
GNU PSPP
A System for Statistical Analysis

Edition 0.4.0, for PSPP version 0.4.0

Ben Pfa�

This manual is for GNU PSPP version 0.4.0, software for statistical analysis.
Copyright c
 1997, 1998, 2004, 2005 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being \A GNU Manual," and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
\GNU Free Documentation License."
(a) The FSF's Back-Cover Text is: \You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development."

i

Table of Contents

1 Introduction . 1

2 Your rights and obligations 2

3 Invoking PSPP . 3
3.1 Non-option Arguments . 3
3.2 Con�guration Options . 3
3.3 Input and output options . 4
3.4 Language control options . 5
3.5 Informational options . 6

4 The PSPP language. 8
4.1 Tokens . 8
4.2 Forming commands of tokens . 9
4.3 Types of Commands . 10
4.4 Order of Commands . 10
4.5 Handling missing observations . 12
4.6 Variables . 12

4.6.1 Attributes of Variables . 12
4.6.2 Variables Automatically De�ned by PSPP 13
4.6.3 Lists of variable names . 14
4.6.4 Input and Output Formats . 14
4.6.5 Scratch Variables . 19

4.7 Files Used by PSPP . 19
4.8 Backus-Naur Form . 19

5 Mathematical Expressions 21
5.1 Boolean Values . 21
5.2 Missing Values in Expressions . 21
5.3 Grouping Operators . 21
5.4 Arithmetic Operators . 21
5.5 Logical Operators . 22
5.6 Relational Operators . 22
5.7 Functions . 23

5.7.1 Mathematical Functions . 23
5.7.2 Miscellaneous Mathematical Functions 23
5.7.3 Trigonometric Functions. 24
5.7.4 Missing-Value Functions . 24
5.7.5 Set-Membership Functions. 25
5.7.6 Statistical Functions . 25
5.7.7 String Functions . 26
5.7.8 Time & Date Functions . 28

ii

5.7.8.1 How times & dates are de�ned and represented 28
5.7.8.2 Functions that Produce Times . 28
5.7.8.3 Functions that Examine Times . 29
5.7.8.4 Functions that Produce Dates . 29
5.7.8.5 Functions that Examine Dates . 30

5.7.9 Miscellaneous Functions . 31
5.7.10 Statistical Distribution Functions . 32

5.7.10.1 Continuous Distributions . 32
5.7.10.2 Discrete Distributions . 37

5.8 Operator Precedence . 37

6 Data Input and Output 39
6.1 BEGIN DATA . 39
6.2 CLEAR TRANSFORMATIONS . 39
6.3 DATA LIST . 39

6.3.1 DATA LIST FIXED . 39
Examples . 41

6.3.2 DATA LIST FREE . 42
6.3.3 DATA LIST LIST . 43

6.4 END CASE . 43
6.5 END FILE . 43
6.6 FILE HANDLE . 43
6.7 INPUT PROGRAM . 44
6.8 LIST . 46
6.9 MATRIX DATA . 47
6.10 NEW FILE . 49
6.11 PRINT . 49
6.12 PRINT EJECT . 50
6.13 PRINT SPACE . 50
6.14 REREAD . 50
6.15 REPEATING DATA . 51
6.16 WRITE . 52

7 System Files and Portable Files. 53
7.1 APPLY DICTIONARY . 53
7.2 EXPORT . 53
7.3 GET . 54
7.4 IMPORT . 54
7.5 MATCH FILES . 55
7.6 SAVE . 56
7.7 SYSFILE INFO . 56
7.8 XSAVE . 57

iii

8 Manipulating variables . 58
8.1 ADD VALUE LABELS . 58
8.2 DISPLAY . 58
8.3 DISPLAY VECTORS . 58
8.4 FORMATS . 59
8.5 LEAVE . 59
8.6 MISSING VALUES . 60
8.7 MODIFY VARS . 60
8.8 NUMERIC . 61
8.9 PRINT FORMATS . 61
8.10 RENAME VARIABLES . 61
8.11 VALUE LABELS . 61
8.12 STRING . 62
8.13 VARIABLE LABELS. 62
8.14 VARIABLE ALIGNMENT . 62
8.15 VARIABLE WIDTH . 62
8.16 VARIABLE LEVEL . 63
8.17 VECTOR . 63
8.18 WRITE FORMATS . 63

9 Data transformations . 64
9.1 AGGREGATE . 64
9.2 AUTORECODE . 67
9.3 COMPUTE . 67
9.4 COUNT . 67
9.5 FLIP . 69
9.6 IF . 69
9.7 RECODE . 70
9.8 SORT CASES . 71

10 Selecting data for analysis 72
10.1 FILTER . 72
10.2 N OF CASES . 72
10.3 PROCESS IF . 73
10.4 SAMPLE . 73
10.5 SELECT IF . 74
10.6 SPLIT FILE . 74
10.7 TEMPORARY . 75
10.8 WEIGHT . 75

11 Conditional and Looping Constructs 77
11.1 BREAK . 77
11.2 DO IF . 77
11.3 DO REPEAT . 77
11.4 LOOP . 78

iv

12 Statistics . 80
12.1 DESCRIPTIVES . 80
12.2 FREQUENCIES . 81
12.3 EXAMINE . 83
12.4 CROSSTABS . 84
12.5 T-TEST . 86

12.5.1 One Sample Mode . 87
12.5.2 Independent Samples Mode . 87
12.5.3 Paired Samples Mode . 88

12.6 ONEWAY . 88

13 Utilities . 89
13.1 COMMENT . 89
13.2 DOCUMENT . 89
13.3 DISPLAY DOCUMENTS . 89
13.4 DISPLAY FILE LABEL . 89
13.5 DROP DOCUMENTS . 89
13.6 ECHO . 90
13.7 ERASE . 90
13.8 EXECUTE . 90
13.9 FILE LABEL . 90
13.10 FINISH . 90
13.11 HOST . 90
13.12 INCLUDE . 90
13.13 PERMISSIONS . 91
13.14 QUIT . 91
13.15 SET . 91
13.16 SHOW . 96
13.17 SUBTITLE . 96
13.18 TITLE . 97

14 Not Implemented . 98

15 Bugs . 101

16 Function Index . 102

17 Command Index . 105

18 Concept Index . 107

Appendix A Installing PSPP 112
A.1 UNIX installation . 112

v

Appendix B Con�guring PSPP 113
B.1 Locating con�guration �les . 113
B.2 Con�guration techniques . 114
B.3 Con�guration �les . 114
B.4 Environment variables . 115

B.4.1 Values of environment variables . 115
B.4.2 Environment substitutions . 115
B.4.3 Prede�ned environment variables . 116

B.5 Output devices . 116
B.5.1 Driver categories . 116
B.5.2 Macro de�nitions . 117
B.5.3 Driver de�nitions . 117
B.5.4 Dimensions . 118
B.5.5 Paper sizes . 119
B.5.6 How lines are divided into types . 119
B.5.7 How lines are divided into tokens . 120

B.6 The PostScript driver class . 121
B.6.1 PostScript output options . 121
B.6.2 PostScript page options . 122
B.6.3 PostScript �le options . 122
B.6.4 PostScript font options . 123
B.6.5 PostScript line options . 124
B.6.6 The PostScript prologue . 124
B.6.7 PostScript encodings . 126

B.7 The ASCII driver class . 126
B.7.1 ASCII output options . 126
B.7.2 ASCII page options . 127
B.7.3 ASCII font options . 128

B.8 The HTML driver class . 130
B.8.1 The HTML prologue . 131

B.9 Miscellaneous con�guration . 131
B.10 Improving output quality . 133

Appendix C Portable File Format 134
C.1 Portable File Characters . 134
C.2 Portable File Structure . 134
C.3 Portable File Header . 135
C.4 Version and Date Info Record . 137
C.5 Identi�cation Records . 138
C.6 Variable Count Record . 138
C.7 Case Weight Variable Record . 138
C.8 Variable Records. 138
C.9 Value Label Records . 139
C.10 Portable File Data . 139

vi

Appendix D Data File Format 140
D.1 File Header Record . 140
D.2 Variable Record . 142
D.3 Value Label Record . 145
D.4 Value Label Variable Record . 145
D.5 Document Record . 145
D.6 Machine int32 Info Record . 146
D.7 Machine flt64 Info Record . 147
D.8 Auxilliary Variable Parameter Record . 148
D.9 Long Variable Names Record . 149
D.10 Miscellaneous Informational Records . 149
D.11 Dictionary Termination Record . 150
D.12 Data Record . 150

Appendix E q2c Input Format 152
E.1 Invoking q2c. 152
E.2 q2c Input Structure . 152
E.3 Grammar Rules. 153

Appendix F GNU Free Documentation License
. 157

F.1 ADDENDUM: How to use this License for your documents. . . 163

Chapter 1: Introduction 1

1 Introduction

PSPP is a tool for statistical analysis of sampled data. It reads a syntax �le and a data �le,
analyzes the data, and writes the results to a listing �le or to standard output.

The language accepted by PSPP is similar to those accepted by SPSS statistical products.
The details of PSPP's language are given later in this manual.

PSPP produces output in two forms: tables and charts. Both of these can be written
in several formats; currently, ASCII, PostScript, and HTML are supported. In the future,
more drivers, such as PCL and X Window System drivers, may be developed. For now,
Ghostscript, available from the Free Software Foundation, may be used to convert PostScript
chart output to other formats.

The current version of PSPP, 0.4.0, is woefully incomplete in terms of its statistical
procedure support. PSPP is a work in progress. The author hopes to support fully support
all features in the products that PSPP replaces, eventually. The author welcomes questions,
comments, donations, and code submissions. See Chapter 15 [Submitting Bug Reports],
page 101, for instructions on contacting the author.

Chapter 2: Your rights and obligations 2

2 Your rights and obligations

PSPP is not in the public domain; it is copyrighted and there are restrictions on its dis-
tribution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further
sharing any version of this program that they might get from you.

Speci�cally, we want to make sure that you have the right to give away copies of PSPP,
that you receive source code or else can get it if you want it, that you can change these
programs or use pieces of them in new free programs, and that you know you can do these
things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of PSPP, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone �nds out that there is
no warranty for PSPP. If these programs are modi�ed by someone else and passed on, we
want their recipients to know that what they have is not what we distributed, so that any
problems introduced by others will not re
ect on our reputation.

The precise conditions of the licenses for PSPP are found in the General Public Licenses
that accompany them. This manual speci�cally is covered by the GNU Free Documentation
License (see Appendix F [GNU Free Documentation License], page 157).

Chapter 3: Invoking PSPP 3

3 Invoking PSPP

pspp [-B dir | --config-dir=dir] [-o device | --device=device]
[-d var[=value] | --define=var[=value]] [-u var | --undef=var]
[-f file | --out-file=file] [-p | --pipe] [-I- | --no-include]
[-I dir | --include=dir] [-i | --interactive]
[-n | --edit | --dry-run | --just-print | --recon]
[-r | --no-statrc] [-h | --help] [-l | --list]
[-c command | --command command] [-s | --safer]
[--testing-mode] [-V | --version] [-v | --verbose]
[key=value] file...

3.1 Non-option Arguments
Syntax �les and output device substitutions can be speci�ed on PSPP's command line:

file
A �le by itself on the command line will be executed as a syntax �le. PSPP
terminates after the syntax �le runs, unless the -i or --interactive option is
given (see Section 3.4 [Language control options], page 5).

file1 file2
When two or more �lenames are given on the command line, the �rst syntax
�le is executed, then PSPP's dictionary is cleared, then the second syntax �le
is executed.

file1 + file2
If syntax �les' names are delimited by a plus sign (`+'), then the dictionary is
not cleared between their executions, as if they were concatenated together into
a single �le.

key=value
De�nes an output device macro key to expand to value, overriding any macro
having the same key de�ned in the device con�guration �le. See Section B.5.2
[Macro de�nitions], page 117.

There is one other way to specify a syntax �le, if your operating system supports it. If
you have a syntax �le `foobar.stat', put the notation

#! /usr/local/bin/pspp
at the top, and mark the �le as executable with chmod +x foobar.stat. (If PSPP is not

installed in `/usr/local/bin', then insert its actual installation directory into the syntax
�le instead.) Now you should be able to invoke the syntax �le just by typing its name. You
can include any options on the command line as usual. PSPP entirely ignores any lines
beginning with `#!'.

3.2 Con�guration Options
Con�guration options are used to change PSPP's con�guration for the current run. The
con�guration options are:

Chapter 3: Invoking PSPP 4

-a {compatible|enhanced}
--algorithm={compatible|enhanced}

If you chose compatible, then PSPP will use the same algorithms as used
by some proprietary statistical analysis packages. This is not recommended, as
these algorithms are inferior and in some cases compeletely broken. The default
setting is enhanced. Certain commands have subcommands which allow you
to override this setting on a per command basis.

-B dir
--config-dir=dir

Sets the con�guration directory to dir. See Section B.1 [File locations], page 113.

-o device
--device=device

Selects the output device with name device. If this option is given more than
once, then all devices mentioned are selected. This option disables all devices
besides those mentioned on the command line.

-d var[=value]
--define=var[=value]

De�nes an `environment variable' named var having the optional value value
speci�ed. See Section B.4.1 [Variable values], page 115.

-u var
--undef=var

Unde�nes the `environment variable' named var. See Section B.4.1 [Variable
values], page 115.

3.3 Input and output options
Input and output options a�ect how PSPP reads input and writes output. These are the
input and output options:

-f file
--out-file=file

This overrides the output �le name for devices designated as listing devices. If
a �le named �le already exists, it is overwritten.

-p
--pipe

Allows PSPP to be used as a �lter by causing the syntax �le to be read from
stdin and output to be written to stdout. Con
icts with the -f file and
--file=file options.

-I-
--no-include

Clears all directories from the include path. This includes all directories put
in the include path by default. See Section B.9 [Miscellaneous con�guring],
page 131.

Chapter 3: Invoking PSPP 5

-I dir
--include=dir

Appends directory dir to the path that is searched for include �les in PSPP
syntax �les.

-c command
--command=command

Execute literal command command. The command is executed before startup
syntax �les, if any.

--testing-mode
Invoke heuristics to assist with testing PSPP. For use by make check and similar
scripts.

3.4 Language control options
Language control options control how PSPP syntax �les are parsed and interpreted. The
available language control options are:

-i
--interactive

When a syntax �le is speci�ed on the command line, PSPP normally terminates
after processing it. Giving this option will cause PSPP to bring up a command
prompt after processing the syntax �le.
In addition, this forces syntax �les to be interpreted in interactive mode, rather
than the default batch mode. See Section B.5.7 [Tokenizing lines], page 120,
for information on the di�erences between batch mode and interactive mode
command interpretation.

-n
--edit
--dry-run
--just-print
--recon

Only the syntax of any syntax �le speci�ed or of commands entered at the
command line is checked. Transformations are not performed and procedures
are not executed. Not yet implemented.

-r
--no-statrc

Prevents the execution of the PSPP startup syntax �le. Not yet implemented,
as startup syntax �les aren't, either.

-s
--safer

Disables certain unsafe operations. This includes the ERASE and HOST com-
mands, as well as use of pipes as input and output �les.

Chapter 3: Invoking PSPP 6

3.5 Informational options
Informational options cause information about PSPP to be written to the terminal. Here
are the available options:

-h

--help
Prints a message describing PSPP command-line syntax and the available de-
vice driver classes, then terminates.

-l

--list
Lists the available device driver classes, then terminates.

-x {compatible|enhanced}
--syntax={compatible|enhanced}

If you chose compatible, then PSPP will only accept command syntax that is
compatible with the proprietary program SPSS. If you choose enhanced then
additional syntax will be available. The default is enhanced.

-V

--version
Prints a brief message listing PSPP's version, warranties you don't have, copy-
ing conditions and copyright, and e-mail address for bug reports, then termi-
nates.

-v

--verbose
Increments PSPP's verbosity level. Higher verbosity levels cause PSPP to dis-
play greater amounts of information about what it is doing. Often useful for
debugging PSPP's con�guration.
This option can be given multiple times to set the verbosity level to that value.
The default verbosity level is 0, in which no informational messages will be
displayed.
Higher verbosity levels cause messages to be displayed when the corresponding
events take place.
1

Driver and subsystem initializations.
2

Completion of driver initializations. Beginning of driver closings.
3

Completion of driver closings.
4

Files searched for; success of searches.

Chapter 3: Invoking PSPP 7

5
Individual directories included in �le searches.

Each verbosity level also includes messages from lower verbosity levels.

Chapter 4: The PSPP language 8

4 The PSPP language

Please note: PSPP is not even close to completion. Only a few statistical
procedures are implemented. PSPP is a work in progress.

This chapter discusses elements common to many PSPP commands. Later chapters will
describe individual commands in detail.

4.1 Tokens
PSPP divides most syntax �le lines into series of short chunks called tokens. Tokens are
then grouped to form commands, each of which tells PSPP to take some action|read in
data, write out data, perform a statistical procedure, etc. Each type of token is described
below.
Identi�ers Identi�ers are names that typically specify variables, commands, or subcom-

mands. The �rst character in an identi�er must be a letter, `#', or `@'. The
remaining characters in the identi�er must be letters, digits, or one of the fol-
lowing special characters:

. _ $ # @
Identi�ers may be any length, but only the �rst 64 bytes are signi�cant. Iden-
ti�ers are not case-sensitive: foobar, Foobar, FooBar, FOOBAR, and FoObaR are
di�erent representations of the same identi�er.
Some identi�ers are reserved. Reserved identi�ers may not be used in any con-
text besides those explicitly described in this manual. The reserved identi�ers
are:

ALL AND BY EQ GE GT LE LT NE NOT OR TO WITH

Keywords Keywords are a subclass of identi�ers that form a �xed part of command syntax.
For example, command and subcommand names are keywords. Keywords may
be abbreviated to their �rst 3 characters if this abbreviation is unambiguous.
(Unique abbreviations of 3 or more characters are also accepted: `FRE', `FREQ',
and `FREQUENCIES' are equivalent when the last is a keyword.)
Reserved identi�ers are always used as keywords. Other identi�ers may be used
both as keywords and as user-de�ned identi�ers, such as variable names.

Numbers Numbers are expressed in decimal. A decimal point is optional. Numbers may
be expressed in scienti�c notation by adding `e' and a base-10 exponent, so that
`1.234e3' has the value 1234. Here are some more examples of valid numbers:

-5 3.14159265359 1e100 -.707 8945.
Negative numbers are expressed with a `-' pre�x. However, in situations where
a literal `-' token is expected, what appears to be a negative number is treated
as `-' followed by a positive number.
No white space is allowed within a number token, except for horizontal white
space between `-' and the rest of the number.
The last example above, `8945.' will be interpreted as two tokens, `8945' and
`.', if it is the last token on a line. See Section 4.2 [Forming commands of
tokens], page 9.

Chapter 4: The PSPP language 9

Strings Strings are literal sequences of characters enclosed in pairs of single quotes (`'')
or double quotes (`"'). To include the character used for quoting in the string,
double it, e.g. `'it''s an apostrophe''. White space and case of letters are
signi�cant inside strings.
Strings can be concatenated using `+', so that `"a" + 'b' + 'c'' is equivalent
to `'abc''. Concatenation is useful for splitting a single string across multiple
source lines. The maximum length of a string, after concatenation, is 255
characters.
Strings may also be expressed as hexadecimal, octal, or binary character values
by pre�xing the initial quote character by `X', `O', or `B' or their lowercase
equivalents. Each pair, triplet, or octet of characters, according to the radix,
is transformed into a single character with the given value. If there is an
incomplete group of characters, the missing �nal digits are assumed to be `0'.
These forms of strings are nonportable because numeric values are associated
with di�erent characters by di�erent operating systems. Therefore, their use
should be con�ned to syntax �les that will not be widely distributed.
The character with value 00 is reserved for internal use by PSPP. Its use in
strings causes an error and replacement by a space character.

Punctuators and Operators
These tokens are the punctuators and operators:

, / = () + - * / ** < <= <> > >= ~= & | .
Most of these appear within the syntax of commands, but the period (`.')
punctuator is used only at the end of a command. It is a punctuator only as
the last character on a line (except white space). When it is the last non-space
character on a line, a period is not treated as part of another token, even if it
would otherwise be part of, e.g., an identi�er or a
oating-point number.
Actually, the character that ends a command can be changed with SET's END-
CMD subcommand (see Section 13.15 [SET], page 91), but we do not recom-
mend doing so. Throughout the remainder of this manual we will assume that
the default setting is in e�ect.

4.2 Forming commands of tokens
Most PSPP commands share a common structure. A command begins with a command
name, such as FREQUENCIES, DATA LIST, or N OF CASES. The command name may
be abbreviated to its �rst word, and each word in the command name may be abbreviated
to its �rst three or more characters, where these abbreviations are unambiguous.

The command name may be followed by one or more subcommands. Each subcommand
begins with a subcommand name, which may be abbreviated to its �rst three letters. Some
subcommands accept a series of one or more speci�cations, which follow the subcommand
name, optionally separated from it by an equals sign (`='). Speci�cations may be separated
from each other by commas or spaces. Each subcommand must be separated from the next
(if any) by a forward slash (`/').

There are multiple ways to mark the end of a command. The most common way is to
end the last line of the command with a period (`.') as described in the previous section (see

Chapter 4: The PSPP language 10

Section 4.1 [Tokens], page 8). A blank line, or one that consists only of white space or com-
ments, also ends a command by default, although you can use the NULLINE subcommand
of SET to disable this feature (see Section 13.15 [SET], page 91).

In batch mode only, that is, when reading commands from a �le instead of an interactive
user, any line that contains a non-space character in the leftmost column begins a new
command. Thus, each command consists of a
ush-left line followed by any number of lines
indented from the left margin. In this mode, a plus sign, minus sign, or period (`+', `�', or
`.') as the �rst character in a line is ignored and causes that line to begin a new command,
which allows for visual indentation of a command without that command being considered
part of the previous command.

Sometimes, one encounters syntax �les that are intended to be interpreted in interactive
mode rather than batch mode. When this occurs, use the `-i' command line option to force
interpretation in interactive mode (see Section 3.4 [Language control options], page 5).

4.3 Types of Commands
Commands in PSPP are divided roughly into six categories:
Utility commands

Set or display various global options that a�ect PSPP operations. May appear
anywhere in a syntax �le. See Chapter 13 [Utility commands], page 89.

File de�nition commands
Give instructions for reading data from text �les or from special binary \system
�les". Most of these commands replace any previous data or variables with new
data or variables. At least one �le de�nition command must appear before the
�rst command in any of the categories below. See Chapter 6 [Data Input and
Output], page 39.

Input program commands
Though rarely used, these provide tools for reading data �les in arbitrary textual
or binary formats. See Section 6.7 [INPUT PROGRAM], page 44.

Transformations
Perform operations on data and write data to output �les. Transformations are
not carried out until a procedure is executed.

Restricted transformations
Transformations that cannot appear in certain contexts. See Section 4.4 [Order
of Commands], page 10, for details.

Procedures
Analyze data, writing results of analyses to the listing �le. Cause transforma-
tions speci�ed earlier in the �le to be performed. In a more general sense, a
procedure is any command that causes the active �le (the data) to be read.

4.4 Order of Commands
PSPP does not place many restrictions on ordering of commands. The main restriction is
that variables must be de�ned before they are otherwise referenced. This section describes
the details of command ordering, but most users will have no need to refer to them.

Chapter 4: The PSPP language 11

PSPP possesses �ve internal states, called initial, INPUT PROGRAM, FILE TYPE,
transformation, and procedure states. (Please note the distinction between the INPUT
PROGRAM and FILE TYPE commands and the INPUT PROGRAM and FILE TYPE
states.)

PSPP starts in the initial state. Each successful completion of a command may cause a
state transition. Each type of command has its own rules for state transitions:

Utility commands
� Valid in any state.
� Do not cause state transitions. Exception: when N OF CASES is executed

in the procedure state, it causes a transition to the transformation state.

DATA LIST
� Valid in any state.
� When executed in the initial or procedure state, causes a transition to the

transformation state.
� Clears the active �le if executed in the procedure or transformation state.

INPUT PROGRAM
� Invalid in INPUT PROGRAM and FILE TYPE states.
� Causes a transition to the INPUT PROGRAM state.
� Clears the active �le.

FILE TYPE
� Invalid in INPUT PROGRAM and FILE TYPE states.
� Causes a transition to the FILE TYPE state.
� Clears the active �le.

Other �le de�nition commands
� Invalid in INPUT PROGRAM and FILE TYPE states.
� Cause a transition to the transformation state.
� Clear the active �le, except for ADD FILES, MATCH FILES, and UP-

DATE.

Transformations
� Invalid in initial and FILE TYPE states.
� Cause a transition to the transformation state.

Restricted transformations
� Invalid in initial, INPUT PROGRAM, and FILE TYPE states.
� Cause a transition to the transformation state.

Procedures
� Invalid in initial, INPUT PROGRAM, and FILE TYPE states.
� Cause a transition to the procedure state.

Chapter 4: The PSPP language 12

4.5 Handling missing observations
PSPP includes special support for unknown numeric data values. Missing observations are
assigned a special value, called the system-missing value. This \value" actually indicates the
absence of a value; it means that the actual value is unknown. Procedures automatically
exclude from analyses those observations or cases that have missing values. Details of
missing value exclusion depend on the procedure and can often be controlled by the user;
refer to descriptions of individual procedures for details.

The system-missing value exists only for numeric variables. String variables always have
a de�ned value, even if it is only a string of spaces.

Variables, whether numeric or string, can have designated user-missing values. Every
user-missing value is an actual value for that variable. However, most of the time user-
missing values are treated in the same way as the system-missing value. String variables that
are wider than a certain width, usually 8 characters (depending on computer architecture),
cannot have user-missing values.

For more information on missing values, see the following sections: Section 4.6 [Vari-
ables], page 12, Section 8.6 [MISSING VALUES], page 60, Chapter 5 [Expressions], page 21.
See also the documentation on individual procedures for information on how they handle
missing values.

4.6 Variables
Variables are the basic unit of data storage in PSPP. All the variables in a �le taken together,
apart from any associated data, are said to form a dictionary. Some details of variables are
described in the sections below.

4.6.1 Attributes of Variables
Each variable has a number of attributes, including:

Name An identi�er, up to 64 bytes long. Each variable must have a di�erent name.
See Section 4.1 [Tokens], page 8.
Some system variable names begin with `$', but user-de�ned variables' names
may not begin with `$'.
The �nal character in a variable name should not be `.', because such an iden-
ti�er will be misinterpreted when it is the �nal token on a line: FOO. will be
divided into two separate tokens, `FOO' and `.', indicating end-of-command. See
Section 4.1 [Tokens], page 8.
The �nal character in a variable name should not be `_', because some such
identi�ers are used for special purposes by PSPP procedures.
As with all PSPP identi�ers, variable names are not case-sensitive. PSPP
capitalizes variable names on output the same way they were capitalized at
their point of de�nition in the input.

Type Numeric or string.

Width (string variables only) String variables with a width of 8 characters or fewer
are called short string variables. Short string variables can be used in many

Chapter 4: The PSPP language 13

procedures where long string variables (those with widths greater than 8) are
not allowed.
Certain systems may consider strings longer than 8 characters to be short
strings. Eight characters represents a minimum �gure for the maximum length
of a short string.

Position Variables in the dictionary are arranged in a speci�c order. DISPLAY can be
used to show this order: see Section 8.2 [DISPLAY], page 58.

Initialization
Either reinitialized to 0 or spaces for each case, or left at its existing value. See
Section 8.5 [LEAVE], page 59.

Missing values
Optionally, up to three values, or a range of values, or a speci�c value plus a
range, can be speci�ed as user-missing values. There is also a system-missing
value that is assigned to an observation when there is no other obvious value for
that observation. Observations with missing values are automatically excluded
from analyses. User-missing values are actual data values, while the system-
missing value is not a value at all. See Section 4.5 [Missing Observations],
page 12.

Variable label
A string that describes the variable. See Section 8.13 [VARIABLE LABELS],
page 62.

Value label
Optionally, these associate each possible value of the variable with a string. See
Section 8.11 [VALUE LABELS], page 61.

Print format
Display width, format, and (for numeric variables) number of decimal places.
This attribute does not a�ect how data are stored, just how they are displayed.
Example: a width of 8, with 2 decimal places. See Section 8.9 [PRINT FOR-
MATS], page 61.

Write format
Similar to print format, but used by certain commands that are designed to
write to binary �les. See Section 8.18 [WRITE FORMATS], page 63.

4.6.2 Variables Automatically De�ned by PSPP
There are seven system variables. These are not like ordinary variables because system
variables are not always stored. They can be used only in expressions. These system
variables, whose values and output formats cannot be modi�ed, are described below.
$CASENUM Case number of the case at the moment. This changes as cases are shu�ed

around.
$DATE Date the PSPP process was started, in format A9, following the pattern DD MMM

YY.
$JDATE Number of days between 15 Oct 1582 and the time the PSPP process was

started.

Chapter 4: The PSPP language 14

$LENGTH Page length, in lines, in format F11.
$SYSMIS System missing value, in format F1.
$TIME Number of seconds between midnight 14 Oct 1582 and the time the active �le

was read, in format F20.
$WIDTH Page width, in characters, in format F3.

4.6.3 Lists of variable names
To refer to a set of variables, list their names one after another. Optionally, their names
may be separated by commas. To include a range of variables from the dictionary in the
list, write the name of the �rst and last variable in the range, separated by TO. For instance,
if the dictionary contains six variables with the names ID, X1, X2, GOAL, MET, and NEXTGOAL,
in that order, then X2 TO MET would include variables X2, GOAL, and MET.

Commands that de�ne variables, such as DATA LIST, give TO an alternate meaning.
With these commands, TO de�ne sequences of variables whose names end in consecutive
integers. The syntax is two identi�ers that begin with the same root and end with numbers,
separated by TO. The syntax X1 TO X5 de�nes 5 variables, named X1, X2, X3, X4, and X5. The
syntax ITEM0008 TO ITEM0013 de�nes 6 variables, named ITEM0008, ITEM0009, ITEM0010,
ITEM0011, ITEM0012, and ITEM00013. The syntaxes QUES001 TO QUES9 and QUES6 TO QUES3
are invalid.

After a set of variables has been de�ned with DATA LIST or another command with
this method, the same set can be referenced on later commands using the same syntax.

4.6.4 Input and Output Formats
Data that PSPP inputs and outputs must have one of a number of formats. These formats
are described, in general, by a format speci�cation of the form NAMEw.d, where name is the
format name and w is a �eld width. d is the optional desired number of decimal places, if
appropriate. If d is not included then it is assumed to be 0. Some formats do not allow d
to be speci�ed.

When DATA LIST or another command speci�es an input format, that format is con-
verted to an output format for the purposes of PRINT and other data output commands.
For most purposes, input and output formats are the same; the salient di�erences are de-
scribed below.

Below are listed the input and output formats supported by PSPP. If an input format
is mapped to a di�erent output format by default, then that mapping is indicated with).
Each format has the listed bounds on input width (iw) and output width (ow).

The standard numeric input and output formats are given in the following table:
Fw.d: 1 <= iw,ow <= 40

Standard decimal format with d decimal places. If the number is too large to �t
within the �eld width, it is expressed in scienti�c notation (1.2+34) if w >= 6,
with always at least two digits in the exponent. When used as an input format,
scienti�c notation is allowed but an E or an F must be used to introduce the
exponent.
The default output format is the same as the input format, except if d > 1. In
that case the output w is always made to be at least 2 + d.

Chapter 4: The PSPP language 15

Ew.d: 1 <= iw <= 40; 6 <= ow <= 40
For input this is equivalent to F format except that no E or F is require to
introduce the exponent. For output, produces scienti�c notation in the form
1.2+34. There are always at least two digits given in the exponent.
The default output w is the largest of the input w, the input d + 7, and 10.
The default output d is the input d, but at least 3.

COMMAw.d: 1 <= iw,ow <= 40
Equivalent to F format, except that groups of three digits are comma-separated
on output. If the number is too large to express in the �eld width, then �rst
commas are eliminated, then if there is still not enough space the number is
expressed in scienti�c notation given that w >= 6. Commas are allowed and
ignored when this is used as an input format.

DOTw.d: 1 <= iw,ow <= 40
Equivalent to COMMA format except that the roles of comma and decimal
point are interchanged. However: If SET /DECIMAL=DOT is in e�ect, then
COMMA uses `,' for a decimal point and DOT uses `.' for a decimal point.

DOLLARw.d: 1 <= iw <= 40; 2 <= ow <= 40
Equivalent to COMMA format, except that the number is pre�xed by a dollar
sign (`$') if there is room. On input the value is allowed to be pre�xed by a
dollar sign, which is ignored.
The default output w is the input w, but at least 2.

PCTw.d: 2 <= iw,ow <= 40
Equivalent to F format, except that the number is su�xed by a percent sign
(`%') if there is room. On input the value is allowed to be su�xed by a percent
sign, which is ignored.
The default output w is the input w, but at least 2.

Nw.d: 1 <= iw,ow <= 40
Only digits are allowed within the �eld width. The decimal point is assumed
to be d digits from the right margin.
The default output format is F with the same w and d, except if d > 1. In that
case the output w is always made to be at least 2 + d.

Zw.d) F: 1 <= iw,ow <= 40
Zoned decimal input. If you need to use this then you know how.

IBw.d) F: 1 <= iw,ow <= 8
Integer binary format. The �eld is interpreted as a �xed-point positive or
negative binary number in two's-complement notation. The location of the
decimal point is implied. Endianness is the same as the host machine.
The default output format is F8.2 if d is 0. Otherwise it is F, with output w
as 9 + input d and output d as input d.

PIB) F: 1 <= iw,ow <= 8
Positive integer binary format. The �eld is interpreted as a �xed-point positive
binary number. The location of the decimal point is implied. Endianness is the
same as the host machine.

Chapter 4: The PSPP language 16

The default output format follows the rules for IB format.
Pw.d) F: 1 <= iw,ow <= 16

Binary coded decimal format. Each byte from left to right, except the rightmost,
represents two digits. The upper nibble of each byte is more signi�cant. The
upper nibble of the �nal byte is the least signi�cant digit. The lower nibble of
the �nal byte is the sign; a value of D represents a negative sign and all other
values are considered positive. The decimal point is implied.
The default output format follows the rules for IB format.

PKw.d) F: 1 <= iw,ow <= 16
Positive binary code decimal format. Same as P but the last byte is the same
as the others.
The default output format follows the rules for IB format.

RBw) F: 2 <= iw,ow <= 8
Binary C architecture-dependent \double" format. For a standard IEEE754
implementation w should be 8.
The default output format follows the rules for IB format.

PIBHEXw.d) F: 2 <= iw,ow <= 16
PIB format encoded as textual hex digit pairs. w must be even.
The input width is mapped to a default output width as follows: 2)4, 4)6,
6)9, 8)11, 10)14, 12)16, 14)18, 16)21. No allowances are made for
decimal places.

RBHEXw) F: 4 <= iw,ow <= 16
RB format encoded as textual hex digits pairs. w must be even.
The default output format is F8.2.

CCAw.d: 1 <= ow <= 40
CCBw.d: 1 <= ow <= 40
CCCw.d: 1 <= ow <= 40
CCDw.d: 1 <= ow <= 40
CCEw.d: 1 <= ow <= 40

User-de�ned custom currency formats. May not be used as an input format.
See Section 13.15 [SET], page 91, for more details.

