- 168-pin, 100 MHz SDRAM, PLL or registered SPD DIMMs
- LVTTL-compatible inputs and outputs
- 3.3V +- 0.3V power supply

Each 168-pin DIMM should have eight Data Input/Output Mast (DQM) signals for each DIMM. Because there is no guarantee of all 32 loadings with DQM from the Cchip, API uses a 200 psec Quick switch, part number PI3B3244, as shown in Figure 5-1.

Note: DIMMs installed in one memory bank must be of the same type, size and speed. DIMMs installed in different memory banks may differ between banks, but not within a bank.

Figure 5-1 Memory DQM Configuration

5.2 Configuring SDRAM Memory

The UP2000 supports memory sizes from 256 MB to 2 GB. Table 5-1 lists some of the SDRAM memory configurations available. Any combination of DIMMs that meet the 21272 configuration rules are supported by the 21272 chipset.

For a list of vendors who supply components and accessories for the UP2000, see Appendix B.

		5 8
Total Memory	Bank 0	Bank 1
256 MB	64 MB x 4	
512 MB	128 MB x 4	
	64 MB x 4	64 MB x 4
768 MB	128 MB x 4	64 MB x 4
1 GB	256 MB x 4	
	128 MB x 4	128 MB x 4
1.5 GB	256 MB x 4	128 MB x 4
2 GB	256 MB x 4	256 MB x 4

Table 5-1 UP2000 SDRAM Memory Configurations

5.3 System Address Mapping

This section describes the mapping of the processor physical address space into memory and I/O space addresses. It also includes the translations of the processor-initiated address into a PCI address, and PCI-initiated addresses into physical memory addresses.

5.3.1 CPU Address Mapping to PCI Space

The physical CPU bus address space is composed of the following:

- Memory address space
- Local I/O space for registers in the Cchip, Dchips, and Pchips)
- PCI space

The PCI defines four physical address spaces, as follows:

- PCI memory space (for memory residing on the PCI)
- PCI I/O space
- PCI configuration space
- PCI interrupt acknowledge cycles/PCI special cycles

Refer to Compaq's functional specification for the 21272 core logic chipset for details on the PCI space mapping.

5.3.2 TIGbus Address Mapping

Table 5-2 provide the address map for the TIGbus. Refer to Table A-5 in section A.3 on page -8 for a complete list of the pinouts of the configuration jumpers which provide inputs to the TIGbus and Gpen registers.

Capbus [23:21]	Physical Address 1	Access	Function	Comment
000	800 00xx xxx0	RW	Flash ROM address space	
001	800 08xx xxx0	RO	Gpen_0 Array0_PD[7:0]	Reserved
010	800 10xx xxx0	RO	Gpen_1 Array1_PD[7:0]	Reserved
011	800 18xx xxx0	RO	Gpen_2 Array2_PD[7:0]	Reserved
100	800 20xx xxx0	RO	Gpen_3 Array3_PD[7:0]	Reserved
101	800 28xx xxx0	RO	Gpen_4 Con_bit[7:0]	General configuration register. See Figure 5-2.
	800 30xx x000	RO	Gpen_5 CPU0_config[7:0]	CPU0 configuration register. See Figure 5-2.
	800 30xx x040	RW	Flash write enable[0]	Writing a 1 to this location enables flash writes
	800 30xx xA00	RW		Reserved
110	800 30xx xA40	RW		Reserved
	800 30xx x3C0	RW	CPU[1:0] HaltA	Writing a 1 to either bit will halt the specified CPU.
	800 30xx x5C0	RW	CPU[1:0] HaltB	Writing a 1 to either bit halts the specified CPU.

Table 5-2 TIGbus Address Mapping

Capbus [23:21]	Physical Address 1	Access	Function	Comment
	800 38xx x000	RO	Gpen_6 CPU1_config[7:0]	CPU1 configuration register. See Figure 5-2.
	800 38xx x040	RAZ	PCI_0_ok[0]	Reserved
	800 38xx x080	WO	PCI_1_ok[0]	PCI0 self-test register
	800 38xx x0C0	WO		PCI1 self-test register
111	800 38xx x100	RW	Soft_reset[0]	To set a hardware reset for a short period of time, first write a 0, then write a 1 to this location.
	800 38xx x140	RO	Tig_rev[7:0]	Bits [7:5] specify the major revision (corresponding to the board revision), [4:0] specify the minor revision.
	800 38xx x180	RO	Arbiter_rev[7:0]	Bits [7:5] specify the major
	800 38xx x1C0	RW	Feature_mask[7:0]	Reserved

Table 5-2 TIGbus Address Mapping (Continued)

The Gpen4 register, shown in Figure 5-2, reflects the settings of the UP2000 Motherboard's switchpack 2.

7	6	5	4	3	2	1	0
Reserved	2	1272 spee	d	Mini- Debugger	CACHE_OFF_B	CACHE_OFF_A	FSB

Figure 5-2 Gpen4 Register

The Gpen5 register, shown in Figure 5-3, reflects the settings of switchpack 1 on the UP2000 Motherboard containing CPU0.

7	6	5	4	3	2	1	0
CPU0_Present_L		BC0_Config[3:0]			CF	OU0_Speed[2	2:0]

The Gpen6 register, shown in Figure 5-4, reflects the settings of switchpack 1 on the UP2000 Motherboard containing CPU1.

7	6	5	4	3	2	1	0
CPU1_Present_L		BC1_Co	nfig[3:0]		CF	PU1_Speed[2	2:0]

Figure 5-4 Gpen6 Register

Appendix A Connectors and Pinouts

This appendix describes the connectors and pinouts used on the UP2000 Motherboard. Refer to Figure 2-1 in Chapter 2 for connector locations.

A.1 Alpha Slot B Connector Pinouts

Table A-1 describes the pinouts of the Alpha Slot B Connectors, which are standard Molex 74191-0002 parts.

