
RIPEMD-160:

A Strengthened Version of RIPEMD?

Hans Dobbertin1 Antoon Bosselaers2 Bart Preneel2??

1 German Information Security Agency

P.O. Box 20 03 63, D-53133 Bonn, Germany

dobbertin@skom.rhein.de

2 Katholieke Universiteit Leuven, ESAT-COSIC

K. Mercierlaan 94, B-3001 Heverlee, Belgium

fantoon.bosselaers,bart.preneelg@esat.kuleuven.ac.be

18 April 1996

Abstract. Cryptographic hash functions are an important tool in cryp-

tography for applications such as digital �ngerprinting of messages, mes-

sage authentication, and key derivation. During the last �ve years, sev-

eral fast software hash functions have been proposed; most of them are

based on the design principles of Ron Rivest's MD4. One such proposal

was RIPEMD, which was developed in the framework of the EU project

RIPE (Race Integrity Primitives Evaluation). Because of recent progress

in the cryptanalysis of these hash functions, we propose a new version

of RIPEMD with a 160-bit result, as well as a plug-in substitute for

RIPEMD with a 128-bit result. We also compare the software perfor-

mance of several MD4-based algorithms, which is of independent inter-

est.

1 Introduction and Background

Hash functions are functions that map bitstrings of arbitrary �nite length into

strings of �xed length. Given h and an input x, computing h(x) must be easy.

A one-way hash function must satisfy the following properties:

{ preimage resistance: it is computationally infeasible to �nd any input

which hashes to any pre-speci�ed output.

{ second preimage resistance: it is computationally infeasible to �nd any

second input which has the same output as any speci�ed input.

For an ideal one-way hash function with an m-bit result, �nding a preimage

or a second preimage requires about 2m operations. A collision resistant hash

function is a one-way hash function that satis�es an additional condition:

? An earlier version appeared in Fast Software Encryption, LNCS 1039, Springer-

Verlag, 1996, pp. 71{82. The order of � and �i in Section 3 has been exchanged, and

four errors in Appendix A have been corrected.
?? N.F.W.O. postdoctoral researcher, sponsored by the National Fund for Scienti�c

Research (Belgium).

1

{ collision resistance: it is computationally infeasible to �nd a collision, i.e.

two distinct inputs that hash to the same result.

For an ideal collision resistant hash function with anm-bit result, the fastest way

to �nd a collision is a birthday or square root attack which needs approximately

2m=2 operations [19].

Almost all hash functions are iterative processes which hash inputs of arbi-

trary length by processing successive �xed-size blocks of the input. The input

X is padded to a multiple of the block length and subsequently divided into t

blocks X1 through Xt. The hash function h can then be described as follows:

H0 = IV ; Hi = f(Hi�1; Xi); 1 � i � t h(X) = Ht :

Here f is the compression function of h, Hi is the chaining variable between

stage i� 1 and stage i, and IV denotes the initial value.

Collision resistant hash functions were �rst used in the context of practical

digital signature schemes: in order to improve the e�ciency (and the security)

of these schemes, messages are hashed, and the (slow) digital signature is only

applied to the short hash-result. Other applications include the protection of

passwords, the construction of message authentication codes or MACs, and the

derivation of key variants.

The �rst constructions for hash functions were based on block ciphers (such

as DES) [8, 9, 10]. Although some trust has been built up in the security of these

proposals, their software performance is not very good, since they are typically

2. . . 4 times slower than the corresponding block cipher. Hash functions based

on modular arithmetic are slow as well, and serious doubt has been raised about

their security.

The most popular hash functions, which are currently used in a wide variety

of applications, are the custom designed hash functions from the MD4-family.

MD4 was proposed in 1990 by R. Rivest [13, 14]; it is a very fast hash function

tuned towards 32-bit processors. Because of unexpected vulnerabilities identi�ed

in [3] (namely collisions for two rounds our of three), R. Rivest designed in 1991

a strengthened version of MD4, called MD5 [15]. An additional argument was

that although MD4 was not a very conservative design, it was being implemented

fast into products. MD5 is probably the most widely used hash function, in spite

of the fact that it was shown in [4] that the compression function of MD5 is not

collision resistant: the collision found changes the chaining variables rather than

the message block. This does not pose a threat for standard applications of MD5,

but still implies a violation of one of the design principles.

