
T. V. Raman

Cambridge Research Lab

Digital Equipment Corp.

Bldg 650, One Kendall Square

Cambridge MA 02139

E-mail: hraman@crl.dec.comi
Voice-mail: 1 (617) 692-7637

Fax: 1 (617) 692-6650

Abstract

Screen-readers |computer software that enables a visu-

ally impaired user to read the contents of a visual

display| have been available for more than a decade.

Screen-readers are separate from the user application.

Consequently, they have little or no contextual inform-

ation about the contents of the display. The author has

used traditional screen-reading applications for the last

�ve years. The design of the speech-enabling approach

described here has been implemented in Emacspeak to

overcome many of the shortcomings he has encountered

with traditional screen-readers.

The approach used by Emacspeak is very di�erent from

that of traditional screen-readers. Screen-readers allow

the user to listen to the contents appearing in di�erent

parts of the display; but the user is entirely respons-

ible for building a mental model of the visual display in

order to interpret what an application is trying to con-

vey. Emacspeak, on the other hand, does not speak the

screen. Instead, applications provide both visual and

speech feedback, and the speech feedback is designed to

be su�cient by itself.

This approach reduces cognitive load on the user and

is relevant to providing general spoken access to in-

formation. Producing spoken output from within the

application, rather than speaking the visually displayed

information, vastly improves the quality of the spoken

feedback. Thus, an application can display its results

in a visually pleasing manner; the speech-enabling com-

ponent renders the same in an aurally pleasing way.

Keywords: Speech Interface, Direct Access, Spoken

Feedback, Audio Formatting, Speech as a �rst-class I/O

medium.

Introduction

A screen-reader is a computer application designed to

provide spoken feedback to a visually impaired user.

Screen-readers have been available since the mid-80's.

During the 80's, such applications relied on the character

representation of the contents of the screen to produce

the spoken feedback. The advent of bitmap displays

led to a complete breakdown of this approach, since the

contents of the screen were now light and dark pixels.

A signi�cant amount of research and development has

been carried out to overcome this problem and provide

speech-access to the Graphical User Interface (GUI).

The best and perhaps the most complete speech access

system to the GUI is Screenreader/2 (ScreenReader For

OS/2) developed by Dr. Jim Thatcher at the IBM Wat-

son Research Center [Tha94]. This package provides

robust spoken access to applications under the OS2

Presentation Manager and Windows 3.1. Commercial

packages for Microsoft Windows 3.1 provide varying

levels of spoken access to the GUI. The Mercator pro-

ject [ME92, WKES94, MW94, Myn94] has focused on

providing spoken access to the X-Windows system.

A common feature of traditional DOS-based screen-

readers and speech access packages to the GUI is their

attempt to convey the contents of the visual display via

speech. In fact, a signi�cant amount of the development

e�ort required to design speech-access packages to the

GUI has concentrated on building up robust o�-screen
models |a data structure that represents the contents

of the GUI's visual display. Construction of such an o�-

screen model helps screen-readers regain the ground they

lost due to the advent of graphical displays. However,

the nature of spoken feedback provided does not change.

Shortcomings Of Reading The Screen

Screen-readers have helped open up the world of com-

puting to visually impaired users1. However, the spoken

interface they provide leaves a lot to be desired.

The primary shortcoming with such interfaces is their

1The author has used these for the last �ve years.



inability to convey the structure present in visually dis-

played information. Since the screen-reading application

has only the contents of the visual display to examine, it

conveys little or no contextual information about what

is being displayed. Put another way:

A Screen-reader speaks what is on the screen

without conveying why it is there.

As a consequence, accessing applications that display

highly structured output in a visually pleasing manner

with screen-readers is cumbersome.