Pin	Signal (5V, Secondary)	Signal (12V, Primary)	Signal (5V, Secondary)	Signal (12V, Primary)	Pin
A1	VTERM	VTERM	VTERM	VTERM	B1
A2	CONNECT	CONNECT	RESET_L	RESET_L	B2
A3	GND	GND	GND	GND	B 3
A4	SysDataInClk_L_0	SysDataInClk_L_0	SysDataOutClk_L_0	SysDataOutClk_L_0	B4
A5	VTERM	VTERM	VTERM	VTERM	B 5
A6	SysData_L_0	SysData_L_0	SysCheck_L_0	SysCheck_L_0	B6
A7	GND	GND	GND	GND	B 7
A8	SysData_L_2	SysData_L_2	SysData_L_1	SysData_L_1	B8
A9	VTERM	VTERM	VTERM	VTERM	B9
A10	SysData_L_4	SysData_L_4	SysData_L_3	SysData_L_3	B10
A11	GND	GND	GND	GND	B11
A12	SysData_L_6	SysData_L_6	SysData_L_5	SysData_L_5	B12
A13	VTERM	VTERM	VTERM	VTERM	B13
A14	SysCheck_L_1	SysCheck_L_1	SysData_L_7	SysData_L_7	B14
A15	GND	GND	GND	GND	B15
A16	SysDataInClk_L_1	SysDataInClk_L_1	SysDataOutClk_L_1	SysDataOutClk_L_1	B16
A17	VTERM	VTERM	VTERM	VTERM	B17
A18	SysData_L_9	SysData_L_9	SysData_L_8	SysData_L_8	B18
A19	GND	GND	GND	GND	B19
A20	SysData_L_11	SysData_L_11	SysData_L_10	SysData_L_10	B20
A21	VTERM	VTERM	VTERM	VTERM	B21
A22	SysData_L_13	SysData_L_13	SysData_L_12	SysData_L_12	B22
A23	GND	GND	GND	GND	B23
A24	SysData_L_15	SysData_L_15	SysData_L_14	SysData_L_14	B24
A25	VTERM	VTERM	VTERM	VTERM	B25

Table A-1 Alpha Slot B Connector Pinouts (J22, J23)

Pin	Signal (5V, Secondary)	Signal (12V, Primary)	Signal (5V, Secondary)	Signal (12V, Primary)	Pin
A26	SysDataInClk_L_2	SysDataInClk_L_2	SysDataOutClk_L_2	SysDataOutClk_L_2	B26
A27	GND	GND	GND	GND	B27
A28	SysData_L_16	SysData_L_16	SysCheck_L_2	SysCheck_L_2	B28
A29	VTERM	VTERM	VTERM	VTERM	B29
A30	SysData_L_18	SysData_L_18	SysData_L_17	SysData_L_17	B30
A31	GND	GND	GND	GND	B31
A32	SysData_L_20	SysData_L_20	SysData_L_19	SysData_L_19	B32
A33	VTERM	VTERM	VTERM	VTERM	B33
A34	SysData_L_22	SysData_L_22	SysData_L_21	SysData_L_21	B34
A35	GND	GND	GND	GND	B35
A36	SysCheck_L_3	SysCheck_L_3	SysData_L_23	SysData_L_23	B36
A37	VTERM	VTERM	VTERM	VTERM	B37
A38	SysDataInClk_L_3	SysDataInClk_L_3	SysDataOutClk_L_3	SysDataOutClk_L_3	B38
A39	GND	GND	GND	GND	B39
A40	SysData_L_25	SysData_L_25	SysData_L_24	SysData_L_24	B40
A41	VTERM	VTERM	VTERM	VTERM	B41
A42	SysData_L_27	SysData_L_27	SysData_L_26	SysData_L_26	B42
A43	GND	GND	GND	GND	B43
A44	SysData_L_29	SysData_L_29	SysData_L_28	SysData_L_28	B44
A45	VTERM	VTERM	VTERM	VTERM	B45
A46	SysData_L_31	SysData_L_31	SysData_L_30	SysData_L_30	B46
A47	GND	GND	GND	GND	B47
A48	ClkIn_H	ClkIn_H	ClkIn_L	ClkIn_L	B48
A49	VTERM	VTERM	VTERM	VTERM	B49
A50	FrameClk_H	FrameClk_H	FrameClk_L	FrameClk_L	B50
A51	GND	GND	GND	GND	B51
A52	SysDataInValid_L	SysDataInValid_L	SysDataOutValid_L	SysDataOutValid_L	B52
A53	VTERM	VTERM	VTERM	VTERM	B53
A54	SysFillValid_L	SysFillValid_L	ClkFwdRst_H	ClkFwdRst_H	B54
A55	GND	GND	GND	GND	B55
A56	PWROK	PWROK	PROCRDY_Srom_OE_L	PROCRDY/Srom_OE_L	B56
A57	VTERM	VTERM	VTERM	VTERM	B57
A58	SysAddIn_L_14	SysAddIn_L_14	SysAddIn_L_13	SysAddIn_L_13	B58

 Table A-1
 Alpha Slot B Connector Pinouts (J22, J23) (Continued)