The RIPE consortium3 had as goal to propose a portfolio of recommended

integrity primitives [12]. Based on its independent evaluation of MD4 and MD5

[3, 4] the consortium proposed a strengthened version of MD4, which was called

RIPEMD. RIPEMD consists of essentially two parallel versions of MD4, with

3 C.W.I. (NL) prime contractor, �Arhus University (DK), KPN (NL), K.U.Leuven (B),

Philips Crypto B.V. (NL), and Siemens AG (D).

2

some improvements to the shifts and the order of the message words; the two par-

allel instances di�er only in the round constants. At the end of the compression

function, the words of left and right halves are added.

A second alternative for MD5 is the Secure Hash Algorithm (SHA-1), which

was designed by NSA and published by NIST (National Institute of Standards

and Technology, US) [7]. The two main improvements are the increased size of

the result (160 bits compared to 128 bits for the other schemes), and the fact

that the message words in the di�erent rounds are not permuted but computed

as the sum of previous message words. This has as main consequence that it is

much harder to make local changes con�ned to a few bits: individual message

bits in
uence the calculations at a large number of places. The �rst version of

SHA, which was published in May 1993, had a weaker form of this property (no

mixing was done between bits at di�erent positions in a word), and apparently

this can be exploited to produce collisions faster than 280 operations. However,

no details have been made available. This weakness was removed in the improved

version, published in April '95.

The remainder of this paper is organized as follows. In x2 we discuss in more

detail why a new version of RIPEMD is proposed. In x3 we give a description of

the new schemes, and in x4 we motivate the design decisions. In x5 the perfor-

mance of the new versions of RIPEMD are compared to other MD4-based hash

functions. x6 presents the conclusions.

2 Motivation for a New Version of RIPEMD

The main contribution of MD4 is that it is the �rst cryptographic hash function

which made optimal use of the structure of current 32-bit processors. The use of

serial operations and the favorable treatment of little-endian architectures show

that MD4 is tuned towards software implementations.

However, introducing a new structure in cryptographic algorithms also in-

volves the risk of unexpected weaknesses. It became clear that existing tech-

niques such as di�erential or linear cryptanalysis were not applicable, and that

any successful cryptanalysis would require the development of new techniques.

The attacks by B. den Boer and A. Bosselaers on two (out of three) rounds of

MD4 [3] and on the compression function of MD5 [4] were the �rst indications

that some structural properties of the algorithms can be exploited, but did not

seem a serious threat to the overall algorithm. More recently, the attack on MD4

was improved by S. Vaudenay [18] yielding two hash-results that di�er only in

a few bits. This was a clear illustration that MD4 did not behave as one could

expect from a random function (e.g., it is not correlation resistant as de�ned in

[1]).

Early '95 H. Dobbertin found collisions for the last two out of three (and

later for the �rst two) rounds of RIPEMD [5]. While this is not an immediate

threat to RIPEMD with three rounds, the attack was quite surprising. Moreover,

it introduced a new technique to cryptanalyze this type of functions. In the Fall

of '95, H. Dobbertin was able to extend these techniques to produce collisions

3

for MD4 [6], and for the compression function of the extended version of MD4

[13] (see also x 3.3). The attack on MD4 requires only a few seconds on a PC,

and still leaves some freedom to the message; it clearly rules out the use of MD4

as a collision resistant function.

It is anticipated that these techniques can be used to produce collisions for

MD5 and perhaps also for RIPEMD. This will probably require an additional

e�ort, but it no longer seems as far away as it was a year ago.

An independent reason to upgrade RIPEMD is the limited resistance against

a brute force collision search attack. P. van Oorschot and M. Wiener present in

[17] a design for a $10 million collision search machine for MD5 that could �nd

a collision in 24 days. If only a $1 million budget is available, and the memory

of an existing computer network is used, the computation would require about 6

months. Taking into account the fact that the cost of computation and memory

is divided by four every three years (this observation is known as Moore's law),

one can conclude that a 128-bit hash-result does not o�er su�cient protection

for the next ten years. Note that collisions obtained in this way need less than

10 random looking bytes; the rest of the inputs can be chosen arbitrarily.