The date and time numeric input and output formats accept a number of possible for-
mats. Before describing the formats themselves, some de�nitions of the elements that make
up their formats will be helpful:
leader All formats accept an optional white space leader.
day An integer between 1 and 31 representing the day of month.
day-count An integer representing a number of days.
date-delimiter

One or more characters of white space or the following characters: - / . ,

month A month name in one of the following forms:

Chapter 4: The PSPP language 17

� An integer between 1 and 12.
� Roman numerals representing an integer between 1 and 12.
� At least the �rst three characters of an English month name (January,

February, . . .).
year An integer year number between 1582 and 19999, or between 1 and 199. Years

between 1 and 199 will have 1900 added.
julian A single number with a year number in the �rst 2, 3, or 4 digits (as above) and

the day number within the year in the last 3 digits.
quarter An integer between 1 and 4 representing a quarter.
q-delimiter

The letter `Q' or `q'.
week An integer between 1 and 53 representing a week within a year.
wk-delimiter

The letters `wk' in any case.
time-delimiter

At least one characters of white space or `:' or `.'.
hour An integer greater than 0 representing an hour.
minute An integer between 0 and 59 representing a minute within an hour.
opt-second

Optionally, a time-delimiter followed by a real number representing a number
of seconds.

hour24 An integer between 0 and 23 representing an hour within a day.
weekday At least the �rst two characters of an English day word.
spaces Any amount or no amount of white space.
sign An optional positive or negative sign.
trailer All formats accept an optional white space trailer.

The date input formats are strung together from the above pieces. On output, the date
formats are always printed in a single canonical manner, based on �eld width. The date
input and output formats are described below:
DATEw: 9 <= iw,ow <= 40

Date format. Input format: leader + day + date-delimiter + month + date-
delimiter + year + trailer. Output format: DD-MMM-YY for w < 11, DD-
MMM-YYYY otherwise.

EDATEw: 8 <= iw,ow <= 40
European date format. Input format same as DATE. Output format:
DD.MM.YY for w < 10, DD.MM.YYYY otherwise.

SDATEw: 8 <= iw,ow <= 40
Standard date format. Input format: leader + year + date-delimiter + month
+ date-delimiter + day + trailer. Output format: YY/MM/DD for w < 10,
YYYY/MM/DD otherwise.

Chapter 4: The PSPP language 18

ADATEw: 8 <= iw,ow <= 40
American date format. Input format: leader + month + date-delimiter + day
+ date-delimiter + year + trailer. Output format: MM/DD/YY for w < 10,
MM/DD/YYYY otherwise.

JDATEw: 5 <= iw,ow <= 40
Julian date format. Input format: leader + julian + trailer. Output format:
YYDDD for w < 7, YYYYDDD otherwise.

QYRw: 4 <= iw <= 40, 6 <= ow <= 40
Quarter/year format. Input format: leader + quarter + q-delimiter + year +
trailer. Output format: `Q Q YY', where the �rst `Q' is one of the digits 1, 2, 3,
4, if w < 8, Q Q YYYY otherwise.

MOYRw: 6 <= iw,ow <= 40
Month/year format. Input format: leader + month + date-delimiter + year +
trailer. Output format: `MMM YY' for w < 8, `MMM YYYY' otherwise.

WKYRw: 6 <= iw <= 40, 8 <= ow <= 40
Week/year format. Input format: leader + week + wk-delimiter + year + trailer.
Output format: `WW WK YY' for w < 10, `WW WK YYYY' otherwise.

DATETIMEw.d: 17 <= iw,ow <= 40
Date and time format. Input format: leader + day + date-delimiter + month
+ date-delimiter + year + time-delimiter + hour24 + time-delimiter + minute
+ opt-second. Output format: `DD-MMM-YYYY HH:MM'. If w > 19 then seconds
`:SS' is added. If w > 22 and d > 0 then fractional seconds `.SS' are added.

TIMEw.d: 5 <= iw,ow <= 40
Time format. Input format: leader + sign + spaces + hour + time-delimiter +
minute + opt-second. Output format: `HH:MM'. Seconds and fractional seconds
are available with w of at least 8 and 10, respectively.

DTIMEw.d: 1 <= iw <= 40, 8 <= ow <= 40
Time format with day count. Input format: leader + sign + spaces + day-count
+ time-delimiter + hour + time-delimiter + minute + opt-second. Output format:
`DD HH:MM'. Seconds and fractional seconds are available with w of at least 8
and 10, respectively.

WKDAYw: 2 <= iw,ow <= 40
A weekday as a number between 1 and 7, where 1 is Sunday. Input format:
leader + weekday + trailer. Output format: as many characters, in all capital
letters, of the English name of the weekday as will �t in the �eld width.

MONTHw: 3 <= iw,ow <= 40
A month as a number between 1 and 12, where 1 is January. Input format:
leader + month + trailer. Output format: as many character, in all capital
letters, of the English name of the month as will �t in the �eld width.

There are only two formats that may be used with string variables:
Aw: 1 <= iw <= 255, 1 <= ow <= 254

The entire �eld is treated as a string value.

Chapter 4: The PSPP language 19

AHEXw) A: 2 <= iw <= 254; 2 <= ow <= 510
The �eld is composed of characters in a string encoded as textual hex digit
pairs.
The default output w is half the input w.

4.6.5 Scratch Variables
Most of the time, variables don't retain their values between cases. Instead, either they're
being read from a data �le or the active �le, in which case they assume the value read,
or, if created with COMPUTE or another transformation, they're initialized to the system-
missing value or to blanks, depending on type.

However, sometimes it's useful to have a variable that keeps its value between cases.
You can do this with LEAVE (see Section 8.5 [LEAVE], page 59), or you can use a scratch
variable. Scratch variables are variables whose names begin with an octothorpe (`#').

Scratch variables have the same properties as variables left with LEAVE: they retain
their values between cases, and for the �rst case they are initialized to 0 or blanks. They
have the additional property that they are deleted before the execution of any procedure.
For this reason, scratch variables can't be used for analysis. To use a scratch variable in an
analysis, use COMPUTE (see Section 9.3 [COMPUTE], page 67) to copy its value into an
ordinary variable, then use that ordinary variable in the analysis.

4.7 Files Used by PSPP
PSPP makes use of many �les each time it runs. Some of these it reads, some it writes,
some it creates. Here is a table listing the most important of these �les:

command �le
syntax �le These names (synonyms) refer to the �le that contains instructions that tell

PSPP what to do. The syntax �le's name is speci�ed on the PSPP command
line. Syntax �les can also be pulled in with INCLUDE (see Section 13.12
[INCLUDE], page 90).

data �le Data �les contain raw data in ASCII format suitable for being read in by DATA
LIST. Data can be embedded in the syntax �le with BEGIN DATA and END
DATA: this makes the syntax �le a data �le too.

listing �le One or more output �les are created by PSPP each time it is run. The out-
put �les receive the tables and charts produced by statistical procedures. The
output �les may be in any number of formats, depending on how PSPP is
con�gured.

active �le The active �le is the \�le" on which all PSPP procedures are performed. The
active �le contains variable de�nitions and cases. The active �le is not neces-
sarily a disk �le: it is stored in memory if there is room.

4.8 Backus-Naur Form
The syntax of some parts of the PSPP language is presented in this manual using the
formalism known as Backus-Naur Form, or BNF. The following table describes BNF:

Chapter 4: The PSPP language 20

� Words in all-uppercase are PSPP keyword tokens. In BNF, these are often called
terminals. There are some special terminals, which are written in lowercase for clarity:
number A real number.
integer An integer number.
string A string.
var-name A single variable name.
=, /, +, -, etc.

Operators and punctuators.
. The end of the command. This is not necessarily an actual dot in the

syntax �le: See Section 4.2 [Commands], page 9, for more details.
� Other words in all lowercase refer to BNF de�nitions, called productions. These pro-

ductions are also known as nonterminals. Some nonterminals are very common, so they
are de�ned here in English for clarity:
var-list A list of one or more variable names or the keyword ALL.
expression

An expression. See Chapter 5 [Expressions], page 21, for details.
� `::=' means \is de�ned as". The left side of `::=' gives the name of the nonterminal

being de�ned. The right side of `::=' gives the de�nition of that nonterminal. If the
right side is empty, then one possible expansion of that nonterminal is nothing. A BNF
de�nition is called a production.

� So, the key di�erence between a terminal and a nonterminal is that a terminal cannot
be broken into smaller parts|in fact, every terminal is a single token (see Section 4.1
[Tokens], page 8). On the other hand, nonterminals are composed of a (possibly empty)
sequence of terminals and nonterminals. Thus, terminals indicate the deepest level of
syntax description. (In parsing theory, terminals are the leaves of the parse tree;
nonterminals form the branches.)

� The �rst nonterminal de�ned in a set of productions is called the start symbol. The
start symbol de�nes the entire syntax for that command.

Chapter 5: Mathematical Expressions 21

5 Mathematical Expressions

Expressions share a common syntax each place they appear in PSPP commands. Expres-
sions are made up of operands, which can be numbers, strings, or variable names, separated
by operators. There are �ve types of operators: grouping, arithmetic, logical, relational,
and functions.

Every operator takes one or more operands as input and yields exactly one result as
output. Depending on the operator, operands accept strings or numbers as operands. With
few exceptions, operands may be full-
edged expressions in themselves.

5.1 Boolean Values
Some PSPP operators and expressions work with Boolean values, which represent true/false
conditions. Booleans have only three possible values: 0 (false), 1 (true), and system-missing
(unknown). System-missing is neither true nor false and indicates that the true value is
unknown.

Boolean-typed operands or function arguments must take on one of these three values.
Other values are considered false, but provoke a warning when the expression is evaluated.

Strings and Booleans are not compatible, and neither may be used in place of the other.

5.2 Missing Values in Expressions
Most numeric operators yield system-missing when given any system-missing operand. A
string operator given any system-missing operand typically results in the empty string.
Exceptions are listed under particular operator descriptions.

String user-missing values are not treated specially in expressions.
User-missing values for numeric variables are always transformed into the system-missing

value, except inside the arguments to the VALUE and SYSMIS functions.
The missing-value functions can be used to precisely control how missing values are

treated in expressions. See Section 5.7.4 [Missing Value Functions], page 24, for more
details.

5.3 Grouping Operators
Parentheses (`()') are the grouping operators. Surround an expression with parentheses to
force early evaluation.

Parentheses also surround the arguments to functions, but in that situation they act as
punctuators, not as operators.

5.4 Arithmetic Operators
The arithmetic operators take numeric operands and produce numeric results.
a + b Yields the sum of a and b.
a - b Subtracts b from a and yields the di�erence.
a * b Yields the product of a and b. If either a or b is 0, then the result is 0, even if

the other operand is missing.

Chapter 5: Mathematical Expressions 22

a / b Divides a by b and yields the quotient. If a is 0, then the result is 0, even if b
is missing. If b is zero, the result is system-missing.

a ** b Yields the result of raising a to the power b. If a is negative and b is not an
integer, the result is system-missing. The result of 0**0 is system-missing as
well.

- a Reverses the sign of a.

5.5 Logical Operators
The logical operators take logical operands and produce logical results, meaning \true or
false." Logical operators are not true Boolean operators because they may also result in a
system-missing value. See Section 5.1 [Boolean Values], page 21, for more information.
a AND b
a & b True if both a and b are true, false otherwise. If one operand is false, the result

is false even if the other is missing. If both operands are missing, the result is
missing.

a OR b
a | b True if at least one of a and b is true. If one operand is true, the result is true

even if the other operand is missing. If both operands are missing, the result is
missing.

NOT a
~ a True if a is false. If the operand is missing, then the result is missing.

5.6 Relational Operators
The relational operators take numeric or string operands and produce Boolean results.

Strings cannot be compared to numbers. When strings of di�erent lengths are compared,
the shorter string is right-padded with spaces to match the length of the longer string.

The results of string comparisons, other than tests for equality or inequality, depend on
the character set in use. String comparisons are case-sensitive.
a EQ b
a = b True if a is equal to b.
a LE b
a <= b True if a is less than or equal to b.
a LT b
a < b True if a is less than b.
a GE b
a >= b True if a is greater than or equal to b.
a GT b
a > b True if a is greater than b.
a NE b
a ~= b
a <> b True if a is not equal to b.

Chapter 5: Mathematical Expressions 23

5.7 Functions
PSPP functions provide mathematical abilities above and beyond those possible using sim-
ple operators. Functions have a common syntax: each is composed of a function name
followed by a left parenthesis, one or more arguments, and a right parenthesis.

Function names are not reserved. Their names are specially treated only when followed
by a left parenthesis, so that EXP(10) refers to the constant value e raised to the 10th
power, but EXP by itself refers to the value of variable EXP.

The sections below describe each function in detail.

5.7.1 Mathematical Functions
Advanced mathematical functions take numeric arguments and produce numeric results.

[Function]EXP (exponent)
Returns e (approximately 2.71828) raised to power exponent.

[Function]LG10 (number)
Takes the base-10 logarithm of number. If number is not positive, the result is
system-missing.

[Function]LN (number)
Takes the base-e logarithm of number. If number is not positive, the result is system-
missing.

[Function]LNGAMMA (number)
Yields the base-e logarithm of the complete gamma of number. If number is a negative
integer, the result is system-missing.

[Function]SQRT (number)
Takes the square root of number. If number is negative, the result is system-missing.

5.7.2 Miscellaneous Mathematical Functions
Miscellaneous mathematical functions take numeric arguments and produce numeric results.

[Function]ABS (number)
Results in the absolute value of number.

[Function]MOD (numerator, denominator)
Returns the remainder (modulus) of numerator divided by denominator. If numerator
is 0, then the result is 0, even if denominator is missing. If denominator is 0, the
result is system-missing.

[Function]MOD10 (number)
Returns the remainder when number is divided by 10. If number is negative,
MOD10(number) is negative or zero.

[Function]RND (number)
Takes the absolute value of number and rounds it to an integer. Then, if number was
negative originally, negates the result.

[Function]TRUNC (number)
Discards the fractional part of number; that is, rounds number towards zero.

Chapter 5: Mathematical Expressions 24

5.7.3 Trigonometric Functions
Trigonometric functions take numeric arguments and produce numeric results.

[Function]ARCOS (number)
[Function]ACOS (number)

Takes the arccosine, in radians, of number. Results in system-missing if number is
not between -1 and 1 inclusive. This function is a PSPP extension.

[Function]ARSIN (number)
[Function]ASIN (number)

Takes the arcsine, in radians, of number. Results in system-missing if number is not
between -1 and 1 inclusive.

[Function]ARTAN (number)
[Function]ATAN (number)

Takes the arctangent, in radians, of number.

[Function]COS (angle)
Takes the cosine of angle which should be in radians.

[Function]SIN (angle)
Takes the sine of angle which should be in radians.

[Function]TAN (angle)
Takes the tangent of angle which should be in radians. Results in system-missing at
values of angle that are too close to odd multiples of pi/2. Portability: none.

5.7.4 Missing-Value Functions
Missing-value functions take various numeric arguments and yield various types of results.
Except where otherwise stated below, the normal rules of evaluation apply within expression
arguments to these functions. In particular, user-missing values for numeric variables are
converted to system-missing values.

[Function]MISSING (expr)
Returns 1 if expr has the system-missing value, 0 otherwise.

[Function]NMISS (expr [, expr]. . .)
Each argument must be a numeric expression. Returns the number of system-missing
values in the list, which may include variable ranges using the var1 TO var2 syntax.

[Function]NVALID (expr [, expr]. . .)
Each argument must be a numeric expression. Returns the number of values in the
list that are not system-missing. The list may include variable ranges using the var1
TO var2 syntax.

[Function]SYSMIS (expr)
When expr is simply the name of a numeric variable, returns 1 if the variable has
the system-missing value, 0 if it is user-missing or not missing. If given expr takes
another form, results in 1 if the value is system-missing, 0 otherwise.

Chapter 5: Mathematical Expressions 25

[Function]VALUE (variable)
Prevents the user-missing values of variable from being transformed into system-
missing values, and always results in the actual value of variable, whether it is valid,
user-missing, or system-missing.

5.7.5 Set-Membership Functions
Set membership functions determine whether a value is a member of a set. They take a set
of numeric arguments or a set of string arguments, and produce Boolean results.

String comparisons are performed according to the rules given in Section 5.6 [Relational
Operators], page 22.

[Function]ANY (value, set [, set]. . .)
Results in true if value is equal to any of the set values. Otherwise, results in false.
If value is system-missing, returns system-missing. System-missing values in set do
not cause ANY to return system-missing.

[Function]RANGE (value, low, high [, low, high]. . .)
Results in true if value is in any of the intervals bounded by low and high inclusive.
Otherwise, results in false. Each low must be less than or equal to its corresponding
high value. low and high must be given in pairs. If value is system-missing, returns
system-missing. System-missing values in set do not cause RANGE to return system-
missing.

5.7.6 Statistical Functions
Statistical functions compute descriptive statistics on a list of values. Some statistics can
be computed on numeric or string values; other can only be computed on numeric values.
Their results have the same type as their arguments. The current case's weighting factor
(see Section 10.8 [WEIGHT], page 75) has no e�ect on statistical functions.

These functions' argument lists may include entire ranges of variables using the var1 TO
var2 syntax.

Unlike most functions, statistical functions can return non-missing values even when
some of their arguments are missing. Most statistical functions, by default, require only 1
non-missing value to have a non-missing return, but CFVAR, SD, and VARIANCE require
2. These defaults can be increased (but not decreased) by appending a dot and the minimum
number of valid arguments to the function name. For example, MEAN.3(X, Y, Z) would only
return non-missing if all of `X', `Y', and `Z' were valid.

[Function]CFVAR (number, number [, . . .])
Results in the coe�cient of variation of the values of number. (The coe�cient of
variation is the standard deviation divided by the mean.)

[Function]MAX (value, value [, . . .])
Results in the value of the greatest value. The values may be numeric or string.

[Function]MEAN (number, number [, . . .])
Results in the mean of the values of number.

[Function]MIN (number, number [, . . .])
Results in the value of the least value. The values may be numeric or string.

Chapter 5: Mathematical Expressions 26

[Function]SD (number, number [, . . .])
Results in the standard deviation of the values of number.

[Function]SUM (number, number [, . . .])
Results in the sum of the values of number.

[Function]VARIANCE (number, number [, . . .])
Results in the variance of the values of number.

5.7.7 String Functions
String functions take various arguments and return various results.

[Function]CONCAT (string, string [, . . .])
Returns a string consisting of each string in sequence. CONCAT("abc", "def",
"ghi") has a value of "abcdefghi". The resultant string is truncated to a maximum
of 255 characters.

[Function]INDEX (haystack, needle)
Returns a positive integer indicating the position of the �rst occurrence of needle in
haystack. Returns 0 if haystack does not contain needle. Returns system-missing if
needle is an empty string.

[Function]INDEX (haystack, needles, needle_len)
Divides needles into one or more needles, each with length needle len. Searches
haystack for the �rst occurrence of each needle, and returns the smallest value. Re-
turns 0 if haystack does not contain any part in needle. It is an error if needle len
does not evenly divide the length of needles. Returns system-missing if needles is an
empty string.

[Function]LENGTH (string)
Returns the number of characters in string.

[Function]LOWER (string)
Returns a string identical to string except that all uppercase letters are changed
to lowercase letters. The de�nitions of \uppercase" and \lowercase" are system-
dependent.

[Function]LPAD (string, length)
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with spaces on the left side to length length. Returns an empty
string if length is system-missing, negative, or greater than 255.

[Function]LPAD (string, length, padding)
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with padding on the left side to length length. Returns an
empty string if length is system-missing, negative, or greater than 255, or if padding
does not contain exactly one character.

[Function]LTRIM (string)
Returns string, after removing leading spaces. Other white space, such as tabs, car-
riage returns, line feeds, and vertical tabs, is not removed.

Chapter 5: Mathematical Expressions 27

[Function]LTRIM (string, padding)
Returns string, after removing leading padding characters. If padding does not con-
tain exactly one character, returns an empty string.

[Function]NUMBER (string, format)
Returns the number produced when string is interpreted according to format speci�er
format. If the format width w is less than the length of string, then only the �rst w
characters in string are used, e.g. NUMBER("123", F3.0) and NUMBER("1234", F3.0)
both have value 123. If w is greater than string 's length, then it is treated as if
it were right-padded with spaces. If string is not in the correct format for format,
system-missing is returned.

[Function]RINDEX (string, format)
Returns a positive integer indicating the position of the last occurrence of needle in
haystack. Returns 0 if haystack does not contain needle. Returns system-missing if
needle is an empty string.

[Function]RINDEX (haystack, needle, needle_len)
Divides needle into parts, each with length needle len. Searches haystack for the last
occurrence of each part, and returns the largest value. Returns 0 if haystack does
not contain any part in needle. It is an error if needle len does not evenly divide the
length of needle. Returns system-missing if needle is an empty string.

[Function]RPAD (string, length)
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with spaces on the right to length length. Returns an empty
string if length is system-missing, negative, or greater than 255.

[Function]RPAD (string, length, padding)
If string is at least length characters in length, returns string unchanged. Otherwise,
returns string padded with padding on the right to length length. Returns an empty
string if length is system-missing, negative, or greater than 255, or if padding does
not contain exactly one character.

[Function]RTRIM (string)
Returns string, after removing trailing spaces. Other types of white space are not
removed.

[Function]RTRIM (string, padding)
Returns string, after removing trailing padding characters. If padding does not con-
tain exactly one character, returns an empty string.

[Function]STRING (number, format)
Returns a string corresponding to number in the format given by format speci�er
format. For example, STRING(123.56, F5.1) has the value "123.6".

[Function]SUBSTR (string, start)
Returns a string consisting of the value of string from position start onward. Returns
an empty string if start is system-missing, less than 1, or greater than the length of
string.

Chapter 5: Mathematical Expressions 28

[Function]SUBSTR (string, start, count)
Returns a string consisting of the �rst count characters from string beginning at
position start. Returns an empty string if start or count is system-missing, if start is
less than 1 or greater than the number of characters in string, or if count is less than
1. Returns a string shorter than count characters if start + count - 1 is greater than
the number of characters in string. Examples: SUBSTR("abcdefg", 3, 2) has value
"cd"; SUBSTR("nonsense", 4, 10) has the value "sense".

[Function]UPCASE (string)
Returns string, changing lowercase letters to uppercase letters.

5.7.8 Time & Date Functions
For compatibility, PSPP considers dates before 15 Oct 1582 invalid. Most time and date
functions will not accept earlier dates.

5.7.8.1 How times & dates are de�ned and represented
Times and dates are handled by PSPP as single numbers. A time is an interval. PSPP
measures times in seconds. Thus, the following intervals correspond with the numeric values
given:

10 minutes 600
1 hour 3,600
1 day, 3 hours, 10 seconds 97,210
40 days 3,456,000

A date, on the other hand, is a particular instant in the past or the future. PSPP
represents a date as a number of seconds since midnight preceding 14 Oct 1582. Because
midnight preceding the dates given below correspond with the numeric PSPP dates given:

15 Oct 1582 86,400
4 Jul 1776 6,113,318,400
1 Jan 1900 10,010,390,400
1 Oct 1978 12,495,427,200
24 Aug 1995 13,028,601,600

Ordinary arithmetic operations on dates and times often produce sensible results. Adding
a time to, or subtracting one from, a date produces a new date that much earlier or later.
The di�erence of two dates yields the time between those dates. Adding two times produces
the combined time. Multiplying a time by a scalar produces a time that many times longer.
Since times and dates are just numbers, the ordinary addition and subtraction operators
are employed for these purposes.

Adding two dates does not produce a useful result.
As the table shows, dates and times may have very large values. Thus, it is not a good

idea to take powers of these values; also, the accuracy of some procedures may be a�ected.
If necessary, convert times or dates in seconds to some other unit, like days or years, before
performing analysis.

5.7.8.2 Functions that Produce Times
These functions take numeric arguments and return numeric values that represent times.

Chapter 5: Mathematical Expressions 29

[Function]TIME.DAYS (ndays)
Returns a time corresponding to ndays days.

[Function]TIME.HMS (nhours, nmins, nsecs)
Returns a time corresponding to nhours hours, nmins minutes, and nsecs seconds.
The arguments may not have mixed signs: if any of them are positive, then none may
be negative, and vice versa.

5.7.8.3 Functions that Examine Times
These functions take numeric arguments in PSPP time format and give numeric results.

[Function]CTIME.DAYS (time)
Results in the number of days and fractional days in time.

[Function]CTIME.HOURS (time)
Results in the number of hours and fractional hours in time.

[Function]CTIME.MINUTES (time)
Results in the number of minutes and fractional minutes in time.

[Function]CTIME.SECONDS (time)
Results in the number of seconds and fractional seconds in time. (CTIME.SECONDS
does nothing; CTIME.SECONDS(x) is equivalent to x .)

5.7.8.4 Functions that Produce Dates
These functions take numeric arguments and give numeric results that represent dates.
Arguments taken by these functions are:

day Refers to a day of the month between 1 and 31. Day 0 is also accepted and
refers to the �nal day of the previous month. Days 29, 30, and 31 are accepted
even in months that have fewer days and refer to a day near the beginning of
the following month.

month Refers to a month of the year between 1 and 12. Months 0 and 13 are also
accepted and refer to the last month of the preceding year and the �rst month
of the following year, respectively.

quarter Refers to a quarter of the year between 1 and 4. The quarters of the year begin
on the �rst day of months 1, 4, 7, and 10.

week Refers to a week of the year between 1 and 53.

yday Refers to a day of the year between 1 and 366.

year Refers to a year, 1582 or greater. Years between 0 and 99 are treated according
to the epoch set on SET EPOCH, by default beginning 69 years before the
current date (see [SET EPOCH], page 93).

If these functions' arguments are out-of-range, they are correctly normalized before con-
version to date format. Non-integers are rounded toward zero.

Chapter 5: Mathematical Expressions 30

[Function]DATE.DMY (day, month, year)
[Function]DATE.MDY (month, day, year)

Results in a date value corresponding to the midnight before day day of month month
of year year.

[Function]DATE.MOYR (month, year)
Results in a date value corresponding to the midnight before the �rst day of month
month of year year.

[Function]DATE.QYR (quarter, year)
Results in a date value corresponding to the midnight before the �rst day of quarter
quarter of year year.

[Function]DATE.WKYR (week, year)
Results in a date value corresponding to the midnight before the �rst day of week
week of year year.

[Function]DATE.YRDAY (year, yday)
Results in a date value corresponding to the day yday of year year.

5.7.8.5 Functions that Examine Dates
These functions take numeric arguments in PSPP date or time format and give numeric
results. These names are used for arguments:
date A numeric value in PSPP date format.
time A numeric value in PSPP time format.
time-or-date

A numeric value in PSPP time or date format.

[Function]XDATE.DATE (time-or-date)
For a time, results in the time corresponding to the number of whole days date-or-
time includes. For a date, results in the date corresponding to the latest midnight at
or before date-or-time; that is, gives the date that date-or-time is in.

[Function]XDATE.HOUR (time-or-date)
For a time, results in the number of whole hours beyond the number of whole days
represented by date-or-time. For a date, results in the hour (as an integer between 0
and 23) corresponding to date-or-time.

[Function]XDATE.JDAY (date)
Results in the day of the year (as an integer between 1 and 366) corresponding to
date.

[Function]XDATE.MDAY (date)
Results in the day of the month (as an integer between 1 and 31) corresponding to
date.

[Function]XDATE.MINUTE (time-or-date)
Results in the number of minutes (as an integer between 0 and 59) after the last hour
in time-or-date.

Chapter 5: Mathematical Expressions 31

[Function]XDATE.MONTH (date)
Results in the month of the year (as an integer between 1 and 12) corresponding to
date.

[Function]XDATE.QUARTER (date)
Results in the quarter of the year (as an integer between 1 and 4) corresponding to
date.

[Function]XDATE.SECOND (time-or-date)
Results in the number of whole seconds after the last whole minute (as an integer
between 0 and 59) in time-or-date.

[Function]XDATE.TDAY (date)
Results in the number of whole days from 14 Oct 1582 to date.

[Function]XDATE.TIME (date)
Results in the time of day at the instant corresponding to date, as a time value. This
is the number of seconds since midnight on the day corresponding to date.

[Function]XDATE.WEEK (date)
Results in the week of the year (as an integer between 1 and 53) corresponding to
date.

[Function]XDATE.WKDAY (date)
Results in the day of week (as an integer between 1 and 7) corresponding to date,
where 1 represents Sunday.

[Function]XDATE.YEAR (date)
Returns the year (as an integer 1582 or greater) corresponding to date.

5.7.9 Miscellaneous Functions
Miscellaneous functions take various arguments and produce various results.

[Function]LAG (variable [, ncases])
variable must be a numeric or string variable name. LAG results in the value of that
variable for the case ncases before the current one. In case-selection procedures, LAG
results in the value of the variable for the last case selected. Results in system-missing
(for numeric variables) or blanks (for string variables) for the �rst case or before any
cases are selected.
If omitted, ncases defaults to 1. Otherwise, ncases must be a small positive constant
integer. There is no explicit limit, but use of a large value will increase memory
consumption.

[Function]YRMODA (year, month, day)
year is a year, either between 0 and 99 or at least 1582. Unlike other PSPP date
functions, years between 0 and 99 always correspond to 1900 through 1999. month
is a month between 1 and 13. day is a day between 0 and 31. A day of 0 refers to
the last day of the previous month, and a month of 13 refers to the �rst month of the
next year. year must be in range. year, month, and day must all be integers.

Chapter 5: Mathematical Expressions 32

YRMODA results in the number of days between 15 Oct 1582 and the date speci�ed,
plus one. The date passed to YRMODA must be on or after 15 Oct 1582. 15 Oct 1582
has a value of 1.

5.7.10 Statistical Distribution Functions
PSPP can calculate several functions of standard statistical distributions. These functions
are named systematically based on the function and the distribution. The table below
describes the statistical distribution functions in general:
PDF.dist (x[, param. . .])

Probability density function for dist. The domain of x depends on dist. For
continuous distributions, the result is the density of the probability function at
x, and the range is nonnegative real numbers. For discrete distributions, the
result is the probability of x.

CDF.dist (x[, param. . .])
Cumulative distribution function for dist, that is, the probability that a random
variate drawn from the distribution is less than x. The domain of x depends
dist. The result is a probability.

SIG.dist (x[, param. . .)
Tail probability function for dist, that is, the probability that a random variate
drawn from the distribution is greater than x. The domain of x depends dist.
The result is a probability. Only a few distributions include an SIG function.

IDF.dist (p[, param. . .])
Inverse distribution function for dist, the value of x for which the CDF would
yield p. The value of p is a probability. The range depends on dist and is
identical to the domain for the corresponding CDF.

RV.dist ([param. . .])
Random variate function for dist. The range depends on the distribution.

NPDF.dist (x[, param. . .])
Noncentral probability density function. The result is the density of the given
noncentral distribution at x. The domain of x depends on dist. The range is
nonnegative real numbers. Only a few distributions include an NPDF function.

NCDF.dist (x[, param. . .])
Noncentral cumulative distribution function for dist, that is, the probability
that a random variate drawn from the given noncentral distribution is less than
x. The domain of x depends dist. The result is a probability. Only a few
distributions include an NCDF function.

The individual distributions are described individually below.

5.7.10.1 Continuous Distributions
The following continuous distributions are available:

[Function]PDF.BETA (x)
[Function]CDF.BETA (x, a, b)

Chapter 5: Mathematical Expressions 33

[Function]IDF.BETA (p, a, b)
[Function]RV.BETA (a, b)
[Function]NPDF.BETA (x, a, b, lambda)
[Function]NCDF.BETA (x, a, b, lambda)

Beta distribution with shape parameters a and b. The noncentral distribution takes
an additional parameter lambda. Constraints: a > 0, b > 0, lambda >= 0, 0 <= x <=
1, 0 <= p <= 1.

[Function]PDF.BVNOR (x0, x1, rho)
[Function]CDF.VBNOR (x0, x1, rho)

Bivariate normal distribution of two standard normal variables with correlation coef-
�cient rho. Two variates x0 and x1 must be provided. Constraints: 0 <= rho <= 1,
0 <= p <= 1.

[Function]PDF.CAUCHY (x, a, b)
[Function]CDF.CAUCHY (x, a, b)
[Function]IDF.CAUCHY (p, a, b)
[Function]RV.CAUCHY (a, b)

Cauchy distribution with location parameter a and scale parameter b. Constraints:
b > 0, 0 < p < 1.

[Function]PDF.CHISQ (x, df)
[Function]CDF.CHISQ (x, df)
[Function]SIG.CHISQ (x, df)
[Function]IDF.CHISQ (p, df)
[Function]RV.CHISQ (df)
[Function]NPDF.CHISQ (x, df, lambda)
[Function]NCDF.CHISQ (x, df, lambda)

Chi-squared distribution with df degrees of freedom. The noncentral distribution
takes an additional parameter lambda. Constraints: df > 0, lambda > 0, x >= 0, 0
<= p < 1.

[Function]PDF.EXP (x, a)
[Function]CDF.EXP (x, a)
[Function]IDF.EXP (p, a)
[Function]RV.EXP (a)

Exponential distribution with scale parameter a. The inverse of a represents the rate
of decay. Constraints: a > 0, x >= 0, 0 <= p < 1.

[Function]PDF.XPOWER (x, a, b)
[Function]RV.XPOWER (a, b)

Exponential power distribution with positive scale parameter a and nonnegative power
parameter b. Constraints: a > 0, b >= 0, x >= 0, 0 <= p <= 1. This distribution is
a PSPP extension.

[Function]PDF.F (x, df1, df2)
[Function]CDF.F (x, df1, df2)
[Function]SIG.F (x, df1, df2)
[Function]IDF.F (p, df1, df2)

Chapter 5: Mathematical Expressions 34

[Function]RV.F (df1, df2)
[Function]NPDF.F (x, df1, df2, lambda)
[Function]NCDF.F (x, df1, df2, lambda)

F-distribution of two chi-squared deviates with df1 and df2 degrees of freedom. The
noncentral distribution takes an additional parameter lambda. Constraints: df1 > 0,
df2 > 0, lambda >= 0, x >= 0, 0 <= p < 1.

[Function]PDF.GAMMA (x, a, b)
[Function]CDF.GAMMA (x, a, b)
[Function]IDF.GAMMA (p, a, b)
[Function]RV.GAMMA (a, b)

Gamma distribution with shape parameter a and scale parameter b. Constraints: a
> 0, b > 0, x >= 0, 0 <= p < 1.

[Function]PDF.HALFNRM (x, a, b)
[Function]CDF.HALFNRM (x, a, b)
[Function]IDF.HALFNRM (p, a, b)
[Function]RV.HALFNRM (a, b)

Half-normal distribution with location parameter a and shape parameter b. Con-
straints: b > 0, 0 < p < 1.

[Function]PDF.IGAUSS (x, a, b)
[Function]CDF.IGAUSS (x, a, b)
[Function]IDF.IGAUSS (p, a, b)
[Function]RV.IGAUSS (a, b)

Inverse Gaussian distribution with parameters a and b. Constraints: a > 0, b > 0, x
> 0, 0 <= p < 1.

[Function]PDF.LANDAU (x)
[Function]RV.LANDAU ()

Landau distribution.

[Function]PDF.LAPLACE (x, a, b)
[Function]CDF.LAPLACE (x, a, b)
[Function]IDF.LAPLACE (p, a, b)
[Function]RV.LAPLACE (a, b)

Laplace distribution with location parameter a and scale parameter b. Constraints:
b > 0, 0 < p < 1.

[Function]RV.LEVY (c, alpha)
Levy symmetric alpha-stable distribution with scale c and exponent alpha. Con-
straints: 0 < alpha <= 2.

[Function]RV.LVSKEW (c, alpha, beta)
Levy skew alpha-stable distribution with scale c, exponent alpha, and skewness pa-
rameter beta. Constraints: 0 < alpha <= 2, -1 <= beta <= 1.

[Function]PDF.LOGISTIC (x, a, b)
[Function]CDF.LOGISTIC (x, a, b)

Chapter 5: Mathematical Expressions 35

[Function]IDF.LOGISTIC (p, a, b)
[Function]RV.LOGISTIC (a, b)

Logistic distribution with location parameter a and scale parameter b. Constraints:
b > 0, 0 < p < 1.

[Function]PDF.LNORMAL (x, a, b)
[Function]CDF.LNORMAL (x, a, b)
[Function]IDF.LNORMAL (p, a, b)
[Function]RV.LNORMAL (a, b)

Lognormal distribution with parameters a and b. Constraints: a > 0, b > 0, x >= 0,
0 <= p < 1.