Pin	Signal (5V, Secondary)	Signal (12V, Primary)	Signal (5V, Secondary)	Signal (12V, Primary)	Pin
A59	GND	GND	GND	GND	B59
A60	SysAddIn_L_12	SysAddIn_L_12	SysAddIn_L_11	SysAddIn_L_11	B60
A61	VTERM	VTERM	VTERM	VTERM	B61
A62	SysAddIn_L_10	SysAddIn_L_10	SysAddIn_L_9	SysAddIn_L_9	B62
A63	GND	GND	GND	GND	B63
A64	SysAddIn_L_8	SysAddIn_L_8	SysAddIn_L_7	SysAddIn_L_7	B64
A65	VTERM	VTERM	VTERM	VTERM	B65
A66	SysAddInClk_L	SysAddInClk_L	SysAddIn_L_6	SysAddIn_L_6	B66
A67	GND	GND	GND	GND	B67
A68	SysAddIn_L_5	SysAddIn_L_5	SysAddIn_L_4	SysAddIn_L_4	B68
A69	VTERM	VTERM	VTERM	VTERM	B69
A70	SysAddIn_L_3	SysAddIn_L_3	SysAddIn_L_2	SysAddIn_L_2	B70
A71	GND	GND	GND	GND	B71
A72	SysAddIn_L_1	SysAddIn_L_1	SysAddIn_L_0	SysAddIn_L_0	B72
A73	VTERM	VTERM	VTERM	VTERM	B73
A74	SysAddOut_L_14	SysAddOut_L_14	SysAddOut_L_13	SysAddOut_L_13	B74
A75	GND	GND	GND	GND	B75
A76	SysAddOut_L_12	SysAddOut_L_12	SysAddOut_L_11	SysAddOut_L_11	B76
A77	VTERM	VTERM	VTERM	VTERM	B77
A78	SysAddOut_L_10	SysAddOut_L_10	SysAddOut_L_9	SysAddOut_L_9	B78
A79	GND	GND	GND	GND	B79
A80	SysAddOut_L_8	SysAddOut_L_8	SysAddOut_L_7	SysAddOut_L_7	B80
A81	VTERM	VTERM	VTERM	VTERM	B81
A82	SysAddOutClk_L	SysAddOutClk_L	SysAddOut_L_6	SysAddOut_L_6	B82
A83	GND	GND	GND	GND	B8 3
A84	SysAddOut_L_5	SysAddOut_L_5	SysAddOut_L_4	SysAddOut_L_4	B84
A85	VTERM	VTERM	VTERM	VTERM	B85
A86	SysAddOut_L_3	SysAddOut_L_3	SysAddOut_L_2	SysAddOut_L_2	B86
A87	GND	GND	GND	GND	B87
A88	SysAddOut_L_1	SysAddOut_L_1	SysAddOut_L_0	SysAddOut_L_0	B88
A89	VTERM	VTERM	VTERM	VTERM	B89
A90	SysData_L_63	SysData_L_63	SysData_L_62	SysData_L_62	B90
A91	GND	GND	GND	GND	B91

 Table A-1
 Alpha Slot B Connector Pinouts (J22, J23) (Continued)

Pin	Signal (5V, Secondary)	Signal (12V, Primary)	Signal (5V, Secondary)	Signal (12V, Primary)	Pin
A92	SysData_L_61	SysData_L_61	SysData_L_60	SysData_L_60	B92
A93	VTERM	VTERM	VTERM	VTERM	B93
A94	SysData_L_59	SysData_L_59	SysData_L_58	SysData_L_58	B94
A95	GND	GND	GND	GND	B95
A96	SysData_L_57	SysData_L_57	SysData_L_56	SysData_L_56	B96
A97	VTERM	VTERM	VTERM	VTERM	B97
A98	SysDataInClk_L_7	SysDataInClk_L_7	SysDataOutClk_L_7	SysDataOutClk_L_7	B98
A99	GND	GND	GND	GND	B99
A100	SysCheck_L_7	SysCheck_L_7	SysData_L_55	SysData_L_55	B100
A101	VTERM	VTERM	VTERM	VTERM	B101
A102	SysData_L_54	SysData_L_54	SysData_L_53	SysData_L_53	B102
A103	GND	GND	GND	GND	B103
A104	SysData_L_52	SysData_L_52	SysData_L_51	SysData_L_51	B104
A105	VTERM	VTERM	VTERM	VTERM	B105
A106	SysData_L_50	SysData_L_50	SysData_L_49	SysData_L_49	B106
A107	GND	GND	GND	GND	B107
A108	SysData_L_48	SysData_L_48	SysCheck_L_6	SysCheck_L_6	B108
A109	VTERM	VTERM	VTERM	VTERM	B109
A110	SysDataInClk_L_6	SysDataInClk_L_6	SysDataOutClk_L_6	SysDataOutClk_L_6	B110
A111	GND	GND	GND	GND	B111
A112	SysData_L_47	SysData_L_47	SysData_L_46	SysData_L_46	B112
A113	VTERM	VTERM	VTERM	VTERM	B113
A114	SysData_L_45	SysData_L_45	SysData_L_44	SysData_L_44	B114
A115	GND	GND	GND	GND	B115
A116	SysData_L_43	SysData_L_43	SysData_L_42	SysData_L_42	B116
A117	VCC_CORE	VCC_CORE	VCC_CORE	VCC_CORE	B117
A118	SramPowerLevel	SramPowerLevel	Core_PowerGood	Core_PowerGood	B118
A119	GND	GND	GND	GND	B119
A120	SysData_L_41	SysData_L_41	SysData_L_40	SysData_L_40	B120
A121	VCC	VCC	VCC	VCC	B121
A122	SysDataInClk_L_5	SysDataInClk_L_5	SysDataOutClk_L_5	SysDataOutClk_L_5	B122
A123	GND	GND	GND	GND	B123
A124	SysCheck_L_5	SysCheck_L_5	SysData_L_39	SysData_L_39	B124

 Table A-1
 Alpha Slot B Connector Pinouts (J22, J23) (Continued)