RIPEMD is in use in several banking applications, and is (together with

SHA-1) currently under consideration as a candidate for standardization within

ISO/IEC JTC1/SC27. However, the current situation brings us to the conclusion

that it would be prudent to upgrade current implementations, and to consider

a more secure scheme for standardization. Therefore the authors designed a

strengthened version of RIPEMD-160 which should be secure for ten years or

more. Also, an improved 128-bit version is proposed, which should only be used

to replace RIPEMD in current applications.

SHA-1 has already a 160-bit result, and because of some of its properties it

is quite likely that SHA-1 is not vulnerable to the known attacks. However, its

design criteria and the attack on the �rst version are secret.

3 Description of the New RIPEMD

In this section we brie
y describe RIPEMD-160, RIPEMD-128, and two variants

which give a longer hash-result. We assume that the reader is familiar with the

structure and notation of MD4 (see for example [13]).

3.1 RIPEMD-160

The bitsize of the hash-result and chaining variable for RIPEMD-160 are in-

creased to 160 bits (�ve 32-bit words), the number of rounds is increased from

three to �ve, and the two lines are made more di�erent (not only the constants

are modi�ed, but also the Boolean functions and the order of the message words).

This results in the following parameters (pseudo-code for RIPEMD-160 is

given in Appendix A):

1. Operations in one step. A := (A + f(B;C;D) + X + K)�s + E and

C := C�10. Here �s denotes cyclic shift (rotation) over s positions.

4

2. Ordering of the message words. Take the following permutation �:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

�(i) 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8

Further de�ne the permutation � by setting �(i) = 9i + 5 (mod 16). The

order of the message words is then given by the following table:

Line Round 1 Round 2 Round 3 Round 4 Round 5

left id � �2 �3 �4

right � �� �2� �3� �4�

3. Boolean functions. De�ne the following Boolean functions:

f1(x; y; z) = x� y � z;

f2(x; y; z) = (x ^ y) _ (:x ^ z);

f3(x; y; z) = (x _ :y)� z;

f4(x; y; z) = (x ^ z) _ (y ^ :z);
f5(x; y; z) = x� (y _ :z):

These Boolean functions are applied as follows:

Line Round 1 Round 2 Round 3 Round 4 Round 5

left f1 f2 f3 f4 f5
right f5 f4 f3 f2 f1

4. Shifts. For both lines we take the following shifts:

Round X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

1 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8

2 12 13 11 15 6 9 9 7 12 15 11 13 7 8 7 7

3 13 15 14 11 7 7 6 8 13 14 13 12 5 5 6 9

4 14 11 12 14 8 6 5 5 15 12 15 14 9 9 8 6

5 15 12 13 13 9 5 8 6 14 11 12 11 8 6 5 5

5. Constants. Take the integer parts of the following numbers:

Line Round 1 Round 2 Round 3 Round 4 Round 5

left 0 230 �
p
2 230 �

p
3 230 �

p
5 230 �

p
7

right 230 � 3
p
2 230 � 3

p
3 230 � 3

p
5 230 � 3

p
7 0

5

3.2 RIPEMD-128

The main di�erence with RIPEMD-160 is that we keep a hash-result and chain-

ing variable of 128 bits (four 32-bit words); only four rounds are used.

1. Operation in one step. A := (A+ f(B;C;D) +X +K)�s.

2. Boolean functions. The Boolean functions are applied as follows:

Line Round 1 Round 2 Round 3 Round 4

left f1 f2 f3 f4
right f4 f3 f2 f1

3. Constants. Take the integer parts of the following numbers:

Line Round 1 Round 2 Round 3 Round 4

left 0 230 �
p
2 230 �

p
3 230 �

p
5

right 230 � 3
p
2 230 � 3

p
3 230 � 3

p
5 0

3.3 Optional Extensions to 256 and 320 bit Hash-Results

Some applications of hash functions require a longer hash-result, without needing

a larger security level. A straightforward way to achieve this would be to use

two parallel instances of the same hash function with di�erent initial values;

however, this might result in unwanted dependencies between the two chains

(such dependencies have been exploited in the attack on RIPEMD). Therefore

it is advisable to have a stronger interaction between the two instances.