[Function]PDF.NORMAL (x, mu, sigma)
[Function]CDF.NORMAL (x, mu, sigma)
[Function]IDF.NORMAL (p, mu, sigma)
[Function]RV.NORMAL (mu, sigma)

Normal distribution with mean mu and standard deviation sigma. Constraints: b >
0, 0 < p < 1. Three additional functions are available as shorthand:

[Function]CDFNORM (x)
Equivalent to CDF.NORMAL(x, 0, 1).

[Function]PROBIT (p)
Equivalent to IDF.NORMAL(p, 0, 1).

[Function]NORMAL (sigma)
Equivalent to RV.NORMAL(0, sigma).

[Function]PDF.NTAIL (x, a, sigma)
[Function]RV.NTAIL (a, sigma)

Normal tail distribution with lower limit a and standard deviation sigma. This dis-
tribution is a PSPP extension. Constraints: a > 0, x > a, 0 < p < 1.

[Function]PDF.PARETO (x, a, b)
[Function]CDF.PARETO (x, a, b)
[Function]IDF.PARETO (p, a, b)
[Function]RV.PARETO (a, b)

Pareto distribution with threshold parameter a and shape parameter b. Constraints:
a > 0, b > 0, x >= a, 0 <= p < 1.

[Function]PDF.RAYLEIGH (x, sigma)
[Function]CDF.RAYLEIGH (x, sigma)
[Function]IDF.RAYLEIGH (p, sigma)
[Function]RV.RAYLEIGH (sigma)

Rayleigh distribution with scale parameter sigma. This distribution is a PSPP ex-
tension. Constraints: sigma > 0, x > 0.

[Function]PDF.RTAIL (x, a, sigma)
[Function]RV.RTAIL (a, sigma)

Rayleigh tail distribution with lower limit a and scale parameter sigma. This distri-
bution is a PSPP extension. Constraints: a > 0, sigma > 0, x > a.

Chapter 5: Mathematical Expressions 36

[Function]CDF.SMOD (x, a, b)
[Function]IDF.SMOD (p, a, b)

Studentized maximum modulus distribution with parameters a and b. Constraints:
a > 0, b > 0, x > 0, 0 <= p < 1.

[Function]CDF.SRANGE (x, a, b)
[Function]IDF.SRANGE (p, a, b)

Studentized range distribution with parameters a and b. Constraints: a >= 1, b >=
1, x > 0, 0 <= p < 1.

[Function]PDF.T (x, df)
[Function]CDF.T (x, df)
[Function]IDF.T (p, df)
[Function]RV.T (df)
[Function]NPDF.T (x, df, lambda)
[Function]NCDF.T (x, df, lambda)

T-distribution with df degrees of freedom. The noncentral distribution takes an
additional parameter lambda. Constraints: df > 0, 0 < p < 1.

[Function]PDF.T1G (x, a, b)
[Function]CDF.T1G (x, a, b)
[Function]IDF.T1G (p, a, b)

Type-1 Gumbel distribution with parameters a and b. This distribution is a PSPP
extension. Constraints: 0 < p < 1.

[Function]PDF.T2G (x, a, b)
[Function]CDF.T2G (x, a, b)
[Function]IDF.T2G (p, a, b)

Type-2 Gumbel distribution with parameters a and b. This distribution is a PSPP
extension. Constraints: x > 0, 0 < p < 1.

[Function]PDF.UNIFORM (x, a, b)
[Function]CDF.UNIFORM (x, a, b)
[Function]IDF.UNIFORM (p, a, b)
[Function]RV.UNIFORM (a, b)

Uniform distribution with parameters a and b. Constraints: a <= x <= b, 0 <= p
<= 1. An additional function is available as shorthand:

[Function]UNIFORM (b)
Equivalent to RV.UNIFORM(0, b).

[Function]PDF.WEIBULL (x, a, b)
[Function]CDF.WEIBULL (x, a, b)
[Function]IDF.WEIBULL (p, a, b)
[Function]RV.WEIBULL (a, b)

Weibull distribution with parameters a and b. Constraints: a > 0, b > 0, x >= 0, 0
<= p < 1.

Chapter 5: Mathematical Expressions 37

5.7.10.2 Discrete Distributions
The following discrete distributions are available:

[Function]PDF.BERNOULLI (x)
[Function]CDF.BERNOULLI (x, p)
[Function]RV.BERNOULLI (p)

Bernoulli distribution with probability of success p. Constraints: x = 0 or 1, 0 <= p
<= 1.

[Function]PDF.BINOMIAL (x, n, p)
[Function]CDF.BINOMIAL (x, n, p)
[Function]RV.BINOMIAL (n, p)

Binomial distribution with n trials and probability of success p. Constraints: integer
n > 0, 0 <= p <= 1, integer x <= n.

[Function]PDF.GEOM (x, n, p)
[Function]CDF.GEOM (x, n, p)
[Function]RV.GEOM (n, p)

Geometric distribution with probability of success p. Constraints: 0 <= p <= 1,
integer x > 0.

[Function]PDF.HYPER (x, a, b, c)
[Function]CDF.HYPER (x, a, b, c)
[Function]RV.HYPER (a, b, c)

Hypergeometric distribution when b objects out of a are drawn and c of the available
objects are distinctive. Constraints: integer a > 0, integer b <= a, integer c <= a,
integer x >= 0.

[Function]PDF.LOG (x, p)
[Function]RV.LOG (p)

Logarithmic distribution with probability parameter p. Constraints: 0 <= p < 1, x
>= 1.

[Function]PDF.NEGBIN (x, n, p)
[Function]CDF.NEGBIN (x, n, p)
[Function]RV.NEGBIN (n, p)

Negative binomial distribution with number of successes paramter n and probability
of success parameter p. Constraints: integer n >= 0, 0 < p <= 1, integer x >= 1.

[Function]PDF.POISSON (x, mu)
[Function]CDF.POISSON (x, mu)
[Function]RV.POISSON (mu)

Poisson distribution with mean mu. Constraints: mu > 0, integer x >= 0.

5.8 Operator Precedence
The following table describes operator precedence. Smaller-numbered levels in the table
have higher precedence. Within a level, operations are always performed from left to right.
The �rst occurrence of `-' represents unary negation, the second binary subtraction.

Chapter 5: Mathematical Expressions 38

1. ()
2. **
3. -
4. * /
5. + -
6. EQ GE GT LE LT NE
7. AND NOT OR

Chapter 6: Data Input and Output 39

6 Data Input and Output

Data are the focus of the PSPP language. Each datum belongs to a case (also called an
observation). Each case represents an individual or `experimental unit'. For example, in
the results of a survey, the names of the respondents, their sex, age etc. and their responses
are all data and the data pertaining to single respondent is a case. This chapter examines
the PSPP commands for de�ning variables and reading and writing data.

Please note: Data is not actually read until a procedure is executed. These
commands tell PSPP how to read data, but they do not cause PSPP to read
data.

6.1 BEGIN DATA
BEGIN DATA.
. . .
END DATA.

BEGIN DATA and END DATA can be used to embed raw ASCII data in a PSPP
syntax �le. DATA LIST or another input procedure must be used before BEGIN DATA
(see Section 6.3 [DATA LIST], page 39). BEGIN DATA and END DATA must be used
together. END DATA must appear by itself on a single line, with no leading white space
and exactly one space between the words END and DATA, like this:

END DATA.

6.2 CLEAR TRANSFORMATIONS
CLEAR TRANSFORMATIONS.

CLEAR TRANSFORMATIONS clears out all pending transformations. It does not
cancel the current input program. It is valid only when PSPP is interactive, not in syntax
�les.

6.3 DATA LIST
Used to read text or binary data, DATA LIST is the most fundamental data-reading com-
mand. Even the more sophisticated input methods use DATA LIST commands as a building
block. Understanding DATA LIST is important to understanding how to use PSPP to read
your data �les.

There are two major variants of DATA LIST, which are �xed format and free format.
In addition, free format has a minor variant, list format, which is discussed in terms of its
di�erences from vanilla free format.

Each form of DATA LIST is described in detail below.

6.3.1 DATA LIST FIXED
DATA LIST [FIXED]

{TABLE,NOTABLE}
FILE='�lename'
RECORDS=record count
END=end var

Chapter 6: Data Input and Output 40

/[line no] var spec. . .

where each var spec takes one of the forms
var list start-end [type spec]
var list (fortran spec)

DATA LIST FIXED is used to read data �les that have values at �xed positions on each
line of single-line or multiline records. The keyword FIXED is optional.

The FILE subcommand must be used if input is to be taken from an external �le. It may
be used to specify a �lename as a string or a �le handle (see Section 6.6 [FILE HANDLE],
page 43). If the FILE subcommand is not used, then input is assumed to be speci�ed
within the command �le using BEGIN DATA. . .END DATA (see Section 6.1 [BEGIN
DATA], page 39).

The optional RECORDS subcommand, which takes a single integer as an argument,
is used to specify the number of lines per record. If RECORDS is not speci�ed, then the
number of lines per record is calculated from the list of variable speci�cations later in DATA
LIST.

The END subcommand is only useful in conjunction with INPUT PROGRAM. See
Section 6.7 [INPUT PROGRAM], page 44, for details.

DATA LIST can optionally output a table describing how the data �le will be read. The
TABLE subcommand enables this output, and NOTABLE disables it. The default is to
output the table.

The list of variables to be read from the data list must come last. Each line in the
data record is introduced by a slash (`/'). Optionally, a line number may follow the slash.
Following, any number of variable speci�cations may be present.

Each variable speci�cation consists of a list of variable names followed by a description
of their location on the input line. Sets of variables may speci�ed using the DATA LIST TO
convention (see Section 4.6.3 [Sets of Variables], page 14). There are two ways to specify
the location of the variable on the line: columnar style and FORTRAN style.

In columnar style, the starting column and ending column for the �eld are speci�ed after
the variable name, separated by a dash (`-'). For instance, the third through �fth columns
on a line would be speci�ed `3-5'. By default, variables are considered to be in `F' format
(see Section 4.6.4 [Input/Output Formats], page 14). (This default can be changed; see
Section 13.15 [SET], page 91 for more information.)

In columnar style, to use a variable format other than the default, specify the format
type in parentheses after the column numbers. For instance, for alphanumeric `A' format,
use `(A)'.

In addition, implied decimal places can be speci�ed in parentheses after the column
numbers. As an example, suppose that a data �le has a �eld in which the characters `1234'
should be interpreted as having the value 12.34. Then this �eld has two implied decimal
places, and the corresponding speci�cation would be `(2)'. If a �eld that has implied
decimal places contains a decimal point, then the implied decimal places are not applied.

Changing the variable format and adding implied decimal places can be done together;
for instance, `(N,5)'.

Chapter 6: Data Input and Output 41

When using columnar style, the input and output width of each variable is computed
from the �eld width. The �eld width must be evenly divisible into the number of variables
speci�ed.

FORTRAN style is an altogether di�erent approach to specifying �eld locations. With
this approach, a list of variable input format speci�cations, separated by commas, are
placed after the variable names inside parentheses. Each format speci�er advances as many
characters into the input line as it uses.

Implied decimal places also exist in FORTRAN style. A format speci�cation with d
decimal places also has d implied decimal places.

In addition to the standard format speci�ers (see Section 4.6.4 [Input/Output Formats],
page 14), FORTRAN style de�nes some extensions:
X Advance the current column on this line by one character position.
Tx Set the current column on this line to column x, with column numbers consid-

ered to begin with 1 at the left margin.
NEWRECx Skip forward x lines in the current record, resetting the active column to the

left margin.
Repeat count

Any format speci�er may be preceded by a number. This causes the action of
that format speci�er to be repeated the speci�ed number of times.

(spec1, . . . , specN)
Group the given speci�ers together. This is most useful when preceded by a
repeat count. Groups may be nested arbitrarily.

FORTRAN and columnar styles may be freely intermixed. Columnar style leaves the
active column immediately after the ending column speci�ed. Record motion using NEWREC
in FORTRAN style also applies to later FORTRAN and columnar speci�ers.

Examples
1.

DATA LIST TABLE /NAME 1-10 (A) INFO1 TO INFO3 12-17 (1).

BEGIN DATA.
John Smith 102311
Bob Arnold 122015
Bill Yates 918 6
END DATA.

De�nes the following variables:
� NAME, a 10-character-wide long string variable, in columns 1 through 10.
� INFO1, a numeric variable, in columns 12 through 13.
� INFO2, a numeric variable, in columns 14 through 15.
� INFO3, a numeric variable, in columns 16 through 17.

The BEGIN DATA/END DATA commands cause three cases to be de�ned:

Chapter 6: Data Input and Output 42

Case NAME INFO1 INFO2 INFO3
1 John Smith 10 23 11
2 Bob Arnold 12 20 15
3 Bill Yates 9 18 6

The TABLE keyword causes PSPP to print out a table describing the four variables
de�ned.

2.
DAT LIS FIL="survey.dat"

/ID 1-5 NAME 7-36 (A) SURNAME 38-67 (A) MINITIAL 69 (A)
/Q01 TO Q50 7-56
/.

De�nes the following variables:
� ID, a numeric variable, in columns 1-5 of the �rst record.
� NAME, a 30-character long string variable, in columns 7-36 of the �rst record.
� SURNAME, a 30-character long string variable, in columns 38-67 of the �rst record.
� MINITIAL, a 1-character short string variable, in column 69 of the �rst record.
� Fifty variables Q01, Q02, Q03, . . . , Q49, Q50, all numeric, Q01 in column 7, Q02 in

column 8, . . . , Q49 in column 55, Q50 in column 56, all in the second record.
Cases are separated by a blank record.
Data is read from �le `survey.dat' in the current directory.
This example shows keywords abbreviated to their �rst 3 letters.

6.3.2 DATA LIST FREE
DATA LIST FREE

[({TAB,'c'}, . . .)]
[{NOTABLE,TABLE}]
FILE='�lename'
END=end var
/var spec. . .

where each var spec takes one of the forms
var list [(type spec)]
var list *

In free format, the input data is, by default, structured as a series of �elds separated
by spaces, tabs, commas, or line breaks. Each �eld's content may be unquoted, or it may
be quoted with a pairs of apostrophes (`'') or double quotes (`"'). Unquoted white space
separates �elds but is not part of any �eld. Any mix of spaces, tabs, and line breaks is
equivalent to a single space for the purpose of separating �elds, but consecutive commas
will skip a �eld.

Alternatively, delimiters can be speci�ed explicitly, as a parenthesized, comma-separated
list of single-character strings immediately following FREE. The word TAB may also be
used to specify a tab character as a delimiter. When delimiters are speci�ed explicitly, only
the given characters, plus line breaks, separate �elds. Furthermore, leading spaces at the

Chapter 6: Data Input and Output 43

beginnings of �elds are not trimmed, consecutive delimiters de�ne empty �elds, and no form
of quoting is allowed.

The NOTABLE and TABLE subcommands are as in DATA LIST FIXED above. NO-
TABLE is the default.

The FILE and END subcommands are as in DATA LIST FIXED above.
The variables to be parsed are given as a single list of variable names. This list must be in-

troduced by a single slash (`/'). The set of variable names may contain format speci�cations
in parentheses (see Section 4.6.4 [Input/Output Formats], page 14). Format speci�cations
apply to all variables back to the previous parenthesized format speci�cation.

In addition, an asterisk may be used to indicate that all variables preceding it are to
have input/output format `F8.0'.

Speci�ed �eld widths are ignored on input, although all normal limits on �eld width
apply, but they are honored on output.

6.3.3 DATA LIST LIST
DATA LIST LIST

[({TAB,'c'}, . . .)]
[{NOTABLE,TABLE}]
FILE='�lename'
END=end var
/var spec. . .

where each var spec takes one of the forms
var list [(type spec)]
var list *

With one exception, DATA LIST LIST is syntactically and semantically equivalent to
DATA LIST FREE. The exception is that each input line is expected to correspond to
exactly one input record. If more or fewer �elds are found on an input line than expected,
an appropriate diagnostic is issued.

6.4 END CASE
END CASE.

END CASE is used only within INPUT PROGRAM to output the current case. See
Section 6.7 [INPUT PROGRAM], page 44, for details.

6.5 END FILE
END FILE.

END FILE is used only within INPUT PROGRAM to terminate the current input
program. See Section 6.7 [INPUT PROGRAM], page 44.

6.6 FILE HANDLE
FILE HANDLE handle name

/NAME='�lename'

Chapter 6: Data Input and Output 44

/MODE={CHARACTER,IMAGE}
/LRECL=rec len
/TABWIDTH=tab width

Use FILE HANDLE to associate a �le handle name with a �le and its attributes, so that
later commands can refer to the �le by its handle name. Because names of text �les can
be speci�ed directly on commands that access �les, FILE HANDLE is only needed when a
�le is not an ordinary �le containing lines of text. However, FILE HANDLE may be used
even for text �les, and it may be easier to specify a �le's name once and later refer to it by
an abstract handle.

Specify the �le handle name as an identi�er. Any given identi�er may only appear once
in a PSPP run. File handles may not be reassigned to a di�erent �le. The �le handle name
must immediately follow the FILE HANDLE command name.

The NAME subcommand speci�es the name of the �le associated with the handle. It is
the only required subcommand.

MODE speci�es a �le mode. In CHARACTER mode, the default, the data �le is opened
in ANSI C text mode, so that local end of line conventions are followed, and each text line
is read as one record. In CHARACTER mode, most input programs will expand tabs to
spaces (DATA LIST FREE with explicitly speci�ed delimiters is an exception). By default,
each tab is 4 characters wide, but an alternate width may be speci�ed on TABWIDTH. A
tab width of 0 suppresses tab expansion entirely.

By contrast, in BINARY mode, the data �le is opened in ANSI C binary mode and
records are a �xed length. In BINARY mode, LRECL speci�es the record length in bytes,
with a default of 1024. Tab characters are never expanded to spaces in binary mode.

6.7 INPUT PROGRAM
INPUT PROGRAM.
. . . input commands . . .
END INPUT PROGRAM.

INPUT PROGRAM. . .END INPUT PROGRAM speci�es a complex input program.
By placing data input commands within INPUT PROGRAM, PSPP programs can take
advantage of more complex �le structures than available with only DATA LIST.

The �rst sort of extended input program is to simply put multiple DATA LIST commands
within the INPUT PROGRAM. This will cause all of the data �les to be read in parallel.
Input will stop when end of �le is reached on any of the data �les.

Transformations, such as conditional and looping constructs, can also be included within
INPUT PROGRAM. These can be used to combine input from several data �les in more
complex ways. However, input will still stop when end of �le is reached on any of the data
�les.

To prevent INPUT PROGRAM from terminating at the �rst end of �le, use the END
subcommand on DATA LIST. This subcommand takes a variable name, which should be a
numeric scratch variable (see Section 4.6.5 [Scratch Variables], page 19). (It need not be a
scratch variable but otherwise the results can be surprising.) The value of this variable is
set to 0 when reading the data �le, or 1 when end of �le is encountered.

Chapter 6: Data Input and Output 45

Two additional commands are useful in conjunction with INPUT PROGRAM. END
CASE is the �rst. Normally each loop through the INPUT PROGRAM structure produces
one case. END CASE controls exactly when cases are output. When END CASE is used,
looping from the end of INPUT PROGRAM to the beginning does not cause a case to be
output.

END FILE is the second. When the END subcommand is used on DATA LIST, there
is no way for the INPUT PROGRAM construct to stop looping, so an in�nite loop results.
END FILE, when executed, stops the
ow of input data and passes out of the INPUT
PROGRAM structure.

All this is very confusing. A few examples should help to clarify.
INPUT PROGRAM.

DATA LIST NOTABLE FILE='a.data'/X 1-10.
DATA LIST NOTABLE FILE='b.data'/Y 1-10.

END INPUT PROGRAM.
LIST.

The example above reads variable X from �le `a.data' and variable Y from �le `b.data'.
If one �le is shorter than the other then the extra data in the longer �le is ignored.

INPUT PROGRAM.
NUMERIC #A #B.

DO IF NOT #A.
DATA LIST NOTABLE END=#A FILE='a.data'/X 1-10.

END IF.
DO IF NOT #B.

DATA LIST NOTABLE END=#B FILE='b.data'/Y 1-10.
END IF.
DO IF #A AND #B.

END FILE.
END IF.
END CASE.

END INPUT PROGRAM.
LIST.

The above example reads variable X from `a.data' and variable Y from `b.data'. If
one �le is shorter than the other then the missing �eld is set to the system-missing value
alongside the present value for the remaining length of the longer �le.

INPUT PROGRAM.
NUMERIC #A #B.

DO IF #A.
DATA LIST NOTABLE END=#B FILE='b.data'/X 1-10.
DO IF #B.

END FILE.
ELSE.

END CASE.
END IF.

Chapter 6: Data Input and Output 46

ELSE.
DATA LIST NOTABLE END=#A FILE='a.data'/X 1-10.
DO IF NOT #A.

END CASE.
END IF.

END IF.
END INPUT PROGRAM.
LIST.

The above example reads data from �le `a.data', then from `b.data', and concatenates
them into a single active �le.

INPUT PROGRAM.
NUMERIC #EOF.

LOOP IF NOT #EOF.
DATA LIST NOTABLE END=#EOF FILE='a.data'/X 1-10.
DO IF NOT #EOF.

END CASE.
END IF.

END LOOP.

COMPUTE #EOF = 0.
LOOP IF NOT #EOF.

DATA LIST NOTABLE END=#EOF FILE='b.data'/X 1-10.
DO IF NOT #EOF.

END CASE.
END IF.

END LOOP.

END FILE.
END INPUT PROGRAM.
LIST.

The above example does the same thing as the previous example, in a di�erent way.
INPUT PROGRAM.

LOOP #I=1 TO 50.
COMPUTE X=UNIFORM(10).
END CASE.

END LOOP.
END FILE.

END INPUT PROGRAM.
LIST/FORMAT=NUMBERED.

The above example causes an active �le to be created consisting of 50 random variates
between 0 and 10.

6.8 LIST
LIST

Chapter 6: Data Input and Output 47

/VARIABLES=var list
/CASES=FROM start index TO end index BY incr index
/FORMAT={UNNUMBERED,NUMBERED} {WRAP,SINGLE}

{NOWEIGHT,WEIGHT}
The LIST procedure prints the values of speci�ed variables to the listing �le.
The VARIABLES subcommand speci�es the variables whose values are to be printed.

Keyword VARIABLES is optional. If VARIABLES subcommand is not speci�ed then all
variables in the active �le are printed.

The CASES subcommand can be used to specify a subset of cases to be printed. Specify
FROM and the case number of the �rst case to print, TO and the case number of the last
case to print, and BY and the number of cases to advance between printing cases, or any
subset of those settings. If CASES is not speci�ed then all cases are printed.

The FORMAT subcommand can be used to change the output format. NUMBERED
will print case numbers along with each case; UNNUMBERED, the default, causes the
case numbers to be omitted. The WRAP and SINGLE settings are currently not used.
WEIGHT will cause case weights to be printed along with variable values; NOWEIGHT,
the default, causes case weights to be omitted from the output.

Case numbers start from 1. They are counted after all transformations have been con-
sidered.

LIST attempts to �t all the values on a single line. If needed to make them �t, variable
names are displayed vertically. If values cannot �t on a single line, then a multi-line format
will be used.

LIST is a procedure. It causes the data to be read.

6.9 MATRIX DATA
MATRIX DATA

/VARIABLES=var list
/FILE='�lename'

/FORMAT={LIST,FREE} {LOWER,UPPER,FULL} {DIAGONAL,NODIAGONAL}
/SPLIT={new var,var list}
/FACTORS=var list
/CELLS=n cells
/N=n

/CONTENTS={N VECTOR,N SCALAR,N MATRIX,MEAN,STDDEV,COUNT,MSE,
DFE,MAT,COV,CORR,PROX}

MATRIX DATA command reads square matrices in one of several textual formats. MA-
TRIX DATA clears the dictionary and replaces it and reads a data �le.

Use VARIABLES to specify the variables that form the rows and columns of the matrices.
You may not specify a variable named VARNAME_. You should specify VARIABLES �rst.

Specify the �le to read on FILE, either as a �le name string or a �le handle (see Section 6.6
[FILE HANDLE], page 43). If FILE is not speci�ed then matrix data must immediately
follow MATRIX DATA with a BEGIN DATA. . .END DATA construct (see Section 6.1
[BEGIN DATA], page 39).

Chapter 6: Data Input and Output 48

The FORMAT subcommand speci�es how the matrices are formatted. LIST, the default,
indicates that there is one line per row of matrix data; FREE allows single matrix rows
to be broken across multiple lines. This is analogous to the di�erence between DATA
LIST FREE and DATA LIST LIST (see Section 6.3 [DATA LIST], page 39). LOWER, the
default, indicates that the lower triangle of the matrix is given; UPPER indicates the upper
triangle; and FULL indicates that the entire matrix is given. DIAGONAL, the default,
indicates that the diagonal is part of the data; NODIAGONAL indicates that it is omitted.
DIAGONAL/NODIAGONAL have no e�ect when FULL is speci�ed.

The SPLIT subcommand is used to specify SPLIT FILE variables for the input matrices
(see Section 10.6 [SPLIT FILE], page 74). Specify either a single variable not speci�ed on
VARIABLES, or one or more variables that are speci�ed on VARIABLES. In the former
case, the SPLIT values are not present in the data and ROWTYPE may not be speci�ed
on VARIABLES. In the latter case, the SPLIT values are present in the data.

Specify a list of factor variables on FACTORS. Factor variables must also be listed
on VARIABLES. Factor variables are used when there are some variables where, for each
possible combination of their values, statistics on the matrix variables are included in the
data.

If FACTORS is speci�ed and ROWTYPE is not speci�ed on VARIABLES, the CELLS
subcommand is required. Specify the number of factor variable combinations that are given.
For instance, if factor variable A has 2 values and factor variable B has 3 values, specify 6.

The N subcommand speci�es a population number of observations. When N is speci�ed,
one N record is output for each SPLIT FILE.

Use CONTENTS to specify what sort of information the matrices include. Each pos-
sible option is described in more detail below. When ROWTYPE is speci�ed on VARI-
ABLES, CONTENTS is optional; otherwise, if CONTENTS is not speci�ed then /CON-
TENTS=CORR is assumed.
N
N VECTOR

Number of observations as a vector, one value for each variable.
N SCALAR

Number of observations as a single value.
N MATRIX

Matrix of counts.
MEAN Vector of means.
STDDEV Vector of standard deviations.
COUNT Vector of counts.
MSE Vector of mean squared errors.
DFE Vector of degrees of freedom.
MAT Generic matrix.
COV Covariance matrix.
CORR Correlation matrix.

Chapter 6: Data Input and Output 49

PROX Proximities matrix.
The exact semantics of the matrices read by MATRIX DATA are complex. Right now

MATRIX DATA isn't too useful due to a lack of procedures accepting or producing related
data, so these semantics aren't documented. Later, they'll be described here in detail.

6.10 NEW FILE
NEW FILE.

NEW FILE command clears the current active �le.

6.11 PRINT
PRINT

OUTFILE='�lename'
RECORDS=n lines
{NOTABLE,TABLE}
/[line no] arg. . .

arg takes one of the following forms:
'string' [start-end]
var list start-end [type spec]
var list (fortran spec)
var list *

The PRINT transformation writes variable data to an output �le. PRINT is executed
when a procedure causes the data to be read. Follow PRINT by EXECUTE to print variable
data without invoking a procedure (see Section 13.8 [EXECUTE], page 90).

All PRINT subcommands are optional.
The OUTFILE subcommand speci�es the �le to receive the output. The �le may be

a �le name as a string or a �le handle (see Section 6.6 [FILE HANDLE], page 43). If
OUTFILE is not present then output will be sent to PSPP's output listing �le.

The RECORDS subcommand speci�es the number of lines to be output. The number
of lines may optionally be surrounded by parentheses.

TABLE will cause the PRINT command to output a table to the listing �le that describes
what it will print to the output �le. NOTABLE, the default, suppresses this output table.

Introduce the strings and variables to be printed with a slash (`/'). Optionally, the slash
may be followed by a number indicating which output line will be speci�ed. In the absence
of this line number, the next line number will be speci�ed. Multiple lines may be speci�ed
using multiple slashes with the intended output for a line following its respective slash.

Literal strings may be printed. Specify the string itself. Optionally the string may be
followed by a column number or range of column numbers, specifying the location on the
line for the string to be printed. Otherwise, the string will be printed at the current position
on the line.

Variables to be printed can be speci�ed in the same ways as available for DATA LIST
FIXED (see Section 6.3.1 [DATA LIST FIXED], page 39). In addition, a variable list may
be followed by an asterisk (`*'), which indicates that the variables should be printed in their

Chapter 6: Data Input and Output 50

dictionary print formats, separated by spaces. A variable list followed by a slash or the end
of command will be interpreted the same way.

If a FORTRAN type speci�cation is used to move backwards on the current line, then
text is written at that point on the line, the line will be truncated to that length, although
additional text being added will again extend the line to that length.

6.12 PRINT EJECT
PRINT EJECT

OUTFILE='�lename'
RECORDS=n lines
{NOTABLE,TABLE}
/[line no] arg. . .

arg takes one of the following forms:
'string' [start-end]
var list start-end [type spec]
var list (fortran spec)
var list *

PRINT EJECT writes data to an output �le. Before the data is written, the current
page in the listing �le is ejected.

See Section 6.11 [PRINT], page 49, for more information on syntax and usage.

6.13 PRINT SPACE
PRINT SPACE OUTFILE='�lename' n lines.

PRINT SPACE prints one or more blank lines to an output �le.
The OUTFILE subcommand is optional. It may be used to direct output to a �le

speci�ed by �le name as a string or �le handle (see Section 6.6 [FILE HANDLE], page 43).
If OUTFILE is not speci�ed then output will be directed to the listing �le.

n lines is also optional. If present, it is an expression (see Chapter 5 [Expressions],
page 21) specifying the number of blank lines to be printed. The expression must evaluate
to a nonnegative value.

6.14 REREAD
REREAD FILE=handle COLUMN=column.

The REREAD transformation allows the previous input line in a data �le already pro-
cessed by DATA LIST or another input command to be re-read for further processing.

The FILE subcommand, which is optional, is used to specify the �le to have its line
re-read. The �le must be speci�ed in the form of a �le handle (see Section 6.6 [FILE
HANDLE], page 43). If FILE is not speci�ed then the last �le speci�ed on DATA LIST
will be assumed (last �le speci�ed lexically, not in terms of
ow-of-control).

By default, the line re-read is re-read in its entirety. With the COLUMN subcommand,
a pre�x of the line can be exempted from re-reading. Specify an expression (see Chapter 5

Chapter 6: Data Input and Output 51

[Expressions], page 21) evaluating to the �rst column that should be included in the re-read
line. Columns are numbered from 1 at the left margin.

Issuing REREAD multiple times will not back up in the data �le. Instead, it will re-read
the same line multiple times.

6.15 REPEATING DATA
REPEATING DATA

/STARTS=start-end
/OCCURS=n occurs
/FILE='�lename'
/LENGTH=length
/CONTINUED[=cont start-cont end]
/ID=id start-id end=id var
/{TABLE,NOTABLE}
/DATA=var spec. . .

where each var spec takes one of the forms
var list start-end [type spec]
var list (fortran spec)

REPEATING DATA parses groups of data repeating in a uniform format, possibly with
several groups on a single line. Each group of data corresponds with one case. REPEATING
DATA may only be used within an INPUT PROGRAM structure (see Section 6.7 [INPUT
PROGRAM], page 44). When used with DATA LIST, it can be used to parse groups of
cases that share a subset of variables but di�er in their other data.

The STARTS subcommand is required. Specify a range of columns, using literal numbers
or numeric variable names. This range speci�es the columns on the �rst line that are used
to contain groups of data. The ending column is optional. If it is not speci�ed, then the
record width of the input �le is used. For the inline �le (see Section 6.1 [BEGIN DATA],
page 39) this is 80 columns; for a �le with �xed record widths it is the record width; for
other �les it is 1024 characters by default.

The OCCURS subcommand is required. It must be a number or the name of a numeric
variable. Its value is the number of groups present in the current record.

The DATA subcommand is required. It must be the last subcommand speci�ed. It is
used to specify the data present within each repeating group. Column numbers are speci�ed
relative to the beginning of a group at column 1. Data is speci�ed in the same way as with
DATA LIST FIXED (see Section 6.3.1 [DATA LIST FIXED], page 39).

All other subcommands are optional.
FILE speci�es the �le to read, either a �le name as a string or a �le handle (see Section 6.6

[FILE HANDLE], page 43). If FILE is not present then the default is the last �le handle
used on DATA LIST (lexically, not in terms of
ow of control).

By default REPEATING DATA will output a table describing how it will parse the input
data. Specifying NOTABLE will disable this behavior; specifying TABLE will explicitly
enable it.

Chapter 6: Data Input and Output 52

The LENGTH subcommand speci�es the length in characters of each group. If it is not
present then length is inferred from the DATA subcommand. LENGTH can be a number
or a variable name.

Normally all the data groups are expected to be present on a single line. Use the
CONTINUED command to indicate that data can be continued onto additional lines. If
data on continuation lines starts at the left margin and continues through the entire �eld
width, no column speci�cations are necessary on CONTINUED. Otherwise, specify the
possible range of columns in the same way as on STARTS.

When data groups are continued from line to line, it is easy for cases to get out of sync
through careless hand editing. The ID subcommand allows a case identi�er to be present on
each line of repeating data groups. REPEATING DATA will check for the same identi�er
on each line and report mismatches. Specify the range of columns that the identi�er will
occupy, followed by an equals sign (`=') and the identi�er variable name. The variable must
already have been declared with NUMERIC or another command.

REPEATING DATA should be the last command given within an INPUT PROGRAM.
It should not be enclosed within a LOOP structure (see Section 11.4 [LOOP], page 78).
Use DATA LIST before, not after, REPEATING DATA.

6.16 WRITE
WRITE

OUTFILE='�lename'
RECORDS=n lines
{NOTABLE,TABLE}
/[line no] arg. . .

arg takes one of the following forms:
'string' [start-end]
var list start-end [type spec]
var list (fortran spec)
var list *

WRITE writes text or binary data to an output �le.
See Section 6.11 [PRINT], page 49, for more information on syntax and usage. The main

di�erence between PRINT and WRITE is that WRITE uses write formats by default, where
PRINT uses print formats.

The sole additional di�erence is that if WRITE is used to send output to a binary �le,
carriage control characters will not be output. See Section 6.6 [FILE HANDLE], page 43,
for information on how to declare a �le as binary.

Chapter 7: System Files and Portable Files 53

7 System Files and Portable Files

The commands in this chapter read, write, and examine system �les and portable �les.

7.1 APPLY DICTIONARY
APPLY DICTIONARY FROM='�lename'.

APPLY DICTIONARY applies the variable labels, value labels, and missing values from
variables in a system �le to corresponding variables in the active �le. In some cases it also
updates the weighting variable.

Specify a system �le with a �le name string or as a �le handle (see Section 6.6 [FILE
HANDLE], page 43). The dictionary in the system �le will be read, but it will not replace
the active �le dictionary. The system �le's data will not be read.

Only variables with names that exist in both the active �le and the system �le are
considered. Variables with the same name but di�erent types (numeric, string) will cause
an error message. Otherwise, the system �le variables' attributes will replace those in their
matching active �le variables, as described below.

If a system �le variable has a variable label, then it will replace the active �le variable's
variable label. If the system �le variable does not have a variable label, then the active �le
variable's variable label, if any, will be retained.

If the active �le variable is numeric or short string, then value labels and missing values,
if any, will be copied to the active �le variable. If the system �le variable does not have value
labels or missing values, then those in the active �le variable, if any, will not be disturbed.

Finally, weighting of the active �le is updated (see Section 10.8 [WEIGHT], page 75).
If the active �le has a weighting variable, and the system �le does not, or if the weighting
variable in the system �le does not exist in the active �le, then the active �le weighting
variable, if any, is retained. Otherwise, the weighting variable in the system �le becomes
the active �le weighting variable.