Pin	Signal (5V, Secondary)	Signal (12V, Primary)	Signal (5V, Secondary)	Signal (12V, Primary)	Pin
A125	VCC_SRAM	VCC_SRAM	VCC_SRAM	VCC_SRAM	B125
A126	SysData_L_38	SysData_L_38	SysData_L_37	SysData_L_37	B126
A127	GND	GND	GND	GND	B127
A128	SysData_L_36	SysData_L_36	SysData_L_35	SysData_L_35	B128
A129	V33	V33	V33	V33	B129
A130	SysData_L_34	SysData_L_34	SysData_L_33	SysData_L_33	B130
A131	GND	GND	GND	GND	B131
A132	SysData_L_32	SysData_L_32	SysCheck_L_4	SysCheck_L_4	B132
A133	V33	V33	V33	V33	B133
A134	SysDataInClk_L_4	SysDataInClk_L_4	SysDataOutClk_L_4	SysDataOutClk_L_4	B134
A135	GND	GND	GND	GND	B135
A136	SromClk_H	SromClk_H	SromData_H	SromData_H	B136
A137	V33	V33	V33	V33	B137
A138	SRAM_ZZ	SRAM_ZZ	CORE_PWREN	CORE_PWREN	B138
A139	GND	GND	GND	GND	B139
A140	FIDSEL_L_0	FIDSEL_L_0	FIDSEL_L_1	FIDSEL_L_1	B140
A141	V33	V33	V33	V33	B141
A142	APIC_CLK	APIC_CLK	APIC_DATA_0	APIC_DATA_0	B142
A143	VP12	VP12	VP12	VP12	B143
A144	APIC_DATA_1	APIC_DATA_1	FERR	FERR	B144
A145	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	B145
A146	ALPHA_H/K7_L	ALPHA_H/K7_L	CPU_Present	CPU_Present	B146
A147	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	B147
A148	FID_0	FID_0	FID_1	FID_1	B148
A149	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	B149
A150	FID_2	FID_2	FID_3	FID_3	B150
A151	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	B151
A152	I2C_ADDR_0	I2C_ADDR_0	I2C_ADDR_1	I2C_ADDR_1	B152
A153	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	B153
A154	I2C_ADDR_2	I2C_ADDR_2	I2C_INTR_L	I2C_INTR_L	B154
A155	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	B155

 Table A-1
 Alpha Slot B Connector Pinouts (J22, J23) (Continued)
	-			•	
Pin	Signal (5V, Secondary)	Signal (12V, Primary)	Signal (5V, Secondary)	Signal (12V, Primary)	Pin
A156	I2C_SCLK	I2C_SCLK	I2C_SDA	I2C_SDA	B156
A157	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	B157
A158	INIT_L	INIT_L	IGNNE_L	IGNNE_L	B158
A159	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	B159
A160	IRQ_H_0/NMI	IRQ_H_0/NMI	IRQ_H_1/INTR	IRQ_H_1/INTR	B160
A161	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	B161
A162	IRQ_H_2/SMI_L	IRQ_H_2/SMI_L	IRQ_H_3/STPCLK_L	IRQ_H_3/STPCLK_L	B162
A163	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	B163
A164	IRQ_H_4/SCIINT_L	IRQ_H_4/SCIINT_L	IRQ_H_5/A20M_L	IRQ_H_5/A20M_L	B164
A165	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	VRM_SOURCE_POWER (5V)	VRM_SOURCE_POWER (12V)	B165

 Table A-1
 Alpha Slot B Connector Pinouts (J22, J23) (Continued)

A.2 Power Connector Pinouts

Pinouts for J26, the ATX power connector, are shown in Table A-2. J26 is a standard Molex 39-29-9202 connector.

Pin	Signal	Pin	Signal
1	+3.3 VDC	11	+3.3 VDC
2	+3.3 VDC	12	-12 VDC
3	GND	13	GND
4	+5 VDC	14	PS_ON
5	GND	15	GND
6	+5 VDC	16	GND
7	GND	17	GND
8	P_DCOK	18	-5 VDC
9	5V SB	19	+5 VDC
10	+12 VDC	20	+5 VDC

 Table A-2
 ATX Power Connector Pinouts (J26)

Table A-3 shows the pinouts for J28, an AUX ATX +3V power connector (PSCONN6). This part is a Molex 15-48-0412 connector.

 Table A-3
 AUX ATX Power Connector (PSCONN6) Pinouts (J28)

Pin	Signal	Pin	Signal
1	GND	4	+3.3 VDC
2	GND	5	+3.3 VDC
3	GND	6	+5 VDC

Pinouts for J25, the Alpha Slot B Module +12V power connector (PSCONN4), are shown in Table A-4. J25 is a Molex 15-24-4345 connector.

Table A-4	Alpha Slot B Module Power Connector (PSCONN4)
	Pinouts (J25)

Pin	Signal	Pin	Signal
1	+12 VDC	3	GND
2	GND	4	+5 VDC

A.3 Configuration Jumper Pinouts

The UP2000 Motherboard has four sets of programmable jumpers, located at J27, J29, J34, and J36 as shown in Figure 2-2 on page 2-5. Table A-5 lists the pinouts of these jumpers. J27, J29, J34 and J36 are all Molex 10-89-9167 connectors.

	Signal			
Pin	J27	J29	J34	J36
1	Tig_Data_7	FSB	Flash_Sel2	BC_A_CFG0
2	GND	GND	GND	GND
3	Tig_Data_6	Cache_Off_A	Flash_Sel1	BC_A_CFG1

	Signal			
Pin	J27	J29	J34	J36
4	GND	GND	GND	GND
5	Tig_Data_5	Cache_Off_B	Flash_Sel0	BC_A_CFG2
6	GND	GND	GND	GND
7	Tig_Data_4	Mini_Debug	Fl_Sel_Bypass	BC_A_CFG3
8	GND	GND	GND	GND
9	Tig_Data_3	Tsu_Spd0	CPU_SPD0	BC_B_CFG0
10	GND	GND	GND	GND
11	Tig_Data_2	Tsu_Spd1	CPU_SPD1	BC_B_CFG1
12	GND	GND	GND	GND
13	Spare	Tsu_Spd2	CPU_SPD2	BC_B_CFG2
14	GND	GND	GND	GND
15	F1_Wr_Prot_L	128-256	Spare	BC_B_CFG3
16	GND	GND	GND	GND

Table A-5Programmable Jumper Pinouts (J27, J29, J34, J36) (Continued)

I

A.4

Non-standard Connections

Some industry standard parts used in the UP2000 are connected in nonstandard applications. These connections are described in the following paragraphs.

