Synopsis:

This package supplements Chris Fraser and David Hanson's LCC version 4.1 by adding a new and freely-available build environment for Windows(tm).

Requirements:

lcc-win32, available at http://www.cs.virginia.edu/~lcc-win32

(and while you're at it, send him the $40, since you're saving the cost of MSVC here)

GNU make for DOS, supplied by D.J. Delorie as part of his DJGPP compiler package. Follow the links from www.delorie.com to find your nearest download location.

NASM assembler version 0.97 or greater from http://www.web-sites.co.uk/~nasm A copy of NASMW 0.98 pre-release 3 is included, but get the full package when it comes out.

A bit of patience. :)

Building the compiler - the simple version:

Unload lcc41s.tgz (or lcc41s.zip) into a new directory with WinZip or if using a console unzipper, use -d to retain subdirectories.

Unload this package over the top, which upgrades a few files and supplies prebuilt makes, headers and test results.

Unload GNU make somewhere on your path but ahead of lcc-win32's make. If you get conflicts with lcc-win32's make, either change your path or - as I did - rename lcc-win32's make to lccmake.exe. Unloading it into the directory from which you're building will work as a temporary solution too.

From the console, change directory to where it was all unzipped.

Set the environment variable LCCDIR to reflect the current fully-qualified path. Example: set LCCDIR=\lcc\4.1

Optionally, also edit etc\nasmwin.c to set LCCDIR to the installed location. The environment variable overrides this so it isn't vital.

Then type:

buildlcc

You can watch the build procedure, make a coffee, watch it some more. It takes a while. Once it all finishes, set the path to include lcc 4.1's bin directory, and set the environment variable LCCDIR to point to the directory into which you're installing, if different from where you did the build. It's reasonable to just leave it where it was built, really, unless you're using Unix-like /usr/local/bin path structures.

The supplied buildlcc batch first builds the compiler, then runs the test suite, and finally performs the 'triple test' which builds rcc.exe twice and compares the binaries to ensure they are identical. A difference of two bytes (00000088 and 00000089) is correct, these are an internal timestamp which is slightly different for each file. Occasionally 0000008A will also differ, anything more should be reported as an error.

There are pauses inserted in buildlcc.bat at points where control transfers between makefile.lcc and buildlcc.bat - just hit enter to continue at those points, or delete them if they annoy you. I found them useful to diagnose what was happening. If you decide to build the asdl version (using the asdl packages referenced from the Princeton site) be aware that GNU make will not pass some of the commands, due to the inclusion of double-dashes in some of the commands to asdlGen. Once these files are made manually things progress as normal, and the make output can be used to indicate the correct command to use. I usually redirect to a batchfile and run that rather than typing the commands manually.

Notes:

This package was set up to build with NT 4.0 but I expect DOS and Win95/98 users may also be interested in it, since the last known version to directly support DOS-based systems was lcc 3.2. The main issue for them is that there are further limitations on what can be sent between modules of a program. Having built lcc 3.5, 3.6 and 4.0 in DR-DOS with DJGPP, the following comments may be useful:

Break lines in the batches down to less than 256 characters, and don't try to pass more than 10 files at a time. Change all forward slashes in the supplied files to double backslashes, where they are sent directly to the operating system. As an example:

 fc $(TARGET)/tst/cvt.sbk $Tcvt.s

becomes

 fc $(TARGET)\\tst\\cvt.sbk $Tcvt.s

which is universal between versions of Win/DOS operating systems and doesn't require POSIX compatibility. Forward slashes in parameters passed to the compiler will still work, because the underlying O/S doesn't have to interpret them directly.

You're now the owner of an ANSI C compiler, complete with source code.

Enjoy!

Rob Judd <judd@alphalink.com.au> 98/12/02

Revised 98/12/13 to include the following:

Repairs problems with stdin, stdout and stderr by supplying a revised <stdio.h>

Supplies revised test results.

Compensates for DJGPP make utility w.r.t. tst/paranoia.c not building due to line length.

Supplies a revised makefile capable of building asdl and cdb versions of lcc 4.1

Supplies a revised src/inits.c which can include asdl requirements from make.

Supplies a revised etc/lcc.c which includes:

	a) extra help items for asdl and cdb

	b) correct temp filenames for debugging assemblers and linkers.

Corrects problem with stupid archivers which can't extract 0-length files (like WinZip).

Corrects long long interface to avoid obscure cast problem.

Supplies revised tst/yacc.c that works.

Supplies revised src/asdl.c - corrects minor error.