In [13] an extension of MD4 was proposed which yields a 256-bit hash-result

by running two parallel instances of MD4 which di�er only in the initial values

and in the constants in the second and third round. After every application of

the compression function, the value of the register A is interchanged between

the two chains. H. Dobbertin was able to produce collisions for the compression

function of this extension; moreover, we anticipate that it is possible to construct

collisions for the complete extension as well.

RIPEMD-128 and RIPEMD-160 have already two parallel lines, hence a dou-

ble length extension (to 256 respectively 320 bits) can be constructed without

the need for two parallel instances: it is su�cient to omit the combination of

the two lines at the end of every application of the compression function. We

propose to introduce interaction between the lines by swapping after round 1

the contents of registers A and A', after round 2 the contents of registers B and

B', etc.

4 Motivation of the Design Decisions

The main design principle of RIPEMD-160 is to overcome the problems raised

in x2, but with as few changes as possible to the original structure to maximize

6

on con�dence previously gained with RIPEMD and its predecessors MD4 and

MD5.

Also, it was decided to aim for a rather conservative design which o�ers a

high security level, rather than to push the limits of performance with the risk

of a redesign a few years from now.

The basic design philosophy of RIPEMD was to have two parallel iterations;

the two main improvements are that the number of rounds is increased from three

to �ve (four for RIPEMD-128) and that the two parallel rounds are made more

di�erent. From the attack on RIPEMD we conclude that having only di�erent

additive constants in the two lines is not su�cient. In RIPEMD-160, the order of

the message blocks in the two iterations is completely di�erent; in addition, the

order of the Boolean functions is reversed. We envisage that in the next years it

will become possible to attack one of the two lines and up to three rounds of the

two parallel lines, but that the combination of the two parallel lines will resist

attacks.

The operation for RIPEMD-160 on the A register is related to that of MD5

(but �ve words are involved); the rotate of the C register has been added to

avoid the MD5 attack which focuses on the most signi�cant bit [4]. SHA-1 has

two rotates as well, but in di�erent locations. The value of 10 for the C register

was chosen since it is not used for the other rotations. The step operation for

RIPEMD-128 is identical to that of MD4 (and RIPEMD).

The permutation of the message words of RIPEMD was designed such that

two words that are `close' in round 1-2 are far apart in round 2-3 (and vice

versa). If this permutation would have been applied in RIPEMD-160, this crite-

rion would not have been satis�ed (message blocks 2 and 13 form an undesirable

pattern due to a cycle of length 2 [5]). Therefore, it was decided to exchange the

values for 12 and 13, resulting in the permutation � of x3.1. The permutation

� was chosen such that two message words which are close in the left half will

always be at least seven positions apart in the right half. For the Boolean func-

tions, it was decided to eliminate the majority function because of its symmetry

properties and a performance disadvantage. The Boolean functions are now the

same as those used in MD5. As mentioned above, the Boolean functions in the

left and right half are used in a di�erent order.

The shifts in RIPEMD were chosen according to a speci�c strategy, which

was only documented in an internal report. The same strategy has been extended

to the strengthened algorithms in a straightforward way. The design criteria are

the following:

{ the shifts are chosen between 5 and 15 (too small/large shifts are considered

not very good, and a choice larger than 16 does not help much);

{ every message block should be rotated over di�erent amounts, not all of them

having the same parity;

{ the shifts applied to each register should not have a special pattern (for

example, the total should not be divisible by 32);

{ not too many shift constants should be divisible by four.

7

Note that the design decisions require a compromise: it is not possible to

make a good choice of message ordering and shift constants for �ve rounds that

is also `optimal' for three rounds out of �ve.

5 Performance Evaluation

In this section we compare the performance of RIPEMD-160, RIPEMD-128,

RIPEMD, SHA-1, MD5, and MD4. Implementations were written in Assembly

language optimized for the Pentium processor (90 MHz). Note that the numbers

are for realistic inputs, i.e., 256 Megabyte of data are hashed using an 8 K bu�er

(this is slower than hashing short blocks from the cache memory). The relative

speeds coincide more or less with predictions based on a simple count of the

number of operations. RIPEMD-160 is about 15% slower than SHA-1, half the

speed of RIPEMD, and four times slower than MD4. On a big-endian RISC

machine, the di�erence between SHA-1 and RIPEMD-160 will be slightly larger.