APPLY DICTIONARY takes e�ect immediately. It does not read the active �le. The
system �le is not modi�ed.

7.2 EXPORT
EXPORT

/OUTFILE='�lename'
/DROP=var list
/KEEP=var list
/RENAME=(src names=target names). . .

The EXPORT procedure writes the active �le dictionary and data to a speci�ed portable
�le.

The OUTFILE subcommand, which is the only required subcommand, speci�es the
portable �le to be written as a �le name string or a �le handle (see Section 6.6 [FILE
HANDLE], page 43).

DROP, KEEP, and RENAME follow the same format as the SAVE procedure (see Sec-
tion 7.6 [SAVE], page 56).

EXPORT is a procedure. It causes the active �le to be read.

Chapter 7: System Files and Portable Files 54

7.3 GET
GET

/FILE='�lename'
/DROP=var list
/KEEP=var list
/RENAME=(src names=target names). . .

GET clears the current dictionary and active �le and replaces them with the dictionary
and data from a speci�ed system �le.

The FILE subcommand is the only required subcommand. Specify the system �le to be
read as a string �le name or a �le handle (see Section 6.6 [FILE HANDLE], page 43).

By default, all the variables in a system �le are read. The DROP subcommand can
be used to specify a list of variables that are not to be read. By contrast, the KEEP
subcommand can be used to specify variable that are to be read, with all other variables
not read.

Normally variables in a system �le retain the names that they were saved under. Use
the RENAME subcommand to change these names. Specify, within parentheses, a list of
variable names followed by an equals sign (`=') and the names that they should be renamed
to. Multiple parenthesized groups of variable names can be included on a single RENAME
subcommand. Variables' names may be swapped using a RENAME subcommand of the
form `/RENAME=(A B=B A)'.

Alternate syntax for the RENAME subcommand allows the parentheses to be elimi-
nated. When this is done, only a single variable may be renamed at once. For instance,
`/RENAME=A=B'. This alternate syntax is deprecated.

DROP, KEEP, and RENAME are performed in left-to-right order. They each may be
present any number of times. GET never modi�es a system �le on disk. Only the active
�le read from the system �le is a�ected by these subcommands.

GET does not cause the data to be read, only the dictionary. The data is read later,
when a procedure is executed.

7.4 IMPORT
IMPORT

/FILE='�lename'
/TYPE={COMM,TAPE}
/DROP=var list
/KEEP=var list
/RENAME=(src names=target names). . .

The IMPORT transformation clears the active �le dictionary and data and replaces them
with a dictionary and data from a portable �le on disk.

The FILE subcommand, which is the only required subcommand, speci�es the portable
�le to be read as a �le name string or a �le handle (see Section 6.6 [FILE HANDLE],
page 43).

The TYPE subcommand is currently not used.
DROP, KEEP, and RENAME follow the syntax used by GET (see Section 7.3 [GET],

page 54).

Chapter 7: System Files and Portable Files 55

IMPORT does not cause the data to be read, only the dictionary. The data is read later,
when a procedure is executed.

7.5 MATCH FILES
MATCH FILES

/{FILE,TABLE}={*,'�lename'}
/DROP=var list
/KEEP=var list
/RENAME=(src names=target names). . .
/IN=var name

/BY var list
/FIRST=var name
/LAST=var name
/MAP

MATCH FILES merges one or more system �les, optionally including the active �le.
Records with the same values for BY variables are combined into a single record. Records
with di�erent values are output in order. Thus, multiple sorted system �les are combined
into a single sorted system �le based on the value of the BY variables. The results of the
merge become the new active �le.

The BY subcommand speci�es a list of variables that are used to match records from
each of the system �les. Variables speci�ed must exist in all the �les speci�ed on FILE and
TABLE. BY should usually be speci�ed. If TABLE or IN is used then BY is required.

Specify FILE with a system �le as a �le name string or �le handle (see Section 6.6 [FILE
HANDLE], page 43), or with an asterisk (`*') to indicate the current active �le. The �les
speci�ed on FILE are merged together based on the BY variables, or combined case-by-case
if BY is not speci�ed. Normally at least two FILE subcommands should be speci�ed.

Specify TABLE with a system �le to use it as a table lookup �le. Records in table lookup
�les are not used up after they've been used once. This means that data in table lookup
�les can correspond to any number of records in FILE �les. Table lookup �les correspond
to lookup tables in traditional relational database systems. It is incorrect to have records
with duplicate BY values in table lookup �les.

Any number of FILE and TABLE subcommands may be speci�ed. Each instance of FILE
or TABLE can be followed by any sequence of DROP, KEEP, or RENAME subcommands.
These have the same form and meaning as the corresponding subcommands of GET (see
Section 7.3 [GET], page 54), but apply only to variables in the given �le.

Each FILE or TABLE may optionally be followed by an IN subcommand, which creates
a numeric variable with the speci�ed name and format F1.0. The IN variable takes value
1 in a case if the given �le contributed a row to the merged �le, 0 otherwise. The DROP,
KEEP, and RENAME subcommands do not a�ect IN variables.

Variables belonging to �les that are not present for the current case are set to the
system-missing value for numeric variables or spaces for string variables.

FIRST, LAST, and MAP are currently ignored.
MATCH FILES may not be speci�ed following TEMPORARY (see Section 10.7 [TEM-

PORARY], page 75) if the active �le is used as an input source.

Chapter 7: System Files and Portable Files 56

7.6 SAVE
SAVE

/OUTFILE='�lename'
/{COMPRESSED,UNCOMPRESSED}
/DROP=var list
/KEEP=var list
/VERSION=version
/RENAME=(src names=target names). . .

The SAVE procedure causes the dictionary and data in the active �le to be written to a
system �le.

OUTFILE is the only required subcommand. Specify the system �le to be written as a
string �le name or a �le handle (see Section 6.6 [FILE HANDLE], page 43).

The COMPRESS and UNCOMPRESS subcommand determine whether the saved sys-
tem �le is compressed. By default, system �les are compressed. This default can be changed
with the SET command (see Section 13.15 [SET], page 91).

By default, all the variables in the active �le dictionary are written to the system �le.
The DROP subcommand can be used to specify a list of variables not to be written. In
contrast, KEEP speci�es variables to be written, with all variables not speci�ed not written.

Normally variables are saved to a system �le under the same names they have in the
active �le. Use the RENAME subcommand to change these names. Specify, within paren-
theses, a list of variable names followed by an equals sign (`=') and the names that they
should be renamed to. Multiple parenthesized groups of variable names can be included
on a single RENAME subcommand. Variables' names may be swapped using a RENAME
subcommand of the form `/RENAME=(A B=B A)'.

Alternate syntax for the RENAME subcommand allows the parentheses to be elimi-
nated. When this is done, only a single variable may be renamed at once. For instance,
`/RENAME=A=B'. This alternate syntax is deprecated.

DROP, KEEP, and RENAME are performed in left-to-right order. They each may be
present any number of times. SAVE never modi�es the active �le. DROP, KEEP, and
RENAME only a�ect the system �le written to disk.

The VERSION subcommand speci�es the version of the �le format. Valid versions are
'3' and '3x'. Version 3x system �les are identical to version 3 �les, except that variable
names greater than 8 bytes will be truncated. The default version is 3. The VERSION
subcommand is optional. There is no need ever to use it.

SAVE causes the data to be read. It is a procedure.

7.7 SYSFILE INFO
SYSFILE INFO FILE='�lename'.

SYSFILE INFO reads the dictionary in a system �le and displays the information in its
dictionary.

Specify a �le name or �le handle. SYSFILE INFO reads that �le as a system �le and
displays information on its dictionary.

SYSFILE INFO does not a�ect the current active �le.

Chapter 7: System Files and Portable Files 57

7.8 XSAVE
XSAVE

/OUTFILE='�lename'
/{COMPRESSED,UNCOMPRESSED}
/DROP=var list
/KEEP=var list
/RENAME=(src names=target names). . .

The XSAVE transformation writes the active �le dictionary and data to a system �le
stored on disk.

XSAVE is a transformation, not a procedure. It is executed when the data is read by a
procedure or procedure-like command. In all other respects, XSAVE is identical to SAVE.
See Section 7.6 [SAVE], page 56, for more information on syntax and usage.

Chapter 8: Manipulating variables 58

8 Manipulating variables

The variables in the active �le dictionary are important. There are several utility functions
for examining and adjusting them.

8.1 ADD VALUE LABELS
ADD VALUE LABELS

/var list value 'label' [value 'label']. . .
ADD VALUE LABELS has the same syntax and purpose as VALUE LABELS (see

Section 8.11 [VALUE LABELS], page 61), but it does not clear value labels from the
variables before adding the ones speci�ed.

8.2 DISPLAY
DISPLAY {NAMES,INDEX,LABELS,VARIABLES,DICTIONARY,SCRATCH}

[SORTED] [var list]
DISPLAY displays requested information on variables. Variables can optionally be sorted

alphabetically. The entire dictionary or just speci�ed variables can be described.
One of the following keywords can be present:

NAMES The variables' names are displayed.

INDEX The variables' names are displayed along with a value describing their position
within the active �le dictionary.

LABELS Variable names, positions, and variable labels are displayed.

VARIABLES
Variable names, positions, print and write formats, and missing values are dis-
played.

DICTIONARY
Variable names, positions, print and write formats, missing values, variable
labels, and value labels are displayed.

SCRATCH
Varible names are displayed, for scratch variables only (see Section 4.6.5
[Scratch Variables], page 19).

If SORTED is speci�ed, then the variables are displayed in ascending order based on
their names; otherwise, they are displayed in the order that they occur in the active �le
dictionary.

8.3 DISPLAY VECTORS
DISPLAY VECTORS.

DISPLAY VECTORS lists all the currently declared vectors.

Chapter 8: Manipulating variables 59

8.4 FORMATS
FORMATS var list (fmt spec).

FORMATS set both print and write formats for the speci�ed numeric variables to the
speci�ed format speci�cation. See Section 4.6.4 [Input/Output Formats], page 14.

Specify a list of variables followed by a format speci�cation in parentheses. The print
and write formats of the speci�ed variables will be changed.

Additional lists of variables and formats may be included if they are delimited by a slash
(`/').

FORMATS takes e�ect immediately. It is not a�ected by conditional and looping struc-
tures such as DO IF or LOOP.

8.5 LEAVE
LEAVE var list.

LEAVE prevents the speci�ed variables from being reinitialized whenever a new case is
processed.

Normally, when a data �le is processed, every variable in the active �le is initialized
to the system-missing value or spaces at the beginning of processing for each case. When
a variable has been speci�ed on LEAVE, this is not the case. Instead, that variable is
initialized to 0 (not system-missing) or spaces for the �rst case. After that, it retains its
value between cases.

This becomes useful for counters. For instance, in the example below the variable SUM
maintains a running total of the values in the ITEM variable.

DATA LIST /ITEM 1-3.
COMPUTE SUM=SUM+ITEM.
PRINT /ITEM SUM.
LEAVE SUM
BEGIN DATA.
123
404
555
999
END DATA.

Partial output from this example:
123 123.00
404 527.00
555 1082.00
999 2081.00

It is best to use LEAVE command immediately before invoking a procedure command,
because the left status of variables is reset by certain transformations|for instance, COM-
PUTE and IF. Left status is also reset by all procedure invocations.

Chapter 8: Manipulating variables 60

8.6 MISSING VALUES
MISSING VALUES var list (missing values).

missing values takes one of the following forms:
num1
num1, num2
num1, num2, num3
num1 THRU num2
num1 THRU num2, num3
string1
string1, string2
string1, string2, string3

As part of a range, LO or LOWEST may take the place of num1;
HI or HIGHEST may take the place of num2.

MISSING VALUES sets user-missing values for numeric and short string variables. Long
string variables may not have missing values.

Specify a list of variables, followed by a list of their user-missing values in parentheses.
Up to three discrete values may be given, or, for numeric variables only, a range of values
optionally accompanied by a single discrete value. Ranges may be open-ended on one end,
indicated through the use of the keyword LO or LOWEST or HI or HIGHEST.

The MISSING VALUES command takes e�ect immediately. It is not a�ected by condi-
tional and looping constructs such as DO IF or LOOP.

8.7 MODIFY VARS
MODIFY VARS

/REORDER={FORWARD,BACKWARD} {POSITIONAL,ALPHA} (var list). . .
/RENAME=(old names=new names). . .
/{DROP,KEEP}=var list
/MAP

MODIFY VARS reorders, renames, and deletes variables in the active �le.
At least one subcommand must be speci�ed, and no subcommand may be speci�ed more

than once. DROP and KEEP may not both be speci�ed.
The REORDER subcommand changes the order of variables in the active �le. Specify

one or more lists of variable names in parentheses. By default, each list of variables is
rearranged into the speci�ed order. To put the variables into the reverse of the speci�ed
order, put keyword BACKWARD before the parentheses. To put them into alphabetical
order in the dictionary, specify keyword ALPHA before the parentheses. BACKWARD and
ALPHA may also be combined.

To rename variables in the active �le, specify RENAME, an equals sign (`='), and lists
of the old variable names and new variable names separated by another equals sign within
parentheses. There must be the same number of old and new variable names. Each old
variable is renamed to the corresponding new variable name. Multiple parenthesized groups
of variables may be speci�ed.

The DROP subcommand deletes a speci�ed list of variables from the active �le.

Chapter 8: Manipulating variables 61

The KEEP subcommand keeps the speci�ed list of variables in the active �le. Any
unlisted variables are deleted from the active �le.

MAP is currently ignored.
If either DROP or KEEP is speci�ed, the data is read; otherwise it is not.
MODIFY VARS may not be speci�ed following TEMPORARY (see Section 10.7 [TEM-

PORARY], page 75).

8.8 NUMERIC
NUMERIC /var list [(fmt spec)].

NUMERIC explicitly declares new numeric variables, optionally setting their output
formats.

Specify a slash (`/'), followed by the names of the new numeric variables. If you wish to
set their output formats, follow their names by an output format speci�cation in parentheses
(see Section 4.6.4 [Input/Output Formats], page 14); otherwise, the default is F8.2.

Variables created with NUMERIC are initialized to the system-missing value.

8.9 PRINT FORMATS
PRINT FORMATS var list (fmt spec).

PRINT FORMATS sets the print formats for the speci�ed numeric variables to the
speci�ed format speci�cation.

Its syntax is identical to that of FORMATS (see Section 8.4 [FORMATS], page 59), but
PRINT FORMATS sets only print formats, not write formats.

8.10 RENAME VARIABLES
RENAME VARIABLES (old names=new names). . . .

RENAME VARIABLES changes the names of variables in the active �le. Specify lists
of the old variable names and new variable names, separated by an equals sign (`='), within
parentheses. There must be the same number of old and new variable names. Each old
variable is renamed to the corresponding new variable name. Multiple parenthesized groups
of variables may be speci�ed.

RENAME VARIABLES takes e�ect immediately. It does not cause the data to be read.
RENAME VARIABLES may not be speci�ed following TEMPORARY (see Section 10.7

[TEMPORARY], page 75).

8.11 VALUE LABELS
VALUE LABELS

/var list value 'label' [value 'label']. . .
VALUE LABELS allows values of numeric and short string variables to be associated

with labels. In this way, a short value can stand for a long value.
To set up value labels for a set of variables, specify the variable names after a slash (`/'),

followed by a list of values and their associated labels, separated by spaces. Long string
variables may not be speci�ed.

Chapter 8: Manipulating variables 62

Before VALUE LABELS is executed, any existing value labels are cleared from the
variables speci�ed. Use ADD VALUE LABELS (see Section 8.1 [ADD VALUE LABELS],
page 58) to add value labels without clearing those already present.

8.12 STRING
STRING /var list (fmt spec).

STRING creates new string variables for use in transformations.
Specify a slash (`/'), followed by the names of the string variables to create and the de-

sired output format speci�cation in parentheses (see Section 4.6.4 [Input/Output Formats],
page 14). Variable widths are implicitly derived from the speci�ed output formats.

Created variables are initialized to spaces.

8.13 VARIABLE LABELS
VARIABLE LABELS

var list 'var label'
[/var list 'var label']
.
.
.
[/var list 'var label']

VARIABLE LABELS associates explanatory names with variables. This name, called a
variable label, is displayed by statistical procedures.

To assign a variable label to a group of variables, specify a list of variable names and
the variable label as a string. To assign di�erent labels to di�erent variables in the same
command, preceed the subsequent variable list with a slash (`/').

8.14 VARIABLE ALIGNMENT
VARIABLE ALIGNMENT

var list (LEFT | RIGHT | CENTER)
[/var list (LEFT | RIGHT | CENTER)]
.
.
.
[/var list (LEFT | RIGHT | CENTER)]

VARIABLE ALIGNMENT sets the alignment of variables for display editing purposes.
This only has e�ect for third party software. It does not a�ect the display of variables in
the PSPP output.

8.15 VARIABLE WIDTH
VARIABLE WIDTH

var list (width)
[/var list (width)]
.

Chapter 8: Manipulating variables 63

.

.
[/var list (width)]

VARIABLE WIDTH sets the column width of variables for display editing purposes.
This only a�ects third party software. It does not a�ect the display of variables in the
PSPP output.

8.16 VARIABLE LEVEL
VARIABLE LEVEL

var list (SCALE | NOMINAL | ORDINAL)
[/var list (SCALE | NOMINAL | ORDINAL)]
.
.
.
[/var list (SCALE | NOMINAL | ORDINAL)]

VARIABLE LEVEL sets the measurement level of variables. Currently, this has no
e�ect except for certain third party software.

8.17 VECTOR
Two possible syntaxes:

VECTOR vec name=var list.
VECTOR vec name list(count).

VECTOR allows a group of variables to be accessed as if they were consecutive members
of an array with a vector(index) notation.

To make a vector out of a set of existing variables, specify a name for the vector followed
by an equals sign (`=') and the variables that belong in the vector.

To make a vector and create variables at the same time, specify one or more vector
names followed by a count in parentheses. This will cause variables named vec1 through
veccount to be created as numeric variables with print and write format F8.2. Variable
names including numeric su�xes may not exceed 64 characters in length, and none of the
variables may exist prior to VECTOR.

All the variables in a vector must be the same type.
Vectors created with VECTOR disappear after any procedure or procedure-like com-

mand is executed. The variables contained in the vectors remain, unless they are scratch
variables (see Section 4.6.5 [Scratch Variables], page 19).

Variables within a vector may be referenced in expressions using vector(index) syntax.

8.18 WRITE FORMATS
WRITE FORMATS var list (fmt spec).

WRITE FORMATS sets the write formats for the speci�ed numeric variables to the
speci�ed format speci�cation. Its syntax is identical to that of FORMATS (see Section 8.4
[FORMATS], page 59), but WRITE FORMATS sets only write formats, not print formats.

Chapter 9: Data transformations 64

9 Data transformations

The PSPP procedures examined in this chapter manipulate data and prepare the active �le
for later analyses. They do not produce output, as a rule.

9.1 AGGREGATE
AGGREGATE

OUTFILE={*,'�lename'}
/PRESORTED
/DOCUMENT
/MISSING=COLUMNWISE
/BREAK=var list
/dest var['label']. . .=agr func(src vars, args. . .). . .

AGGREGATE summarizes groups of cases into single cases. Cases are divided into
groups that have the same values for one or more variables called break variables. Several
functions are available for summarizing case contents.

The OUTFILE subcommand is required and must appear �rst. Specify a system �le by
�le name string or �le handle (see Section 6.6 [FILE HANDLE], page 43). The aggregated
cases are written to this �le. If `*' is speci�ed, then the aggregated cases replace the active
�le.

By default, the active �le will be sorted based on the break variables before aggregation
takes place. If the active �le is already sorted or otherwise grouped in terms of the break
variables, specify PRESORTED to save time.

Specify DOCUMENT to copy the documents from the active �le into the aggregate �le
(see Section 13.2 [DOCUMENT], page 89). Otherwise, the aggregate �le will not contain
any documents, even if the aggregate �le replaces the active �le.

Normally, only a single case (for SD and SD., two cases) need be non-missing in each
group for the aggregate variable to be non-missing. Specifying /MISSING=COLUMNWISE
inverts this behavior, so that the aggregate variable becomes missing if any aggregated value
is missing.

If PRESORTED, DOCUMENT, or MISSING are speci�ed, they must appear between
OUTFILE and BREAK.

At least one break variable must be speci�ed on BREAK, a required subcommand. The
values of these variables are used to divide the active �le into groups to be summarized. In
addition, at least one dest var must be speci�ed.

One or more sets of aggregation variables must be speci�ed. Each set comprises a list
of aggregation variables, an equals sign (`='), the name of an aggregation function (see the
list below), and a list of source variables in parentheses. Some aggregation functions expect
additional arguments following the source variable names.

Aggregation variables typically are created with no variable label, value labels, or missing
values. Their default print and write formats depend on the aggregation function used, with
details given in the table below. A variable label for an aggregation variable may be speci�ed
just after the variable's name in the aggregation variable list.

Chapter 9: Data transformations 65

Each set must have exactly as many source variables as aggregation variables. Each
aggregation variable receives the results of applying the speci�ed aggregation function to
the corresponding source variable. The MEAN, SD, and SUM aggregation functions may
only be applied to numeric variables. All the rest may be applied to numeric and short and
long string variables.

The available aggregation functions are as follows:
FGT(var name, value)

Fraction of values greater than the speci�ed constant. The default format is
F5.3.

FIN(var name, low, high)
Fraction of values within the speci�ed inclusive range of constants. The default
format is F5.3.

FLT(var name, value)
Fraction of values less than the speci�ed constant. The default format is F5.3.

FIRST(var name)
First non-missing value in break group. The aggregation variable receives the
complete dictionary information from the source variable. The sort performed
by AGGREGATE (and by SORT CASES) is stable, so that the �rst case with
particular values for the break variables before sorting will also be the �rst case
in that break group after sorting.

FOUT(var name, low, high)
Fraction of values strictly outside the speci�ed range of constants. The default
format is F5.3.

LAST(var name)
Last non-missing value in break group. The aggregation variable receives the
complete dictionary information from the source variable. The sort performed
by AGGREGATE (and by SORT CASES) is stable, so that the last case with
particular values for the break variables before sorting will also be the last case
in that break group after sorting.

MAX(var name)
Maximum value. The aggregation variable receives the complete dictionary
information from the source variable.

MEAN(var name)
Arithmetic mean. Limited to numeric values. The default format is F8.2.

MIN(var name)
Minimum value. The aggregation variable receives the complete dictionary
information from the source variable.

N(var name)
Number of non-missing values. The default format is F7.0 if weighting is not
enabled, F8.2 if it is (see Section 10.8 [WEIGHT], page 75).

N Number of cases aggregated to form this group. The default format is F7.0 if
weighting is not enabled, F8.2 if it is (see Section 10.8 [WEIGHT], page 75).

Chapter 9: Data transformations 66

NMISS(var name)
Number of missing values. The default format is F7.0 if weighting is not enabled,
F8.2 if it is (see Section 10.8 [WEIGHT], page 75).

NU(var name)
Number of non-missing values. Each case is considered to have a weight of
1, regardless of the current weighting variable (see Section 10.8 [WEIGHT],
page 75). The default format is F7.0.

NU Number of cases aggregated to form this group. Each case is considered to have
a weight of 1, regardless of the current weighting variable. The default format
is F7.0.

NUMISS(var name)
Number of missing values. Each case is considered to have a weight of 1,
regardless of the current weighting variable. The default format is F7.0.

PGT(var name, value)
Percentage between 0 and 100 of values greater than the speci�ed constant.
The default format is F5.1.

PIN(var name, low, high)
Percentage of values within the speci�ed inclusive range of constants. The
default format is F5.1.

PLT(var name, value)
Percentage of values less than the speci�ed constant. The default format is
F5.1.

POUT(var name, low, high)
Percentage of values strictly outside the speci�ed range of constants. The de-
fault format is F5.1.

SD(var name)
Standard deviation of the mean. Limited to numeric values. The default format
is F8.2.

SUM(var name)
Sum. Limited to numeric values. The default format is F8.2.

Aggregation functions compare string values in terms of internal character codes. On
most modern computers, this is a form of ASCII.

The aggregation functions listed above exclude all user-missing values from calculations.
To include user-missing values, insert a period (`.') at the end of the function name. (e.g.
`SUM.'). (Be aware that specifying such a function as the last token on a line will cause the
period to be interpreted as the end of the command.)

AGGREGATE both ignores and cancels the current SPLIT FILE settings (see Sec-
tion 10.6 [SPLIT FILE], page 74).

Chapter 9: Data transformations 67

9.2 AUTORECODE
AUTORECODE VARIABLES=src vars INTO dest vars

/DESCENDING
/PRINT

The AUTORECODE procedure considers the n values that a variable takes on and maps
them onto values 1. . .n on a new numeric variable.

Subcommand VARIABLES is the only required subcommand and must come �rst. Spec-
ify VARIABLES, an equals sign (`='), a list of source variables, INTO, and a list of target
variables. There must the same number of source and target variables. The target variables
must not already exist.

By default, increasing values of a source variable (for a string, this is based on character
code comparisons) are recoded to increasing values of its target variable. To cause increasing
values of a source variable to be recoded to decreasing values of its target variable (n down
to 1), specify DESCENDING.

PRINT is currently ignored.
AUTORECODE is a procedure. It causes the data to be read.

9.3 COMPUTE
COMPUTE variable = expression.
or

COMPUTE vector(index) = expression.
COMPUTE assigns the value of an expression to a target variable. For each case, the

expression is evaluated and its value assigned to the target variable. Numeric and short
and long string variables may be assigned. When a string expression's width di�ers from
the target variable's width, the string result of the expression is truncated or padded with
spaces on the right as necessary. The expression and variable types must match.

For numeric variables only, the target variable need not already exist. Numeric variables
created by COMPUTE are assigned an F8.2 output format. String variables must be
declared before they can be used as targets for COMPUTE.

The target variable may be speci�ed as an element of a vector (see Section 8.17 [VEC-
TOR], page 63). In this case, a vector index expression must be speci�ed in parentheses
following the vector name. The index expression must evaluate to a numeric value that,
after rounding down to the nearest integer, is a valid index for the named vector.

Using COMPUTE to assign to a variable speci�ed on LEAVE (see Section 8.5 [LEAVE],
page 59) resets the variable's left state. Therefore, LEAVE should be speci�ed following
COMPUTE, not before.

COMPUTE is a transformation. It does not cause the active �le to be read.
When COMPUTE is speci�ed following TEMPORARY (see Section 10.7 [TEMPO-

RARY], page 75), the LAG function may not be used (see [LAG], page 31).

9.4 COUNT
COUNT var name = var. . . (value. . .).

Chapter 9: Data transformations 68

Each value takes one of the following forms:
number
string
num1 THRU num2
MISSING
SYSMIS

In addition, num1 and num2 can be LO or LOWEST, or HI or HIGHEST,
respectively.

COUNT creates or replaces a numeric target variable that counts the occurrence of a
criterion value or set of values over one or more test variables for each case.

The target variable values are always nonnegative integers. They are never missing.
The target variable is assigned an F8.2 output format. See Section 4.6.4 [Input/Output
Formats], page 14. Any variables, including long and short string variables, may be test
variables.

User-missing values of test variables are treated just like any other values. They are not
treated as system-missing values. User-missing values that are criterion values or inside
ranges of criterion values are counted as any other values. However (for numeric variables),
keyword MISSING may be used to refer to all system- and user-missing values.

COUNT target variables are assigned values in the order speci�ed. In the command
COUNT A=A B(1) /B=A B(2)., the following actions occur:
� The number of occurrences of 1 between A and B is counted.
� A is assigned this value.
� The number of occurrences of 1 between B and the new value of A is counted.
� B is assigned this value.

Despite this ordering, all COUNT criterion variables must exist before the procedure is
executed|they may not be created as target variables earlier in the command! Break such
a command into two separate commands.

The examples below may help to clarify.
A. Assuming Q0, Q2, . . . , Q9 are numeric variables, the following commands:

1. Count the number of times the value 1 occurs through these variables for each case
and assigns the count to variable QCOUNT.

2. Print out the total number of times the value 1 occurs throughout all cases using
DESCRIPTIVES. See Section 12.1 [DESCRIPTIVES], page 80, for details.
COUNT QCOUNT=Q0 TO Q9(1).
DESCRIPTIVES QCOUNT /STATISTICS=SUM.

B. Given these same variables, the following commands:
1. Count the number of valid values of these variables for each case and assigns the

count to variable QVALID.
2. Multiplies each value of QVALID by 10 to obtain a percentage of valid values, using

COMPUTE. See Section 9.3 [COMPUTE], page 67, for details.
3. Print out the percentage of valid values across all cases, using DESCRIPTIVES.

See Section 12.1 [DESCRIPTIVES], page 80, for details.

Chapter 9: Data transformations 69

COUNT QVALID=Q0 TO Q9 (LO THRU HI).
COMPUTE QVALID=QVALID*10.
DESCRIPTIVES QVALID /STATISTICS=MEAN.

9.5 FLIP
FLIP /VARIABLES=var list /NEWNAMES=var name.

FLIP transposes rows and columns in the active �le. It causes cases to be swapped with
variables, and vice versa.

All variables in the transposed active �le are numeric. String variables take on the
system-missing value in the transposed �le.

No subcommands are required. If speci�ed, the VARIABLES subcommand selects vari-
ables to be transformed into cases, and variables not speci�ed are discarded. If the VARI-
ABLES subcommand is omitted, all variables are selected for transposition.

The variables speci�ed by NEWNAMES, which must be a string variable, is used to
give names to the variables created by FLIP. Only the �rst 8 characters of the variable are
used. If NEWNAMES is not speci�ed then the default is a variable named CASE LBL,
if it exists. If it does not then the variables created by FLIP are named VAR000 through
VAR999, then VAR1000, VAR1001, and so on.

When a NEWNAMES variable is available, the names must be canonicalized before
becoming variable names. Invalid characters are replaced by letter `V' in the �rst position,
or by `_' in subsequent positions. If the name thus generated is not unique, then numeric
extensions are added, starting with 1, until a unique name is found or there are no remaining
possibilities. If the latter occurs then the FLIP operation aborts.

The resultant dictionary contains a CASE LBL variable, a string variable of width 8,
which stores the names of the variables in the dictionary before the transposition. Variables
names longer than 8 characters are truncated. If the active �le is subsequently transposed
using FLIP, this variable can be used to recreate the original variable names.

FLIP honors N OF CASES (see Section 10.2 [N OF CASES], page 72). It ignores TEM-
PORARY (see Section 10.7 [TEMPORARY], page 75), so that \temporary" transformations
become permanent.

9.6 IF
IF condition variable=expression.
or

IF condition vector(index)=expression.
The IF transformation conditionally assigns the value of a target expression to a target

variable, based on the truth of a test expression.
Specify a boolean-valued expression (see Chapter 5 [Expressions], page 21) to be tested

following the IF keyword. This expression is evaluated for each case. If the value is true,
then the value of the expression is computed and assigned to the speci�ed variable. If the
value is false or missing, nothing is done. Numeric and short and long string variables may
be assigned. When a string expression's width di�ers from the target variable's width, the
string result of the expression is truncated or padded with spaces on the right as necessary.
The expression and variable types must match.

Chapter 9: Data transformations 70

The target variable may be speci�ed as an element of a vector (see Section 8.17 [VEC-
TOR], page 63). In this case, a vector index expression must be speci�ed in parentheses
following the vector name. The index expression must evaluate to a numeric value that,
after rounding down to the nearest integer, is a valid index for the named vector.

Using IF to assign to a variable speci�ed on LEAVE (see Section 8.5 [LEAVE], page 59)
resets the variable's left state. Therefore, LEAVE should be speci�ed following IF, not before.

When IF is speci�ed following TEMPORARY (see Section 10.7 [TEMPORARY],
page 75), the LAG function may not be used (see [LAG], page 31).

9.7 RECODE
RECODE var list (src value. . .=dest value). . . [INTO var list].

src value may take the following forms:
number
string
num1 THRU num2
MISSING
SYSMIS
ELSE

Open-ended ranges may be speci�ed using LO or LOWEST for num1
or HI or HIGHEST for num2.

dest value may take the following forms:
num
string
SYSMIS
COPY

RECODE translates data from one range of values to another, via
exible user-speci�ed
mappings. Data may be remapped in-place or copied to new variables. Numeric, short
string, and long string data can be recoded.

Specify the list of source variables, followed by one or more mapping speci�cations each
enclosed in parentheses. If the data is to be copied to new variables, specify INTO, then
the list of target variables. String target variables must already have been declared using
STRING or another transformation, but numeric target variables can be created on the
y.
There must be exactly as many target variables as source variables. Each source variable
is remapped into its corresponding target variable.

When INTO is not used, the input and output variables must be of the same type.
Otherwise, string values can be recoded into numeric values, and vice versa. When this is
done and there is no mapping for a particular value, either a value consisting of all spaces
or the system-missing value is assigned, depending on variable type.

Mappings are considered from left to right. The �rst src value that matches the value of
the source variable causes the target variable to receive the value indicated by the dest value.
Literal number, string, and range src value's should be self-explanatory. MISSING as a
src value matches any user- or system-missing value. SYSMIS matches the system missing

Chapter 9: Data transformations 71

value only. ELSE is a catch-all that matches anything. It should be the last src value
speci�ed.

Numeric and string dest value's should also be self-explanatory. COPY causes the input
values to be copied to the output. This is only value if the source and target variables are
of the same type. SYSMIS indicates the system-missing value.

If the source variables are strings and the target variables are numeric, then there is
one additional mapping available: (CONVERT), which must be the last speci�ed mapping.
CONVERT causes a number speci�ed as a string to be converted to a numeric value. If the
string cannot be parsed as a number, then the system-missing value is assigned.

Multiple recodings can be speci�ed on a single RECODE invocation. Introduce addi-
tional recodings with a slash (`/') to separate them from the previous recodings.

9.8 SORT CASES
SORT CASES BY var list.

SORT CASES sorts the active �le by the values of one or more variables.
Specify BY and a list of variables to sort by. By default, variables are sorted in ascending

order. To override sort order, specify (D) or (DOWN) after a list of variables to get
descending order, or (A) or (UP) for ascending order. These apply to the entire list of
variables preceding them.

The sort algorithms used by SORT CASES are stable. That is, records that have equal
values of the sort variables will have the same relative order before and after sorting. As a
special case, re-sorting an already sorted �le will not a�ect the ordering of cases.

SORT CASES is a procedure. It causes the data to be read.
SORT CASES attempts to sort the entire active �le in main memory. If workspace is

exhausted, it falls back to a merge sort algorithm that involves creates numerous temporary
�les.

SORT CASES may not be speci�ed following TEMPORARY.

Chapter 10: Selecting data for analysis 72

10 Selecting data for analysis

This chapter documents PSPP commands that temporarily or permanently select data
records from the active �le for analysis.

10.1 FILTER
FILTER BY var name.
FILTER OFF.

FILTER allows a boolean-valued variable to be used to select cases from the data stream
for processing.

To set up �ltering, specify BY and a variable name. Keyword BY is optional but
recommended. Cases which have a zero or system- or user-missing value are excluded from
analysis, but not deleted from the data stream. Cases with other values are analyzed. To
�lter based on a di�erent condition, use transformations such as COMPUTE or RECODE
to compute a �lter variable of the required form, then specify that variable on FILTER.

FILTER OFF turns o� case �ltering.
Filtering takes place immediately before cases pass to a procedure for analysis. Only

one �lter variable may be active at a time. Normally, case �ltering continues until it is
explicitly turned o� with FILTER OFF. However, if FILTER is placed after TEMPORARY,
it �lters only the next procedure or procedure-like command.

10.2 N OF CASES
N [OF CASES] num of cases [ESTIMATED].

Sometimes you may want to disregard cases of your input. N can do this. N 100 tells
PSPP to disregard all cases after the �rst 100.

If the value speci�ed for N is greater than the number of cases read in, the value is
ignored.

N does not discard cases or prevent them from being read. It just causes cases beyond
the last one speci�ed to be ignored by data analysis commands.