Here is a simple example to illustrate the above state-

ment. A typical calendar display is made up of a table

showing the days of the week. This information is visu-

ally laid out to allow the eye to quickly see what day a

particular date of the month falls on. Thus, given the

display shown in Fig. 1, it is easy to answer the ques-

tion \What day is it today?". When this same display is

Jan 1995

S M T W Th F Sa

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

Figure 1: A Typical Calendar Application

accessed with a screen-reader, the user hears the entire

contents of the table 1 spoken aloud. This results in the

following set of meaningless utterances:

pipe pipe 1 pipe 2 pipe 3 pipe 4 pipe 5 pipe 6 pipe

7 pipe pipe : : : pipe pipe 29 pipe 30 pipe 31 pipe

pipe pipe pipe pipe pipe

Alternatively, the characters under the application cursor

can be spoken. In the case of Fig. 1, the listener would

hear the system say \one". To answer the question

\What day is it today?" the user has to �rst build

a mental representation of the visual display, and then

navigate around the screen, examining the contents that

appear in the same screen column as the 1 in order to

infer the fact that the date is Sunday, January 1, 1995.

Screen-readers for both character-cell and graphical dis-

plays su�er from this shortcoming. This is a con-

sequence of trying to read the screen instead of providing
true spoken feedback. The rest of this paper describes

Emacspeak, an interface that treats speech as a �rst-

class output medium. Screen-readers speak the screen

contents after the application has displayed its results;

Emacspeak integrates spoken feedback into the applic-

ation itself. This tight integration between the spoken

output and the user application enables Emacspeak to

provide rich, context-sensitive spoken feedback. As a

case in point, when using the calendar application, the

user hears the current date as Sunday, January 1, 1995.

For related work in integrating speech as a �rst-class I/O

medium into general user applications, see [YLM95].

We conclude this introduction by pointing out that

visual layout plays an important role in cuing the reader

to information structure. Such visual cues reduce cog-

nitive load by allowing the perceptual system to per-

ceive the inherent structure present in the information,

thereby freeing the cognitive system to process the in-

formation. Spoken feedback produced from the visual

layout proves di�cult to understand because many of

the structural cues are lost; to make things worse, other

structural cues turn into noise (the \pipe pipe : : :" above

is a case in point). This results in the listener having

to spend a large number of cognitive cycles in trying to

parse the spoken utterance, making understanding the

information considerably harder. Speaking the informa-

tion in an aurally pleasing manner alleviates this burden,

leading to better aural comprehension.

A Di�erent Approach

We tightly integrate spoken output with the user ap-

plication. Such tight integration allows the functions

providing spoken feedback direct access to the applica-

tion context. Thus, in the case of the calendar example

shown in Fig. 1, the speech feedback routines can access

the runtime environment of the calendar application to

�nd out that the current date is Sunday, January 1, 1995

instead of trying to guess this from the visual presenta-

tion of the calendar.

Thus, using speech as a �rst-class output medium

provides direct access to the information displayed by

an application|traditional screen-readers provide what

can at best be described as indirect access.

Motivation

Every computer application (big or small) can be char-

acterized as having the following structure:

� Accept user input

� Compute on the data

� Display results of the computation

Human computer interaction focuses on the �rst and

third of these stages. Traditional WIMP interfaces2

have assumed a purely visual interaction; applications

designed for such interfaces naturally optimize their dis-

plays to this mode of interaction.

However, visual layout is not optimal for spoken inter-

action as evinced by the calendar application (See Sec-

tion ). By having the user interface (UI) components

2Windows, Icons, Menus, and Pointer



of the application communicate directly with the speech

subsystem, Emacspeak produces more usable output.

Contrast this with the screen-reading paradigm, where

spoken output is produced by a program that is unaware
of and separate from the user application.

Implementation

We have motivated the design of Emacspeak with the

help of the calendar example. However, Emacspeak is

much more than a simple talking calendar; it extends

all of GNU Emacs to provide full spoken feedback. The

author uses Emacspeak on his Alpha AXP3 workstation

running Digital UNIX and on his laptop running Linux.

Emacspeak has been made available on the Internet4

and is currently being used by an increasing number of

Digital's customers.