A.4.1 **COM1** Connector Pinouts

> Table A-6 shows the pinouts for COM1 of J5, the parallel/serial D-SUB connector. This connector is a Foxconn DM11351-Z5 part.

Table A-0	able A-0 COMITE mout of Faranel/Serial D-SOD Connec		
Pin	Name	Direction	Description
1	CD	\leftarrow	Carrier Detect
2	RXD	\leftarrow	Receive Data
3	TXD	\rightarrow	Transmit Data
4	DTR	\rightarrow	Data Terminal Ready
5	GND	—	System Ground
6	DSR	\leftarrow	Data Set Ready
7	RTS	\rightarrow	Request to Send
8	CTS	\leftarrow	Clear to Send
9	RST/RI	\leftarrow	Reset/Ring Indicator

 Table A-6
 COM1 Pinout of Parallel/Serial D-SUB Connector (J5)

A.4.2 Speaker Connector Pinouts

Table A-7 shows the pinouts for J41, the Speaker connector. This connector is an AMP 103239-4 part.

 Table A-7
 Speaker Connector Pinout (J41)

Pin	Signal	Pin	Signal
1	Spkr_signal	3	GND
2	+5V	4	+5V

A.4.3 Debug Port Connector Pinouts

The Alpha Slot B Module Debug Port connections are provided at J43 for the primary module, and J42 for the secondary module. Both connectors are standard AMP 103239-3 parts. Refer to Table A-8 for a complete pinout of these connectors.

.]	Table A-8 Debug Port Connector Pinouts (J42, J43)				
	Pin	Signal	Pin	Signal	
	1	TEST_SROM_D_L	3	SROM_CLK_L	
	2	GND			

(7.40 7.40) -

A.4.4 System Power Button Connector Pinouts

The System Power Button connector, J44, is a standard AMP 103239-2 connector. Table A-9 shows the pinouts for J44.

Table A-9 System Power Button Connector Pinout (J44)

Pin	Signal	Pin	Signal
1	Pwr_Button	2	GND

Halt Button Connector Pinouts A.4.5

Table A-10 shows the pinouts for J45, the Halt Button connector. This connector is a standard AMP 103239-2 connector.

Pin	Signal	Pin	Signal
1	GND	2	Halt_Button

A.4.6 **Reset Button Connector Pinouts**

The Reset Button connector, J47, is a standard AMP 103239-2 connector. Pinouts for J47 are shown in Table A-11.

Pin	Signal	Pin	Signal
1	GND	2	Reset_But_L

A.5 Standard Connectors

Industry standard parts are used for most of the connections in the UP2000. Refer to Table A-12 for a list of the connectors used and their functions.

Table A-12 UP2000 Standard Connectors

Connector	Function	Part Number
J1, J2	Chassis fans	AMP 103239-2
J3	Keyboard and mouse	Foxconn MH11067-D2 or AMP 84405-1 or 84376-1
J4	USB	AMP 787617-1
J5	Parallel bus and COM1/COM2 serial line	Foxconn DM11351-Z5
J6	ISA expansion bus	AMP 645169-3
J7–J10	32-bit PCI bus	AMP 145154-4
J11, J12	64-bit PCI bus	AMP 1-145169-2
J13	Reset EPLD/ISP	AMP 103240-5 or Molex 10-89-9107
J14–J21	SDRAM DIMMs	Berg 91159-61003
J24	Floppy disk drive (FDD)	Molex 87256-3411 or AMP 103308-7
J30	IDE drive bus	Molex 87256-4011 or AMP 103308-8
J32	Single-ended, Ultra-wide SCSI bus	Molex 15-87-0305
J33	LVDS/DIFF SCSI bus	Molex 15-87-0305
J35, J37–J39	Alpha Slot B Module fan box power	Molex 22-23-2031
J40	Power LED	AMP 103239-5
J41	Speaker	AMP 103239-4

51-0029-3A

Connector	Function	Part Number
J42	Primary Alpha Slot B Module SROM	AMP 103239-3
J43	Secondary Alpha Slot B Module SROM	AMP 103239-3
J44	System power button	AMP 103239-2
J45	Halt button	AMP 103239-2
J46	Ultra SCSI hard disk drive (HDD) LED	AMP 103239-2
J47	Reset	AMP 103239-2

 Table A-12 UP2000 Standard Connectors (Continued)

Appendix B Support, Products and Documentation

B.1 Customer Support

API provides assistance for their products on their web page at www.alpha-processor.com.

Alpha Original Equipment Manufacturers (OEMs) provide the following web page resources for customer support:

URL	Description
http://www.compaq.com	Contains links for the 21272 chipset.
http://www.samsungsemi.com	Contains links for the 21264 CPU.

B.2 Supporting Products

API maintains a Hardware Compatibility List on their web site for components and accessories that are not included with the UP2000. Compatibility for items such as memory, power supplies, and enclosure are listed.

Point your browser to www.alpha-processor.com and check the Product Information list for Peripherals.

B.3 Alpha Products

API maintains information about other Alpha products on their web site. Point your browser to www.alpha-processor.com and check the Product Information list for Alpha products.