A later N command can increase or decrease the number of cases selected. (To select
all the cases without knowing how many there are, specify a very high number: 100000 or
whatever you think is large enough.)

Transformation procedures performed after N is executed do cause cases to be discarded.
SAMPLE, PROCESS IF, and SELECT IF have precedence over N|the same results

are obtained by both of the following fragments, given the same random number seeds:
...set up, read in data...
N 100.
SAMPLE .5.
...analyze data...

...set up, read in data...
SAMPLE .5.
N 100.

Chapter 10: Selecting data for analysis 73

...analyze data...
Both fragments above �rst randomly sample approximately half of the cases, then select

the �rst 100 of those sampled.
N with the ESTIMATED keyword gives an estimated number of cases before DATA LIST

or another command to read in data. ESTIMATED never limits the number of cases processed
by procedures. PSPP currently does not make use of case count estimates.

When N is speci�ed after TEMPORARY, it a�ects only the next procedure (see Sec-
tion 10.7 [TEMPORARY], page 75).

10.3 PROCESS IF
PROCESS IF expression.

PROCESS IF temporarily eliminates cases from the data stream. Its e�ects are active
only through the execution of the next procedure or procedure-like command.

Specify a boolean expression (see Chapter 5 [Expressions], page 21). If the value of the
expression is true for a particular case, the case will be analyzed. If the expression has a
false or missing value, then the case will be deleted from the data stream for this procedure
only.

Regardless of its placement relative to other commands, PROCESS IF always takes e�ect
immediately before data passes to the procedure. Only one PROCESS IF command may
be in e�ect at any given time.

The e�ects of PROCESS IF are similar, but not identical, to the e�ects of executing
TEMPORARY, then SELECT IF (see Section 10.5 [SELECT IF], page 74).

The �ltering performed by PROCESS IF takes place immediately before cases pass to a
procedure for analysis. Because PROCESS IF a�ects only a single procedure, its placement
relative to TEMPORARY is unimportant.

PROCESS IF is deprecated. It is included for compatibility with old command �les.
New syntax �les should use SELECT IF or FILTER instead.

10.4 SAMPLE
SAMPLE num1 [FROM num2].

SAMPLE randomly samples a proportion of the cases in the active �le. Unless it follows
TEMPORARY, it operates as a transformation, permanently removing cases from the active
�le.

The proportion to sample can be expressed as a single number between 0 and 1. If k is
the number speci�ed, and N is the number of currently-selected cases in the active �le, then
after SAMPLE k., approximately k*N cases will be selected.

The proportion to sample can also be speci�ed in the style SAMPLE m FROM N . With this
style, cases are selected as follows:
1. If N is equal to the number of currently-selected cases in the active �le, exactly m cases

will be selected.
2. If N is greater than the number of currently-selected cases in the active �le, an equiv-

alent proportion of cases will be selected.

Chapter 10: Selecting data for analysis 74

3. If N is less than the number of currently-selected cases in the active, exactly m cases
will be selected from the �rst N cases in the active �le.

SAMPLE and SELECT IF are performed in the order speci�ed by the syntax �le.
SAMPLE is always performed before N OF CASES, regardless of ordering in the syntax

�le (see Section 10.2 [N OF CASES], page 72).
The same values for SAMPLE may result in di�erent samples. To obtain the same

sample, use the SET command to set the random number seed to the same value before
each SAMPLE. Di�erent samples may still result when the �le is processed on systems with
di�ering endianness or
oating-point formats. By default, the random number seed is based
on the system time.

10.5 SELECT IF
SELECT IF expression.

SELECT IF selects cases for analysis based on the value of a boolean expression. Cases
not selected are permanently eliminated from the active �le, unless TEMPORARY is in
e�ect (see Section 10.7 [TEMPORARY], page 75).

Specify a boolean expression (see Chapter 5 [Expressions], page 21). If the value of the
expression is true for a particular case, the case will be analyzed. If the expression has a
false or missing value, then the case will be deleted from the data stream.

Place SELECT IF as early in the command �le as possible. Cases that are deleted early
can be processed more e�ciently in time and space.

When SELECT IF is speci�ed following TEMPORARY (see Section 10.7 [TEMPO-
RARY], page 75), the LAG function may not be used (see [LAG], page 31).

10.6 SPLIT FILE
SPLIT FILE [{LAYERED, SEPARATE}] BY var list.
SPLIT FILE OFF.

SPLIT FILE allows multiple sets of data present in one data �le to be analyzed separately
using single statistical procedure commands.

Specify a list of variable names to analyze multiple sets of data separately. Groups
of adjacent cases having the same values for these variables are analyzed by statistical
procedure commands as one group. An independent analysis is carried out for each group
of cases, and the variable values for the group are printed along with the analysis.

When a list of variable names is speci�ed, one of the keywords LAYERED or SEPARATE
may also be speci�ed. If provided, either keyword are ignored.

Groups are formed only by adjacent cases. To create a split using a variable where like
values are not adjacent in the working �le, you should �rst sort the data by that variable
(see Section 9.8 [SORT CASES], page 71).

Specify OFF to disable SPLIT FILE and resume analysis of the entire active �le as a
single group of data.

When SPLIT FILE is speci�ed after TEMPORARY, it a�ects only the next procedure
(see Section 10.7 [TEMPORARY], page 75).

Chapter 10: Selecting data for analysis 75

10.7 TEMPORARY
TEMPORARY.

TEMPORARY is used to make the e�ects of transformations following its execution
temporary. These transformations will a�ect only the execution of the next procedure or
procedure-like command. Their e�ects will not be saved to the active �le.

The only speci�cation on TEMPORARY is the command name.
TEMPORARY may not appear within a DO IF or LOOP construct. It may appear only

once between procedures and procedure-like commands.
Scratch variables cannot be used following TEMPORARY.
An example may help to clarify:

DATA LIST /X 1-2.
BEGIN DATA.
2
4
10
15
20
24
END DATA.
COMPUTE X=X/2.
TEMPORARY.
COMPUTE X=X+3.
DESCRIPTIVES X.
DESCRIPTIVES X.

The data read by the �rst DESCRIPTIVES are 4, 5, 8, 10.5, 13, 15. The data read by
the �rst DESCRIPTIVES are 1, 2, 5, 7.5, 10, 12.

10.8 WEIGHT
WEIGHT BY var name.
WEIGHT OFF.

WEIGHT assigns cases varying weights, changing the frequency distribution of the active
�le. Execution of WEIGHT is delayed until data have been read.

If a variable name is speci�ed, WEIGHT causes the values of that variable to be used as
weighting factors for subsequent statistical procedures. Use of keyword BY is optional but
recommended. Weighting variables must be numeric. Scratch variables may not be used
for weighting (see Section 4.6.5 [Scratch Variables], page 19).

When OFF is speci�ed, subsequent statistical procedures will weight all cases equally.
A positive integer weighting factor w on a case will yield the same statistical output as

would replicating the case w times. A weighting factor of 0 is treated for statistical purposes
as if the case did not exist in the input. Weighting values need not be integers, but negative
and system-missing values for the weighting variable are interpreted as weighting factors of
0. User-missing values are not treated specially.

When WEIGHT is speci�ed after TEMPORARY, it a�ects only the next procedure (see
Section 10.7 [TEMPORARY], page 75).

Chapter 10: Selecting data for analysis 76

WEIGHT does not cause cases in the active �le to be replicated in memory.

Chapter 11: Conditional and Looping Constructs 77

11 Conditional and Looping Constructs

This chapter documents PSPP commands used for conditional execution, looping, and
ow
of control.

11.1 BREAK
BREAK.

BREAK terminates execution of the innermost currently executing LOOP construct.
BREAK is allowed only inside LOOP. . .END LOOP. See Section 11.4 [LOOP], page 78,

for more details.

11.2 DO IF
DO IF condition.

. . .
[ELSE IF condition.

. . .
]. . .
[ELSE.

. . .]
END IF.

DO IF allows one of several sets of transformations to be executed, depending on user-
speci�ed conditions.

If the speci�ed boolean expression evaluates as true, then the block of code following
DO IF is executed. If it evaluates as missing, then none of the code blocks is executed. If
it is false, then the boolean expression on the �rst ELSE IF, if present, is tested in turn,
with the same rules applied. If all expressions evaluate to false, then the ELSE code block
is executed, if it is present.

When DO IF or ELSE IF is speci�ed following TEMPORARY (see Section 10.7 [TEM-
PORARY], page 75), the LAG function may not be used (see [LAG], page 31).

11.3 DO REPEAT
DO REPEAT repvar name=expansion. . . .

. . .
END REPEAT [PRINT].

expansion takes one of the following forms:
var list
num or range. . .
'string'. . .

num or range takes one of the following forms:
number
num1 TO num2

Chapter 11: Conditional and Looping Constructs 78

DO REPEAT repeats a block of code, textually substituting di�erent variables, numbers,
or strings into the block with each repetition.

Specify a repeat variable name followed by an equals sign (`=') and the list of replace-
ments. Replacements can be a list of variables (which may be existing variables or new
variables or a combination thereof), of numbers, or of strings. When new variable names
are speci�ed, DO REPEAT creates them as numeric variables. When numbers are speci�ed,
runs of integers may be indicated with TO notation, for instance `1 TO 5' and `1 2 3 4 5'
would be equivalent. There is no equivalent notation for string values.

Multiple repeat variables can be speci�ed. When this is done, each variable must have
the same number of replacements.

The code within DO REPEAT is repeated as many times as there are replacements for
each variable. The �rst time, the �rst value for each repeat variable is substituted; the
second time, the second value for each repeat variable is substituted; and so on.

Repeat variable substitutions work like macros. They take place anywhere in a line
that the repeat variable name occurs as a token, including command and subcommand
names. For this reason it is not a good idea to select words commonly used in command
and subcommand names as repeat variable identi�ers.

If PRINT is speci�ed on END REPEAT, the commands after substitutions are made
are printed to the listing �le, pre�xed by a plus sign (`+').

11.4 LOOP
LOOP [index var=start TO end [BY incr]] [IF condition].

. . .
END LOOP [IF condition].

LOOP iterates a group of commands. A number of termination options are o�ered.
Specify index var to make that variable count from one value to another by a particular

increment. index var must be a pre-existing numeric variable. start, end, and incr are
numeric expressions (see Chapter 5 [Expressions], page 21.)

During the �rst iteration, index var is set to the value of start. During each successive
iteration, index var is increased by the value of incr. If end > start, then the loop terminates
when index var > end; otherwise it terminates when index var < end. If incr is not speci�ed
then it defaults to +1 or -1 as appropriate.

If end > start and incr < 0, or if end < start and incr > 0, then the loop is never executed.
index var is nevertheless set to the value of start.

Modifying index var within the loop is allowed, but it has no e�ect on the value of
index var in the next iteration.

Specify a boolean expression for the condition on LOOP to cause the loop to be executed
only if the condition is true. If the condition is false or missing before the loop contents are
executed the �rst time, the loop contents are not executed at all.

If index and condition clauses are both present on LOOP, the index clause is always
evaluated �rst.

Specify a boolean expression for the condition on END LOOP to cause the loop to
terminate if the condition is not true after the enclosed code block is executed. The condition
is evaluated at the end of the loop, not at the beginning.

Chapter 11: Conditional and Looping Constructs 79

If the index clause and both condition clauses are not present, then the loop is executed
MXLOOPS (see Section 13.15 [SET], page 91) times.

BREAK also terminates LOOP execution (see Section 11.1 [BREAK], page 77).
Loop index variables are by default reset to system-missing from one case to another,

not left, unless a scratch variable is used as index. When loops are nested, this is usually
undesired behavior, which can be corrected with LEAVE (see Section 8.5 [LEAVE], page 59)
or by using a scratch variable as the loop index.

When LOOP or END LOOP is speci�ed following TEMPORARY (see Section 10.7
[TEMPORARY], page 75), the LAG function may not be used (see [LAG], page 31).

Chapter 12: Statistics 80

12 Statistics

This chapter documents the statistical procedures that PSPP supports so far.

12.1 DESCRIPTIVES
DESCRIPTIVES

/VARIABLES=var list
/MISSING={VARIABLE,LISTWISE} {INCLUDE,NOINCLUDE}
/FORMAT={LABELS,NOLABELS} {NOINDEX,INDEX} {LINE,SERIAL}
/SAVE
/STATISTICS={ALL,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,

SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,DEFAULT,
SESKEWNESS,SEKURTOSIS}

/SORT={NONE,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,SKEWNESS,
RANGE,MINIMUM,MAXIMUM,SUM,SESKEWNESS,SEKURTOSIS,NAME}

{A,D}
The DESCRIPTIVES procedure reads the active �le and outputs descriptive statistics

requested by the user. In addition, it can optionally compute Z-scores.
The VARIABLES subcommand, which is required, speci�es the list of variables to be

analyzed. Keyword VARIABLES is optional.
All other subcommands are optional:
The MISSING subcommand determines the handling of missing variables. If INCLUDE

is set, then user-missing values are included in the calculations. If NOINCLUDE is set,
which is the default, user-missing values are excluded. If VARIABLE is set, then missing
values are excluded on a variable by variable basis; if LISTWISE is set, then the entire case
is excluded whenever any value in that case has a system-missing or, if INCLUDE is set,
user-missing value.

The FORMAT subcommand a�ects the output format. Currently the LA-
BELS/NOLABELS and NOINDEX/INDEX settings are not used. When SERIAL is set,
both valid and missing number of cases are listed in the output; when NOSERIAL is set,
only valid cases are listed.

The SAVE subcommand causes DESCRIPTIVES to calculate Z scores for all the spec-
i�ed variables. The Z scores are saved to new variables. Variable names are generated by
trying �rst the original variable name with Z prepended and truncated to a maximum of 8
characters, then the names ZSC000 through ZSC999, STDZ00 through STDZ09, ZZZZ00
through ZZZZ09, ZQZQ00 through ZQZQ09, in that sequence. In addition, Z score variable
names can be speci�ed explicitly on VARIABLES in the variable list by enclosing them in
parentheses after each variable.

The STATISTICS subcommand speci�es the statistics to be displayed:
ALL All of the statistics below.
MEAN Arithmetic mean.
SEMEAN Standard error of the mean.
STDDEV Standard deviation.

Chapter 12: Statistics 81

VARIANCE Variance.
KURTOSIS Kurtosis and standard error of the kurtosis.
SKEWNESS Skewness and standard error of the skewness.
RANGE Range.
MINIMUM Minimum value.
MAXIMUM Maximum value.
SUM Sum.
DEFAULT Mean, standard deviation of the mean, minimum, maximum.
SEKURTOSIS

Standard error of the kurtosis.
SESKEWNESS

Standard error of the skewness.
The SORT subcommand speci�es how the statistics should be sorted. Most of the

possible values should be self-explanatory. NAME causes the statistics to be sorted by
name. By default, the statistics are listed in the order that they are speci�ed on the
VARIABLES subcommand. The A and D settings request an ascending or descending sort
order, respectively.

12.2 FREQUENCIES
FREQUENCIES

/VARIABLES=var list
/FORMAT={TABLE,NOTABLE,LIMIT(limit)}

{STANDARD,CONDENSE,ONEPAGE[(onepage limit)]}
{LABELS,NOLABELS}
{AVALUE,DVALUE,AFREQ,DFREQ}
{SINGLE,DOUBLE}
{OLDPAGE,NEWPAGE}

/MISSING={EXCLUDE,INCLUDE}
/STATISTICS={DEFAULT,MEAN,SEMEAN,MEDIAN,MODE,STDDEV,VARIANCE,

KURTOSIS,SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,
SESKEWNESS,SEKURTOSIS,ALL,NONE}

/NTILES=ntiles
/PERCENTILES=percent. . .

(These options are not currently implemented.)
/BARCHART=. . .
/HISTOGRAM=. . .
/HBAR=. . .
/GROUPED=. . .

(Integer mode.)
/VARIABLES=var list (low,high). . .

Chapter 12: Statistics 82

The FREQUENCIES procedure outputs frequency tables for speci�ed variables. FRE-
QUENCIES can also calculate and display descriptive statistics (including median and
mode) and percentiles.

In the future, FREQUENCIES will also support graphical output in the form of bar
charts and histograms. In addition, it will be able to support percentiles for grouped data.

The VARIABLES subcommand is the only required subcommand. Specify the variables
to be analyzed. In most cases, this is all that is required. This is known as general mode.

Occasionally, one may want to invoke a special mode called integer mode. Normally, in
general mode, PSPP will automatically determine what values occur in the data. In integer
mode, the user speci�es the range of values that the data assumes. To invoke this mode,
specify a range of data values in parentheses, separated by a comma. Data values inside
the range are truncated to the nearest integer, then assigned to that value. If values occur
outside this range, they are discarded.

The FORMAT subcommand controls the output format. It has several possible settings:
� TABLE, the default, causes a frequency table to be output for every variable speci�ed.

NOTABLE prevents them from being output. LIMIT with a numeric argument causes
them to be output except when there are more than the speci�ed number of values in
the table.

� STANDARD frequency tables contain more complete information, but also to take up
more space on the printed page. CONDENSE frequency tables are less informative
but take up less space. ONEPAGE with a numeric argument will output standard
frequency tables if there are the speci�ed number of values or less, condensed tables
otherwise. ONEPAGE without an argument defaults to a threshold of 50 values.

� LABELS causes value labels to be displayed in STANDARD frequency tables. NO-
LABLES prevents this.

� Normally frequency tables are sorted in ascending order by value. This is AVALUE.
DVALUE tables are sorted in descending order by value. AFREQ and DFREQ tables
are sorted in ascending and descending order, respectively, by frequency count.

� SINGLE spaced frequency tables are closely spaced. DOUBLE spaced frequency tables
have wider spacing.

� OLDPAGE and NEWPAGE are not currently used.
The MISSING subcommand controls the handling of user-missing values. When EX-

CLUDE, the default, is set, user-missing values are not included in frequency tables or
statistics. When INCLUDE is set, user-missing are included. System-missing values are
never included in statistics, but are listed in frequency tables.

The available STATISTICS are the same as available in DESCRIPTIVES (see Sec-
tion 12.1 [DESCRIPTIVES], page 80), with the addition of MEDIAN, the data's median
value, and MODE, the mode. (If there are multiple modes, the smallest value is reported.)
By default, the mean, standard deviation of the mean, minimum, and maximum are re-
ported for each variable.

PERCENTILES causes the speci�ed percentiles to be reported. The percentiles should
be presented at a list of numbers between 0 and 100 inclusive. The NTILES subcommand
causes the percentiles to be reported at the boundaries of the data set divided into the
speci�ed number of ranges. For instance, /NTILES=4 would cause quartiles to be reported.

Chapter 12: Statistics 83

12.3 EXAMINE
EXAMINE

VARIABLES=var list [BY factor list]
/STATISTICS={DESCRIPTIVES, EXTREME[(n)], ALL, NONE}

/PLOT={STEMLEAF, BOXPLOT, NPPLOT, SPREADLEVEL(n), HISTOGRAM,
ALL, NONE}
/CINTERVAL n
/COMPARE={GROUPS,VARIABLES}
/ID={case number, var name}
/{TOTAL,NOTOTAL}
/PERCENTILE=[value list]={HAVERAGE, WAVERAGE, ROUND, AEM-

PIRICAL, EMPIRICAL }
/MISSING={LISTWISE, PAIRWISE} [{EXCLUDE, INCLUDE}]

[{NOREPORT,REPORT}]

The EXAMINE command is used to test how closely a distribution is to a normal
distribution. It also shows you outliers and extreme values.

The VARIABLES subcommand speci�es the dependent variables and the independent
variable to use as factors for the analysis. Variables listed before the �rst BY keyword are
the dependent variables. The dependent variables may optionally be followed by a list of
factors which tell PSPP how to break down the analysis for each dependent variable. The
format for each factor is

var [BY var].
The STATISTICS subcommand speci�es the analysis to be done. DESCRIPTIVES

will produce a table showing some parametric and non-parametrics statistics. EXTREME
produces a table showing extreme values of the dependent variable. A number in parentheses
determines how many upper and lower extremes to show. The default number is 5.

The PLOT subcommand speci�es which plots are to be produced if any.
The COMPARE subcommand is only relevant if producing boxplots, and it is only

useful there is more than one dependent variable and at least one factor. If /COM-
PARE=GROUPS is speci�ed, then one plot per dependent variable is produced, con-
taining boxplots for all the factors. If /COMPARE=VARIABLES is speci�ed, then one
plot per factor is produced, each each containing one boxplot per dependent variable. If
the /COMPARE subcommand is ommitted, then PSPP uses the default value of /COM-
PARE=GROUPS.

The CINTERVAL subcommand speci�es the con�dence interval to use in calculation of
the descriptives command. The default it 95%.

The PERCENTILES subcommand speci�es which percentiles are to be calculated, and
which algorithm to use for calculating them. The default is to calculate the 5, 10, 25, 50,
75, 90, 95 percentiles using the HAVERAGE algorithm.

The TOTAL and NOTOTAL subcommands are mutually exclusive. If NOTOTAL is
given and factors have been speci�ed in the VARIABLES subcommand, then then statistics
for the unfactored dependent variables are produced in addition to the factored variables.
If there are no factors speci�ed then TOTAL and NOTOTAL have no e�ect.

Chapter 12: Statistics 84

Warning! If many dependent variable are given, or factors are given for which there are
many distinct values, then EXAMINE will produce a very large quantity of output.

12.4 CROSSTABS
CROSSTABS

/TABLES=var list BY var list [BY var list]. . .
/MISSING={TABLE,INCLUDE,REPORT}
/WRITE={NONE,CELLS,ALL}
/FORMAT={TABLES,NOTABLES}

{LABELS,NOLABELS,NOVALLABS}
{PIVOT,NOPIVOT}
{AVALUE,DVALUE}
{NOINDEX,INDEX}
{BOX,NOBOX}

/CELLS={COUNT,ROW,COLUMN,TOTAL,EXPECTED,RESIDUAL,SRESIDUAL,
ASRESIDUAL,ALL,NONE}

/STATISTICS={CHISQ,PHI,CC,LAMBDA,UC,BTAU,CTAU,RISK,GAMMA,D,
KAPPA,ETA,CORR,ALL,NONE}

(Integer mode.)
/VARIABLES=var list (low,high). . .

The CROSSTABS procedure displays crosstabulation tables requested by the user. It
can calculate several statistics for each cell in the crosstabulation tables. In addition, a
number of statistics can be calculated for each table itself.

The TABLES subcommand is used to specify the tables to be reported. Any number
of dimensions is permitted, and any number of variables per dimension is allowed. The
TABLES subcommand may be repeated as many times as needed. This is the only required
subcommand in general mode.

Occasionally, one may want to invoke a special mode called integer mode. Normally, in
general mode, PSPP automatically determines what values occur in the data. In integer
mode, the user speci�es the range of values that the data assumes. To invoke this mode,
specify the VARIABLES subcommand, giving a range of data values in parentheses for
each variable to be used on the TABLES subcommand. Data values inside the range are
truncated to the nearest integer, then assigned to that value. If values occur outside this
range, they are discarded. When it is present, the VARIABLES subcommand must precede
the TABLES subcommand.

In general mode, numeric and string variables may be speci�ed on TABLES. Although
long string variables are allowed, only their initial short-string parts are used. In integer
mode, only numeric variables are allowed.

The MISSING subcommand determines the handling of user-missing values. When set
to TABLE, the default, missing values are dropped on a table by table basis. When set to
INCLUDE, user-missing values are included in tables and statistics. When set to REPORT,
which is allowed only in integer mode, user-missing values are included in tables but marked
with an `M' (for \missing") and excluded from statistical calculations.

Currently the WRITE subcommand is ignored.

Chapter 12: Statistics 85

The FORMAT subcommand controls the characteristics of the crosstabulation tables to
be displayed. It has a number of possible settings:
� TABLES, the default, causes crosstabulation tables to be output. NOTABLES sup-

presses them.
� LABELS, the default, allows variable labels and value labels to appear in the output.

NOLABELS suppresses them. NOVALLABS displays variable labels but suppresses
value labels.

� PIVOT, the default, causes each TABLES subcommand to be displayed in a pivot table
format. NOPIVOT causes the old-style crosstabulation format to be used.

� AVALUE, the default, causes values to be sorted in ascending order. DVALUE asserts
a descending sort order.

� INDEX/NOINDEX is currently ignored.
� BOX/NOBOX is currently ignored.
The CELLS subcommand controls the contents of each cell in the displayed crosstabu-

lation table. The possible settings are:
COUNT Frequency count.
ROW Row percent.
COLUMN Column percent.
TOTAL Table percent.
EXPECTED

Expected value.
RESIDUAL

Residual.
SRESIDUAL

Standardized residual.
ASRESIDUAL

Adjusted standardized residual.
ALL All of the above.
NONE Suppress cells entirely.

`/CELLS' without any settings speci�ed requests COUNT, ROW, COLUMN, and TO-
TAL. If CELLS is not speci�ed at all then only COUNT will be selected.

The STATISTICS subcommand selects statistics for computation:
CHISQ Pearson chi-square, likelihood ratio, Fisher's exact test, continuity correction,

linear-by-linear association.
PHI Phi.
CC Contingency coe�cient.
LAMBDA Lambda.
UC Uncertainty coe�cient.

Chapter 12: Statistics 86

BTAU Tau-b.
CTAU Tau-c.
RISK Risk estimate.
GAMMA Gamma.
D Somers' D.
KAPPA Cohen's Kappa.
ETA Eta.
CORR Spearman correlation, Pearson's r.
ALL All of the above.
NONE No statistics.

Selected statistics are only calculated when appropriate for the statistic. Certain statis-
tics require tables of a particular size, and some statistics are calculated only in integer
mode.

`/STATISTICS' without any settings selects CHISQ. If the STATISTICS subcommand is
not given, no statistics are calculated.

Please note: Currently the implementation of CROSSTABS has the followings bugs:
� Pearson's R (but not Spearman) is o� a little.
� T values for Spearman's R and Pearson's R are wrong.
� Signi�cance of symmetric and directional measures is not calculated.
� Asymmetric ASEs and T values for lambda are wrong.
� ASE of Goodman and Kruskal's tau is not calculated.
� ASE of symmetric somers' d is wrong.
� Approximate T of uncertainty coe�cient is wrong.
Fixes for any of these de�ciencies would be welcomed.

12.5 T-TEST
T-TEST

/MISSING={ANALYSIS,LISTWISE} {EXCLUDE,INCLUDE}
/CRITERIA=CIN(con�dence)

(One Sample mode.)
TESTVAL=test value
/VARIABLES=var list

(Independent Samples mode.)
GROUPS=var(value1 [, value2])
/VARIABLES=var list

Chapter 12: Statistics 87

(Paired Samples mode.)
PAIRS=var list [WITH var list [(PAIRED)]]

The T-TEST procedure outputs tables used in testing hypotheses about means. It
operates in one of three modes:
� One Sample mode.
� Independent Groups mode.
� Paired mode.

Each of these modes are described in more detail below. There are two optional subcom-
mands which are common to all modes.

The /CRITERIA subcommand tells PSPP the con�dence interval used in the tests. The
default value is 0.95.

The MISSING subcommand determines the handling of missing variables. If INCLUDE
is set, then user-missing values are included in the calculations, but system-missing values
are not. If EXCLUDE is set, which is the default, user-missing values are excluded as well
as system-missing values. This is the default.

If LISTWISE is set, then the entire case is excluded from analysis whenever any variable
speci�ed in the /VARIABLES, /PAIRS or /GROUPS subcommands contains a missing
value. If ANALYSIS is set, then missing values are excluded only in the analysis for which
they would be needed. This is the default.

12.5.1 One Sample Mode
The TESTVAL subcommand invokes the One Sample mode. This mode is used to test a
population mean against a hypothesised mean. The value given to the TESTVAL subcom-
mand is the value against which you wish to test. In this mode, you must also use the
/VARIABLES subcommand to tell PSPP which variables you wish to test.

12.5.2 Independent Samples Mode
The GROUPS subcommand invokes Independent Samples mode or `Groups' mode. This
mode is used to test whether two groups of values have the same population mean. In
this mode, you must also use the /VARIABLES subcommand to tell PSPP the dependent
variables you wish to test.

The variable given in the GROUPS subcommand is the independent variable which
determines to which group the samples belong. The values in parentheses are the speci�c
values of the independent variable for each group. If the parentheses are omitted and no
values are given, the default values of 1.0 and 2.0 are assumed.

If the independent variable is numeric, it is acceptable to specify only one value inside the
parentheses. If you do this, cases where the independent variable is less than or equal to this
value belong to the �rst group, and cases greater than this value belong to the second group.
When using this form of the GROUPS subcommand, missing values in the independent
variable are excluded on a listwise basis, regardless of whether /MISSING=LISTWISE was
speci�ed.

Chapter 12: Statistics 88

12.5.3 Paired Samples Mode
The PAIRS subcommand introduces Paired Samples mode. Use this mode when repeated
measures have been taken from the same samples. If the the WITH keyword is omitted, then
tables for all combinations of variables given in the PAIRS subcommand are generated. If
the WITH keyword is given, and the (PAIRED) keyword is also given, then the number of
variables preceding WITH must be the same as the number following it. In this case, tables
for each respective pair of variables are generated. In the event that the WITH keyword is
given, but the (PAIRED) keyword is omitted, then tables for each combination of variable
preceding WITH against variable following WITH are generated.

12.6 ONEWAY
ONEWAY

[/VARIABLES =] var list BY var
/MISSING={ANALYSIS,LISTWISE} {EXCLUDE,INCLUDE}
/CONTRASTS= value1 [, value2] ... [,valueN]
/STATISTICS={DESCRIPTIVES,HOMOGENEITY}

The ONEWAY procedure performs a one-way analysis of variance of variables factored
by a single independent variable. It is used to compare the means of a population divided
into more than two groups.

The variables to be analysed should be given in the VARIABLES subcommand. The list of
variables must be followed by the BY keyword and the name of the independent (or factor)
variable.

You can use the STATISTICS subcommand to tell PSPP to display ancilliary information.
The options accepted are:
� DESCRIPTIVES Displays descriptive statistics about the groups factored by the in-

dependent variable.
� HOMOGENEITY Displays the Levene test of Homogeneity of Variance for the variables

and their groups.
The CONTRASTS subcommand is used when you anticipate certain di�erences between the

groups. The subcommand must be followed by a list of numerals which are the coe�cients
of the groups to be tested. The number of coe�cients must correspond to the number of
distinct groups (or values of the independent variable). If the total sum of the coe�cients
are not zero, then PSPP will display a warning, but will proceed with the analysis. The
CONTRASTS subcommand may be given up to 10 times in order to specify di�erent contrast
tests.

Chapter 13: Utilities 89

13 Utilities

Commands that don't �t any other category are placed here.
Most of these commands are not a�ected by commands like IF and LOOP: they take

e�ect only once, unconditionally, at the time that they are encountered in the input.

13.1 COMMENT
Two possibles syntaxes:

COMMENT comment text
*comment text

COMMENT is ignored. It is used to provide information to the author and other readers
of the PSPP syntax �le.

COMMENT can extend over any number of lines. Don't forget to terminate it with a
dot or a blank line.

13.2 DOCUMENT
DOCUMENT documentary text.

DOCUMENT adds one or more lines of descriptive commentary to the active �le. Doc-
uments added in this way are saved to system �les. They can be viewed using SYSFILE
INFO or DISPLAY DOCUMENTS. They can be removed from the active �le with DROP
DOCUMENTS.

Specify the documentary text following the DOCUMENT keyword. You can extend the
documentary text over as many lines as necessary. Lines are truncated at 80 characters
width. Don't forget to terminate the command with a dot or a blank line.

13.3 DISPLAY DOCUMENTS
DISPLAY DOCUMENTS.

DISPLAY DOCUMENTS displays the documents in the active �le. Each document is
preceded by a line giving the time and date that it was added. See Section 13.2 [DOCU-
MENT], page 89.

13.4 DISPLAY FILE LABEL
DISPLAY FILE LABEL.

DISPLAY FILE LABEL displays the �le label contained in the active �le, if any. See
Section 13.9 [FILE LABEL], page 90.

13.5 DROP DOCUMENTS
DROP DOCUMENTS.

DROP DOCUMENTS removes all documents from the active �le. New documents can
be added with DOCUMENT (see Section 13.2 [DOCUMENT], page 89).

DROP DOCUMENTS changes only the active �le. It does not modify any system �les
stored on disk.

Chapter 13: Utilities 90

13.6 ECHO
ECHO 'arbitrary text' .

Use ECHO to write arbitrary text to the output stream. The text should be enclosed
in quotation marks following the normal rules for string tokens (see Section 4.1 [Tokens],
page 8).

13.7 ERASE
ERASE FILE �le name.

ERASE FILE deletes a �le from the local �lesystem. �le name must be quoted. This
command cannot be used if the SAFER setting is active.

13.8 EXECUTE
EXECUTE.

EXECUTE causes the active �le to be read and all pending transformations to be exe-
cuted.

13.9 FILE LABEL
FILE LABEL �le label.

FILE LABEL provides a title for the active �le. This title will be saved into system �les
and portable �les that are created during this PSPP run.

�le label need not be quoted. If quotes are included, they become part of the �le label.

13.10 FINISH
FINISH.

FINISH terminates the current PSPP session and returns control to the operating sys-
tem.

This command is not valid in interactive mode.

13.11 HOST
HOST.

HOST suspends the current PSPP session and temporarily returns control to the oper-
ating system. This command cannot be used if the SAFER setting is active.

13.12 INCLUDE
Two possible syntaxes:

INCLUDE '�lename'.
@�lename.

INCLUDE causes the PSPP command processor to read an additional command �le as
if it were included bodily in the current command �le.

Include �les may be nested to any depth, up to the limit of available memory.

Chapter 13: Utilities 91

13.13 PERMISSIONS
PERMISSIONS

FILE='�lename'
/PERMISSIONS = {READONLY,WRITEABLE}.

PERMISSIONS changes the permissions of a �le. There is one mandatory subcommand
which speci�es the permissions to which the �le should be changed. If you set a �le's
permission to READONLY, then the �le will become unwritable either by you or anyone
else on the system. If you set the permission to WRITEABLE, then the �le will become
writeable by you; the permissions a�orded to others will be unchanged. This command
cannot be used if the SAFER setting is active.

13.14 QUIT
Two possible syntaxes:

QUIT.
EXIT.

QUIT terminates the current PSPP session and returns control to the operating system.
This command is not valid within a command �le.