RIPEMD-128 is 30% slower than RIPEMD. Optimized C implementations are

a factor of 1.8. . . 2.2 slower; for MD5 the speed of our C code is 36% faster than

that of [16].

Table 1. Performance of several MD4-based hash functions on a 90 MHz Pentium

algorithm performance (Mbit/s)

Assembly C

MD4 165.7 81.4

MD5 113.5 59.7

SHA-1 46.5 21.2

RIPEMD 82.1 44.0

RIPEMD-128 63.8 35.6

RIPEMD-160 39.8 19.3

6 Concluding Remarks

We have proposed RIPEMD-160, which is an enhanced version of RIPEMD. The

design is made such that the con�dence built up with RIPEMD is transferred

to the new algorithm. The signi�cant increase in security comes at the cost of a

reduced performance (a factor of two), but the resulting speed is still acceptable.

We encourage comments and results on the security of RIPEMD-160.

Acknowledgments We would like to thank Bert den Boer, Markus Dichtl,

Walter Fumy, and Peter Landrock for encouragement and advice, and Chris

Mitchell, Xuejia Lai, and Wei Dai for helpful comments on earlier versions of

this paper.

8

References

1. R. Anderson, \The classi�cation of hash functions," Proc. of the IMA Confer-

ence on Cryptography and Coding, Cirencester, December 1993, Oxford University

Press, 1995, pp. 83{95.

2. I.B. Damg�ard, \A design principle for hash functions," Advances in Cryptology,

Proc. Crypto'89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 416{427.

3. B. den Boer, A. Bosselaers, \An attack on the last two rounds of MD4," Advances

in Cryptology, Proc. Crypto'91, LNCS 576, J. Feigenbaum, Ed., Springer-Verlag,

1992, pp. 194{203.

4. B. den Boer, A. Bosselaers, \Collisions for the compression function of MD5," Ad-

vances in Cryptology, Proc. Eurocrypt'93, LNCS 765, T. Helleseth, Ed., Springer-

Verlag, 1994, pp. 293{304.

5. H. Dobbertin, \RIPEMD with two-round compress function is not collisionfree,"

Journal of Cryptology, to appear.

6. H. Dobbertin, \Cryptanalysis of MD4," Fast Software Encryption, this volume.

7. FIPS 180-1, Secure hash standard, NIST, US Department of Commerce, Washing-

ton D.C., April 1995.

8. R. Merkle, \One way hash functions and DES," Advances in Cryptology, Proc.

Crypto'89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 428{446.

9. C.H. Meyer, M. Schilling, \Secure program load with Manipulation Detection

Code," Proc. Securicom 1988, pp. 111{130.

10. B. Preneel, R. Govaerts, J. Vandewalle, \Hash functions based on block ciphers:

a synthetic approach," Advances in Cryptology, Proc. Crypto'93, LNCS 773,

D. Stinson, Ed., Springer-Verlag, 1994, pp. 368{378.

11. B. Preneel, Cryptographic Hash Functions, Kluwer Academic Publishers, to ap-

pear.

12. RIPE, \Integrity Primitives for Secure Information Systems. Final Report

of RACE Integrity Primitives Evaluation (RIPE-RACE 1040)," LNCS 1007,

Springer-Verlag, 1995.

13. R.L. Rivest, \The MD4 message digest algorithm," Advances in Cryptology, Proc.

Crypto'90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 303{311.

14. R.L. Rivest, \The MD4 message-digest algorithm," Request for Comments (RFC)

1320, Internet Activities Board, Internet Privacy Task Force, April 1992.

15. R.L. Rivest, \The MD5 message-digest algorithm," Request for Comments (RFC)

1321, Internet Activities Board, Internet Privacy Task Force, April 1992.

16. J. Touch, \Report on MD5 performance," Request for Comments (RFC) 1810,

Internet Activities Board, Internet Privacy Task Force, June 1995.

17. P.C. van Oorschot, M.J. Wiener, \Parallel collision search with application to hash

functions and discrete logarithms," Proc. 2nd ACM Conference on Computer and

Communications Security, ACM, 1994, pp. 210{218.

18. S. Vaudenay, \On the need for multipermutations: cryptanalysis of MD4 and

SAFER," Fast Software Encryption, LNCS 1008, B. Preneel, Ed., Springer-Verlag,

1995, pp. 286{297.