B.4 Documentation

B.4.1 Alpha Documentation

Title	Vendor
Alpha Architecture Reference Manual, Third Edition	Compaq Computer Corporation, Digital Press order# EQ-W938E-DP
Alpha Architecture Handbook, Version 4	Compaq Computer Corporation Digital Press order# EC-QD2KC-TE
AlphaPC 264DP Technical Reference Manual	Compaq Computer Corporation, Digital Press order# EC-RBODA-TE
<i>UP2000 Quick Start Installation Guide</i> (51-0030-1A)	API
UP2000 User Guide (51-0031-1A)	API
MACASE Chassis RFI Upgrade Kit Application Note (51-0038-0A)	API

B.4.2 Third Party Documentation

You can order the following associated documentation directly from the vendor.

Title	Vendor	
• PCI Local Bus Specification, Revision 2.1		
• PCI Multimedia Design Guide, Revision 1.0	PCI Special Interest Group U.S. 1-800-433-5177 International1-503-797-4207	
• PCI System Design Guide		
• PCI-to-PCI Bridge Architecture Specification, Revision 0	FAX 1-503-234-6762	
• PCI BIOS Specification, Revision 2.1		
Computer Architecture	John L. Hennessy and David A. Patterson, Morgan Kaufman Publishers, San Mateo, CA, 1990	

Index

Numerics

21264 microprocessor (CPU), 1-1 21272 core logic chipset, 1-1 Cchip, 4-1 CPU speed logic, 4-14 CSRs register locations, 4-24 space access, 4-2 Dchip, 4-1 description, 4-1 Pchip, 4-1 system clock settings, 4-6

A

acronyms, xii address Cchip functions, 4-1 CPU PCI address space, 5-3 CPU sysbus address space, 5-3 Gpen4 register, 5-5 Gpen5 register, 5-5 Gpen6 register, 5-6 I2C address map, 4-23 processor physical address mapping, 5-3 TIGbus address mapping, 5-4 Alpha Architecture Handbook, B-3 Alpha Architecture Reference Manual, B-3 Alpha Diagnostics configuration settings, 2-9 flash ROM. 2-8 function, 2-8 functional description, 4-24 reprogramming flash ROM, 2-8 supported versions, 4-23 tests, 4-25 Alpha publications, B-3 Alpha Reset PAL code mini-debugger flash ROM, 2-9 Reset PAL code initialization, 2-9 serial ROM, 2-9 Alpha Slot B Connector description, 4-3

logic, 4-21 pinout, A-2 size, 4-3 specification, 4-3 thermal sensor signal, 4-15 Alpha Slot B Module 21264 microprocessor (CPU), 1-1 Bcache options, 4-4 components, 1-1 connector, 4-3 control interface. 4-1 data path to main memory, 4-2 Debug Port connectors pinouts, A-10 environment, 3-3 fan logic, 4-20 LED logic, 4-20 physical parameters, 3-7 primary estimated power use, 3-2 reset logic, 4-21 block diagram, 4-21, 4-23 secondary estimated power use, 3-2 UP2000, components of, 1-1 Alpha SRM Console command line interface, 4-25 communication access, 4-25 firmware design, 4-25 firmware loading order, 4-26 OS support, 4-25 shell, 4-25 Alpha SRM console, 2-9 password clear, 2-9 secure mode, 2-10 Set Secure command, 2-9 supported versions, 4-23 AlphaPC 264DP Technical Reference Manual, B-3

В

Bcache, 1-2 configuration settings, 2-7 options, 4-4 SSRAM requirements, 4-4 board layout UP2000 Motherboard, 2-2

С

cache **B**cache configuration, 2-1 configuration settings, 2-7 options, 4-4 requirements, 4-4 Icache PCI clock logic, 4-8 Reset PAL code firmware design, 4-24 Reset PAL code images, 4-24 Pchip functions, 4-2 system bus functional description, 4-10 Cchip 21272 core logic chipset, 4-1 DMA requests, 4-1 functions, 4-1 functions supported, 4-2 system interrupt control, 4-1 system port address decode, 4-1 UP2000 control interface, 4-1 chipset, 1-1 Cchip, 4-1 Dchip, 4-1 Pchip, 4-1 CLI Alpha SRM Console, 4-25 clock internal processor clock, 4-5 block diagram, 4-7 memory interface clock, 4-7 block diagram, 4-8 PCI clock, 4-8 block diagram, 4-9 real-time clock specification, 4-13 reference clock, 4-5 system clock, 4-4 block diagram, 4-7 COM1 connector pinout, A-9 component list

Alpha Slot B Module, 1-1 UP2000 Motherboard, 2-3 Computer Architecture, B-3 configuration memory, 5-2 settings base system speed, 2-10 Bcache size. 2-7 CPU speed, 2-7 Gpen4 register, 5-5 Gpen5 register, 5-5 Gpen6 register, 5-6 UP2000, 2-7 configuration settings Alpha Diagnostics, 2-9 diagnostics and flash recovery, 2-8 password bypass, 2-8 recover diagnostic firmware, 2-8 recover system firmware, 2-8 Reset PAL code, 2-9 connectors pinouts Alpha Slot B Module Debug Port connectors (J42, J43), A-10 COM1 (J5), A-9 halt button connector (J45), A-11 reset button connector (J47), A-11 speaker connector (J41), A-10 system power button connector (J44), A-11 conventions, xi abbreviations, xii addressing, xi reserved bits and signals, xi signal ranges, xi units, xi CPU Cchip interface, 4-1 data path, 4-2 Dchip functions, 4-1 PCI address space, 5-3 transactions, 4-2 reference clock, 4-5 speed configuration settings, 2-7 logic block diagram, 4-15 setting jumper, 4-14

speed logic, 4-14 sysbus address space, 5-3 system bus capacity, 4-9 system clock frequency, 4-4 transfer rates, 4-10 CPU bus capacity, 4-2 Dchip to CPU interface, 4-2 CSR Cchip access, 4-2 Reset PAL code firmware design, 4-24