This paper will not go into implementation details |our

purpose is to highlight the novel interface provided by

Emacspeak. For the sake of completeness, here is a brief

sketch of how the system is implemented.

Emacspeak consists of a core speech module that

provides basic speech services to the rest of the system,

e.g., functions that speak characters, words and lines.

The advice facility of Emacs Lisp is used to integrate the

speech feedback provided by these functions into Emacs.

This facility allows us to specify program fragments that

are to be run either before, after, or around any function.

Since the user interface level of GNU Emacs is imple-

mented entirely in Emacs Lisp, the functions making up

this interface can be advised to speak. The primary

advantage of this approach is that we have been able

to speech-enable all of GNU Emacs |a large system|

without modifying a single line of source code from the

original Emacs distribution.

We conclude this sketch with an example. Function

next-line implements movement of the editing cursor

to the next line in GNU Emacs. Emacspeak provides

the following advice to this function:

(defadvice next-line (after emacspeak )

"Speak the line you moved to."

(when (interactive-p)

(emacspeak-speak-line )))

This advice speci�es that if function next-line is called

interactively (As the result of the user pressing a key.)

then function emacspeak-speak-line should be called

after next-line has done its work.

The next section Section gives examples of the spoken

interaction provided by Emacspeak when performing

several day-to-day computing tasks. All of the facilities

3For the �rst time in �ve years, I can sit in front of a worksta-

tion, rather than in front of a DOS PC functioning as a terminal!
UNIX is a trademark of Unix Systems Laboratories.

The following are trademarks of Digital Equipment Corporation:

Alpha AXP, DEC, DECstation, DECtalk.
4URL http://www.research.digital.com/CRL

described are implemented using the model described

above.

Examples Of Common Computing Tasks

This section describes the user interface provided by

Emacspeak when performing common-place computing

tasks like editing and proof-reading, sur�ng the WWW,

reading and replying to electronic mail and Usenet news.

This paper description su�ers from the natural short-

coming of elucidating in print what is essentially aural.

Here are some features of the spoken feedback that are

common to the di�erent interaction scenarios:

� Speech output is always interruptible. Actions

causing new information to be spoken �rst inter-

rupt any ongoing output.

� Emacspeak provides a voice-lock facility that per-

mits association of syntactic units of text with dif-

ferent voices. This is a powerful method of convey-

ing structure succinctly and was �rst described in

[Ram94]. Audio Formatting is used to aurally set

apart di�erent syntactic units, for example, high-

light regions of text.

� Emacspeak uses auditory icons [SMG90, BGB88,

Gav93, BGP93, JSBG86] |short snippets of

sounds (under 0:25{0:5 seconds) to cue common

events such as selecting, opening and closing an

object. Used consistently throughout the interface,

these cues speed up user interaction |an exper-

ienced user can often continue to the next task

when an aural cue5 is heard without waiting for

the spoken con�rmation.

Editing Documents

Emacspeak speaks each character as it is typed. Press-

ing the space-bar causes the previous word to be spoken.

Cursoring through a �le speaks each line; speech is in-

terrupted if the cursor is moved while a line is being

spoken. This allows the user to e�ciently browse �les.

All of the standard Emacs navigation commands, e.g.,

move to the next paragraph, skip this S-expression, give

appropriate auditory feedback.

Emacs' knowledge of the syntax of what is being ed-

ited is used to advantage in enabling sophisticated nav-

igation. For instance, the user can move across state-
ments when browsing program source code. When nav-

igating through a �le of C code, the user gets relevant

spoken feedback that conveys the structure of the pro-

gram. Di�erent syntactic units are spoken in di�erent

voices to increase the band-width of aural communica-

tion. In addition, the user can have the semantics of a

line of source code spoken upon request. Thus, when the

5Emacspeak will still produce the spoken con�rmation, but

continuing to the next task will interrupt this speech.



editing cursor is on the closing brace that ends a func-

tion block, Emacspeak says \brace that closes function"

and then speaks the opening line of that function. This

provides the listener the same kind of feedback that users

of traditional visual interfaces have come to expect.