13.15 SET
SET

(data input)
/BLANKS={SYSMIS,'.',number}
/DECIMAL={DOT,COMMA}
/FORMAT=fmt spec
/EPOCH={AUTOMATIC,year}

(program input)
/ENDCMD='.'
/NULLINE={ON,OFF}

(interaction)
/CPROMPT='cprompt string'
/DPROMPT='dprompt string'
/ERRORBREAK={OFF,ON}
/MXERRS=max errs
/MXWARNS=max warnings
/PROMPT='prompt'
/VIEWLENGTH={MINIMUM,MEDIAN,MAXIMUM,n lines}
/VIEWWIDTH=n characters

(program execution)
/MEXPAND={ON,OFF}
/MITERATE=max iterations
/MNEST=max nest

Chapter 13: Utilities 92

/MPRINT={ON,OFF}
/MXLOOPS=max loops
/SEED={RANDOM,seed value}
/UNDEFINED={WARN,NOWARN}

(data output)
/CC{A,B,C,D,E}={'npre,pre,suf,nsuf','npre.pre.suf.nsuf'}
/DECIMAL={DOT,COMMA}
/FORMAT=fmt spec

(output routing)
/ECHO={ON,OFF}
/ERRORS={ON,OFF,TERMINAL,LISTING,BOTH,NONE}
/INCLUDE={ON,OFF}
/MESSAGES={ON,OFF,TERMINAL,LISTING,BOTH,NONE}
/PRINTBACK={ON,OFF}
/RESULTS={ON,OFF,TERMINAL,LISTING,BOTH,NONE}

(output activation)
/LISTING={ON,OFF}
/PRINTER={ON,OFF}
/SCREEN={ON,OFF}

(output driver options)
/HEADERS={NO,YES,BLANK}
/LENGTH={NONE,length in lines}
/LISTING=�lename
/MORE={ON,OFF}
/PAGER={OFF,"pager name"}
/WIDTH={NARROW,WIDTH,n characters}

(logging)
/JOURNAL={ON,OFF} [�lename]
/LOG={ON,OFF} [�lename]

(system �les)
/COMPRESSION={ON,OFF}
/SCOMPRESSION={ON,OFF}

(security)
/SAFER=ON

(obsolete settings accepted for compatibility, but ignored)
/AUTOMENU={ON,OFF}
/BEEP={ON,OFF}
/BLOCK='c'
/BOXSTRING={'xxx','xxxxxxxxxxx'}

Chapter 13: Utilities 93

/CASE={UPPER,UPLOW}
/COLOR=. . .
/CPI=cpi value
/DISK={ON,OFF}
/EJECT={ON,OFF}
/HELPWINDOWS={ON,OFF}
/HIGHRES={ON,OFF}
/HISTOGRAM='c'
/LOWRES={AUTO,ON,OFF}
/LPI=lpi value
/MENUS={STANDARD,EXTENDED}
/MXMEMORY=max memory
/PTRANSLATE={ON,OFF}
/RCOLORS=. . .
/RUNREVIEW={AUTO,MANUAL}
/SCRIPTTAB='c'
/TB1={'xxx','xxxxxxxxxxx'}
/TBFONTS='string'
/WORKDEV=drive letter
/WORKSPACE=workspace size
/XSORT={YES,NO}

SET allows the user to adjust several parameters relating to PSPP's execution. Since
there are many subcommands to this command, its subcommands will be examined in
groups.

On subcommands that take boolean values, ON and YES are synonym, and as are OFF
and NO, when used as subcommand values.

The data input subcommands a�ect the way that data is read from data �les. The data
input subcommands are
BLANKS This is the value assigned to an item data item that is empty or contains only

white space. An argument of SYSMIS or '.' will cause the system-missing
value to be assigned to null items. This is the default. Any real value may be
assigned.

DECIMAL
The default DOT setting causes the decimal point character to be `.'. A setting
of COMMA causes the decimal point character to be `,'.

FORMAT Allows the default numeric input/output format to be speci�ed. The default is
F8.2. See Section 4.6.4 [Input/Output Formats], page 14.

EPOCH Speci�es the range of years used when a 2-digit year is read from a data �le or
used in a date construction expression (see Section 5.7.8.4 [Date Construction],
page 29). If a 4-digit year is speci�ed, then 2-digit years are interpreted starting
from that year, known as the epoch. If AUTOMATIC (the default) is speci�ed,
then the epoch begins 69 years before the current date.

Program input subcommands a�ect the way that programs are parsed when they are
typed interactively or run from a script. They are

Chapter 13: Utilities 94

ENDCMD This is a single character indicating the end of a command. The default is `.'.
Don't change this.

NULLINE Whether a blank line is interpreted as ending the current command. The default
is ON.

Interaction subcommands a�ect the way that PSPP interacts with an online user. The
interaction subcommands are
CPROMPT

The command continuation prompt. The default is ` > '.
DPROMPT

Prompt used when expecting data input within BEGIN DATA (see Section 6.1
[BEGIN DATA], page 39). The default is `data> '.

ERRORBREAK
Whether an error causes PSPP to stop processing the current command �le
after �nishing the current command. The default is OFF.

MXERRS The maximum number of errors before PSPP halts processing of the current
command �le. The default is 50.

MXWARNS
The maximum number of warnings + errors before PSPP halts processing the
current command �le. The default is 100.

PROMPT The command prompt. The default is `PSPP> '.
VIEWLENGTH

The length of the screen in lines. MINIMUM means 25 lines, MEDIAN and
MAXIMUM mean 43 lines. Otherwise specify the number of lines. Normally
PSPP should auto-detect your screen size so this shouldn't have to be used.

VIEWWIDTH
The width of the screen in characters. Normally 80 or 132.

Program execution subcommands control the way that PSPP commands execute. The
program execution subcommands are
MEXPAND
MITERATE
MNEST
MPRINT Currently not used.
MXLOOPS

The maximum number of iterations for an uncontrolled loop (see Section 11.4
[LOOP], page 78).

SEED The initial pseudo-random number seed. Set to a real number or to RANDOM,
which will obtain an initial seed from the current time of day.

UNDEFINED
Currently not used.

Data output subcommands a�ect the format of output data. These subcommands are

Chapter 13: Utilities 95

CCA
CCB
CCC
CCD
CCE Set up custom currency formats. The argument is a string which must contain

exactly three commas or exactly three periods. If commas, then the grouping
character for the currency format is `,', and the decimal point character is `.';
if periods, then the situation is reversed.
The commas or periods divide the string into four �elds, which are, in order, the
negative pre�x, pre�x, su�x, and negative su�x. When a value is formatted
using the custom currency format, the pre�x precedes the value formatted and
the su�x follows it. In addition, if the value is negative, the negative pre�x
precedes the pre�x and the negative su�x follows the su�x.

DECIMAL
The default DOT setting causes the decimal point character to be `.'. A setting
of COMMA causes the decimal point character to be `,'.

FORMAT Allows the default numeric input/output format to be speci�ed. The default is
F8.2. See Section 4.6.4 [Input/Output Formats], page 14.

Output routing subcommands a�ect where the output of transformations and procedures
is sent. These subcommands are
ECHO

If turned on, commands are written to the listing �le as they are read from
command �les. The default is OFF.

ERRORS
INCLUDE
MESSAGES
PRINTBACK
RESULTS Currently not used.

Output activation subcommands a�ect whether output devices of particular types are
enabled. These subcommands are
LISTING Enable or disable listing devices.
PRINTER

Enable or disable printer devices.
SCREEN Enable or disable screen devices.

Output driver option subcommands a�ect output drivers' settings. These subcommands
are
HEADERS
LENGTH
LISTING
MORE
PAGER
WIDTH

Chapter 13: Utilities 96

Logging subcommands a�ect logging of commands executed to external �les. These
subcommands are
JOURNAL
LOG Not currently used.

System �le subcommands a�ect the default format of system �les produced by PSPP.
These subcommands are
COMPRESSION

Not currently used.
SCOMPRESSION

Whether system �les created by SAVE or XSAVE are compressed by default.
The default is ON.

Security subcommands a�ect the operations that commands are allowed to perform.
The security subcommands are
SAFER Setting this option disables the following operations:

� The ERASE command.
� The HOST command.
� The PERMISSIONS command.
� Pipe �lenames (�lenames beginning or ending with `|').

Be aware that this setting does not guarantee safety (commands can still over-
write �les, for instance) but it is an improvement. When set, this setting cannot
be reset during the same session, for obvious security reasons.

13.16 SHOW
SHOW

/subcommand

SHOW can be used to display the current state of PSPP's execution parameters. All of
the parameters which can be changed using SET See Section 13.15 [SET], page 91, can be
examined using SHOW, by using a subcommand with the same name. In addition, SHOW
supports the following subcommands:
WARRANTY Show details of the lack of warranty for PSPP.
COPYING Display the terms of PSPP's copyright licence Chapter 2 [License], page 2.

13.17 SUBTITLE
SUBTITLE 'subtitle string'.
or

SUBTITLE subtitle string.
SUBTITLE provides a subtitle to a particular PSPP run. This subtitle appears at the

top of each output page below the title, if headers are enabled on the output device.
Specify a subtitle as a string in quotes. The alternate syntax that did not require quotes

is now obsolete. If it is used then the subtitle is converted to all uppercase.

Chapter 13: Utilities 97

13.18 TITLE
TITLE 'title string'.
or

TITLE title string.
TITLE provides a title to a particular PSPP run. This title appears at the top of each

output page, if headers are enabled on the output device.
Specify a title as a string in quotes. The alternate syntax that did not require quotes is

now obsolete. If it is used then the title is converted to all uppercase.

Chapter 14: Not Implemented 98

14 Not Implemented

This chapter lists parts of the PSPP language that are not yet implemented.
ACF Autocorrelation function
ADD FILES

Add �les to dictionary
ALSCAL Multidimensional scaling
ANOVA Factorial analysis of variance
CASEPLOT

Plot time series
CASESTOVARS

Restructure complex data
CCF Time series cross correlation
CLUSTER

Hierachial clustering
CONJOINT

Analyse full concept data
COXREG Cox proportional hazards regression
CREATE Create time series data
CURVEFIT

Fit curve to line plot
DATE Create time series data
DISCRIMINANT

Linear discriminant analysis
EDIT obsolete
END FILE TYPE

Ends complex data input
FACTOR Factor analysis
FILE TYPE

Complex data input
FIT Goodness of Fit
GET TRANSLATE

Read other �le formats
GLM General Linear Model
GRAPH Draw graphs
IGRAPH Interactive graphs

Chapter 14: Not Implemented 99

INFO Local Documentation
KEYED DATA LIST

Read nonsequential data
KM Kaplan-Meier
LOGISTIC REGRESSION

Regression Analysis
MCONVERT

Convert covariance/correlation matrices
MULT RESPONSE

Multiple reponse analysis
MVA Missing value analysis
NLR Non Linear Regression
NONPAR CORR

Nonparametric correlation
NPAR TESTS

Nonparametric tests
NUMBERED
PACF Partial autocorrelation
PARTIAL CORR

Partial correlation
POINT Marker in keyed �le
PPLOT Plot time series variables
PREDICT

Specify forecast period
PRESERVE

Push settings
PROCEDURE OUTPUT

Specify output �le
PROBIT Probit analysis
PROXIMITIES

Pairwise similarity
QUICK CLUSTER

Fast clustering
RANK Create rank scores
REFORMAT

Read obsolete �les
REGRESSION

Compute regression coe�cients

Chapter 14: Not Implemented 100

REPEATING DATA
Specify multiple cases per input record

REPORT Pretty print working �le
RESTORE

Restore settings
ROC Receiver operating characteristic
RMV Replace missing values
SAVE TRANSLATE

Save to foriegn format
SCRIPT Run script �le
SPCHART

Plot control charts
SUMMARIZE

Univariate statistics
SURVIVAL

Survival analysis
TSET Set time sequence variables
TSHOW Show time sequence variables
TSPLOT Plot time sequence variables
UNIANOVA

Univariate analysis
UNNUMBERED

obsolete
UPDATE Update working �le
VARSTOCASES

Restructure complex data
VERIFY Report time series

Chapter 15: Bugs 101

15 Bugs

PSPP does have bugs. We do our best to �x them, but our limited resources
mean that some may remain for a long time. Our best alternative is to make
you aware of PSPP's known bugs. To see a list, visit PSPP's project webpage at
https://savannah.gnu.org/projects/pspp. You can also submit your own bug report
there: click on \Bugs," then on \Submit a Bug," and �ll out the form. Alternatively,
PSPP bug reports may be sent by email to <bug-gnu-pspp@gnu.org>.

For known bugs in individual language features, see the documentation for that feature.

https://savannah.gnu.org/projects/pspp

Chapter 16: Function Index 102

16 Function Index

A
ABS . 23
ACOS . 24
ANY . 25
ARCOS . 24
ARSIN . 24
ARTAN . 24
ASIN . 24
ATAN . 24

C
CDF.BERNOULLI . 37
CDF.BETA . 32
CDF.BINOMIAL . 37
CDF.CAUCHY . 33
CDF.CHISQ . 33
CDF.EXP . 33
CDF.F . 33
CDF.GAMMA . 34
CDF.GEOM . 37
CDF.HALFNRM . 34
CDF.HYPER . 37
CDF.IGAUSS . 34
CDF.LAPLACE . 34
CDF.LNORMAL . 35
CDF.LOGISTIC . 34
CDF.NEGBIN . 37
CDF.NORMAL . 35
CDF.PARETO . 35
CDF.POISSON . 37
CDF.RAYLEIGH . 35
CDF.SMOD . 36
CDF.SRANGE . 36
CDF.T . 36
CDF.T1G . 36
CDF.T2G . 36
CDF.UNIFORM . 36
CDF.VBNOR . 33
CDF.WEIBULL . 36
CDFNORM . 35
CFVAR . 25
CONCAT . 26
COS . 24
CTIME.DAYS . 29
CTIME.HOURS . 29
CTIME.MINUTES . 29
CTIME.SECONDS . 29

D
DATE.DMY . 30
DATE.MDY . 30
DATE.MOYR . 30

DATE.QYR . 30
DATE.WKYR . 30
DATE.YRDAY . 30

E
EXP . 23

I
IDF.BETA . 32
IDF.CAUCHY . 33
IDF.CHISQ . 33
IDF.EXP . 33
IDF.F . 33
IDF.GAMMA . 34
IDF.HALFNRM . 34
IDF.IGAUSS . 34
IDF.LAPLACE . 34
IDF.LNORMAL . 35
IDF.LOGISTIC . 34
IDF.NORMAL . 35
IDF.PARETO . 35
IDF.RAYLEIGH . 35
IDF.SMOD . 36
IDF.SRANGE . 36
IDF.T . 36
IDF.T1G . 36
IDF.T2G . 36
IDF.UNIFORM . 36
IDF.WEIBULL . 36
INDEX . 26

L
LAG . 31
LENGTH . 26
LG10 . 23
LN . 23
LNGAMMA . 23
LOWER . 26
LPAD . 26
LTRIM . 26, 27

M
MAX . 25
MEAN . 25
MIN . 25
MISSING . 24
MOD . 23
MOD10 . 23

Chapter 16: Function Index 103

N
NCDF.BETA . 33
NCDF.CHISQ . 33
NCDF.F . 34
NCDF.T . 36
NMISS . 24
NORMAL . 35
NPDF.BETA . 33
NPDF.CHISQ . 33
NPDF.F . 34
NPDF.T . 36
NUMBER . 27
NVALID . 24

P
PDF.BERNOULLI . 37
PDF.BETA . 32
PDF.BINOMIAL . 37
PDF.BVNOR . 33
PDF.CAUCHY . 33
PDF.CHISQ . 33
PDF.EXP . 33
PDF.F . 33
PDF.GAMMA . 34
PDF.GEOM . 37
PDF.HALFNRM . 34
PDF.HYPER . 37
PDF.IGAUSS . 34
PDF.LANDAU . 34
PDF.LAPLACE . 34
PDF.LNORMAL . 35
PDF.LOG . 37
PDF.LOGISTIC . 34
PDF.NEGBIN . 37
PDF.NORMAL . 35
PDF.NTAIL . 35
PDF.PARETO . 35
PDF.POISSON . 37
PDF.RAYLEIGH . 35
PDF.RTAIL . 35
PDF.T . 36
PDF.T1G . 36
PDF.T2G . 36
PDF.UNIFORM . 36
PDF.WEIBULL . 36
PDF.XPOWER . 33
PROBIT . 35

R
RANGE . 25
RINDEX . 27
RND . 23
RPAD . 27
RTRIM . 27
RV.BERNOULLI . 37
RV.BETA . 33

RV.BINOMIAL . 37
RV.CAUCHY . 33
RV.CHISQ . 33
RV.EXP . 33
RV.F . 33
RV.GAMMA . 34
RV.GEOM . 37
RV.HALFNRM . 34
RV.HYPER . 37
RV.IGAUSS . 34
RV.LANDAU . 34
RV.LAPLACE . 34
RV.LEVY . 34
RV.LNORMAL . 35
RV.LOG . 37
RV.LOGISTIC . 35
RV.LVSKEW . 34
RV.NEGBIN . 37
RV.NORMAL . 35
RV.NTAIL . 35
RV.PARETO . 35
RV.POISSON . 37
RV.RAYLEIGH . 35
RV.RTAIL . 35
RV.T . 36
RV.UNIFORM . 36
RV.WEIBULL . 36
RV.XPOWER . 33

S
SD . 26
SIG.CHISQ . 33
SIG.F . 33
SIN . 24
SQRT . 23
STRING . 27
SUBSTR . 27, 28
SUM . 26
SYSMIS . 24

T
TAN . 24
TIME.DAYS . 29
TIME.HMS . 29
TRUNC . 23

U
UNIFORM . 36
UPCASE . 28

V
VALUE . 25
VARIANCE . 26

Chapter 16: Function Index 104

X
XDATE.DATE . 30
XDATE.HOUR . 30
XDATE.JDAY . 30
XDATE.MDAY . 30
XDATE.MINUTE . 30
XDATE.MONTH . 31
XDATE.QUARTER . 31
XDATE.SECOND . 31

XDATE.TDAY . 31
XDATE.TIME . 31
XDATE.WEEK . 31
XDATE.WKDAY . 31
XDATE.YEAR . 31

Y
YRMODA . 31

Chapter 17: Command Index 105

17 Command Index

*
* . 89

@
@ . 90

A
ADD VALUE LABELS . 58
AGGREGATE . 64
APPLY DICTIONARY . 53
AUTORECODE . 67

B
BEGIN DATA . 39
BREAK . 77

C
CLEAR TRANSFORMATIONS . 39
COMMENT . 89
COMPUTE . 67
COUNT . 67
CROSSTABS . 84

D
DATA LIST . 39
DATA LIST FIXED . 39
DATA LIST FREE . 42
DATA LIST LIST . 43
DESCRIPTIVES . 80
DISPLAY . 58
DISPLAY DOCUMENTS . 89
DISPLAY FILE LABEL . 89
DISPLAY VECTORS . 58
DO IF . 77
DO REPEAT . 77
DOCUMENT . 89
DROP DOCUMENTS . 89

E
ECHO . 90
END CASE . 43
END DATA . 39
END FILE . 43
ERASE . 90
EXAMINE . 83
EXECUTE . 90
EXPORT . 53

F
FILE HANDLE . 43
FILE LABEL . 90
FILTER . 72
FINISH . 90
FLIP . 69
FORMATS . 59
FREQUENCIES . 81

G
GET . 54

H
HOST . 90

I
IF . 69
IMPORT . 54
INCLUDE . 90
INPUT PROGRAM. 44

L
LEAVE . 59
LIST . 46
LOOP . 78

M
MATCH FILES . 55
MATRIX DATA . 47
MISSING VALUES . 60
MODIFY VARS . 60

N
N OF CASES . 72
NEW FILE . 49
NUMERIC . 61

O
ONEWAY . 88

P
PERMISSIONS . 91
PRINT . 49
PRINT EJECT . 50
PRINT FORMATS. 61
PRINT SPACE . 50

Chapter 17: Command Index 106

PROCESS IF . 73

Q
QUIT . 91

R
RECODE . 70
RENAME VARIABLES . 61
REPEATING DATA . 51
REREAD . 50

S
SAMPLE . 73
SAVE . 56
SELECT IF . 74
SET . 91
SHOW . 96
SORT CASES . 71
SPLIT FILE . 74
STRING . 62
SUBTITLE . 96
SYSFILE INFO . 56

T
T-TEST . 86
TEMPORARY . 75
TITLE . 97

V
VALUE LABELS . 61
VARIABLE ALIGNMENT . 62
VARIABLE LABELS . 62
VARIABLE LEVEL . 63
VARIABLE WIDTH . 62
VECTOR . 63

W
WEIGHT . 75
WRITE . 52
WRITE FORMATS. 63

X
XSAVE . 57

Chapter 18: Concept Index 107

18 Concept Index

"
`"' . 9

$
$CASENUM . 13
$DATE . 13
$JDATE . 13
$LENGTH . 13
$SYSMIS . 14
$TIME . 14
$WIDTH . 14

&
`&' . 22

'
`'' . 9

(
(. 23
`()' . 21

)
) . 23

*
`*' . 21
`**' . 22

+
`+' . 21

-
`-'. 21, 22

.
`.' . 12
. 20

/
`/' . 21
`/usr/local/bin/' . 112
`/usr/local/info/' . 112

`/usr/local/share/pspp/' 112

<
< . 22
<= . 22
<> . 22

=
`=' . 22

>
`>' . 22
>= . 22

`_' . 12

`
\is de�ned as" . 20

|
`|' . 22

~
`~' . 22
~= . 22

0
0 . 9

A
absolute value . 23
active �le . 19
addition . 21
analysis of variance . 88
AND . 22
ANOVA . 88
arccosine . 24
arcsine . 24
arctangent . 24
arguments, invalid . 29
arguments, minimum valid 25
arguments, of date construction functions 29
arguments, of date extraction functions 30
arithmetic operators . 21

Chapter 18: Concept Index 108

attributes of variables . 12

B
Backus-Naur Form . 19
BNF . 19
Boolean . 21, 22

C
case conversion . 28
case-sensitivity . 8, 9
cases . 39
changing �le permissions . 91
characters, reserved . 9
coe�cient of variation . 25
command �le . 19
command line, options . 3
command syntax, description of 19
commands, ordering . 10
commands, structure . 9
compiler, gcc . 112
compiler, recommended . 112
compiling . 112
concatenation . 26
conditionals . 77
`config.h' . 112
con�guration . 113
con�gure, GNU . 112
constructing dates . 29
constructing times . 28
control
ow . 77
convention, TO . 14
cosine . 24
cross-case function . 31

D
data . 39
data �le . 19
data, embedding in syntax �les 39
Data, embedding in syntax �les 39
data, �xed-format, reading 39
data, reading from a �le . 39
date examination . 30
date, Julian . 31
dates . 28
dates, concepts . 28
dates, constructing . 29
dates, day of the month . 30
dates, day of the week . 31
dates, day of the year . 30
dates, day-month-year . 29
dates, in days . 30
dates, in hours. 30
dates, in minutes . 30
dates, in months . 31
dates, in quarters . 31

dates, in seconds . 31
dates, in weekdays . 31
dates, in weeks . 31
dates, in years . 31
dates, mathematical properties of 28
dates, month-year . 30
dates, quarter-year . 30
dates, time of day . 31
dates, valid . 28
dates, week-year . 30
dates, year-day . 30
day of the month . 30
day of the week . 31
day of the year . 30
day-month-year . 29
days . 28, 29, 30, 31
description of command syntax 19
deviation, standard . 26
dictionary . 12
division . 21
documentation, installing . 112

E
embedding data in syntax �les 39
Embedding data in syntax �les 39
embedding �xed-format data 39
EQ . 22
equality, testing . 22
examination, of times . 29
exponentiation . 22
expression . 20
expressions, mathematical . 21
extraction, of dates . 30
extraction, of time . 29

F
false . 22
FDL, GNU Free Documentation License 157
�le de�nition commands . 10
�le mode . 91
�le, active . 19
�le, command . 19
�le, data . 19
�le, output . 19
�le, syntax �le . 19
�les, PSPP . 1
�xed-format data, reading . 39

ow of control . 77
Free Software Foundation . 1
function, cross-case . 31
functions . 23
functions, miscellaneous . 31
functions, missing-value . 24
functions, statistical. 25
functions, string . 26
functions, time & date . 28

Chapter 18: Concept Index 109

G
gcc . 112
GE . 22
Ghostscript. 1
GNU C compiler . 112
GNU con�gure . 112
graphics . 1
greater than . 22
greater than or equal to . 22
grouping operators . 21
GT . 22

H
headers . 96
hours . 29, 30
hours-minutes-seconds. 29

I
identi�ers . 8
identi�ers, reserved . 8
inequality, testing . 22
input . 39
input program commands . 10
installation . 112
installation, under UNIX . 112
integer . 20
integers . 8
intersection, logical . 22
introduction . 1
inverse cosine . 24
inverse sine . 24
inverse tangent . 24
inversion, logical . 22
invocation . 3

J
Julian date . 31

K
keywords . 20

L
labels, value . 13
labels, variable . 13
language, command structure 9
language, lexical analysis . 8
language, PSPP . 1, 8
language, tokens . 8
LE . 22
length . 96
less than . 22
less than or equal to . 22
lexical analysis . 8

license . 2
listing. 96
logarithms . 23
logical intersection . 22
logical inversion . 22
logical operators . 22
logical union . 22
loops . 77
LT . 22

M
make�le . 112
`Makefile' . 112
mathematical expressions . 21
mathematics . 23
mathematics, advanced . 23
mathematics, applied to times & dates 28
mathematics, miscellaneous 23
maximum . 25
mean . 25
membership, of set . 25
minimum . 25
minimum valid number of arguments 25
minutes . 29, 30
missing values . 12, 13, 24
mode . 91
modulus . 23
modulus, by 10 . 23
month-year . 30
months . 31
more . 96
multiplication . 21

N
names, of functions . 23
NE . 22
negation . 22
nonterminals . 20
Normality, testing for . 83
NOT . 22
number . 20
numbers . 8
numbers, converting from strings 27
numbers, converting to strings 27

O
obligations, your . 2
observations . 39
operations, order of . 37
operator precedence . 37
operators . 9, 20, 23
operators, arithmetic . 21
operators, grouping . 21
operators, logical . 22
options, command-line . 3

Chapter 18: Concept Index 110

OR . 22
order of commands . 10
order of operations . 37
output . 39
output �le . 19
output, PSPP . 1

P
padding strings . 27
pager . 96, 132
parentheses . 21, 23
period . 12
PostScript . 1
precedence, operator . 37
`pref.h' . 112
print format . 13
procedures . 10
productions . 20
PSPP language . 1
PSPP, command structure . 9
PSPP, con�guring . 113
PSPP, installing . 112
PSPP, invoking . 3
PSPP, language. 8
punctuators . 9, 20

Q
quarter-year . 30
quarters . 31

R
reading data from a �le . 39
reading �xed-format data . 39
reals . 8
reserved identi�ers . 8
restricted transformations . 10
rights, your . 2
rounding . 23

S
searching strings . 26
seconds . 29, 31
self-tests, running . 112
set membership . 25
sine . 24
square roots . 23
standard deviation . 26
start symbol . 20
statistics . 25
string . 20
string functions . 26
strings . 9
strings, case of . 26, 28
strings, concatenation of . 26

strings, converting from numbers 27
strings, converting to numbers 27
strings, �nding length of . 26
strings, padding . 26, 27
strings, searching backwards 27
strings, taking substrings of. 27
strings, trimming . 26, 27
substrings . 27
subtraction . 21
sum . 26
symbol, start . 20
syntax �le . 19
system variables . 13
system-missing . 22

T
tangent . 24
terminals . 20
terminals and nonterminals, di�erences 20
testing for equality . 22
testing for inequality . 22
time . 31
time examination . 29
time, concepts . 28
time, in days . 28, 29, 30
time, in hours . 29, 30
time, in hours-minutes-seconds 29
time, in minutes . 29, 30
time, in seconds . 29, 31
time, instants of . 28
time, intervals . 28
time, lengths of . 29
time, mathematical properties of 28
times . 28
times, constructing. 28
times, in days . 31
TO convention . 14
tokens . 8
transformations . 10, 64
trigonometry . 24
true . 22
truncation . 23
type of variables . 12

U
union, logical . 22
UNIX, installing PSPP under 112
utility commands . 10

V
value labels . 13
values, Boolean . 21
values, missing . 12, 13, 24
values, system-missing . 22
var-list . 20

Chapter 18: Concept Index 111

var-name . 20
variable labels . 13
variable names, ending with period 12
variables . 12
variables, attributes of . 12
variables, system. 13
variables, type . 12
variables, width . 12
variance . 26
variation, coe�cient of . 25

W
week . 31

week-year . 30
weekday . 31
white space. 9
white space, trimming . 26, 27
width . 96
width of variables . 12
write format . 13

Y
year-day . 30
years . 31
your rights and obligations . 2

Appendix A: Installing PSPP 112

Appendix A Installing PSPP

PSPP conforms to the GNU Coding Standards. PSPP is written in, and requires for proper
operation, ANSI/ISO C. You might want to additionally note the following points:
� The compiler and linker must allow for signi�cance of several characters in external

identi�ers. The exact number is unknown but at least 31 is recommended.
� The int type must be 32 bits or wider.
� The recommended compiler is gcc 2.7.2.1 or later, but any ANSI compiler will do if it

�ts the above criteria.
Many UNIX variants should work out-of-the-box, as PSPP uses GNU autoconf to detect

di�erences between environments. Please report any problems with compilation of PSPP
under UNIX and UNIX-like operating systems|portability is a major concern of the author.

The pages below give speci�c instructions for installing PSPP on each type of system
mentioned above.

A.1 UNIX installation
To install PSPP under a UNIX-like operating system, follow the steps below in order. Some
of the text below was taken directly from various Free Software Foundation sources.
1. cd to the directory containing the PSPP source.
2. Type `./configure' to con�gure for your particular operating system and compiler.

Running configure takes a while. While running, it displays some messages telling
which features it is checking for.
You can optionally supply some options to configure to give it hints about how to
do its job. Type ./configure --help to see a list of options. One of the most useful
options is `--with-checker', which enables the use of the Checker memory debugger
under supported operating systems. Checker must already be installed to use this
option. Do not use `--with-checker' if you are not debugging PSPP itself.

3. (optional) Edit `Makefile', `config.h', and `pref.h'. These �les are produced by
configure. Note that most PSPP settings can be changed at runtime.
`pref.h' is only generated by configure if it does not already exist. (It's copied from
`prefh.orig'.)

4. Type `make' to compile the package. If there are any errors during compilation, try to
�x them. If modi�cations are necessary to compile correctly under your con�guration,
contact the author. See Chapter 15 [Submitting Bug Reports], page 101, for details.

5. Type `make check' to run self-tests on the compiled PSPP package.
6. Become the superuser and type `make install' to install the PSPP binaries, by de-

fault in `/usr/local/bin/'. The directory `/usr/local/share/pspp/' is created and
populated with �les needed by PSPP at runtime. This step will also cause the PSPP
documentation to be installed in `/usr/local/info/', but only if that directory already
exists.

7. (optional) Type `make clean' to delete the PSPP binaries from the source tree.

Appendix B: Con�guring PSPP 113

Appendix B Con�guring PSPP

PSPP has dozens of con�guration possibilities and hundreds of settings. This is both a
bane and a blessing. On one hand, it's possible to easily accommodate diverse ranges of
setups. But, on the other, the multitude of possibilities can overwhelm the casual user.
Fortunately, the con�guration mechanisms are profusely described in the sections below. . .

B.1 Locating con�guration �les
PSPP uses the same method to �nd most of its con�guration �les:
1. The base name of the �le being sought is determined.
2. The path to search is determined.
3. Each directory in the search path, from left to right, is searched for a �le with the name

of the base name. The �rst occurrence is read as the con�guration �le.
The �rst two steps are elaborated below for the sake of our pedantic friends.

1. A base name is a �le name lacking an absolute directory reference. Some exam-
ples of base names are: `ps-encodings', `devices', `devps/DESC' (under UNIX),
`devps\DESC' (under M$ environments).
Determining the base name is a two-step process:
a. If the appropriate environment variable is de�ned, the value of that variable is used

(see Section B.4 [Environment variables], page 115). For instance, when searching
for the output driver initialization �le, the variable examined is STAT_OUTPUT_
INIT_FILE.

b. Otherwise, the compiled-in default is used. For example, when searching for the
output driver initialization �le, the default base name is `devices'.

Please note: If a user-speci�ed base name does contain an absolute directory reference,
as in a �le name like `/home/pfaff/fonts/TR', no path is searched|the �le name is
used exactly as given|and the algorithm terminates.

2. The path is the �rst of the following that is de�ned:
� A variable de�nition for the path given in the user environment. This is a PSPP-

speci�c environment variable name; for instance, STAT_OUTPUT_INIT_PATH.
� In some cases, another, less-speci�c environment variable is checked. For instance,

when searching for font �les, the PostScript driver �rst checks for a variable with
name STAT_GROFF_FONT_PATH, then for one with name GROFF_FONT_PATH. (How-
ever, font searching has its own list of esoteric search rules.)

� The con�guration �le path, which is itself determined by the following rules:
a. If the command line contains an option of the form `-B path ' or

`--config-dir=path ', then the value given on the rightmost occurrence of
such an option is used.

b. Otherwise, if the environment variable STAT_CONFIG_PATH is de�ned, the value
of that variable is used.

c. Otherwise, the compiled-in fallback default is used. On UNIX machines, the
default fallback path is

Appendix B: Con�guring PSPP 114

1. `~/.pspp'
2. `/usr/local/lib/pspp'
3. `/usr/lib/pspp'
On DOS machines, the default fallback path is:
1. All the paths from the DOS search path in the `PATH' environment vari-

able, in left-to-right order.
2. `C:\PSPP', as a last resort.
Note that the installer of PSPP can easily change this default fallback path;
thus the above should not be taken as gospel.

As a �nal note: Under DOS, directories given in paths are delimited by semicolons (`;');
under UNIX, directories are delimited by colons (`:'). This corresponds with the standard
path delimiter under these OSes.

B.2 Con�guration techniques
There are many ways that PSPP can be con�gured. These are described in the list below.
Values given by earlier items take precedence over those given by later items.
1. Syntax commands that modify settings, such as SET. See Section 13.15 [SET], page 91.
2. Command-line options. See Chapter 3 [Invocation], page 3.
3. PSPP-speci�c environment variable contents. See Section B.4 [Environment variables],

page 115.
4. General environment variable contents. See Section B.4 [Environment variables],

page 115.
5. Con�guration �le contents. See Section B.3 [Con�guration �les], page 114.
6. Fallback defaults.
Some of the above may not apply to a particular setting. For instance, the current

pager (such as `more', `most', or `less') cannot be determined by con�guration �le contents
because there is no appropriate con�guration �le.

B.3 Con�guration �les
Most con�guration �les have a common form:
� Each line forms a separate command or directive. This means that lines cannot be

broken up, unless they are spliced together with a trailing backslash, as described
below.

� Before anything else is done, trailing white space is removed.
� When a line ends in a backslash (`\'), the backslash is removed, and the next line is

read and appended to the current line.
� White space preceding the backslash is retained.
� This rule continues to be applied until the line read does not end in a backslash.
� It is an error if the last line in the �le ends in a backslash.

� Comments are introduced by an octothorpe (`#'), and continue until the end of the
line.

Appendix B: Con�guring PSPP 115

� An octothorpe inside balanced pairs of double quotation marks (`"') or single
quotation marks (`'') does not introduce a comment.

� The backslash character can be used inside balanced quotes of either type to escape
the following character as a literal character.
(This is distinct from the use of a backslash as a line-splicing character.)

� Line splicing takes place before comment removal.
� Blank lines, and lines that contain only white space, are ignored.

B.4 Environment variables
You may think the concept of environment variables is a fairly simple one. However, the
author of PSPP has found a way to complicate even something so simple. Environment
variables are further described in the sections below:

B.4.1 Values of environment variables
Values for environment variables are obtained by the following means, which are arranged
in order of decreasing precedence:
1. Command-line options. See Chapter 3 [Invocation], page 3.
2. The `environment' con�guration �le|more on this below.
3. Actual environment variables (de�ned in the shell or other parent process).
The `environment' con�guration �le is located through application of the usual algo-

rithm for con�guration �les (see Section B.1 [File locations], page 113), except that its con-
tents do not a�ect the search path used to �nd `environment' itself. Use of `environment'
is discouraged on systems that allow an arbitrarily large environment; it is supported for
use on systems like MS-DOS that limit environment size.

`environment' is composed of lines having the form `key=value ', where key and the
equals sign (`=') are required, and value is optional. If value is given, variable key is given
that value; if value is absent, variable key is unde�ned (deleted). Variables may not be
de�ned with a null value.

Environment substitutions are performed on each line in the �le (see Section B.4.2 [En-
vironment substitutions], page 115).

See Section B.3 [Con�guration �les], page 114, for more details on formatting of the
environment con�guration �le.

Please note: Support for `environment' is not yet implemented.

B.4.2 Environment substitutions
Much of the power of environment variables lies in the way that they may be substituted
into con�guration �les. Variable substitutions are described below.

The line is scanned from left to right. In this scan, all characters other than dollar signs
(`$') are retained unmolested. Dollar signs, however, introduce an environment variable
reference. References take three forms:
$var Replaced by the value of environment variable var, determined as speci�ed in

Section B.4.1 [Variable values], page 115. var must be one of the following:

Appendix B: Con�guring PSPP 116

� One or more letters.
� Exactly one nonalphabetic character. This may not be a left brace (`{').