D

Data conventions, xi data path Dchip functions, 4-1 memory subsystem capacity, 4-3 daughter card interface, 1-1 Dchip 21272 core logic chipset, 4-1 control, 4-1 CPU bus, 4-2 CPU system bus capacity, 4-9 I/O bus, 4-2 memory bus, 4-2 Pchip interface, 4-2 system bus, 4-10 transfer rates, 4-10 **Debug Port** connectors. A-10 Definitions, conventions, and references, xi diagnostics configuration settings, 2-8 DIMM configuration rules, 4-3 memory subsystem, 4-3 supported configurations, 4-3 DMA data path, 4-2 requests, 4-1 specification, 4-13 DQM configuration, 5-2 DIMM signals, 5-1 dual-processor system

Alpha Slot B Module connection, 4-3 UP2000, 4-1

Ε

EIDE specification, 4-13 EMI certification, 3-3 environment EMI, 3-3 requirements, 3-3 operating temperature, 3-3 storage temperature, 3-3 safety, 3-3 UP2000 specification, 3-3

F

fan Alpha Slot B Module logic, 4-20 primary Alpha Slot B Module connection, 2-3 secondary Alpha Slot B Module connection, 2-3 system chassis fan connector, 2-3 FDD specification, 4-12 features cache. 1-2 chipset, 1-1 daughter card interface, 1-1 firmware, 1-2 I/O slots, 1-2 main memory, 1-2 on-board I/O, 1-2 physical form factor, 1-1 power, 1-2 UP2000, 1-1 FID reference and internal processor clocks, 4-5 **FIFO** buffer specification, 4-13 firmware, 1-2 Alpha Diagnostics, 4-24 loading order, 4-26 memory auto detection, 5-1 supported versions, 4-23 flash recovery

configuration settings, 2-8 flash ROM Alpha Diagnostics, 2-8 Alpha Reset PAL code mini-debugger, 2-9 reprogramming, 2-8 Reset PAL code access logic, 4-18 write protection, 2-10 flash write protection Reset PAL code selection, 4-5 FPGA I2C protocol, 4-4 PLL input parameters, 4-4 reset logic, 4-21 functional block diagram, 1-3

G

Gpen registers Gpen4, 5-5 UP2000 Motherboard switchpack 2, 5-5 Gpen5, 5-5 UP2000 Motherboard switchpack 1 of CPU0, 5-5 Gpen6, 5-6 UP2000 Motherboard switchpack 1 of CPU1, 5-6

Η

halt button connector pinout, A-11

I

I/O bus capacity, 4-2 Dchip and Pchip interface, 4-2
I/O slots, 1-2
I/O space processor physical address mapping, 5-3
I2C PLL input value control, 4-4 TIG FPGA device, 4-4
I2C logic address map, 4-23 bus logic block diagram, 4-23 controller, 4-22 thermal sensor, 4-22 input clock logic, 4-19 internal clock processor clock determination, 4-5 Y-divider, 4-5 interrupt logic block diagram, 4-16 map, 4-16 SCSI controller, 4-15 thermal sensor signal, 4-15

J

jumper default positions J27, flash write protection, 2-10 J29, Alpha Diagnostics, 2-8 J29, Alpha Rest PAL code mini-debugger, 2-9 J29, base system speed, 2-10 J29, memory timing, 2-9

L

LED Alpha Slot B Module logic, 4-20 LVD specification, 4-13

Μ

MACASE Chassis RFI Upgrade Kit, B-3 main memory, 1-2 manual audience, x organization, x scope, x memory bandwidth, 5-1 bank arrangement, 5-1 bus transfer rates, 4-10 bus timing, 2-9 configuration, 5-2 options supported, 4-3 rules, 4-3 table, 5-3 control, 4-1 Dchip

bus, 4-1 data path, 4-2 functions, 4-1 DQM, 5-1 configuration, 5-2 memory bus, 4-2 memory interface clock, 4-7 PCI transactions. 4-2 processor physical address mapping, 5-3 size, 5-1 subsystem description, 4-3 system bus, 4-10 capacity, 4-9 vendors, 5-2 memory bus Dchip and memory interface, 4-2 mounting holes UP2000 Motherboard specification, 3-7

0

on-board connectors, 2-1 on-board I/O, 1-2 DMA specification, 4-13 EIDE specification, 4-13 FDD specification, 4-12 FIFO buffer specification, 4-13 LVD specification, 4-13 parallel specification, 4-12 PCI-to-ISA bridge specification, 4-13 real-time clock specification, 4-13 SCSI controller block diagram, 4-14 serial specification, 4-12 specification, 4-12 USB specification, 4-13 operating system supported OS, 4-24 OS support, 4-25 output clock logic, 4-19

Ρ

parallel I/O specification, 4-12 password bypass Alpha SRM console, 2-9 configuration settings, 2-8

passwords, 2-9 clearing Alpha SRM console password, 2-9 secure mode, 2-10 Pchip 21272 core logic chipset, 4-1 control, 4-1 data path, 4-2 Dchip interface, 4-2 functions, 4-2 PCI clock. 4-8 interface, 4-11 transfer rates, 4-10 PCI address space, 5-3 buses, 4-2 clock, 4-8 I2C logic support, 4-22 interface clock, 4-11 Pchip functions, 4-1 master functions, 4-2 Pchip functions, 4-2 PCI-to-ISA bridge specification, 4-13 primary bus, 4-11 arbitration, 4-11 configuration ID, 4-11 secondary bus, 4-12 arbitration. 4-12 configuration ID, 4-12 slots supported, 4-11 target functions, 4-2 PCI BIOS Specification, Revision 2.1, B-3 PCI Local Bus Specification, Revision 2.1, B-3 PCI Multimedia Design Guide, Revision 1.0, B-3 PCI System Design Guide, B-3 PCI-to-PCI Bridge Architecture Specification, Revision 0, B-3 physical form factor, 1-1 physical parameters Alpha Slot B Module, 3-7 UP2000 Motherboard, 3-7 PIO data path, 4-2 PLL input frequency, 4-5 memory interface clock, 4-7

reference clock, 4-5 system clock frequency, 4-4 power connectors, 1-2, 3-1 Alpha Slot B Module power connector pinout, A-8 ATX connector pinout, A-7 AUX ATX connector pinout, A-8 estimated power primary Alpha Slot B Module, 3-2 secondary Alpha Slot B Module, 3-2 UP2000 Motherboard, 3-2 system power button connector pinout, A-11 power supply requirements, 3-2 product safety compliance, 3-3