Spell Checking

Emacspeak provides a 
uent aural interface to ispell,

a powerful interactive spell checker. Here is a brief de-

scription of the visual interface provided by the spell

checker for those unfamiliar with this system.

Typically, a �le opened with Emacs can be spell-checked

by invoking ispell. Errors are visually highlighted, with

a separate window showing a list of possible corrections.

The user can type a number to pick a choice from the

list of corrections; alternatively, a replacement can be

directly typed in.

Using this interface with a traditional screen-reader is

painful to say the least6. A user of a screen-reader needs

to query the position of the cursor to �nd out the erro-

neous word, then locate the window of corrections on the

screen before continuing.

With Emacspeak, the fact that the list of possible cor-

rections appears in a separate window is completely hid-

den from the listener. When running the spell checker,

Emacspeak speaks the line containing the erroneous text

with the incorrect word aurally highlighted. Next, the

list of possible corrections is spoken; the user can pick a

choice at any time. Based on the user action, the spell

checker inserts the appropriate correction and continues

to the next error.

A similar approach is used to provide aural feedback

to the common editing task of interactively replacing

a string by another. Emacspeak speaks the line con-

taining the instance of the text being replaced, with the

instance that will be replaced aurally highlighted. This

allows the listener to respond correctly when there are

multiple occurrences of the text being replaced within a

line. Thus, the task of replacing the �rst occurrence of

foo with bar while leaving the second instance of foo

intact in the example

Change this food, but do not touch this fool.

is trivial; the same task using a screen-reader is much

harder.

Electronic Mail

Emacspeak provides a 
uent spoken interface to elec-

tronic mail. Instead of having to listen to verbose ut-

terances consisting of email headers, the listener hears a

succinct summary of the form \ sender name on sub-

ject.". Emacspeak also infers the dialogue structure

present in electronic mail messages based on standard

6Believe me, I've done it!

conventions used to cite the contents of previous mes-

sages in a conversation thread. When such dialogue

structure is detected, the di�erent parts of the dialogue

are spoken using di�erent voice characteristics. Hitting

any key while a part of the dialogue is being spoken

results in the system skipping to the next portion of the

dialogue.

Usenet News

Emacspeak provides a 
uent spoken extension to GNUS,

the GNU Emacs news-reader. The interface permits the

user to browse news using the four arrow keys.

We present the user with a simple metaphor of opening

and closing objects. The up and down arrows navig-

ate through objects at the current level; the right arrow

opens the current object, while the left arrow closes it.

To begin with, the user opens up Usenet news. The

up and down arrows navigate through the list of news-

groups, providing a succinct verbal description of the

current group and the number of articles that are unread.

Opening a group with the right arrow results in the up

and down arrow keys moving through the list of unread

articles; again, the article is succinctly summarized us-

ing utterances of the form \Sender on topic, 33 lines.".

Opening an article by pressing right arrow speaks it; the

listener can move to the next article merely by press-

ing the down arrow, which will interrupt the reading

of the current article, and summarize the next article.

The auditory icons described earlier are especially useful

when browsing news; the aural cues for opening, closing

and selecting objects allow the listener to quickly move

to the next task in the interface.

All of the features described in the section on read-

ing email are available when reading news; Emacspeak

presents the dialogue structure present in news articles

using the voice-lock feature described above.

Sur�ng The WWW

The WWW presents two interesting challenges to a

spoken interface.

� Presence of hypertext links.

� Presence of interactive elements, e.g., �ll-out forms

consisting of UI elements such as input �elds, check

boxes and radio buttons.

Emacspeak provides a spoken extension to W3, the

excellent Emacs-based WWW browser developed and

maintained by William Perry.