${var} Same as above, but var may contain any character (except `}').
$$ Replaced by a single dollar sign.

Unde�ned variables expand to a empty value.

B.4.3 Prede�ned environment variables
There are two environment variables prede�ned for use in environment substitutions:
`VER' De�ned as the version number of PSPP, as a string, in a format something like

`0.9.4'.
`ARCH' De�ned as the host architecture of PSPP, as a string, in standard

cpu-manufacturer-OS format. For instance, Debian GNU/Linux 1.1 on an
Intel machine de�nes this as `i586-unknown-linux'. This is somewhat
dependent on the system used to compile PSPP.

Nothing prevents these values from being overridden, although it's a good idea not to
do so.

B.5 Output devices
Con�guring output devices is the most complicated aspect of con�guring PSPP. The output
device con�guration �le is named `devices'. It is searched for using the usual algorithm
for �nding con�guration �les (see Section B.1 [File locations], page 113). Each line in the
�le is read in the usual manner for con�guration �les (see Section B.3 [Con�guration �les],
page 114).

Lines in `devices' are divided into three categories, described brie
y in the table below:
driver category de�nitions

De�ne a driver in terms of other drivers.
macro de�nitions

De�ne environment variables local to the the output driver con�guration �le.
device de�nitions

Describe the con�guration of an output device.
The following sections further elaborate the contents of the `devices' �le.

B.5.1 Driver categories
Drivers can be divided into categories. Drivers are speci�ed by their names, or by the names
of the categories that they are contained in. Only certain drivers are enabled each time
PSPP is run; by default, these are the drivers in the category `default'. To enable a di�erent
set of drivers, use the `-o device ' command-line option (see Chapter 3 [Invocation], page 3).

Categories are speci�ed with a line of the form `category=driver1 driver2 driver3
... drivern '. This line speci�es that the category category is composed of drivers named
driver1, driver2, and so on. There may be any number of drivers in the category, from zero
on up.

Appendix B: Con�guring PSPP 117

Categories may also be speci�ed on the command line (see Chapter 3 [Invocation],
page 3).

This is all you need to know about categories. If you're still curious, read on.
First of all, the term `categories' is a bit of a misnomer. In fact, the internal representa-

tion is nothing like the hierarchy that the term seems to imply: a linear list is used to keep
track of the enabled drivers.

When PSPP �rst begins reading `devices', this list contains the name of any drivers or
categories speci�ed on the command line, or the single item `default' if none were speci�ed.

Each time a category de�nition is speci�ed, the list is searched for an item with the
value of category. If a matching item is found, it is deleted. If there was a match, the list
of drivers (driver1 through drivern) is then appended to the list.

Each time a driver de�nition line is encountered, the list is searched. If the list contains
an item with that driver's name, the driver is enabled and the item is deleted from the list.
Otherwise, the driver is not enabled.

It is an error if the list is not empty when the end of `devices' is reached.

B.5.2 Macro de�nitions
Macro de�nitions take the form `define macroname definition '. In such a macro de�-
nition, the environment variable macroname is de�ned to expand to the value de�nition.
Before the de�nition is made, however, any macros used in de�nition are expanded.

Please note the following nuances of macro usage:
� For the purposes of this section, macro and environment variable are synonyms.
� Macros may not take arguments.
� Macros may not recurse.
� Macros are just environment variable de�nitions like other environment variable de�ni-

tions, with the exception that they are limited in scope to the `devices' con�guration
�le.

� Macros override other all environment variables of the same name (within the scope of
`devices').

� Earlier macro de�nitions for a particular key override later ones. In particular, macro
de�nitions on the command line override those in the device de�nition �le. See Sec-
tion 3.1 [Non-option Arguments], page 3.

� There are two prede�ned macros, whose values are determined at runtime:
`viewwidth'

De�ned as the width of the console screen, in columns of text.
`viewlength'

De�ned as the length of the console screen, in lines of text.

B.5.3 Driver de�nitions
Driver de�nitions are the ultimate purpose of the `devices' con�guration �le. These are
where the real action is. Driver de�nitions tell PSPP where it should send its output.

Each driver de�nition line is divided into four �elds. These �elds are delimited by colons
(`:'). Each line is subjected to environment variable interpolation before it is processed

Appendix B: Con�guring PSPP 118

further (see Section B.4.2 [Environment substitutions], page 115). From left to right, the
four �elds are, in brief:

driver name
A unique identi�er, used to determine whether to enable the driver.

class name
One of the prede�ned driver classes supported by PSPP. The currently sup-
ported driver classes include `postscript' and `ascii'.

device type(s)
Zero or more of the following keywords, delimited by spaces:

screen
Indicates that the device is a screen display. This may reduce the
amount of bu�ering done by the driver, to make interactive use
more convenient.

printer
Indicates that the device is a printer.

listing
Indicates that the device is a listing �le.

These options are just hints to PSPP and do not cause the output to be directed
to the screen, or to the printer, or to a listing �le|those must be set elsewhere in
the options. They are used primarily to decide which devices should be enabled
at any given time. See Section 13.15 [SET], page 91, for more information.

options An optional set of options to pass to the driver itself. The exact format for the
options varies among drivers.

The driver is enabled if:
1. Its driver name is speci�ed on the command line, or
2. It's in a category speci�ed on the command line, or
3. If no categories or driver names are speci�ed on the command line, it is in category

default.

For more information on driver names, see Section B.5.1 [Driver categories], page 116.
The class name must be one of those supported by PSPP. The classes supported depend

on the options with which PSPP was compiled. See later sections in this chapter for
descriptions of the available driver classes.

Options are dependent on the driver. See the driver descriptions for details.

B.5.4 Dimensions
Quite often in con�guration it is necessary to specify a length or a size. PSPP uses a
common syntax for all such, calling them collectively by the name dimensions.
� You can specify dimensions in decimal form (`12.5') or as fractions, either as mixed

numbers (`12-1/2') or raw fractions (`25/2').

Appendix B: Con�guring PSPP 119

� A number of di�erent units are available. These are su�xed to the numeric part of the
dimension. There must be no spaces between the number and the unit. The available
units are identical to those o�ered by the popular typesetting system TEX:
in inch (1 in = 2.54 cm)
" inch (1 in = 2.54 cm)
pt printer's point (1 in = 72.27 pt)
pc pica (12 pt = 1 pc)
bp PostScript point (1 in = 72 bp)
cm centimeter
mm millimeter (10 mm = 1 cm)
dd didot point (1157 dd = 1238 pt)
cc cicero (1 cc = 12 dd)
sp scaled point (65536 sp = 1 pt)

� If no explicit unit is given, PSPP attempts to guess the best unit:
� Numbers less than 50 are assumed to be in inches.
� Numbers 50 or greater are assumed to be in millimeters.

B.5.5 Paper sizes
Output drivers usually deal with some sort of hardcopy media. This media is called paper
by the drivers, though in reality it could be a transparency or �lm or thinly veiled sarcasm.
To make it easier for you to deal with paper, PSPP allows you to have (of course!) a con�g-
uration �le that gives symbolic names, like \letter" or \legal" or \a4", to paper sizes, rather
than forcing you to use cryptic numbers like \8-1/2 x 11" or \210 by 297". Surprisingly
enough, this con�guration �le is named `papersize'. See Section B.3 [Con�guration �les],
page 114.

When PSPP tries to connect a symbolic paper name to a paper size, it reads and parses
each non-comment line in the �le, in order. The �rst �eld on each line must be a symbolic
paper name in double quotes. Paper names may not contain double quotes. Paper names
are not case-sensitive: `legal' and `Legal' are equivalent.

If a match is found for the paper name, the rest of the line is parsed. If it is found to be
a pair of dimensions (see Section B.5.4 [Dimensions], page 118) separated by either `x' or
`by', then those are taken to be the paper size, in order of width followed by length. There
must be at least one space on each side of `x' or `by'.

Otherwise the line must be of the form `"paper-1"="paper-2"'. In this case the target
of the search becomes paper name paper-2 and the search through the �le continues.

B.5.6 How lines are divided into types
The lines in `devices' are distinguished in the following manner:
1. Leading white space is removed.
2. If the resulting line begins with the exact string define, followed by one or more white

space characters, the line is processed as a macro de�nition.

Appendix B: Con�guring PSPP 120

3. Otherwise, the line is scanned for the �rst instance of a colon (`:') or an equals sign
(`=').

4. If a colon is encountered �rst, the line is processed as a driver de�nition.
5. Otherwise, if an equals sign is encountered, the line is processed as a macro de�nition.
6. Otherwise, the line is ill-formed.

B.5.7 How lines are divided into tokens
Each driver de�nition line is run through a simple tokenizer. This tokenizer recognizes two
basic types of tokens.

The �rst type is an equals sign (`='). Equals signs are both delimiters between tokens
and tokens in themselves.

The second type is an identi�er or string token. Identi�ers and strings are equivalent after
tokenization, though they are written di�erently. An identi�er is any string of characters
other than white space or equals sign.

A string is introduced by a single- or double-quote character (`'' or `"') and, in general,
continues until the next occurrence of that same character. The following standard C
escapes can also be embedded within strings:

\' A single-quote (`'').

\" A double-quote (`"').

\? A question mark (`?'). Included for hysterical raisins.

\\ A backslash (`\').

\a Audio bell (ASCII 7).

\b Backspace (ASCII 8).

\f Formfeed (ASCII 12).

\n New-line (ASCII 10)

\r Carriage return (ASCII 13).

\t Tab (ASCII 9).

\v Vertical tab (ASCII 11).

\ooo Each `o' must be an octal digit. The character is the one having the octal value
speci�ed. Any number of octal digits is read and interpreted; only the lower 8
bits are used.

\xhh Each `h' must be a hex digit. The character is the one having the hexadecimal
value speci�ed. Any number of hex digits is read and interpreted; only the
lower 8 bits are used.

Tokens, outside of quoted strings, are delimited by white space or equals signs.

Appendix B: Con�guring PSPP 121

B.6 The PostScript driver class
The postscript driver class is used to produce output that is acceptable to PostScript
printers and to PC-based PostScript interpreters such as Ghostscript. Continuing a long
tradition, PSPP's PostScript driver is con�gurable to the point of absurdity.

There are actually two PostScript drivers. The �rst one, `postscript', produces ordi-
nary DSC-compliant PostScript output. The second one `epsf', produces an Encapsulated
PostScript �le. The two drivers are otherwise identical in con�guration and in operation.

The PostScript driver is described in further detail below.

B.6.1 PostScript output options
These options deal with the form of the output and the output �le itself:
output-file=filename

File to which output should be sent. This can be an ordinary �lename
(i.e., "pspp.ps"), a pipe �lename (i.e., "|lpr"), or stdout ("-"). Default:
"pspp.ps".

color=boolean
Most of the time black-and-white PostScript devices are smart enough to map
colors to shades themselves. However, you can cause the PSPP output driver
to do an ugly simulation of this in its own driver by turning color o�. Default:
on.
This is a boolean setting, as are many settings in the PostScript driver. Valid
positive boolean values are `on', `true', `yes', and nonzero integers. Negative
boolean values are `off', `false', `no', and zero.

data=data-type
One of clean7bit, clean8bit, or binary. This controls what characters will
be written to the output �le. PostScript produced with clean7bit can be
transmitted over 7-bit transmission channels that use ASCII control characters
for line control. clean8bit is similar but allows characters above 127 to be
written to the output �le. binary allows any character in the output �le.
Default: clean7bit.

line-ends=line-end-type
One of cr, lf, or crlf. This controls what is used for new-line in the output
�le. Default: cr.

optimize-line-size=level
Either 0 or 1. If level is 1, then short line segments will be collected and
merged into longer ones. This reduces output �le size but requires more time
and memory. A level of 0 has the advantage of being better for interactive
environments. 1 is the default unless the screen
ag is set; in that case, the
default is 0.

optimize-text-size=level
One of 0, 1, or 2, each higher level representing correspondingly more aggressive
space savings for text in the output �le and requiring correspondingly more
time and memory. Unfortunately the levels presently are all the same. 1 is the
default unless the screen
ag is set; in that case, the default is 0.

Appendix B: Con�guring PSPP 122

B.6.2 PostScript page options
These options a�ect page setup:

headers=boolean
Controls whether the standard headers showing the time and date and title and
subtitle are printed at the top of each page. Default: on.

paper-size=paper-size
Paper size, either as a symbolic name (i.e., letter or a4) or speci�c measure-
ments (i.e., 8-1/2x11 or "210 x 297". See Section B.5.5 [Paper sizes], page 119.
Default: letter.

orientation=orientation
Either portrait or landscape. Default: portrait.

left-margin=dimension
right-margin=dimension
top-margin=dimension
bottom-margin=dimension

Sets the margins around the page. The headers, if enabled, are not included in
the margins; they are in addition to the margins. For a description of dimen-
sions, see Section B.5.4 [Dimensions], page 118. Default: 0.5in.

B.6.3 PostScript �le options
Oh, my. You don't really want to know about the way that the PostScript driver deals with
�les, do you? Well I suppose you're entitled, but I warn you right now: it's not pretty. Here
goes. . .

First let's look at the options that are available:

font-dir=font-directory
Sets the font directory. Default: devps.

prologue-file=prologue-file-name
Sets the name of the PostScript prologue �le. You can write your own prologue,
though I have no idea why you'd want to: see Section B.6.6 [Prologue], page 124.
Default: ps-prologue.

device-file=device-file-name
Sets the name of the Gro�-format device description �le. The PostScript driver
reads this to know about the scaling of fonts and so on. The format of such �les
is described in the gro� font man page, included with Gro�. Default: DESC.

encoding-file=encoding-file-name
Sets the name of the encoding �le. This �le contains a list of all font encodings
that will be needed so that the driver can put all of them at the top of the
prologue. See Section B.6.7 [Encodings], page 126. Default: ps-encodings.
If the speci�ed encoding �le cannot be found, this error will be silently ignored,
since most people do not need any encodings besides the ones that can be found
using auto-encodings, described below.

Appendix B: Con�guring PSPP 123

auto-encode=boolean
When enabled, the font encodings needed by the default proportional- and �xed-
pitch fonts will automatically be dumped to the PostScript output. Otherwise,
it is assumed that the user has an encoding �le and knows how to use it (see
Section B.6.7 [Encodings], page 126). There is probably no good reason to turn
o� this convenient feature. Default: on.

Next I suppose it's time to describe the search algorithm. When the PostScript driver
needs a �le, whether that �le be a font, a PostScript prologue, or what you will, it searches
in this manner:
1. Constructs a path by taking the �rst of the following that is de�ned:

a. Environment variable STAT_GROFF_FONT_PATH. See Section B.4 [Environment vari-
ables], page 115.

b. Environment variable GROFF_FONT_PATH.
c. The compiled-in fallback default.

2. Constructs a base name from concatenating, in order, the font directory, a path sep-
arator (`/' or `\'), and the �le to be found. A typical base name would be something
like devps/ps-encodings.

3. Searches for the base name in the path constructed above. If the �le is found, the
algorithm terminates.

4. Searches for the base name in the standard con�guration path. See Section B.1 [File
locations], page 113, for more details. If the �le is found, the algorithm terminates.

5. At this point we remove the font directory and path separator from the base name.
Now the base name is simply the �le to be found, i.e., ps-encodings.

6. Searches for the base name in the path constructed in the �rst step. If the �le is found,
the algorithm terminates.

7. Searches for the base name in the standard con�guration path. If the �le is found, the
algorithm terminates.

8. The algorithm terminates unsuccessfully.

So, as you see, there are several ways to con�gure the PostScript drivers. Careful selection
of techniques can make the con�guration very
exible indeed.

B.6.4 PostScript font options
The list of available font options is short and sweet:

prop-font=font-name
Sets the default proportional font. The name should be that of a PostScript
font. Default: "Helvetica".

fixed-font=font-name
Sets the default �xed-pitch font. The name should be that of a PostScript font.
Default: "Courier".

font-size=font-size
Sets the size of the default fonts, in thousandths of a point. Default: 10000.

Appendix B: Con�guring PSPP 124

B.6.5 PostScript line options
Most tables contain lines, or rules, between cells. Some features of the way that lines are
drawn in PostScript tables are user-de�nable:
line-style=style

Sets the style used for lines used to divide tables into sections. style must be
either thick, in which case thick lines are used, or double, in which case double
lines are used. Default: thick.

line-gutter=dimension
Sets the line gutter, which is the amount of white space on either side of lines
that border text or graphics objects. See Section B.5.4 [Dimensions], page 118.
Default: 0.5pt.

line-spacing=dimension
Sets the line spacing, which is the amount of white space that separates lines
that are side by side, as in a double line. Default: 0.5pt.

line-width=dimension
Sets the width of a typical line used in tables. Default: 0.5pt.

line-width-thick=dimension
Sets the width of a thick line used in tables. Not used if line-style is set to
thick. Default: 1.5pt.

B.6.6 The PostScript prologue
Most PostScript �les that are generated mechanically by programs consist of two parts: a
prologue and a body. The prologue is generally a collection of boilerplate. Only the body
di�ers greatly between two outputs from the same program.

This is also the strategy used in the PSPP PostScript driver. In general, the prologue
supplied with PSPP will be more than su�cient. In this case, you will not need to read the
rest of this section. However, hackers might want to know more. Read on, if you fall into
this category.

The prologue is dumped into the output stream essentially unmodi�ed. However, two
actions are performed on its lines. First, certain lines may be omitted as speci�ed in the
prologue �le itself. Second, variables are substituted.

The following lines are omitted:
1. All lines that contain three bangs in a row (!!!).
2. Lines that contain !eps, if the PostScript driver is producing ordinary PostScript

output. Otherwise an EPS �le is being produced, and the line is included in the
output, although everything following !eps is deleted.

3. Lines that contain !ps, if the PostScript driver is producing EPS output. Otherwise,
ordinary PostScript is being produced, and the line is included in the output, although
everything following !ps is deleted.

The following are the variables that are substituted. Only the variables listed are sub-
stituted; environment variables are not. See Section B.4.2 [Environment substitutions],
page 115.

Appendix B: Con�guring PSPP 125

bounding-box
The page bounding box, in points, as four space-separated numbers. For U.S.
letter size paper, this is `0 0 612 792'.

creator
PSPP version as a string: `GNU PSPP 0.1b', for example.

date
Date the �le was created. Example: `Tue May 21 13:46:22 1991'.

data
Value of the data PostScript driver option, as one of the strings `Clean7Bit',
`Clean8Bit', or `Binary'.

orientation
Page orientation, as one of the strings Portrait or Landscape.

user
Under multiuser OSes, the user's login name, taken either from the environ-
ment variable LOGNAME or, if that fails, the result of the C library function
getlogin(). Defaults to `nobody'.

host
System hostname as reported by gethostname(). Defaults to `nowhere'.

prop-font
Name of the default proportional font, pre�xed by the word `font' and a space.
Example: `font Times-Roman'.

fixed-font
Name of the default �xed-pitch font, pre�xed by the word `font' and a space.

scale-factor
The page scaling factor as a
oating-point number. Example: 1.0. Note that
this is also passed as an argument to the BP macro.

paper-length
paper-width

The paper length and paper width, respectively, in thousandths of a point.
Note that these are also passed as arguments to the BP macro.

left-margin
top-margin

The left margin and top margin, respectively, in thousandths of a point. Note
that these are also passed as arguments to the BP macro.

title
Document title as a string. This is not the title speci�ed in the PSPP syntax
�le. A typical title is the word `PSPP' followed by the syntax �le name in
parentheses. Example: `PSPP (<stdin>)'.

source-file
PSPP syntax �le name. Example: `mary96/first.stat'.

Appendix B: Con�guring PSPP 126

Any other questions about the PostScript prologue can best be answered by examining
the default prologue or the PSPP source.

B.6.7 PostScript encodings
PostScript fonts often contain many more than 256 characters, in order to accommodate
foreign language characters and special symbols. PostScript uses encodings to map these
onto single-byte symbol sets. Each font can have many di�erent encodings applied to it.

PSPP's PostScript driver needs to know which encoding to apply to each font. It can
determine this from the information encapsulated in the Gro� font description that it reads.
However, there is an additional problem|for e�ciency, the PostScript driver needs to have
a complete list of all encodings that will be used in the entire session when it opens the
output �le. For this reason, it can't use the information built into the fonts because it
doesn't know which fonts will be used.

As a stopgap solution, there are two mechanisms for specifying which encodings will be
used. The �rst mechanism is automatic and it is the only one that most PSPP users will
ever need. The second mechanism is manual, but it is more
exible. Either mechanism or
both may be used at one time.

The �rst mechanism is activated by the `auto-encode' driver option (see Section B.6.3
[PS �le options], page 122). When enabled, `auto-encode' causes the PostScript driver
to include the encodings used by the default proportional and �xed-pitch fonts (see Sec-
tion B.6.4 [PS font options], page 123). Many PSPP output �les will only need these
encodings.

The second mechanism is the �le speci�ed by the `encoding-file' option (see Sec-
tion B.6.3 [PS �le options], page 122). If it exists, this �le must consist of lines in PSPP
con�guration-�le format (see Section B.3 [Con�guration �les], page 114). Each line that is
not a comment should name a PostScript encoding to include in the output.

It is not an error if an encoding is included more than once, by either mechanism. It
will appear only once in the output. It is also not an error if an encoding is included in
the output but never used. It is an error if an encoding is used but not included by one of
these mechanisms. In this case, the built-in PostScript encoding `ISOLatin1Encoding' is
substituted.

B.7 The ASCII driver class
The ASCII driver class produces output that can be displayed on a terminal or output
to printers. All of its options are highly con�gurable. The ASCII driver has class name
`ascii'.

The ASCII driver is described in further detail below.

B.7.1 ASCII output options

output-file=filename
File to which output should be sent. This can be an ordinary �lename
(e.g., "pspp.txt"), a pipe �lename (e.g., "|lpr"), or stdout ("-"). Default:
"pspp.list".

Appendix B: Con�guring PSPP 127

char-set=char-set-type
One of `ascii' or `latin1'. This has no e�ect on output at the present time.
Default: ascii.

form-feed-string=form-feed-value
The string written to the output to cause a formfeed. See also paginate,
described below, for a related setting. Default: "\f".

newline-string=new-line-value
The string written to the output to cause a new-line (carriage return
plus linefeed). The default, which can be speci�ed explicitly with
newline-string=default, is to use the system-dependent new-line sequence
by opening the output �le in text mode. This is usually the right choice.
However, newline-string can be set to any string. When this is done, the
output �le is opened in binary mode.

paginate=boolean
If set, a formfeed (as set in form-feed-string, described above) will be written
to the device after every page. Default: on.

tab-width=tab-width-value
The distance between tab stops for this device. If set to 0, tabs will not be used
in the output. Default: 8.

init=initialization-string.
String written to the device before anything else, at the beginning of the output.
Default: "" (the empty string).

done=finalization-string.
String written to the device after everything else, at the end of the output.
Default: "" (the empty string).

B.7.2 ASCII page options
These options a�ect page setup:
headers=boolean

If enabled, two lines of header information giving title and subtitle, page num-
ber, date and time, and PSPP version are printed at the top of every page.
These two lines are in addition to any top margin requested. Default: on.

length=line-count
Physical length of a page, in lines. Headers and margins are subtracted from
this value. Default: 66.

width=character-count
Physical width of a page, in characters. Margins are subtracted from this value.
Default: 130.

lpi=lines-per-inch
Number of lines per vertical inch. Not currently used. Default: 6.

cpi=characters-per-inch
Number of characters per horizontal inch. Not currently used. Default: 10.

Appendix B: Con�guring PSPP 128

left-margin=left-margin-width
Width of the left margin, in characters. PSPP subtracts this value from the
page width. Default: 0.

right-margin=right-margin-width
Width of the right margin, in characters. PSPP subtracts this value from the
page width. Default: 0.

top-margin=top-margin-lines
Length of the top margin, in lines. PSPP subtracts this value from the page
length. Default: 2.

bottom-margin=bottom-margin-lines
Length of the bottom margin, in lines. PSPP subtracts this value from the
page length. Default: 2.

B.7.3 ASCII font options
These are the ASCII font options:
box[line-type]=box-chars

The characters used for lines in tables produced by the ASCII driver can be
changed using this option. line-type is used to indicate which type of line to
change; box-chars is the character or string of characters to use for this type of
line.
line-type must be a 4-digit number in base 4. The digits are in the order `right',
`bottom', `left', `top'. The four possibilities for each digit are:
0 No line.
1 Single line.
2 Double line.
3 Special device-de�ned line, if one is available; otherwise, a double

line.
Examples:
box[0101]="|"

Sets `|' as the character to use for a single-width line with bottom
and top components.

box[2222]="#"
Sets `#' as the character to use for the intersection of four double-
width lines, one each from the top, bottom, left and right.

box[1100]="\xda"
Sets `"\xda"', which under MS-DOS is a box character suitable for
the top-left corner of a box, as the character for the intersection of
two single-width lines, one each from the right and bottom.

Defaults:
� box[0000]=" "

Appendix B: Con�guring PSPP 129

� box[1000]="-"
box[0010]="-"
box[1010]="-"

� box[0100]="|"
box[0001]="|"
box[0101]="|"

� box[2000]="="
box[0020]="="
box[2020]="="

� box[0200]="#"
box[0002]="#"
box[0202]="#"

� box[3000]="="
box[0030]="="
box[3030]="="

� box[0300]="#"
box[0003]="#"
box[0303]="#"

� For all others, `+' is used unless there are double lines or special lines, in
which case `#' is used.

italic-on=italic-on-string
Character sequence written to turn on italics or underline printing. If this is set
to overstrike, then the driver will simulate underlining by overstriking with
underscore characters (`_') in the manner described by overstrike-style and
carriage-return-style. Default: overstrike.

italic-off=italic-off-string
Character sequence to turn o� italics or underline printing. Default: "" (the
empty string).

bold-on=bold-on-string
Character sequence written to turn on bold or emphasized printing. If set to
overstrike, then the driver will simulated bold printing by overstriking char-
acters in the manner described by overstrike-style and carriage-return-
style. Default: overstrike.

bold-off=bold-off-string
Character sequence to turn o� bold or emphasized printing. Default: "" (the
empty string).

bold-italic-on=bold-italic-on-string
Character sequence written to turn on bold-italic printing. If set to
overstrike, then the driver will simulate bold-italics by overstriking twice,
once with the character, a second time with an underscore (`_') character, in
the manner described by overstrike-style and carriage-return-style.
Default: overstrike.

Appendix B: Con�guring PSPP 130

bold-italic-off=bold-italic-off-string
Character sequence to turn o� bold-italic printing. Default: "" (the empty
string).

overstrike-style=overstrike-option
Either single or line:
� If single is selected, then, to overstrike a line of text, the output driver will

output a character, backspace, overstrike, output a character, backspace,
overstrike, and so on along a line.

� If line is selected then the output driver will output an entire line, then
backspace or emit a carriage return (as indicated by carriage-return-
style), then overstrike the entire line at once.

single is recommended for use with ttys and programs that understand over-
striking in text �les, such as the pager less. single will also work with printer
devices but results in rapid back-and-forth motions of the printhead that can
cause the printer to physically overheat!
line is recommended for use with printer devices. Most programs that under-
stand overstriking in text �les will not properly deal with line mode.
Default: single.

carriage-return-style=carriage-return-type
Either bs or cr. This option applies only when one or more of the font com-
mands is set to overstrike and, at the same time, overstrike-style is set
to line.
� If bs is selected then the driver will return to the beginning of a line by

emitting a sequence of backspace characters (ASCII 8).
� If cr is selected then the driver will return to the beginning of a line by

emitting a single carriage-return character (ASCII 13).
Although cr is preferred as being more compact, bs is more general since some
devices do not interpret carriage returns in the desired manner. Default: bs.

B.8 The HTML driver class
The html driver class is used to produce output for viewing in tables-capable web browsers
such as Emacs' w3-mode. Its con�guration is very simple. Currently, the output has a very
plain format. In the future, further work may be done on improving the output appearance.

There are few options for use with the html driver class:
output-file=filename

File to which output should be sent. This can be an ordinary �lename
(i.e., "pspp.ps"), a pipe �lename (i.e., "|lpr"), or stdout ("-"). Default:
"pspp.html".

prologue-file=prologue-file-name
Sets the name of the PostScript prologue �le. You can write your own prologue
if you want to customize colors or other settings: see Section B.8.1 [HTML
Prologue], page 131. Default: html-prologue.

Appendix B: Con�guring PSPP 131

B.8.1 The HTML prologue
HTML �les that are generated by PSPP consist of two parts: a prologue and a body. The
prologue is a collection of boilerplate. Only the body di�ers greatly between two outputs.
You can tune the colors and other attributes of the output by editing the prologue.

The prologue is dumped into the output stream essentially unmodi�ed. However, two
actions are performed on its lines. First, certain lines may be omitted as speci�ed in the
prologue �le itself. Second, variables are substituted.

The following lines are omitted:
1. All lines that contain three bangs in a row (!!!).
2. Lines that contain !title, if no title is set for the output. If a title is set, then the

characters !title are removed before the line is output.
3. Lines that contain !subtitle, if no subtitle is set for the output. If a subtitle is set,

then the characters !subtitle are removed before the line is output.
The following are the variables that are substituted. Only the variables listed are sub-

stituted; environment variables are not. See Section B.4.2 [Environment substitutions],
page 115.
generator

PSPP version as a string: `GNU PSPP 0.1b', for example.
date

Date the �le was created. Example: `Tue May 21 13:46:22 1991'.
user

Under multiuser OSes, the user's login name, taken either from the environ-
ment variable LOGNAME or, if that fails, the result of the C library function
getlogin(). Defaults to `nobody'.

host
System hostname as reported by gethostname(). Defaults to `nowhere'.

title
Document title as a string. This is the title speci�ed in the PSPP syntax �le.

subtitle
Document subtitle as a string.

source-file
PSPP syntax �le name. Example: `mary96/first.stat'.

B.9 Miscellaneous con�guration
The following environment variables can be used to further con�gure PSPP:
HOME

Used to determine the user's home directory. No default value.
STAT_INCLUDE_PATH

Path used to �nd include �les in PSPP syntax �les. Defaults vary across oper-
ating systems:

Appendix B: Con�guring PSPP 132

UNIX
� `.'
� `~/.pspp/include'
� `/usr/local/lib/pspp/include'
� `/usr/lib/pspp/include'
� `/usr/local/share/pspp/include'
� `/usr/share/pspp/include'

MS-DOS
� `.'
� `C:\PSPP\INCLUDE'
� `$PATH'

Other OSes
No default path.

STAT_PAGER
PAGER

When PSPP invokes an external pager, it uses the �rst of these that is de�ned.
There is a default pager only if the person who compiled PSPP de�ned one.

TERM
The terminal type termcap or ncurses will use, if such support was compiled
into PSPP.

STAT_OUTPUT_INIT_FILE
The basename used to search for the driver de�nition �le. See Section B.5
[Output devices], page 116. See Section B.1 [File locations], page 113. Default:
devices.

STAT_OUTPUT_PAPERSIZE_FILE
The basename used to search for the papersize �le. See Section B.5.5 [papersize],
page 119. See Section B.1 [File locations], page 113. Default: papersize.

STAT_OUTPUT_INIT_PATH
The path used to search for the driver de�nition �le and the papersize �le.
See Section B.1 [File locations], page 113. Default: the standard con�guration
path.

TMPDIR
The directory in which PSPP stores its temporary �les (used when sorting cases
or concatenating large numbers of cases). Default: (UNIX) `/tmp', (MS-DOS)
`\', (other OSes) empty string.

TEMP

TMP
Under MS-DOS only, these variables are consulted after TMPDIR, in this order.

Appendix B: Con�guring PSPP 133

B.10 Improving output quality
When its drivers are set up properly, PSPP can produce output that looks very good indeed.
The PostScript driver, suitably con�gured, can produce presentation-quality output. Here
are a few guidelines for producing better-looking output, regardless of output driver. Your
mileage may vary, of course, and everyone has di�erent esthetic preferences.
� Width is important in PSPP output. Greater output width leads to more readable

output, to a point. Try the following to increase the output width:
� If you're using the ASCII driver with a dot-matrix printer, �gure out what you

need to do to put the printer into compressed mode. Put that string into the
init-string setting. Try to get 132 columns; 160 might be better, but you might
�nd that print that tiny is di�cult to read.

� With the PostScript driver, try these ideas:
+ Landscape mode.
+ Legal-size (8.5" x 14") paper in landscape mode.
+ Reducing font sizes. If you're using 12-point fonts, try 10 point; if you're using

10-point fonts, try 8 point. Some fonts are more readable than others at small
sizes.

Try to strike a balance between character size and page width.
� Use high-quality fonts. Many public domain fonts are poor in quality. Recently, URW

made some high-quality fonts available under the GPL. These are probably suitable.
� Be sure you're using the proper font metrics. The font metrics provided with PSPP

may not correspond to the fonts actually being printed. This can cause bizarre-looking
output.

� Make sure that you're using good ink/ribbon/toner. Darker print is easier to read.
� Use plain fonts with serifs, such as Times-Roman or Palatino. Avoid choosing italic or

bold fonts as document base fonts.

Appendix C: Portable File Format 134

Appendix C Portable File Format

These days, most computers use the same internal data formats for integer and
oating-
point data, if one ignores little di�erences like big- versus little-endian byte ordering. How-
ever, occasionally it is necessary to exchange data between systems with incompatible data
formats. This is what portable �les are designed to do.

Please note: Although all of the following information is correct, as far as the author
has been able to ascertain, it is gleaned from examination of ASCII-formatted portable �les
only, so some of it may be incorrect in the general case.

C.1 Portable File Characters
Portable �les are arranged as a series of lines of exactly 80 characters each. Each line is
terminated by a carriage-return, line-feed sequence \new-lines"). New-lines are only used
to avoid line length limits imposed by some OSes; they are not meaningful.

The �le must be terminated with a `Z' character. In addition, if the �nal line in the
�le does not have exactly 80 characters, then it is padded on the right with `Z' characters.
(The �le contents may be in any character set; the �le contains a description of its own
character set, as explained in the next section. Therefore, the `Z' character is not necessarily
an ASCII `Z'.)

For the rest of the description of the portable �le format, new-lines and the trailing
`Z's will be ignored, as if they did not exist, because they are not an important part of
understanding the �le contents.

C.2 Portable File Structure
Every portable �le consists of the following records, in sequence:
� File header.
� Version and date info.
� Product identi�cation.
� Author identi�cation (optional).
� Subproduct identi�cation (optional).
� Variable count.
� Case weight variable (optional).
� Variables. Each variable record may optionally be followed by a missing value record

and a variable label record.
� Value labels (optional).
� Data.

Most records are identi�ed by a single-character tag code. The �le header and version
info record do not have a tag.

Other than these single-character codes, there are three types of �elds in a portable �le:

oating-point, integer, and string. Floating-point �elds have the following format:
� Zero or more leading spaces.

Appendix C: Portable File Format 135

� Optional asterisk (`*'), which indicates a missing value. The asterisk must be followed
by a single character, generally a period (`.'), but it appears that other characters may
also be possible. This completes the speci�cation of a missing value.

� Optional minus sign (`-') to indicate a negative number.
� A whole number, consisting of one or more base-30 digits: `0' through `9' plus capital

letters `A' through `T'.
� Optional fraction, consisting of a radix point (`.') followed by one or more base-30

digits.
� Optional exponent, consisting of a plus or minus sign (`+' or `-') followed by one or

more base-30 digits.
� A forward slash (`/').
Integer �elds take a form identical to
oating-point �elds, but they may not contain a

fraction.
String �elds take the form of a integer �eld having value n, followed by exactly n char-

acters, which are the string content.

C.3 Portable File Header
Every portable �le begins with a 464-byte header, consisting of a 200-byte collection of
vanity splash strings, followed by a 256-byte character set translation table, followed by an
8-byte tag string.

The 200-byte segment is divided into �ve 40-byte sections, each of which represents the
string charset SPSS PORT FILE in a di�erent character set encoding, where charset is the
name of the character set used in the �le, e.g. ASCII or EBCDIC. Each string is padded on
the right with spaces in its respective character set.