R

recover firmware diagnostics firmware configuration settings, 2-8 system firmware configuration settings, 2-8 reference clock internal processor clock generation, 4-5 related publications, B-3 reset button connector pinout, A-11 reset logic Alpha Slot B Module, 4-21 reset logic block diagram, 4-21 system reset logic block diagram, 4-22 **Reset PAL code** access logic, 4-18 Alpha Reset PAL code mini-debugger, 2-9 configuration settings, 2-9 firmware applications, 4-24 firmware functional description, 4-24 firmware loading order, 4-26 Flash Select jumper, 4-5 PCI clock, 4-8 supported versions, 4-23 restore defaults configuration settings, 2-8

S

SCSI controller block diagram, 4-14 interrupt logic, 4-15 SDRAM Dchip bus, 4-1 secure mode Alpha SRM console, 2-10 serial I/O specification, 4-12 Set Secure command clearing Alpha SRM console password, 2-9 shell Alpha SRM Console, 4-25 speaker connector pinout, A-10 SRAM Bcache sizes, 4-4 SSRAM Bcache requirements, 4-4 sysbus address space, 5-3 system bus block diagram, 4-10 capacity of CPU buses, 4-10 clock speed, 4-9 maximum bandwidth, 4-9 transfer rates, 4-10 clock 21272 speed settings, 4-6 memory bandwidth, 5-1 PLL logic control, 4-4 TIG FPGA logic, 4-4 Y-divider. 4-4 control interface, 4-1 interrupts Cchip control, 4-1 port CPU and Cchip interface, 4-1 system port Cchip system interface, 4-1

Т

thermal maximum case temperatures, 3-6 sensitive components, 3-4 thermal sensor Alpha Slot B Connector signals, 4-15 I2C logic support, 4-22 TIG I2C protocol, 4-4 interrupt logic, 4-15 PLL input parameters, 4-4 TIGbus address mapping, 5-4 control, 4-1 transfer rates CPUs and Dchips, 4-10 Dchips and SDRAM, 4-10 Pchips and Dchips, 4-10

U

uni-processor system Alpha Slot B Module connection, 4-3 UP2000, 4-1 **UP2000** 21272 core logic chipset description, 4-1 Alpha Diagnostics, 4-24 Alpha SRM Console, 4-25 Bcache options, 4-4 components, x, 1-1 Alpha Slot B Module, x UP2000 Motherboard, x configuration settings, 2-7 CPU configuration, 4-3 dual-processor system, 4-1 firmware loading order, 4-26 I2C bus logic block diagram, 4-23 I2C logic address map, 4-23 memory configurations supported, 5-3 specification, 5-1 on-board connectors, 2-1 on-board I/O SCSI controller block diagram, 4-14

power connectors, 3-1 product features, 1-1 Reset PAL code firmware, 4-24 applications, 4-24 supported firmware versions, 4-23 supported OS, 4-24 system components, 1-3 system reset logic block diagram, 4-22 system speed configuration settings, 2-10 uni-processor system, 4-1 **UP2000** Motherboard base system speed, 2-10 board layout, 2-2 component list, 2-3 configuration jumpers, 2-1, 2-5, A-8 configuration settings, 2-7, 2-10 control interface, 4-1 estimated power use, 3-2 jumper default positions Alpha Diagnostics, 2-8 Alpha Rest PAL code mini-debugger, 2-9 base system speed, 2-10 flash write protection, 2-10 memory timing, 2-9 maximum case temperatures, 3-6 memory configuration, 4-3 subsystem description, 4-3 mounting hole specifications, 3-7 on-board I/O DMA, 4-13 EIDE, 4-13 FDD, 4-12 FIFO buffer, 4-13 LVD, 4-13 parallel, 4-12 PCI-to-ISA bridge, 4-13 real-time clock, 4-13 serial, 4-12 specification, 4-12 USB, 4-13 physical parameters, 3-7 thermal considerations, 3-4 UP2000, components of, 1-1 UP2000 Quick Start Installation Guide, B-3 UP2000 User Guide, B-3

USB specification, 4-13

W

write protection flash ROM, 2-10

Y

Y-divider CPU speed interrupt logic, 4-14 internal clock frequency, 4-5 system clock frequency, 4-4

Publication Evaluation Form

Please help us develop better manuals by sending us your comments on our publications. You can submit your comments on-line, send us E-mail, or print this evaluation form, complete it, and return it to:

Alpha Processor, Inc. 130C Baker Street Extension Concord, MA 01742 Phone: 978.318.1100 FAX: 978.371.3177 E-mail: customer.support@alpha-processor.com

Contents and Organization

Publication Name:	Ι	Agree	Disagree that the information I need is in this publication.
	Ι	Agree	Disagree that it is easy to locate information in this publication.
	Ι	Agree	Disagree that I am confident of the accuracy of this publication.
	What I liked least about this publication is:		
	What I like most about this publication is:		
	Information not provided in this publication that I would find useful is:		not provided in this publication that I would find useful is:
			tion would be easier to use if:
Other comments:			ents:
User Informa	tio	n (Opt	ional)
			a

Ivame:	Company:	
Street Address:	Phone:	
City, State, Zip:	E-mail:	
-		
	www.a pha-processor.com	