Browsing A WWW Page. The listener can browse

a WWW page just like any other document. Hyperlinks

are spoken in a di�erent voice. The listener can inter-

rupt speech at any time and activate the link that was

most recently spoken. The listener can also move the



application focus between the various links on a page;

jumping to a link results in the anchor text being spoken

along with an auditory cue indicating a large movement.

Activating a link plays the auditory icon for opening an

object, retrieves the document, and �nally announces

the title of the newly opened WWW document.

Interactive WWW Documents. The W3 browser

parses a WWW document before displaying it. Emac-

speak relies on this internal representation to provide

the spoken rendering, rather than examining the visu-

ally displayed document. This �ts well with the over-

all design of Emacspeak; it also enables Emacspeak to

produce spoken feedback that would be impossible to

generate by merely examining the screen.

A typical interaction with a form element consists of:

� Moving system focus to the element.

� Changing the state of the form element, e.g., press-

ing a button or entering a value.

� Obtaining con�rmation from the system about the

recently performed action.

We illustrate this with examples of what happens when

the user interacts with di�erent form elements that are

found on WWW documents.

Text Field � Emacspeak summarizes the element

under the focus with an utterance of the form

\text �eld �eld name set to value.". The name

of the text �eld and its value if any are re-

trieved from the internal representation.

� Pressing enter results in the spoken prompt

\Enter value for �eld name.".

� After the value has been input, Emacspeak

con�rms this with the announcement \text

�eld �eld name set to value.".

Check Box � Emacspeak summarizes the check

box with an utterance of the form \Check-box

name is checked.", assuming the box has been

previously checked.

� Pressing enter produces a button click.

� Emacspeak says \unchecked check box

name.".

Radio Button The interaction parallels that described

above for check boxes. The utterance uses the

phrase \is pressed" to distinguish radio buttons

from check boxes.

Navigating The File System

Emacs' dired mode, which is used to navigate the �le

system and perform operations such as moving, copy-

ing and deleting �les, is extended to provide succinct

aural feedback. When navigating through the �le listing,

the user hears the name of the current �le or directory

spoken; di�erent �le types e.g., directories, executables

and symbolic links are distinguished by speaking their

names in di�erent voices. Opening a �le plays the aud-

itory icon for opening an object, and then speaks the

name of the �le just opened. Marking a �le for later

processing, deleting a �le etc. all produce auditory icons.

The auditory icons in this context are very useful be-

cause typically, performing an action such as deleting

a �le when using dired a�ects the current object and

moves the focus. Visually, the �le marked for deletion is

set apart and the focus is moved. Combining the sound

of a �le being deleted with the speaking of the current

object introduces the same level of parallelism in the

aural interaction.

When navigating the dired bu�er for the directory con-

taining this paper, a screen-reader would speak a typical

line shown below

-rw-r{r{ 1 raman users 11905 Aug 17 16:04 ex-

amples.tex

as \ dash rw dash r dash dash r dash dash 1 raman users

11905 Aug 17 16:04 examples.tex", an utterance that is

hard to parse and comprehend. In contrast, Emacspeak

merely speaks the �lename; the listener can repeatedly

press the tab key to hear the various �elds of the �le

listing. Below, we list the utterances produced by each

repeated press of the tab key.

Permissions rw r r

Links 1

Owner raman

Group users

Size 11905

Last Modi�ed Aug 17 16:04

Filename examples.tex

Figure 2: Tabbing through a �le listing.

Notice that Emacspeak infers the meaning of each �eld

in the �le listing. Pressing the tab key while a �eld

is being described interrupts speech immediately and

moves to the next �eld.

Conclusion

We conclude with a summary of what we have learnt

from the work on Emacspeak. Firstly, the design of

Emacspeak as a speech interface as opposed to a system

that reads the screen is radically di�erent from what has

been attempted in the past. The current implementation



has achieved a remarkable level of success in providing


uent speech access to day-to-day computing tasks.