It appears that these strings exist only to inform those who might view the �le on a
screen, and that they are not parsed by SPSS products. Thus, they can be safely ignored.
For those interested, the strings are supposed to be in the following character sets, in the
speci�ed order: EBCDIC, 7-bit ASCII, CDC 6-bit ASCII, 6-bit ASCII, Honeywell 6-bit
ASCII.

The 256-byte segment describes a mapping from the character set used in the portable
�le to an arbitrary character set having characters at the following positions:
0{60

Control characters. Not important enough to describe in full here.
61{63

Reserved.
64{73

Digits `0' through `9'.
74{99

Capital letters `A' through `Z'.
100{125

Lowercase letters `a' through `z'.

Appendix C: Portable File Format 136

126
Space.

127{130
Symbols .<(+

131
Solid vertical pipe.

132{142
Symbols &[]!$*);^-/

143
Broken vertical pipe.

144{150
Symbols ,%_>?`:

151
British pound symbol.

152{155
Symbols @'=".

156
Less than or equal symbol.

157
Empty box.

158
Plus or minus.

159
Filled box.

160
Degree symbol.

161
Dagger.

162
Symbol `~'.

163
En dash.

164
Lower left corner box draw.

165
Upper left corner box draw.

Appendix C: Portable File Format 137

166
Greater than or equal symbol.

167{176
Superscript `0' through `9'.

177
Lower right corner box draw.

178
Upper right corner box draw.

179
Not equal symbol.

180
Em dash.

181
Superscript `('.

182
Superscript `)'.

183
Horizontal dagger (?).

184{186
Symbols `{}\'.

187
Cents symbol.

188
Centered dot, or bullet.

189{255
Reserved.

Symbols that are not de�ned in a particular character set are set to the same value as
symbol 64; i.e., to `0'.

The 8-byte tag string consists of the exact characters SPSSPORT in the portable �le's
character set, which can be used to verify that the �le is indeed a portable �le.

C.4 Version and Date Info Record
This record does not have a tag code. It has the following structure:
� A single character identifying the �le format version. The letter A represents version

0, and so on.
� An 8-character string �eld giving the �le creation date in the format YYYYMMDD.
� A 6-character string �eld giving the �le creation time in the format HHMMSS.

Appendix C: Portable File Format 138

C.5 Identi�cation Records
The product identi�cation record has tag code `1'. It consists of a single string �eld giving
the name of the product that wrote the portable �le.

The author identi�cation record has tag code `2'. It is optional. If present, it consists
of a single string �eld giving the name of the person who caused the portable �le to be
written.

The subproduct identi�cation record has tag code `3'. It is optional. If present, it
consists of a single string �eld giving additional information on the product that wrote the
portable �le.

C.6 Variable Count Record
The variable count record has tag code `4'. It consists of two integer �elds. The �rst contains
the number of variables in the �le dictionary. The purpose of the second is unknown; it
contains the value 161 in all portable �les examined so far.

C.7 Case Weight Variable Record
The case weight variable record is optional. If it is present, it indicates the variable used
for weighting cases; if it is absent, cases are unweighted. It has tag code `6'. It consists of
a single string �eld that names the weighting variable.

C.8 Variable Records
Each variable record represents a single variable. Variable records have tag code `7'. They
have the following structure:
� Width (integer). This is 0 for a numeric variable, and a number between 1 and 255 for

a string variable.
� Name (string). 1{8 characters long. Must be in all capitals.
� Print format. This is a set of three integer �elds:

� Format type (see Section D.2 [Variable Record], page 142).
� Format width. 1{40.
� Number of decimal places. 1{40.

� Write format. Same structure as the print format described above.
Each variable record can optionally be followed by a missing value record, which has tag

code `8'. A missing value record has one �eld, the missing value itself (a
oating-point or
string, as appropriate). Up to three of these missing value records can be used.

There is also a record for missing value ranges, which has tag code `B'. It is followed
by two �elds representing the range, which are
oating-point or string as appropriate. If a
missing value range is present, it may be followed by a single missing value record.

Tag codes `9' and `A' represent LO THRU x and x THRU HI ranges, respectively. Each is
followed by a single �eld representing x. If one of the ranges is present, it may be followed
by a single missing value record.

In addition, each variable record can optionally be followed by a variable label record,
which has tag code `C'. A variable label record has one �eld, the variable label itself (string).

Appendix C: Portable File Format 139

C.9 Value Label Records
Value label records have tag code `D'. They have the following format:
� Variable count (integer).
� List of variables (strings). The variable count speci�es the number in the list. Variables

are speci�ed by their names. All variables must be of the same type (numeric or string).
� Label count (integer).
� List of (value, label) tuples. The label count speci�es the number of tuples. Each tuple

consists of a value, which is numeric or string as appropriate to the variables, followed
by a label (string).

C.10 Portable File Data
The data record has tag code `F'. There is only one tag for all the data; thus, all the data
must follow the dictionary. The data is terminated by the end-of-�le marker `Z', which is
not valid as the beginning of a data element.

Data elements are output in the same order as the variable records describing them.
String variables are output as string �elds, and numeric variables are output as
oating-
point �elds.

Appendix D: Data File Format 140

Appendix D Data File Format

PSPP necessarily uses the same format for system �les as do the products with which it is
compatible. This chapter is a description of that format.

There are three data types used in system �les: 32-bit integers, 64-bit
oating points,
and 1-byte characters. In this document these will simply be referred to as int32, flt64,
and char, the names that are used in the PSPP source code. Every �eld of type int32 or
flt64 is aligned on a 32-bit boundary.

The endianness of data in PSPP system �les is not speci�ed. System �les output on a
computer of a particular endianness will have the endianness of that computer. However,
PSPP can read �les of either endianness, regardless of its host computer's endianness. PSPP
translates endianness for both integer and
oating point numbers.

Floating point formats are also not speci�ed. PSPP does not translate between
oating
point formats. This is unlikely to be a problem as all modern computer architectures use
IEEE 754 format for
oating point representation.

The PSPP system-missing value is represented by the largest possible negative number
in the
oating point format; in C, this is most likely -DBL_MAX. There are two other
important values used in missing values: HIGHEST and LOWEST. These are represented by
the largest possible positive number (probably DBL_MAX) and the second-largest negative
number. The latter must be determined in a system-dependent manner; in IEEE 754 format
it is represented by value 0xffeffffffffffffe.

System �les are divided into records. Each record begins with an int32 giving a numeric
record type. Individual record types are described below:

D.1 File Header Record
The �le header is always the �rst record in the �le.

struct sysfile_header
{
char rec_type[4];
char prod_name[60];
int32 layout_code;
int32 case_size;
int32 compressed;
int32 weight_index;
int32 ncases;
flt64 bias;
char creation_date[9];
char creation_time[8];
char file_label[64];
char padding[3];

};

char rec_type[4];
Record type code. Always set to `$FL2'. This is the only record for which the
record type is not of type int32.

Appendix D: Data File Format 141

char prod_name[60];
Product identi�cation string. This always begins with the characters
`@(#) SPSS DATA FILE'. PSPP uses the remaining characters to give its
version and the operating system name; for example, `GNU pspp 0.1.4 -
sparc-sun-solaris2.5.2'. The string is truncated if it would be longer than
60 characters; otherwise it is padded on the right with spaces.

int32 layout_code;
Always set to 2. PSPP reads this value to determine the �le's endianness.

int32 case_size;
Number of data elements per case. This is the number of variables, except that
long string variables add extra data elements (one for every 8 characters after
the �rst 8). When reading system �les, PSPP will use this value unless it is set
to -1, in which case it will determine the number of data elements by context.
When writing system �les PSPP always uses this value.

int32 compressed;
Set to 1 if the data in the �le is compressed, 0 otherwise.

int32 weight_index;
If one of the variables in the data set is used as a weighting variable, set to the
index of that variable. Otherwise, set to 0.

int32 ncases;
Set to the number of cases in the �le if it is known, or -1 otherwise.
In the general case it is not possible to determine the number of cases that will
be output to a system �le at the time that the header is written. The way that
this is dealt with is by writing the entire system �le, including the header, then
seeking back to the beginning of the �le and writing just the ncases �eld. For
`�les' in which this is not valid, the seek operation fails. In this case, ncases
remains -1.

flt64 bias;
Compression bias. Always set to 100. The signi�cance of this value is that only
numbers between (1 - bias) and (251 - bias) can be compressed.

char creation_date[9];
Set to the date of creation of the system �le, in `dd mmm yy' format, with the
month as standard English abbreviations, using an initial capital letter and
following with lowercase. If the date is not available then this �eld is arbitrarily
set to `01 Jan 70'.

char creation_time[8];
Set to the time of creation of the system �le, in `hh:mm:ss' format and using
24-hour time. If the time is not available then this �eld is arbitrarily set to
`00:00:00'.

char file_label[64];
Set the the �le label declared by the user, if any. Padded on the right with
spaces.

Appendix D: Data File Format 142

char padding[3];
Ignored padding bytes to make the structure a multiple of 32 bits in length.
Set to zeros.

D.2 Variable Record
Immediately following the header must come the variable records. There must be one
variable record for every variable and every 8 characters in a long string beyond the �rst 8;
i.e., there must be exactly as many variable records as the value speci�ed for case_size in
the �le header record.

struct sysfile_variable
{
int32 rec_type;
int32 type;
int32 has_var_label;
int32 n_missing_values;
int32 print;
int32 write;
char name[8];

/* The following two fields are present
only if has_var_label is 1. */

int32 label_len;
char label[/* variable length */];

/* The following field is present only
if n_missing_values is not 0. */

flt64 missing_values[/* variable length*/];
};

int32 rec_type;
Record type code. Always set to 2.

int32 type;
Variable type code. Set to 0 for a numeric variable. For a short string variable
or the �rst part of a long string variable, this is set to the width of the string.
For the second and subsequent parts of a long string variable, set to -1, and the
remaining �elds in the structure are ignored.

int32 has_var_label;
If this variable has a variable label, set to 1; otherwise, set to 0.

int32 n_missing_values;
If the variable has no missing values, set to 0. If the variable has one, two, or
three discrete missing values, set to 1, 2, or 3, respectively. If the variable has
a range for missing variables, set to -2; if the variable has a range for missing
variables plus a single discrete value, set to -3.

int32 print;
Print format for this variable. See below.

Appendix D: Data File Format 143

int32 write;
Write format for this variable. See below.

char name[8];
Variable name. The variable name must begin with a capital letter or the at-
sign (`@'). Subsequent characters may also be octothorpes (`#'), dollar signs
(`$'), underscores (`_'), or full stops (`.'). The variable name is padded on the
right with spaces.

int32 label_len;
This �eld is present only if has_var_label is set to 1. It is set to the length, in
characters, of the variable label, which must be a number between 0 and 120.

char label[/* variable length */];
This �eld is present only if has_var_label is set to 1. It has length label_len,
rounded up to the nearest multiple of 32 bits. The �rst label_len characters
are the variable's variable label.

flt64 missing_values[/* variable length */];
This �eld is present only if n_missing_values is not 0. It has the same number
of elements as the absolute value of n_missing_values. For discrete missing
values, each element represents one missing value. When a range is present, the
�rst element denotes the minimum value in the range, and the second element
denotes the maximum value in the range. When a range plus a value are present,
the third element denotes the additional discrete missing value. HIGHEST and
LOWEST are indicated as described in the chapter introduction.

The print and write members of sys�le variable are output formats coded into int32
types. The LSB (least-signi�cant byte) of the int32 represents the number of decimal
places, and the next two bytes in order of increasing signi�cance represent �eld width and
format type, respectively. The MSB (most-signi�cant byte) is not used and should be set
to zero.

Format types are de�ned as follows:
0 Not used.
1 A

2 AHEX

3 COMMA

4 DOLLAR

5 F

6 IB

7 PIBHEX

8 P

9 PIB

10 PK

Appendix D: Data File Format 144

11 RB

12 RBHEX

13 Not used.

14 Not used.

15 Z

16 N

17 E

18 Not used.

19 Not used.

20 DATE

21 TIME

22 DATETIME

23 ADATE

24 JDATE

25 DTIME

26 WKDAY

27 MONTH

28 MOYR

29 QYR

30 WKYR

31 PCT

32 DOT

33 CCA

34 CCB

35 CCC

36 CCD

37 CCE

38 EDATE

39 SDATE

Appendix D: Data File Format 145

D.3 Value Label Record
Value label records must follow the variable records and must precede the header termina-
tion record. Other than this, they may appear anywhere in the system �le. Every value
label record must be immediately followed by a label variable record, described below.

Value label records begin with rec_type, an int32 value set to the record type of 3.
This is followed by count, an int32 value set to the number of value labels present in this
record.

These two �elds are followed by a series of count tuples. Each tuple is divided into two
�elds, the value and the label. The �rst of these, the value, is composed of a 64-bit value,
which is either a flt64 value or up to 8 characters (padded on the right to 8 bytes) denoting
a short string value. Whether the value is a flt64 or a character string is not de�ned inside
the value label record.

The second �eld in the tuple, the label, has variable length. The �rst char is a count of
the number of characters in the value label. The remainder of the �eld is the label itself.
The �eld is padded on the right to a multiple of 64 bits in length.

D.4 Value Label Variable Record
Every value label variable record must be immediately preceded by a value label record,
described above.

struct sysfile_value_label_variable
{

int32 rec_type;
int32 count;
int32 vars[/* variable length */];

};

int32 rec_type;
Record type. Always set to 4.

int32 count;
Number of variables that the associated value labels from the value label record
are to be applied.

int32 vars[/* variable length];
A list of variables to which to apply the value labels. There are count elements.

D.5 Document Record
There must be no more than one document record per system �le. Document records must
follow the variable records and precede the dictionary termination record.

struct sysfile_document
{
int32 rec_type;
int32 n_lines;
char lines[/* variable length */][80];

};

Appendix D: Data File Format 146

int32 rec_type;
Record type. Always set to 6.

int32 n_lines;
Number of lines of documents present.

char lines[/* variable length */][80];
Document lines. The number of elements is de�ned by n_lines. Lines shorter
than 80 characters are padded on the right with spaces.

D.6 Machine int32 Info Record
There must be no more than one machine int32 info record per system �le. Machine int32
info records must follow the variable records and precede the dictionary termination record.

struct sysfile_machine_int32_info
{
/* Header. */
int32 rec_type;
int32 subtype;
int32 size;
int32 count;

/* Data. */
int32 version_major;
int32 version_minor;
int32 version_revision;
int32 machine_code;
int32 floating_point_rep;
int32 compression_code;
int32 endianness;
int32 character_code;

};
int32 rec_type;

Record type. Always set to 7.
int32 subtype;

Record subtype. Always set to 3.
int32 size;

Size of each piece of data in the data part, in bytes. Always set to 4.
int32 count;

Number of pieces of data in the data part. Always set to 8.
int32 version_major;

PSPP major version number. In version x.y.z, this is x.
int32 version_minor;

PSPP minor version number. In version x.y.z, this is y.
int32 version_revision;

PSPP version revision number. In version x.y.z, this is z.

Appendix D: Data File Format 147

int32 machine_code;
Machine code. PSPP always set this �eld to value to -1, but other values may
appear.

int32 floating_point_rep;
Floating point representation code. For IEEE 754 systems this is 1. IBM 370
sets this to 2, and DEC VAX E to 3.

int32 compression_code;
Compression code. Always set to 1.

int32 endianness;
Machine endianness. 1 indicates big-endian, 2 indicates little-endian.

int32 character_code;
Character code. 1 indicates EBCDIC, 2 indicates 7-bit ASCII, 3 indicates 8-bit
ASCII, 4 indicates DEC Kanji.

D.7 Machine flt64 Info Record
There must be no more than one machine flt64 info record per system �le. Machine flt64
info records must follow the variable records and precede the dictionary termination record.

struct sysfile_machine_flt64_info
{
/* Header. */
int32 rec_type;
int32 subtype;
int32 size;
int32 count;

/* Data. */
flt64 sysmis;
flt64 highest;
flt64 lowest;

};

int32 rec_type;
Record type. Always set to 7.

int32 subtype;
Record subtype. Always set to 4.

int32 size;
Size of each piece of data in the data part, in bytes. Always set to 4.

int32 count;
Number of pieces of data in the data part. Always set to 3.

flt64 sysmis;
The system missing value.

flt64 highest;
The value used for HIGHEST in missing values.

Appendix D: Data File Format 148

flt64 lowest;
The value used for LOWEST in missing values.

D.8 Auxilliary Variable Parameter Record
There must be no more than one auxilliary variable parameter record per system �le. This
record must follow the variable records and precede the dictionary termination record.

struct sysfile_aux_var_parameter
{
/* Header. */
int32 rec_type;
int32 subtype;
int32 size;
int32 count;

/* Data. */
struct aux_params aux_params[/* variable length */];

};

int32 rec_type;
Record type. Always set to 7.

int32 subtype;
Record subtype. Always set to 11.

int32 size;
The size int32. Always set to 4.

int32 count;
The total number of bytes in aux_params divided by 3.

struct aux_params aux_params[];
An array of struct aux_params. The order of the elements corresponds to the
order of the variables in the Variable Records. The struct aux_params type is
de�ned as follows:

struct aux_params
{

int32 measure;
int32 width;
int32 alignment;

};

int32 measure
The measurement type of the variable:
0 Nominal Scale
1 Ordinal Scale
2 Continuous Scale

int32 width
The width of the display column for the variable in characters.

Appendix D: Data File Format 149

int32 alignment
The alignment of the variable for display purposes:
0 Left aligned
1 Right aligned
2 Centre aligned

D.9 Long Variable Names Record
There must be no more than one long variable names record per system �le. This record
must follow the variable records and precede the dictionary termination record.

struct sysfile_long_variable_names
{
/* Header. */
int32 rec_type;
int32 subtype;
int32 size;
int32 count;

/* Data. */
char var_name_pairs[/* variable length */];

};

int32 rec_type;
Record type. Always set to 7.

int32 subtype;
Record subtype. Always set to 13.

int32 size;
The size of each element in the var_name_pairs member. Always set to 1.

int32 count;
The total number of bytes in var_name_pairs.

char var_name_pairs[/* variable length];
A list of key{value tuples, where key is the name of a variable, and value is
its long variable name. The key �eld is at most 8 bytes long and must match
the name of a variable which appears in the variable record See Section D.2
[Variable Record], page 142. The value �eld is at most 64 bytes long. The key
and value �elds are separated by a `=' byte. Each tuple is separated by a byte
whose value is 09. There is no trailing separator following the last tuple. The
total length is count bytes.

D.10 Miscellaneous Informational Records
Miscellaneous informational records must follow the variable records and precede the dic-
tionary termination record.

Miscellaneous informational records are ignored by PSPP when reading system �les.
They are not written by PSPP when writing system �les.

Appendix D: Data File Format 150

struct sysfile_misc_info
{
/* Header. */
int32 rec_type;
int32 subtype;
int32 size;
int32 count;

/* Data. */
char data[/* variable length */];

};

int32 rec_type;
Record type. Always set to 7.

int32 subtype;
Record subtype. May take any value. According to Aapi H�am�al�ainen, value 5
indicates a set of grouped variables and 6 indicates date info (probably related
to USE).

int32 size;
Size of each piece of data in the data part. Should have the value 4 or 8, for
int32 and flt64, respectively.

int32 count;
Number of pieces of data in the data part.

char data[/* variable length */];
Arbitrary data. There must be size times count bytes of data.

D.11 Dictionary Termination Record
The dictionary termination record must follow all other records, except for the actual cases,
which it must precede. There must be exactly one dictionary termination record in every
system �le.

struct sysfile_dict_term
{
int32 rec_type;
int32 filler;

};

int32 rec_type;
Record type. Always set to 999.

int32 filler;
Ignored padding. Should be set to 0.

D.12 Data Record
Data records must follow all other records in the data �le. There must be at least one data
record in every system �le.

Appendix D: Data File Format 151

The format of data records varies depending on whether the data is compressed. Re-
gardless, the data is arranged in a series of 8-byte elements.

When data is not compressed, Every case is composed of case_size of these 8-byte
elements, where case_size comes from the �le header record (see Section D.1 [File Header
Record], page 140). Each element corresponds to the variable declared in the respective
variable record (see Section D.2 [Variable Record], page 142). Numeric values are given in
flt64 format; string values are literal characters string, padded on the right when necessary.

Compressed data is arranged in the following manner: the �rst 8-byte element in the
data section is divided into a series of 1-byte command codes. These codes have meanings
as described below:
0 Ignored. If the program writing the system �le accumulates compressed data

in blocks of �xed length, 0 bytes can be used to pad out extra bytes remaining
at the end of a �xed-size block.

1 through 251
These values indicate that the corresponding numeric variable has the value
(code - bias) for the case being read, where code is the value of the com-
pression code and bias is the variable compression_bias from the �le header.
For example, code 105 with bias 100.0 (the normal value) indicates a numeric
variable of value 5.

252 End of �le. This code may or may not appear at the end of the data stream.
PSPP always outputs this code but its use is not required.

253 This value indicates that the numeric or string value is not compressible. The
value is stored in the 8-byte element following the current block of command
bytes. If this value appears twice in a block of command bytes, then it indicates
the second element following the command bytes, and so on.

254 Used to indicate a string value that is all spaces.
255 Used to indicate the system-missing value.

When the end of the �rst 8-byte element of command bytes is reached, any blocks of
non-compressible values are skipped, and the next element of command bytes is read and
interpreted, until the end of the �le is reached.

Appendix E: q2c Input Format 152

Appendix E q2c Input Format

PSPP statistical procedures have a bizarre and somewhat irregular syntax. Despite this, a
parser generator has been written that adequately addresses many of the possibilities and
tries to provide hooks for the exceptional cases. This parser generator is named q2c.

E.1 Invoking q2c
q2c input.q output.c

q2c translates a `.q' �le into a `.c' �le. It takes exactly two command-line arguments,
which are the input �le name and output �le name, respectively. q2c does not accept any
command-line options.

E.2 q2c Input Structure
q2c input �les are divided into two sections: the grammar rules and the supporting code.
The grammar rules, which make up the �rst part of the input, are used to de�ne the syntax
of the statistical procedure to be parsed. The supporting code, following the grammar rules,
are copied largely unchanged to the output �le, except for certain escapes.

The most important lines in the grammar rules are used for de�ning procedure syntax.
These lines can be pre�xed with a dollar sign (`$'), which prevents Emacs' CC-mode from
munging them. Besides this, a bang (`!') at the beginning of a line causes the line, minus
the bang, to be written verbatim to the output �le (useful for comments). As a third special
case, any line that begins with the exact characters /* *INDENT is ignored and not written
to the output. This allows .q �les to be processed through indent without being munged.

The syntax of the grammar rules themselves is given in the following sections.
The supporting code is passed into the output �le largely unchanged. However, the

following escapes are supported. Each escape must appear on a line by itself.

/* (header) */
Expands to a series of C #include directives which include the headers that
are required for the parser generated by q2c.

/* (decls scope) */
Expands to C variable and data type declarations for the variables and enums
input and output by the q2c parser. scope must be either local or global.
local causes the declarations to be output as function locals. global causes
them to be declared as static module variables; thus, global is a bit of a
misnomer.

/* (parser) */
Expands to the entire parser. Must be enclosed within a C function.

/* (free) */
Expands to a set of calls to the free function for variables declared by the
parser. Only needs to be invoked if subcommands of type string are used in
the grammar rules.

Appendix E: q2c Input Format 153

E.3 Grammar Rules
The grammar rules describe the format of the syntax that the parser generated by q2c will
understand. The way that the grammar rules are included in q2c input �le are described
above.

The grammar rules are divided into tokens of the following types:
Identi�er (ID)

An identi�er token is a sequence of letters, digits, and underscores (`_'). Iden-
ti�ers are not case-sensitive.

String (STRING)
String tokens are initiated by a double-quote character (`"') and consist of all
the characters between that double quote and the next double quote, which
must be on the same line as the �rst. Within a string, a backslash can be used
as a \literal escape". The only reasons to use a literal escape are to include a
double quote or a backslash within a string.

Special character
Other characters, other than white space, constitute tokens in themselves.

The syntax of the grammar rules is as follows:
grammar-rules ::= ID : subcommands .
subcommands ::= subcommand

::= subcommands ; subcommand
The syntax begins with an ID or STRING token that gives the name of the procedure

to be parsed. The rest of the syntax consists of subcommands separated by semicolons (`;')
and terminated with a full stop (`.').

subcommand ::= sbc-options ID sbc-defn
sbc-options ::=

::= sbc-option
::= sbc-options sbc-options

sbc-option ::= *
::= +
::= ^

sbc-defn ::= opt-prefix = specifiers
::= [ID] = array-sbc
::= opt-prefix = sbc-special-form

opt-prefix ::=
::= (ID)

Each subcommand can be pre�xed with one or more option characters. An asterisk (`*')
is used to indicate the default subcommand; the keyword used for the default subcommand
can be omitted in the PSPP syntax �le. A plus sign (`+') is used to indicate that a subcom-
mand can appear more than once; if it is not present then that subcommand can appear
no more than once. A carat sign (`^') is used to indicate that a subcommand must appear
at least once.

The subcommand name appears after the option characters.
There are three forms of subcommands. The �rst and most common form simply gives

an equals sign (`=') and a list of speci�ers, which can each be set to a single setting. The

Appendix E: q2c Input Format 154

second form declares an array, which is a set of
ags that can be individually turned on by
the user. There are also several special forms that do not take a list of speci�ers.

Arrays require an additional ID argument. This is used as a pre�x, prepended to the
variable names constructed from the speci�ers. The other forms also allow an optional
pre�x to be speci�ed.

array-sbc ::= alternatives
::= array-sbc , alternatives

alternatives ::= ID
::= alternatives | ID

An array subcommand is a set of Boolean values that can independently be turned on
by the user, listed separated by commas (`,'). If an value has more than one name then
these names are separated by pipes (`|').

specifiers ::= specifier
::= specifiers , specifier

specifier ::= opt-id : settings
opt-id ::=

::= ID
Ordinary subcommands (other than arrays and special forms) require a list of speci�ers.

Each speci�er has an optional name and a list of settings. If the name is given then a
correspondingly named variable will be used to store the user's choice of setting. If no
name is given then there is no way to tell which setting the user picked; in this case the
settings should probably have values attached.

settings ::= setting
::= settings / setting

setting ::= setting-options ID setting-value
setting-options ::=

::= *
::= !
::= * !

Individual settings are separated by forward slashes (`/'). Each setting can be as little
as an ID token, but options and values can optionally be included. The `*' option means
that, for this setting, the ID can be omitted. The `!' option means that this option is the
default for its speci�er.

setting-value ::=
::= (setting-value-2)
::= setting-value-2

setting-value-2 ::= setting-value-options setting-value-type : ID
setting-value-restriction

setting-value-options ::=
::= *

setting-value-type ::= N
::= D

setting-value-restriction ::=
::= , STRING

Appendix E: q2c Input Format 155

Settings may have values. If the value must be enclosed in parentheses, then enclose
the value declaration in parentheses. Declare the setting type as `n' or `d' for integer or

oating point type, respectively. The given ID is used to construct a variable name. If
option `*' is given, then the value is optional; otherwise it must be speci�ed whenever the
corresponding setting is speci�ed. A \restriction" can also be speci�ed which is a string
giving a C expression limiting the valid range of the value. The special escape %s should
be used within the restriction to refer to the setting's value variable.

sbc-special-form ::= VAR
::= VARLIST varlist-options
::= INTEGER opt-list
::= DOUBLE opt-list
::= PINT
::= STRING (the literal word STRING) string-options
::= CUSTOM

varlist-options ::=
::= (STRING)

opt-list ::=
::= LIST

string-options ::=
::= (STRING STRING)

The special forms are of the following types:

VAR
A single variable name.

VARLIST
A list of variables. If given, the string can be used to provide PV_* options to
the call to parse_variables.

INTEGER
A single integer value.

INTEGER LIST
A list of integers separated by spaces or commas.

DOUBLE
A single
oating-point value.

DOUBLE LIST
A list of
oating-point values.

PINT
A single positive integer value.

STRING
A string value. If the options are given then the �rst string is an expression
giving a restriction on the value of the string; the second string is an error
message to display when the restriction is violated.

Appendix E: q2c Input Format 156

CUSTOM
A custom function is used to parse this subcommand. The function must have
prototype int custom_name (void). It should return 0 on failure (when it has
already issued an appropriate diagnostic), 1 on success, or 2 if it fails and the
calling function should issue a syntax error on behalf of the custom handler.

Appendix F: GNU Free Documentation License 157

Appendix F GNU Free Documentation License

Version 1.2, November 2002
Copyright c
 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the e�ective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modi�cations
made by others.
This License is a kind of \copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The \Document",
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as \you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A \Modi�ed Version" of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modi�cations and/or translated into
another language.
A \Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The \Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix F: GNU Free Documentation License 158

under this License. If a section does not �t the above de�nition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The \Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A \Transparent" copy of the Document means a machine-readable copy, represented
in a format whose speci�cation is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent �le format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modi�cation by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not \Transparent" is called \Opaque".
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modi�cation. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The \Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, \Title Page"
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.
A section \Entitled XYZ" means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a speci�c section name mentioned below, such
as \Acknowledgements", \Dedications", \Endorsements", or \History".) To \Preserve
the Title" of such a section when you modify the Document means that it remains a
section \Entitled XYZ" according to this de�nition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
e�ect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix F: GNU Free Documentation License 159

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to �t legibly, you should put
the �rst ones listed (as many as �t reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modi�ed Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modi�ed Version under precisely
this License, with the Modi�ed Version �lling the role of the Document, thus licensing
distribution and modi�cation of the Modi�ed Version to whoever possesses a copy of
it. In addition, you must do these things in the Modi�ed Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix F: GNU Free Documentation License 160

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modi�cations in the Modi�ed Version, together with at least �ve
of the principal authors of the Document (all of its principal authors, if it has fewer
than �ve), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modi�ed Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modi�cations adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modi�ed Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled \History", Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modi�ed Version
as given on the Title Page. If there is no section Entitled \History" in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modi�ed Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
\History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled \Acknowledgements" or \Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled \Endorsements". Such a section may not be included
in the Modi�ed Version.

N. Do not retitle any existing section to be Entitled \Endorsements" or to con
ict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modi�ed Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modi�ed Version's license notice. These
titles must be distinct from any other section titles.

Appendix F: GNU Free Documentation License 161

You may add a section Entitled \Endorsements", provided it contains nothing but
endorsements of your Modi�ed Version by various parties|for example, statements of
peer review or that the text has been approved by an organization as the authoritative
de�nition of a standard.
You may add a passage of up to �ve words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modi�ed
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modi�ed
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms de�ned in section 4 above for modi�ed versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodi�ed, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but di�erent contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled \History" in the vari-
ous original documents, forming one section Entitled \History"; likewise combine any
sections Entitled \Acknowledgements", and any sections Entitled \Dedications". You
must delete all sections Entitled \Endorsements."

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix F: GNU Free Documentation License 162

an \aggregate" if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modi�cation, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled \Acknowledgements", \Dedications", or \His-
tory", the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may di�er in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
speci�es that a particular numbered version of this License \or any later version"
applies to it, you have the option of following the terms and conditions either of that
speci�ed version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix F: GNU Free Documentation License 163

F.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
\with...Texts." line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

	Introduction
	Your rights and obligations
	Invoking PSPP
	Non-option Arguments
	Configuration Options
	Input and output options
	Language control options
	Informational options

	The PSPP language
	Tokens
	Forming commands of tokens
	Types of Commands
	Order of Commands
	Handling missing observations
	Variables
	Attributes of Variables
	Variables Automatically Defined by PSPP
	Lists of variable names
	Input and Output Formats
	Scratch Variables

	Files Used by PSPP
	Backus-Naur Form

	Mathematical Expressions
	Boolean Values
	Missing Values in Expressions
	Grouping Operators
	Arithmetic Operators
	Logical Operators
	Relational Operators
	Functions
	Mathematical Functions
	Miscellaneous Mathematical Functions
	Trigonometric Functions
	Missing-Value Functions
	Set-Membership Functions
	Statistical Functions
	String Functions
	Time & Date Functions
	How times & dates are defined and represented
	Functions that Produce Times
	Functions that Examine Times
	Functions that Produce Dates
	Functions that Examine Dates

	Miscellaneous Functions
	Statistical Distribution Functions
	Continuous Distributions
	Discrete Distributions

	Operator Precedence

	Data Input and Output
	BEGIN DATA
	CLEAR TRANSFORMATIONS
	DATA LIST
	DATA LIST FIXED
	Examples

	DATA LIST FREE
	DATA LIST LIST

	END CASE
	END FILE
	FILE HANDLE
	INPUT PROGRAM
	LIST
	MATRIX DATA
	NEW FILE
	PRINT
	PRINT EJECT
	PRINT SPACE
	REREAD
	REPEATING DATA
	WRITE

	System Files and Portable Files
	APPLY DICTIONARY
	EXPORT
	GET
	IMPORT
	MATCH FILES
	SAVE
	SYSFILE INFO
	XSAVE

	Manipulating variables
	ADD VALUE LABELS
	DISPLAY
	DISPLAY VECTORS
	FORMATS
	LEAVE
	MISSING VALUES
	MODIFY VARS
	NUMERIC
	PRINT FORMATS
	RENAME VARIABLES
	VALUE LABELS
	STRING
	VARIABLE LABELS
	VARIABLE ALIGNMENT
	VARIABLE WIDTH
	VARIABLE LEVEL
	VECTOR
	WRITE FORMATS

	Data transformations
	AGGREGATE
	AUTORECODE
	COMPUTE
	COUNT
	FLIP
	IF
	RECODE
	SORT CASES

	Selecting data for analysis
	FILTER
	N OF CASES
	PROCESS IF
	SAMPLE
	SELECT IF
	SPLIT FILE
	TEMPORARY
	WEIGHT

	Conditional and Looping Constructs
	BREAK
	DO IF
	DO REPEAT
	LOOP

	Statistics
	DESCRIPTIVES
	FREQUENCIES
	EXAMINE
	CROSSTABS
	T-TEST
	One Sample Mode
	Independent Samples Mode
	Paired Samples Mode

	ONEWAY

	Utilities
	COMMENT
	DOCUMENT
	DISPLAY DOCUMENTS
	DISPLAY FILE LABEL
	DROP DOCUMENTS
	ECHO
	ERASE
	EXECUTE
	FILE LABEL
	FINISH
	HOST
	INCLUDE
	PERMISSIONS
	QUIT
	SET
	SHOW
	SUBTITLE
	TITLE

	Not Implemented
	Bugs
	Function Index
	Command Index
	Concept Index
	Installing PSPP
	UNIX installation

	Configuring PSPP
	Locating configuration files
	Configuration techniques
	Configuration files
	Environment variables
	Values of environment variables
	Environment substitutions
	Predefined environment variables

	Output devices
	Driver categories
	Macro definitions
	Driver definitions
	Dimensions
	Paper sizes
	How lines are divided into types
	How lines are divided into tokens

	The PostScript driver class
	PostScript output options
	PostScript page options
	PostScript file options
	PostScript font options
	PostScript line options
	The PostScript prologue
	PostScript encodings

	The ASCII driver class
	ASCII output options
	ASCII page options
	ASCII font options

	The HTML driver class
	The HTML prologue

	Miscellaneous configuration
	Improving output quality

	Portable File Format
	Portable File Characters
	Portable File Structure
	Portable File Header
	Version and Date Info Record
	Identification Records
	Variable Count Record
	Case Weight Variable Record
	Variable Records
	Value Label Records
	Portable File Data

	Data File Format
	File Header Record
	Variable Record
	Value Label Record
	Value Label Variable Record
	Document Record
	Machine int32 Info Record
	Machine flt64 Info Record
	Auxilliary Variable Parameter Record
	Long Variable Names Record
	Miscellaneous Informational Records
	Dictionary Termination Record
	Data Record

	q2c Input Format
	Invoking q2c
	q2c Input Structure
	Grammar Rules

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