19. G. Yuval, \How to swindle Rabin," Cryptologia, Vol. 3, No. 3, 1979, pp. 187{189.

9

A Pseudo-code for RIPEMD-160

RIPEMD-160 is an iterative hash function that operates on 32-bit words. The

round function takes as input a 5-word chaining variable and a 16-word message

block and maps this to a new chaining variable. All operations are de�ned on

32-bit words. Padding is identical to that of MD4 [13, 14]. Test values are listed

in Appendix B. First we de�ne all the constants and functions.

RIPEMD-160: de�nitions

nonlinear functions at bit level: exor, mux, -, mux, -

f(j; x; y; z) = x� y � z (0 � j � 15)

f(j; x; y; z) = (x ^ y) _ (:x ^ z) (16 � j � 31)

f(j; x; y; z) = (x _ :y)� z (32 � j � 47)

f(j; x; y; z) = (x ^ z) _ (y ^ :z) (48 � j � 63)

f(j; x; y; z) = x� (y _ :z) (64 � j � 79)

added constants (hexadecimal)

K(j) = 00000000x (0 � j � 15)

K(j) = 5A827999x (16 � j � 31) b230 �
p
2 c

K(j) = 6ED9EBA1x (32 � j � 47) b230 �
p
3 c

K(j) = 8F1BBCDCx (48 � j � 63) b230 �
p
5 c

K(j) = A953FD4Ex (64 � j � 79) b230 �
p
7 c

K 0(j) = 50A28BE6x (0 � j � 15) b230 � 3
p
2 c

K 0(j) = 5C4DD124x (16 � j � 31) b230 � 3
p
3 c

K 0(j) = 6D703EF3x (32 � j � 47) b230 � 3
p
5 c

K 0(j) = 7A6D76E9x (48 � j � 63) b230 � 3
p
7 c

K 0(j) = 00000000x (64 � j � 79)

selection of message word

r(j) = j (0 � j � 15)

r(16::31) = 7; 4; 13; 1; 10; 6; 15; 3; 12; 0; 9; 5; 2; 14; 11; 8

r(32::47) = 3; 10; 14; 4; 9; 15; 8; 1; 2; 7; 0; 6; 13; 11; 5; 12

r(48::63) = 1; 9; 11; 10; 0; 8; 12; 4; 13; 3; 7; 15; 14; 5; 6; 2

r(64::79) = 4; 0; 5; 9; 7; 12; 2; 10; 14; 1; 3; 8; 11; 6; 15; 13

r0(0::15) = 5; 14; 7; 0; 9; 2; 11; 4; 13; 6; 15; 8; 1; 10; 3; 12

r0(16::31) = 6; 11; 3; 7; 0; 13; 5; 10; 14; 15; 8; 12; 4; 9; 1; 2

r0(32::47) = 15; 5; 1; 3; 7; 14; 6; 9; 11; 8; 12; 2; 10; 0; 4; 13

r0(48::63) = 8; 6; 4; 1; 3; 11; 15; 0; 5; 12; 2; 13; 9; 7; 10; 14

r0(64::79) = 12; 15; 10; 4; 1; 5; 8; 7; 6; 2; 13; 14; 0; 3; 9; 11

10

amount for rotate left (rol)

s(0::15) = 11; 14; 15; 12; 5; 8; 7; 9; 11; 13; 14; 15; 6; 7; 9; 8

s(16::31) = 7; 6; 8; 13; 11; 9; 7; 15; 7; 12; 15; 9; 11; 7; 13; 12

s(32::47) = 11; 13; 6; 7; 14; 9; 13; 15; 14; 8; 13; 6; 5; 12; 7; 5

s(48::63) = 11; 12; 14; 15; 14; 15; 9; 8; 9; 14; 5; 6; 8; 6; 5; 12

s(64::79) = 9; 15; 5; 11; 6; 8; 13; 12; 5; 12; 13; 14; 11; 8; 5; 6

s0(0::15) = 8; 9; 9; 11; 13; 15; 15; 5; 7; 7; 8; 11; 14; 14; 12; 6

s0(16::31) = 9; 13; 15; 7; 12; 8; 9; 11; 7; 7; 12; 7; 6; 15; 13; 11

s0(32::47) = 9; 7; 15; 11; 8; 6; 6; 14; 12; 13; 5; 14; 13; 13; 7; 5

s0(48::63) = 15; 5; 8; 11; 14; 14; 6; 14; 6; 9; 12; 9; 12; 5; 15; 8

s0(64::79) = 8; 5; 12; 9; 12; 5; 14; 6; 8; 13; 6; 5; 15; 13; 11; 11

initial value (hexadecimal)

h0 = 67452301x; h1 = EFCDAB89x; h2 = 98BADCFEx;

h3 = 10325476x; h4 = C3D2E1F0x;