The convoluted interfaces provided by screen-readers

proved moderately e�ective in the case of visually im-

paired users |there was no other choice and con-

sequently, users had the motivation to learn and use

these interfaces. However, general users who wish to

use speech as an extra modality to enhance their interac-

tion with the computer are unlikely to put up with such

interfaces. The direct access provided by the speech-

enabling approach is likely to produce more acceptable

output and make deploying speech interfaces easier.

Finally, our implementation of Emacspeak has provided

the �rst true speech access interface to UNIX worksta-

tions. To date, the only available solution for visually

impaired users has been to access these using PC's run-

ning screen-readers as a talking terminal. Our work

provides a viable alternative to accessing the power of

UNIX and the wealth of communication and develop-

ment tools that are commonplace in this environment.

Acknowledgements

We would like to thank the authors of the various Emacs

subsystems such as the WWW browser, email and news

readers. Without their work, Emacspeak would have re-

mained a speech interface to a text editor; in itself not

a very useful artifact. Special thanks go to Hans Cha-

lupsky, author of the advice package, without which the

implementation of Emacspeak would have been di�cult,

if not impossible. I would also like to thank Win Treese

for drawing my attention to the power of the advice fa-

cility and Dave Wecker7 for goading me into writing

Emacspeak.

REFERENCES

[BGB88] W. Buxton, W. Gaver, and S. Bly. The use

of nonspeech audio at the interface.

Tutorial Notes, CHI '88., 1988.

[BGP93] Meera M. Blattner, Ephraim P. Glinert,

and Albert L. Papp. Sonic Enhancements
for 2-D Graphic Displays, and Auditory
Displays. To be published by

Addison-Wesley in the Santa Fe Institute

Series. IEEE, 1993.

[Gav93] William Gaver. Synthesizing auditory

icons. Proceedings of INTERCHI 1993,
pages 228{235, April 1993.

[JSBG86] K. I. Joy, D. A. Sumikawa, M. M. Blattner,

and R. M. Greenberg. Guidelines for the

syntactic design of audio cues in computer

interfaces. Nineteenth Annual Hawaii

7He got tired of listening to my complaints about how inad-

equate screen-readers were.

International Conference on System
Sciences, 1986.

[ME92] Elizabeth D. Mynatt and W. Keith

Edwards. Mapping GUIs to auditory

interfaces. Proceedings ACM UIST92,
pages 61{70, 1992.

[MW94] E.D. Mynatt and G. Weber. Nonvisual

presentation of graphical user interfaces:

Contrasting two approaches. Proceedings of
the 1994 ACM Conference on Human
Factors in Computing Systems (CHI'94),
April 1994.

[Myn94] E.D. Mynatt. Auditory Presentation of
Graphical User Interfaces. Santa Fe.
Addison-Wesley: Reading MA.., 1994.

[Ram94] T. V. Raman. Audio System for Technical
Readings. PhD thesis, Cornell University,

May 1994.

URL http://www.research.digital.com/CRL

/personal/raman/raman.html.

[SMG90] D. A. Sumikawa, Blattner M. M., and

R. M. Greenberg. Earcons and icons: Their

structure and common design principles.

Visual Programming Environments, 1990.

[Tha94] James Thatcher. Screen reader/2: Access

to os/2 and the graphical user interface.

Proc. of The First Annual ACM
Conference on Assistive Technologies
(ASSETS '94), pages 39{47, Nov 1994.

[WKES94] E. D. Mynatt W. K. Edwards and

K. Stockton. Providing access to graphical

user interfaces - not graphical screens.

Proc. Of The First Annual ACM

Conference on Assistive Technologies
(ASSETS '94), pages 47{54, Nov 1994.

[YLM95] Nicole Yankelovich, Gina Anne Levow, and

Matt Marx. Designing speechacts: Issues

in speech user interfaces. In Proceedings of
CHI95, Human Factors In Computing
Systems, pages 369{376. Sun Micro

Systems, May 1995.