It is assumed that the message after padding consists of t 16-word blocks

that will be denoted with Xi[j], with 0 � i � t� 1 and 0 � j � 15. The symbol

denotes addition modulo 232 and rols denotes cyclic left shift (rotate) over s

positions. The pseudo-code for RIPEMD-160 is then given below, and an outline

of the compression function is given in Figure 1.

RIPEMD-160: pseudo-code

for i := 0 to t� 1 f
A := h0; B := h1; C := h2; D = h3; E = h4;

A0 := h0; B
0 := h1; C

0 := h2; D
0 = h3; E

0 = h4;

for j := 0 to 79 f
T := rols(j) (A f(j; B;C;D) Xi[r(j)] K(j)) E;

A := E; E := D; D := rol10(C); C := B; B := T ;

T := rols0(j) (A
0 f(79� j; B0; C 0; D0) Xi[r

0(j)] K 0(j)) E0;

A0 := E0; E0 := D0; D0 := rol10(C
0); C 0 := B0; B0 := T ;

g
T := h1 C D0; h1 := h2 D E0; h2 := h3 E A0;

h3 := h4 A B0; h4 := h0 B C 0; h0 := T ;

g

11

h0

?

?

q

h1

?

?

q

h2

?

?

q

h3

?

?

q

h4

?

?

q

? ?? ?? ?? ?? ?

f5; K5X�4(i)
-

?????

f4; K4X�3(i)
-

?????

f3; K3X�2(i)
-

?????

f2; K2X�(i)
-

?????

f1; K1Xi
-

?????

f1; K
0

5
X�4�(i)

�

?????

f2; K
0

4
X�3�(i)

�

?????

f3; K
0

3
X�2�(i)

�

?????

f4; K
0

2 X��(i)
�

?????

f5; K
0

1 X�(i)
�

?????

- �

- �

- �

- �

- �

?

h0

?

h1

?

h2

?

h3

?

h4

Fig. 1. Outline of the compression function of RIPEMD-160. Inputs are a 16-word

message block Xi and a 5-word chaining variable h0h1h2h3h4, output is a new value

of the chaining variable.

12

B Test Values

RIPEMD-160:

""

9c1185a5c5e9fc54612808977ee8f548b2258d31

"a"

0bdc9d2d256b3ee9daae347be6f4dc835a467ffe

"abc"

8eb208f7e05d987a9b044a8e98c6b087f15a0bfc

"message digest"

5d0689ef49d2fae572b881b123a85ffa21595f36

"abcdefghijklmnopqrstuvwxyz"

f71c27109c692c1b56bbdceb5b9d2865b3708dbc

"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"

12a053384a9c0c88e405a06c27dcf49ada62eb2b

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"

b0e20b6e3116640286ed3a87a5713079b21f5189

8 times "1234567890"

9b752e45573d4b39f4dbd3323cab82bf63326bfb

1 million times "a"

52783243c1697bdbe16d37f97f68f08325dc1528

RIPEMD-128:

""

cdf26213a150dc3ecb610f18f6b38b46

"a"

86be7afa339d0fc7cfc785e72f578d33

"abc"

c14a12199c66e4ba84636b0f69144c77

"message digest"

9e327b3d6e523062afc1132d7df9d1b8

"abcdefghijklmnopqrstuvwxyz"

fd2aa607f71dc8f510714922b371834e

"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"

a1aa0689d0fafa2ddc22e88b49133a06

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"

d1e959eb179c911faea4624c60c5c702

8 times "1234567890"

3f45ef194732c2dbb2c4a2c769795fa3

1 million times "a"

4a7f5723f954eba1216c9d8f6320431f

13

